JP2019078337A - Heat insulation material and manufacturing method thereof - Google Patents

Heat insulation material and manufacturing method thereof Download PDF

Info

Publication number
JP2019078337A
JP2019078337A JP2017205809A JP2017205809A JP2019078337A JP 2019078337 A JP2019078337 A JP 2019078337A JP 2017205809 A JP2017205809 A JP 2017205809A JP 2017205809 A JP2017205809 A JP 2017205809A JP 2019078337 A JP2019078337 A JP 2019078337A
Authority
JP
Japan
Prior art keywords
heat insulating
mass
insulating material
heat
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017205809A
Other languages
Japanese (ja)
Other versions
JP6602827B2 (en
Inventor
篤 末吉
Atsushi Sueyoshi
篤 末吉
浩史 塩野
Hiroshi Shiono
浩史 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2017205809A priority Critical patent/JP6602827B2/en
Publication of JP2019078337A publication Critical patent/JP2019078337A/en
Application granted granted Critical
Publication of JP6602827B2 publication Critical patent/JP6602827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a heat insulation material having heat resistance under a high temperature and an excellent heat insulation property and having a high mechanical strength.SOLUTION: The present invention relates to a sintered body containing a porous heat insulation aggregate in 10 to 40 mass% consisting of a high heatproof composition whose heatproof temperature is 1200°C or higher and including pores whose pore diameter ranges from 500 to 1000 nm, preferably, containing a fireproof fiber in 10 to 30 mass% as a reinforcement material consisting of a high heatproof composition whose heatproof temperature is 1400°C or higher, containing an inorganic filler in 40-60 mass% consisting of metal oxide particles whose average particle diameter is 100 nm or less, and containing an infrared ray scattering material in 8 to 20 mass%. Pores whose pore diameter ranges from 100 to 2000 nm occupy 30% or more and 60% or less of volume of all the pores. Thus, heat conductivity at 1200°C is 0.12 W/(m K) or less, a flexure strength is 0.5 MPa or more and a heater wire shrinkage wire after heating at 1400°C for 24 hours is 4% or less.SELECTED DRAWING: None

Description

本発明は、高い断熱性と高温下での耐熱性とを有し、更に高い機械的強度を有する断熱材及びその製造方法に関する。   The present invention relates to a heat insulating material having high heat insulation and heat resistance under high temperature, and further having high mechanical strength, and a method of manufacturing the same.

高温での処理が行われる工業炉等の産業設備に使用する断熱材には、省エネルギー化の観点から高い断熱性を有していることはもとより高温下での耐熱性に優れ、更に高い機械的強度を有していることが求められている。例えば、熱処理炉の断熱材は最高使用温度1400℃の耐熱性と高強度が求められている。断熱性については、エネルギーロスをできるだけ抑制するため、空気の熱伝導率と同程度かそれより小さい熱伝導率を有していることが求められている。   Insulating materials used in industrial facilities such as industrial furnaces that are treated at high temperatures have not only high thermal insulation from the viewpoint of energy saving, but also excellent heat resistance at high temperatures and higher mechanical properties. It is required to have strength. For example, the heat insulating material of the heat treatment furnace is required to have heat resistance and high strength at a maximum use temperature of 1400 ° C. With regard to heat insulation, in order to suppress energy loss as much as possible, it is required to have a thermal conductivity similar to or less than the thermal conductivity of air.

上記のような産業設備に使用する断熱材としては、従来、無機繊維を母材とする断熱材が使用されてきた。例えば特許文献1には、非繊維粒子が除去されたシリカアルミナ繊維等の無機繊維に、シリカゾル等の無機バインダーと凝集剤とを添加して脱水成形することにより製造された無機繊維質の断熱材が開示されている。この断熱材は1400℃の高温まで使用でき且つ高い強度を有しているが、断熱性については、1000℃での熱伝導率が0.15W/(m・K)、1200℃での熱伝導率が0.17W/(m・K)であった。空気の熱伝導率は、1000℃で0.08W/(m・K)、1200℃での熱伝導率は0.09W/(m・K)であるので、上記の無機繊維質の断熱材は空気に比べて熱伝導率が約2.0倍大きく、満足できる断熱性能を有しているとはいえなかった。   As a heat insulating material used for the above-mentioned industrial equipment, the heat insulating material which uses inorganic fiber as a base material conventionally has been used. For example, Patent Document 1 discloses a heat insulating material of an inorganic fiber manufactured by adding an inorganic binder such as silica sol and a coagulant to an inorganic fiber such as a silica-alumina fiber from which non-fiber particles have been removed, and dehydrating it. Is disclosed. This heat insulating material can be used at high temperatures up to 1400 ° C and has high strength, but for heat insulation, thermal conductivity at 1000 ° C is 0.15 W / (m · K), thermal conductivity at 1200 ° C The rate was 0.17 W / (m · K). The thermal conductivity of air is 0.08 W / (m · K) at 1000 ° C and 0.09 W / (m · K) at 1200 ° C. The thermal conductivity was about 2.0 times greater than that of air, and it could not be said that it had satisfactory heat insulation performance.

上記の無機繊維質の断熱材よりも低熱伝導率の断熱材として、マイクロポーラス断熱材と称される低熱伝導率材料が知られている。例えば特許文献2には、ナノクラスの粒径の微粒子シリカを用いて粒子間の空隙サイズを小さくすることで気体の対流伝熱を抑制し、更に補強のために無機繊維を混合して圧縮成形した断熱材が開示されている。この断熱材は、微細な多孔構造にすることで最大限の断熱性能が得られるように設計されており、例えば800℃の熱伝導率が0.05W/(m・K)であり、同じ温度における空気の熱伝導率0.07W/(m・K)よりも小さいので優れた断熱性能を有している。   A low thermal conductivity material called a microporous thermal insulation material is known as a thermal insulation material having a thermal conductivity lower than that of the above-mentioned inorganic fibrous thermal insulation material. For example, in patent document 2, the convection heat transfer of gas is suppressed by reducing the pore size between particles using fine particle silica of nano-class particle diameter, and inorganic fiber is mixed for reinforcement, and compression molding is performed. Thermal insulation is disclosed. This thermal insulation material is designed to obtain the maximum thermal insulation performance by making a fine porous structure, for example, the thermal conductivity of 800 ° C. is 0.05 W / (m · K), and the same temperature Since the thermal conductivity of air in the above is smaller than 0.07 W / (m · K), it has excellent thermal insulation performance.

また、断熱材の原料にシリカよりも耐熱性が高いナノクラスのアルミナ粒子を使うことで、熱伝導率を低減すると共に耐熱性を高めることが提案されている。例えば特許文献3には、最高使用温度1200℃までの耐熱性を有し且つ1000℃での熱伝導率が0.07W/(m・K)の断熱材が開示されている。この断熱材は、同じ温度における空気の熱伝導率0.08W/(m・K)よりも小さい熱伝導率を有しているので優れた断熱性能を有している。更に、特許文献4には、1400℃で焼成された最高使用温度が1400℃、1000℃での熱伝導率が0.09W/(m・K)の断熱材が開示されている。   Further, it has been proposed to reduce the thermal conductivity and to improve the heat resistance by using, as a raw material of the heat insulating material, nano-class alumina particles having higher heat resistance than silica. For example, Patent Document 3 discloses a heat insulating material having heat resistance up to a maximum use temperature of 1200 ° C. and having a thermal conductivity of 0.07 W / (m · K) at 1000 ° C. This heat insulating material has excellent heat insulating performance since it has a heat conductivity smaller than the heat conductivity of air 0.08 W / (m · K) at the same temperature. Furthermore, Patent Document 4 discloses a heat insulating material having a maximum use temperature of 1400 ° C. and a thermal conductivity of 0.09 W / (m · K) at 1000 ° C., which are fired at 1400 ° C.

特開2014−228035号公報JP 2014-228035 A 特許第5683739号公報Patent No. 5683739 gazette 特開2016−40226号公報Unexamined-Japanese-Patent No. 2016-40226 特開2016−173178号公報JP, 2016-173178, A

しかしながら、特許文献3のようなマイクロポーラス断熱材は、ナノクラスの粒子が焼結して収縮するので、最高使用温度1200℃までの耐熱性しか有していない。特許文献4の断熱材は1400℃の耐熱性を有し、1000℃での熱伝導率が0.09W/(m・K)を実施例で示しているものの、微細な多孔構造により低熱伝導率を実現する必要があるため、ナノクラスの粒径を有するアルミナやムライト等の金属酸化物粒子を液体窒素の中に入れて凍結乾燥することで細孔を持つ凝集体を作製しており、工業的に生産する場合は割高になるとみられる。   However, the microporous heat insulating material as disclosed in Patent Document 3 has only heat resistance up to a maximum use temperature of 1200 ° C. because the nano class particles sinter and shrink. The heat insulating material of Patent Document 4 has a heat resistance of 1400 ° C., and although the thermal conductivity at 1000 ° C. indicates 0.09 W / (m · K) in the example, it has a low thermal conductivity due to the fine porous structure. Since it is necessary to realize metal oxide particles such as alumina and mullite having a particle size of nano class in liquid nitrogen and freeze-drying it, aggregates with pores are produced. Production is likely to be expensive.

本発明は上記の従来の断熱材が抱える問題点に鑑みてなされたものであり、最高使用温度1400℃までの耐熱性を有し且つ所望の断熱性と高強度を有する断熱材を、工業的に安価に提供することを目的としている。   The present invention has been made in view of the above-mentioned problems with the conventional heat insulating material, and a heat insulating material having heat resistance up to a maximum use temperature of 1400 ° C. and having desired heat insulating properties and high strength is industrially The purpose is to provide at low cost.

上記目的を達成するため、本発明に係る断熱材は、耐熱温度が1200℃以上の高耐熱性の組成物からなり孔径500〜1000nmの細孔を有する多孔質の断熱骨材を10〜40質量%含有し、耐火繊維を10〜30質量%含有し、平均粒径100nm以下の金属酸化物粒子からなる無機フィラーを40〜60質量%含有し、及び赤外線散乱材を8〜20質量%含有する焼結体であって、孔径100〜2000nmの気孔が全気孔の容積の30%以上60%以下を占めていることを特徴としている。   In order to achieve the above object, the heat insulating material according to the present invention is composed of a high heat resistant composition having a heat resistant temperature of 1200 ° C. or higher and 10 to 40 mass of a porous heat insulating aggregate having pores with a pore diameter of 500 to 1000 nm. %, Containing 10 to 30% by mass of refractory fibers, 40 to 60% by mass of an inorganic filler consisting of metal oxide particles having an average particle diameter of 100 nm or less, and 8 to 20% by mass of an infrared scattering material The sintered body is characterized in that pores with a diameter of 100 to 2000 nm occupy 30% or more and 60% or less of the volume of all the pores.

本発明によれば、所望の断熱性能と高強度とを有し、最高使用温度1400℃までの耐熱性を有する断熱材を工業的に安価に生産することができる。   According to the present invention, a heat insulating material having desired heat insulating performance and high strength and having heat resistance up to a maximum use temperature of 1400 ° C. can be industrially produced inexpensively.

高温での処理が行われる工業炉等の産業設備の断熱に用いられる断熱材は、空気の熱伝導率と同程度か又はそれより小さい熱伝導率を有していることが好ましい。空気の熱伝導率は例えば1000℃では0.08W/(m・K)であり、1200℃では0.09W/(m・K)である。このような1000〜1200℃の高温域では、熱伝導率は対流伝熱とふく射伝熱の影響が大きくなる。これらのうち、対流伝熱は断熱材の細孔を空気の平均自由行程より小さくすることで抑制することができる。   It is preferable that the heat insulating material used for heat insulation of industrial facilities, such as an industrial furnace in which treatment at high temperature is performed, has a heat conductivity similar to or less than the heat conductivity of air. The thermal conductivity of air is, for example, 0.08 W / (m · K) at 1000 ° C. and 0.09 W / (m · K) at 1200 ° C. In such a high temperature range of 1000 to 1200 ° C., the thermal conductivity is greatly influenced by convective heat transfer and radiation heat transfer. Among these, convective heat transfer can be suppressed by making the pores of the heat insulating material smaller than the mean free path of air.

空気の平均自由行程は温度に比例し、1000℃では273nm、1200℃では316nm、1400℃では359nmである。断熱材の細孔をこれらよりも小さくすることが望ましい。このような細孔を形成するには、シリカ、アルミナ、ムライト等のナノサイズの金属酸化物粒子を用いて粒子間の空隙サイズを小さくする方法や、原料を液体窒素の中に入れて凍結乾燥することで細孔を持つ凝集体を作製する方法がある。   The mean free path of air is proportional to temperature, 273 nm at 1000 ° C., 316 nm at 1200 ° C. and 359 nm at 1400 ° C. It is desirable to make the pores of the thermal insulation smaller than these. In order to form such pores, a method of reducing the void size between particles using nano-sized metal oxide particles such as silica, alumina, mullite or the like, or a raw material is put into liquid nitrogen and freeze-dried There is a method of producing the aggregate which has a pore by doing.

一方、ふく射伝熱を低減するには、光の波長と同程度の大きさであるシングルミクロンサイズの気孔が多くなるようにしたり、シングルミクロンサイズの粒径を有する粒を多く含めたりすることで光の散乱効果を高める方法がある。特にふく射伝熱をもたらす赤外線の波長と同程度の平均粒径、好ましくは当該波長の半分程度の平均粒径を有する粒を含むのが望ましい。具体的に説明すると、例えば温度が100〜1000℃におけるピーク波長は、およそ2〜8μm(2000〜8000nm)である。このピーク波長の約半分に相当する1〜4μm(1000〜4000nm)であれば、ミー散乱によって、100〜1000℃におけるふく射伝熱を効果的に抑制することができる。   On the other hand, in order to reduce the radiation heat transfer, it is possible to increase the number of single micron-sized pores, which are about the same size as the light wavelength, or to include many particles having a single micron-sized particle size. There is a way to enhance the light scattering effect. In particular, it is desirable to include particles having an average particle size similar to the wavelength of the infrared radiation that brings about heat transfer, preferably an average particle size about half that wavelength. Specifically, for example, the peak wavelength at a temperature of 100 to 1000 ° C. is approximately 2 to 8 μm (2000 to 8000 nm). If it is 1 to 4 μm (1000 to 4000 nm) corresponding to about half of the peak wavelength, radiation heat transfer at 100 to 1000 ° C. can be effectively suppressed by Mie scattering.

また、断熱材の機械的強度は曲げ強さで評価しており、曲げ強さを0.5MPaよりも大きくすることで、昇温降温が繰り返される状況下においても優れた寸法安定性や形状安定性を維持することができ、更には施工時や加工時のハンドリングの際に損傷しにくいのはもちろんのこと、稜線の欠けや損耗が生じにくい強度を有する材料にすることができる。   In addition, the mechanical strength of the heat insulating material is evaluated by the bending strength, and by making the bending strength larger than 0.5 MPa, excellent dimensional stability and shape stability are obtained even under conditions where temperature rising and temperature lowering are repeated. It is possible to maintain the properties and further to make the material resistant to breakage during construction and processing, as well as to have strength that resists breakage and wear of ridges.

上記の知見に基づいて鋭意研究を重ねた結果、孔径500〜1000nmの細孔を有する多孔質構造の断熱骨材と、強化材としての耐火繊維と、ナノサイズの金属酸化物粒子からなる無機フィラーと、赤外線散乱材とによって多孔質の焼結体を構成することによって、高い断熱性と高温下での耐熱性とを有し、更に高い機械的強度を有する断熱材を安価に提供できることを見出し、本発明を完成するに至った。以下、上記の特徴を有する本発明の断熱材の実施形態について、構成要素ごとに具体的に説明する。なお、以下の説明においては、特にことわらない限り、孔径は水銀ポロシメータによって測定したものであり、平均粒径はレーザ回折式粒度分布測定装置によって測定した体積基準の50%径(D50)である。   As a result of earnestly researching based on the above-mentioned findings, the inorganic filler which consists of the heat insulation aggregate of the porous structure which has a pore with a pore diameter of 500-1000 nm, the fireproof fiber as a reinforcing material, and metal oxide particles of nano size. And, by constructing a porous sintered body with an infrared scattering material, it is found that a heat insulating material having high heat insulation and heat resistance under high temperature, and further having high mechanical strength can be provided at low cost. The present invention has been completed. Hereinafter, an embodiment of the heat insulating material of the present invention having the above-described features will be specifically described for each component. In the following description, unless otherwise specified, the pore size is measured by a mercury porosimeter, and the average particle size is a volume-based 50% diameter (D50) measured by a laser diffraction particle size distribution analyzer. .

本発明の実施形態の断熱材が有する多孔質の断熱骨材には、耐熱温度(最高使用温度とも称する)1200℃以上の高耐熱性の組成物からなり孔径500〜1000nmの細孔を有する多孔質構造の断熱骨材を用いる。また、例えば断熱材の最高使用温度を1200℃とするときは断熱骨材には耐熱温度1200℃以上のものを用い、断熱材の最高使用温度を1400℃とするときには断熱骨材には耐熱温度1400℃以上のものを用いる。なお、耐熱温度1400℃とは雰囲気温度1400℃で24時間加熱したときの加熱線収縮率が4%以下の場合をいい、耐熱温度1200℃とは雰囲気温度1200℃で24時間加熱したときの加熱線収縮率が4%以下の場合をいう。   The porous heat insulating aggregate of the heat insulating material according to the embodiment of the present invention comprises a high heat resistant composition having a heat resistant temperature (also referred to as a maximum use temperature) of 1200 ° C. or higher and a pore having a pore diameter of 500 to 1000 nm. Use thermal insulation aggregate of quality structure. Also, for example, when the maximum use temperature of the heat insulating material is 1200 ° C., the heat insulating aggregate having a heat resistant temperature of 1200 ° C. or higher is used, and when the maximum use temperature of the heat insulating material is 1400 ° C. Use those of 1400 ° C. or higher. The heat resistance temperature 1400 ° C refers to the case where the heating linear shrinkage percentage is 4% or less when heated at an atmosphere temperature 1400 ° C for 24 hours, and the heat resistance temperature 1200 ° C is a heat when heated at an atmosphere temperature 1200 ° C for 24 hours When the linear shrinkage rate is 4% or less.

このような断熱骨材としては、限定するものではないが、耐熱温度1400℃以上の断熱骨材では例えばスピネル質セラミックス(クアーズテック株式会社製のThermoscatt(登録商標))や、CaO・6Al(カルシアアルミネート)セラミックス(Almatis社製のSLA−92)等を挙げることができ、耐熱温度1200℃以上の断熱骨材では例えば多孔質アルミナを挙げることができる。 Such insulation aggregates, but are not limited to, heat-resistant temperature 1400 ° C. or more insulation aggregate in example spinel ceramics (Coors Tech Co., Ltd. of Thermoscatt (registered trademark)) and, CaO · 6Al 2 O 3 (Calcia aluminate) ceramics (SLA-92 manufactured by Almatis, Inc.) etc. can be mentioned, For example, porous alumina can be mentioned by the heat insulation aggregate whose heat-resistant temperature is 1200 degreeC or more.

本発明の実施形態の断熱材が有する強化材としての耐火繊維は、1400℃以上の高耐熱性の組成物からなる繊維を用いるのが好ましい。このような耐火繊維としては、限定するものではないが、例えばアルミナ質繊維、ムライト質繊維、CaO・6Al(カルシアアルミネート)繊維、ジルコニア繊維、及び生体溶解性繊維を挙げることができ、これら繊維からなる群より選択される1種以上を使用するのが好ましい。これら耐火繊維はいずれも発がん性の可能性がなく、特定化学物質に指定されていない点においても好ましい。これらの中では、ムライト質繊維(例えば株式会社ITM製のファイバーマックス1600)、又はアルミナ質繊維が好ましい。耐火繊維は、平均繊維径が1μm以上10μm以下であるのが好ましく、2μm以上6μm以下であるのがより好ましい。なお、上記の平均繊維径とは、測定対象の繊維群を電子顕微鏡で撮影し、得られた画像の中から任意に選択した200本以上の繊維の幅方向の距離を計測し、これらを算術平均したものである。 It is preferable that the fire resistant fiber as a reinforcing material which the heat insulating material of embodiment of this invention has uses the fiber which consists of a highly heat-resistant composition 1400 degreeC or more. Such fire resistant fibers may include, but are not limited to, alumina fibers, mullite fibers, CaO · 6Al 2 O 3 (calcia aluminate) fibers, zirconia fibers, and biosoluble fibers, for example. It is preferable to use one or more selected from the group consisting of these fibers. All of these fire resistant fibers have no possibility of carcinogenicity and are preferable in that they are not specified as specific chemical substances. Among these, mullite fibers (for example, fiber max 1600 manufactured by ITM Co., Ltd.) or aluminous fibers are preferable. The refractory fiber preferably has an average fiber diameter of 1 μm to 10 μm, and more preferably 2 μm to 6 μm. In addition, with said average fiber diameter, the fiber group of measurement object is image | photographed with an electron microscope, the distance of the width direction of 200 or more fibers arbitrarily selected from the obtained image is measured, and these are calculated. It is an average.

本発明の実施形態の断熱材が有する無機フィラーは、高温での耐熱性を有する金属酸化物からなるナノサイズの微粒子を用いる。これにより、多孔質の断熱骨材と耐火繊維と赤外線散乱材との粒子間の空隙サイズを小さくでき、高温での気体の対流伝熱を抑制することができる。ここでナノサイズの微粒子とは、平均粒径1nm以上100nm以下の粒子を意味している。上記の金属酸化物としては、限定するものではないが、例えばアルミナ、マグネシア、ムライト、及びジルコニアを挙げることができ、これら金属酸化物からなる群より選択される1種以上を使用するのが好ましい。これらの中では、アルミナ、ムライト、又はジルコニアが好ましい。   The inorganic filler of the heat insulating material according to the embodiment of the present invention uses nano-sized fine particles of metal oxide having heat resistance at high temperature. As a result, the size of the gap between the particles of the porous heat insulating aggregate, the refractory fiber and the infrared scattering material can be reduced, and the convection heat transfer of the gas at high temperature can be suppressed. Here, nano-sized particles mean particles having an average particle diameter of 1 nm or more and 100 nm or less. Examples of the above metal oxides include, but are not limited to, alumina, magnesia, mullite, and zirconia, and it is preferable to use one or more selected from the group consisting of these metal oxides. . Among these, alumina, mullite or zirconia is preferred.

本発明の実施形態の断熱材が有する赤外線散乱材は、ふく射による伝熱を低減可能な1000℃以上の耐熱温度を有する組成物からなるものであれば特に限定はないが、赤外線反射性のあるものが好ましい。このような組成物としては、例えば珪酸ジルコニウム、ジルコニア、及びアルミナ等を挙げることができ、これら組成物からなる群より選択される1種以上を使用するのが好ましい。また、上記の赤外線散乱材は、平均粒径が100nm以上5000nm以下であるのが好ましく、特に上限は、ふく射伝熱をもたらす赤外線の1200℃のピーク波長と同程度の平均粒子径である2000nm以下であるのがより好ましい。   The infrared scattering material included in the heat insulating material according to the embodiment of the present invention is not particularly limited as long as it is made of a composition having a heat resistance temperature of 1000 ° C. or higher capable of reducing heat transfer due to radiation. Is preferred. Examples of such a composition include zirconium silicate, zirconia, and alumina, and it is preferable to use one or more selected from the group consisting of these compositions. The above-mentioned infrared scattering material preferably has an average particle diameter of 100 nm or more and 5000 nm or less, and in particular, the upper limit is 2000 nm or less, which is the same as the average particle diameter of the peak wavelength of 1200 ° C. Is more preferred.

本発明の実施形態の断熱材では、上記多孔質の断熱骨材の含有率が少なすぎると該断熱材の全細孔の容積が小さくなるため伝導伝熱が多くなり、その結果、熱伝導率が大きくなって断熱性が低下する。逆に上記多孔質の断熱骨材の含有率が多すぎると該断熱材の強度が低下する。また、上記耐火繊維の含有率が少なすぎると強度が低下し、逆に上記耐火繊維の含有率が多すぎるとふく射抑制に効果のある細孔よりも大きな細孔が増えるのでふく射が多くなり、その結果、熱伝導率が大きくなって断熱性が低下する。また、上記無機フィラーの含有率が少なすぎると強度が低下し、逆に上記無機フィラーの含有率が多すぎると該断熱材の全細孔の容積が小さくなるため伝導伝熱が多くなり、その結果、熱伝導率が大きくなって断熱性が低下する。また、上記赤外線散乱材の含有率が少なすぎるとふく射抑制効果が少なくなり、熱伝導率が大きくなって断熱性が低下する。逆に上記赤外線散乱材の含有率が多すぎると該断熱材の強度が低下する。   In the heat insulating material according to the embodiment of the present invention, when the content of the porous heat insulating aggregate is too small, the volume of all the pores of the heat insulating material is reduced, so that the heat transfer is increased. Becomes large and the heat insulation is reduced. Conversely, if the content of the porous heat insulating aggregate is too large, the strength of the heat insulating material decreases. If the content of the refractory fiber is too small, the strength decreases, and conversely, if the content of the refractory fiber is too large, pores larger than the pores effective for suppressing radiation increase, so that the radiation increases. As a result, the thermal conductivity is increased and the heat insulation is reduced. If the content of the inorganic filler is too small, the strength decreases, and conversely, if the content of the inorganic filler is too large, the volume of all the pores of the heat insulating material decreases and the conductive heat transfer increases. As a result, the thermal conductivity is increased and the heat insulation is reduced. When the content of the infrared scattering material is too small, the radiation suppressing effect is reduced, the thermal conductivity is increased, and the heat insulation is reduced. Conversely, if the content of the infrared scattering material is too large, the strength of the heat insulating material is reduced.

本発明の実施形態の断熱材を構成する上記の各構成要素の含有量は、上記を考慮したうえで所望の断熱材の特性が得られるように適宜含有量を調整することができる。具体的には、本発明の実施形態の断熱材を構成する上記の各構成要素の含有量は、多孔質の断熱骨材では10〜40質量%であり、耐火繊維では10〜30質量%であり、無機フィラーでは40〜60質量%であり、赤外線散乱材では8〜20質量%である。更に本発明の実施形態の断熱材は、上記した多孔質の断熱骨材、耐火繊維、無機フィラー、及び赤外線散乱材が合計98質量%以上含まれているのが好ましく、不可避不純物や成形助剤が含まれていてもよい。   In consideration of the above, the content of each of the above-described components constituting the heat insulating material of the embodiment of the present invention can be appropriately adjusted so as to obtain desired properties of the heat insulating material. Specifically, the content of each component described above constituting the heat insulating material according to the embodiment of the present invention is 10 to 40% by mass in the porous heat insulation aggregate, and 10 to 30% by mass in the fireproof fiber In the case of the inorganic filler, the content is 40 to 60% by mass, and the content of the infrared scattering material is 8 to 20% by mass. Furthermore, the heat insulating material according to the embodiment of the present invention preferably contains 98% by mass or more in total of the above-mentioned porous heat insulating aggregate, fire resistant fiber, inorganic filler, and infrared ray scattering material. May be included.

本発明の実施形態の断熱材は、上記した断熱骨材、耐火繊維、無機フィラー、及び赤外線散乱材を有する原料を公知の方法で乾式混合した後、公知の方法で加圧成形することにより作製することができる。例えば、限定するものではないが、上記の原料を高速混合機(例えばレーデイゲミキサーやヘンシェルミキサー等)で乾式混合する工程と、得られた混合物を所定の成形型に充填して乾式プレス成形する工程とにより成形体を作製することができる。   The heat insulating material according to the embodiment of the present invention is produced by dry-mixing the above-described raw materials having the heat insulating aggregate, the fire resistant fiber, the inorganic filler, and the infrared scattering material by a known method and then pressing it by a known method. can do. For example, although not limiting, a step of dry-mixing the above-mentioned raw materials with a high-speed mixer (for example, a rhage mixer, a Henschel mixer, etc.), and filling the obtained mixture in a predetermined molding die to dry press molding A molded body can be produced by the following steps.

得られた成形体は、熱収縮の防止と強度発現のために焼結処理を行うことで断熱材となる。この場合の焼結の条件には特に限定はないが、最高使用温度1400℃の断熱材を作製する場合は、耐熱温度1400℃以上の多孔質の断熱骨材を用い、成形体の表面温度が1400℃となる温度条件で1時間程度保持するのが好ましい。同様の成形体を焼結処理して最高使用温度1200℃の断熱材を作製する場合は、耐熱温度1200℃以上の多孔質の断熱骨材を用い、成形体の表面温度が1200℃となる温度条件で1時間程度保持するのが好ましい。なお、焼結処理する際の成形体の厚さによって保持時間を適宜変えてもかまわない。 The obtained molded body becomes a heat insulating material by performing a sintering process to prevent heat shrinkage and develop strength. There are no particular limitations on the sintering conditions in this case, but in the case of producing a heat insulating material with a maximum use temperature of 1400 ° C., the surface temperature of the molded body is a porous heat insulation aggregate with a heat resistant temperature of 1400 ° C. or higher. It is preferable to hold for about 1 hour under the temperature condition of 1400 ° C. In the case of producing a heat insulating material having a maximum use temperature of 1200 ° C. by sintering the same formed body, a temperature at which the surface temperature of the formed body becomes 1200 ° C. using a porous heat insulation aggregate having a heat resistant temperature of 1200 ° C. or more It is preferable to hold for about 1 hour under the conditions. In addition, you may change holding time suitably by the thickness of the molded object at the time of sintering.

上記の焼結処理により得られる断熱材は、孔径100〜2000nmの気孔が全気孔の容積の30%以上60%以下となるようにする。この値が30%未満では、ふく射の抑制効果が得られにくくなり、所望の低熱伝導率が得られなくなる。一方、この値が60%を超えると強度上の問題が生じるおそれがある。なお、上記の孔径100〜2000nmの気孔の全気孔に対する容積割合が30%未満の場合は加圧成形時の圧力を低めに設定すればよく、逆に60%を超える場合は加圧成形時の圧力を高めに設定すればよい。   The heat insulating material obtained by the above-mentioned sintering treatment is such that pores with a pore diameter of 100 to 2000 nm become 30% or more and 60% or less of the volume of all the pores. If this value is less than 30%, it is difficult to obtain the radiation suppression effect, and a desired low thermal conductivity can not be obtained. On the other hand, if this value exceeds 60%, there may be a problem of strength. In addition, what is necessary is just to set the pressure at the time of pressure molding low, when the volume ratio with respect to all the pores of 100-2000 nm of said pore diameter is less than 30%, conversely, at the time of pressure molding when exceeding 60% The pressure may be set higher.

上記の原料を用いて上記方法で作製することで得られる断熱材は、1200℃における熱伝導率を0.12W/(m・K)以下にすることができる。この熱伝導率の要件を満たさない場合は、成形体の配合割合を適宜変えればよい。例えば、強度が低くなり過ぎない範囲で断熱骨材や赤外線散乱材の含有量を多くしたり、耐火繊維や無機フィラーの含有量を少なくしたりすればよい。あるいは、加圧成形時の圧力を低めに設定してもよい。   The heat insulating material obtained by producing by the said method using said raw material can make the heat conductivity in 1200 degreeC 0.12 W / (m * K) or less. When the requirement of the thermal conductivity is not satisfied, the blending ratio of the molded body may be changed appropriately. For example, the content of the heat insulating aggregate or the infrared scattering material may be increased or the content of the fireproof fiber or the inorganic filler may be reduced as long as the strength does not become too low. Alternatively, the pressure during pressure molding may be set lower.

耐熱温度1400℃以上の多孔質の断熱骨材を用いる場合には、雰囲気温度1400℃で24時間の加熱処理条件で再加熱したときの加熱線収縮率が4%以下となるので、断熱材の最高使用温度を1400℃とすることができる。また、耐熱温度1200℃以上の多孔質の断熱骨材を用いた場合には、雰囲気温度1200℃で24時間の加熱処理条件で再加熱したときの加熱線収縮率が4%以下となるので、断熱材の最高使用温度を1200℃とすることができる。なお、1200℃の熱伝導率は平板比較法(JIS A1412-2付属書A)に準拠した試験方法で測定したものであり、加熱線収縮率はASTM C356に準拠した試験方法で測定したものである。   In the case of using a porous heat insulating aggregate having a heat resistant temperature of 1400 ° C. or higher, the heat linear shrinkage when reheated under the heat treatment condition of an atmosphere temperature of 1400 ° C. for 24 hours is 4% or less. The maximum operating temperature can be 1400 ° C. In addition, when a porous heat insulating aggregate having a heat resistant temperature of 1200 ° C. or higher is used, the heating linear shrinkage when reheated under the heat treatment condition of an atmosphere temperature of 1200 ° C. for 24 hours is 4% or less The maximum operating temperature of the heat insulating material can be 1200 ° C. The thermal conductivity at 1200 ° C. is measured by the test method according to the flat plate comparison method (JIS A 1412-2 Annex A), and the heating linear shrinkage is measured by the test method according to ASTM C356. is there.

また、上記の原料を用いて上記方法で得られる断熱材は、曲げ強さが0.5MPa以上より大きくなる。もし曲げ強さが0.5MPa未満であると、ハンドリング時や加工時に損傷し易くなるので好ましくない。なお、曲げ強さの要件を満たさない場合は、成形体の配合割合を適宜変えればよい。例えば、熱伝導率が高くなり過ぎない範囲で断熱骨材や赤外線散乱材の含有量を少なくしたり、耐火繊維や無機フィラーの含有量を多くしたりすればよい。あるいは、加圧成形時の圧力を高めに設定してもよい。なお、上記の曲げ強さと参考として圧縮強さは、それぞれ以下の方法によって測定したものである。   Moreover, the thermal insulation obtained by the said method using said raw material becomes larger than 0.5 MPa or more in bending strength. If the bending strength is less than 0.5 MPa, it is not preferable because it is easily damaged during handling or processing. In addition, what is necessary is just to change the compounding ratio of a molded object suitably, when not satisfy | filling the requirements of bending strength. For example, the content of the heat insulating aggregate or the infrared scattering material may be reduced or the content of the fireproof fiber or the inorganic filler may be increased as long as the thermal conductivity does not become too high. Alternatively, the pressure during pressure molding may be set high. In addition, said bending strength and compressive strength as a reference are each measured by the following method.

(1)曲げ強さ
試験片を長さ150mm、幅50mm、厚さ25mmに切削加工し、支点間距離100mmにてオートグラフを用いて3点曲げ試験を行い、破壊に至るまでの最大荷重から算出した。
(2)圧縮強さ
試験片を長さ100mm、幅100mm、厚さ25mmに切削加工し、オートグラフを用いて圧縮試験を行い、10%歪に至るまでの最大荷重から算出した。
(1) Bending strength A test piece is cut into a length of 150 mm, a width of 50 mm, and a thickness of 25 mm, and a 3-point bending test is performed using an autograph at a distance of 100 mm between fulcrums. Calculated.
(2) Compressive strength A test piece was cut into a length of 100 mm, a width of 100 mm, and a thickness of 25 mm, a compression test was performed using an autograph, and the maximum load up to 10% strain was calculated.

[実施例1]
原料として断熱骨材、耐火繊維、無機フィラー、及び赤外線散乱材を用意し、これらを混合及び成形して得た成形体を焼結処理して断熱材を形成し、その特性を評価した。具体的に説明すると、多孔質の断熱骨材には、クアーズテック株式会社製のスピネル質セラミックス(Thermoscatt(登録商標)、平均粒径8000nm)を用いた。この多孔質の断熱骨材は、JIS R2614により測定した気孔率が85〜91容積%であり、孔径500〜1000nmの細孔を有していた。耐熱繊維には、ムライト繊維(株式会社ITM製ファイバーマックス1600特殊品、平均繊維径4μm、ショット含有率0.5質量%)を用いた。
Example 1
As a raw material, a heat insulation aggregate, a fireproof fiber, an inorganic filler, and an infrared scattering material were prepared, and a molding obtained by mixing and molding these was sintered to form a heat insulation material, and the characteristics were evaluated. Specifically, for the porous heat-insulating aggregate, spinel-based ceramics (Thermoscatt (registered trademark), average particle diameter 8000 nm) manufactured by QUARSTECH CORPORATION was used. The porous heat insulating aggregate had a porosity of 85 to 91% by volume measured according to JIS R 2614, and had pores with a pore diameter of 500 to 1000 nm. As the heat-resistant fiber, mullite fiber (Fiber Max 1600 special product manufactured by ITM, average fiber diameter 4 μm, shot content rate 0.5 mass%) was used.

無機フィラーには、ナノサイズのアルミナ(キャボットジャパン株式会社製のSpectrAl(登録商標)100、BET法で測定した比表面積95〜100m/g、平均粒径約18nm)を用いた。赤外線散乱材には、珪酸ジルコニウム(キンセイマテック株式会社製のA−PAX 平均粒径(D50)1.0μm、比屈折率1.9)を用いた。これら4種類の原料を、断熱骨材10質量%、耐火繊維22質量%、無機フィラー60質量%、及び赤外線散乱材8質量%の割合で配合し、レーデイゲミキサーに装入して混合した。得られた混合物を5つに小分けし、それぞれ乾式プレスに装入して異なる圧力で加圧成形して5種類の成形体を作製した。 As the inorganic filler, nano-sized alumina (SpectrAl (registered trademark) 100 manufactured by Cabot Japan Ltd., specific surface area measured by BET method: 95 to 100 m 2 / g, average particle diameter: about 18 nm) was used. As the infrared scattering material, zirconium silicate (A-PAX average particle diameter (D50) 1.0 μm, manufactured by Kinseimatech Co., Ltd., relative refractive index 1.9) was used. These four types of raw materials were compounded at a ratio of 10% by mass of heat insulation aggregate, 22% by mass of fireproof fiber, 60% by mass of inorganic filler, and 8% by mass of infrared scattering material, and charged into a Ladeige mixer and mixed . The resulting mixture was divided into five parts, each of which was charged into a dry press and pressed at different pressures to prepare five types of molded bodies.

これら5種類の成形体を雰囲気温度1400℃で1時間保持することで焼成処理し、試料1〜5の断熱材を作製した。このようにして得た試料1〜5の断熱材の細孔径の容積と分布を水銀ポロシメータで測定した。その結果、得られた断熱材は、全気孔容積に対する孔径100〜2000nmの気孔の容積割合は、試料1では28容積%、試料2では30容積%、試料3では50容積%、試料4では60容積%、試料5では61容積%であった。また、1200℃での熱伝導率は、試料1では0.13W/(m・K)、試料2では0.12W/(m・K)、試料3では0.09W/(m・K)、試料4では0.09W/(m・K)、試料5では0.09W/(m・K)であった。   The five types of molded bodies were subjected to a baking treatment by being held at an atmosphere temperature of 1400 ° C. for one hour to produce a heat insulating material of Samples 1 to 5. The volume and distribution of the pore diameter of the heat insulating material of samples 1 to 5 thus obtained were measured with a mercury porosimeter. As a result, the volume ratio of pores having a pore diameter of 100 to 2000 nm with respect to the total pore volume is 28% by volume in sample 1, 30% by volume in sample 2, 50% by volume in sample 3, and 60 in sample 4. For the volume%, sample 5 was 61 volume%. The thermal conductivity at 1200 ° C. is 0.13 W / (m · K) for sample 1, 0.12 W / (m · K) for sample 2, 0.09 W / (m · K) for sample 3, In the sample 4, it was 0.09 W / (m · K), and in the sample 5, it was 0.09 W / (m · K).

更に、曲げ強さと圧縮強さ及び1400℃における加熱線収縮率を前述の方法で測定したところ、試料2は曲げ強さ1.1MPa、圧縮強さ1.2MPa、加熱線収縮率2.8%であり、試料3は曲げ強さ0.6MPa、圧縮強さ0.8MPa、加熱線収縮率3.0%であり、試料4は曲げ強さ0.5MPa、圧縮強さ0.6MPa、加熱線収縮率3.4%であり、試料5は曲げ強さ0.3MPa、圧縮強さ0.4MPaであった。   Furthermore, when the flexural strength and the compressive strength and the heating linear shrinkage at 1400 ° C. were measured by the above-mentioned method, the sample 2 had a flexural strength of 1.1 MPa, a compressive strength of 1.2 MPa and a heating linear shrinkage of 2.8%. Sample 3 has a flexural strength of 0.6 MPa, a compressive strength of 0.8 MPa, a heating linear shrinkage of 3.0%, and a sample 4 has a flexural strength of 0.5 MPa, a compressive strength of 0.6 MPa, a heating line The shrinkage ratio was 3.4%, and the sample 5 had a flexural strength of 0.3 MPa and a compressive strength of 0.4 MPa.

[実施例2]
断熱骨材としてスピネル質セラミックスの代わりに孔径500〜1000nmの細孔を有するCaO・6Al(カルシアアルミネート)セラミックス(Almatis社製のSLA−92、平均粒径8000nm)を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料6の断熱材を作製した。得られた試料6の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.8%であった。
Example 2
Except using CaO · 6Al 2 O 3 (calcia aluminate) ceramics (SL-92 manufactured by Almatis, average particle size 8000 nm) having pores with a pore diameter of 500 to 1000 nm as the heat insulating aggregate instead of spinel ceramics In the same manner as in the case of Sample 2 of Example 1 described above, a heat insulating material of Sample 6 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm with respect to the total pore volume was 30% by volume was produced. The heat insulating material of the obtained sample 6 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.8%.

[実施例3]
耐火繊維としてムライト繊維の代わりにアルミナ繊維(三菱ケミカル株式会社製、マフテック特殊品、平均繊維径4μm、ショット含有率1.0%)を用いた以外は上記実施例の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料7の断熱材を作製した。得られた試料7の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.8%であった。
[Example 3]
The same as in the case of sample 2 of the above example except using alumina fiber (Maftec special product, average fiber diameter 4 μm, shot content 1.0%) instead of mullite fiber as fire resistant fiber A heat insulating material of sample 7 having a volume ratio of pores with a pore diameter of 100 to 2000 nm to the total pore volume of 30% by volume was produced. The heat insulating material of the obtained sample 7 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.8%.

[実施例4]
無機フィラーとしてナノサイズのアルミナの代わりにナノサイズのマグネシア(イオンセラミック株式会社製、粒径約90nm)用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料8の断熱材を作製した。得られた試料8の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
Example 4
A pore diameter of 100 to the total pore volume is the same as in the case of the sample 2 of the above Example 1 except that nano-sized magnesia (manufactured by Ion Ceramics Co., Ltd., particle size about 90 nm) is used instead of nano-sized alumina as an inorganic filler. A heat insulating material of sample 8 having a volume fraction of pores of 2000 nm of 30% by volume was produced. The obtained heat insulating material of sample 8 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例5]
赤外線散乱材として珪酸ジルコニウムの代わりにキンセイマテック株式会社製の板状アルミナ(品番00610、平均粒径(D50)0.5μm、比屈折率1.7)を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料9の断熱材を作製した。得られた試料9の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 5]
The sample of Example 1 was used except that plate-like alumina (Model No. 00610, average particle diameter (D50) 0.5 μm, relative refractive index 1.7) made by Kinseimatech Co., Ltd. was used instead of zirconium silicate as the infrared scattering material. In the same manner as in the case of 2, a heat insulating material of sample 9 having a volume ratio of pores with a pore diameter of 100 to 2000 nm to the total pore volume of 30% by volume was produced. The obtained heat insulating material of sample 9 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例6]
無機フィラーとしてナノサイズのアルミナと実施例4で用いたナノサイズのマグネシアとを質量基準で1対1の配合割合で混合した混合物を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料10の断熱材を作製した。得られた試料10の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.1MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 6]
The same as in the case of the sample 2 of the above-mentioned Example 1 except that a mixture of nano-sized alumina and the nano-sized magnesia used in Example 4 mixed at a mixing ratio of 1 to 1 as an inorganic filler was used. A heat insulating material of sample 10 having a volume ratio of pores with a pore diameter of 100 to 2000 nm to the total pore volume of 30% by volume was produced. The obtained heat insulating material of sample 10 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.1 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例7]
赤外線散乱材として珪酸ジルコニウムと実施例5で用いたアルミナとを質量基準で1対1の配合割合で混合した混合物を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料11の断熱材を作製した。得られた試料11の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.1MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 7]
The total pore volume is the same as in the case of the sample 2 of the above-mentioned Example 1 except that a mixture of zirconium silicate and alumina used in Example 5 in a mixing ratio of 1 to 1 is used as an infrared scattering material. A heat insulating material of sample 11 having a volume fraction of pores with a pore diameter of 100 to 2000 nm relative to 30% by volume was produced. The heat insulating material of the obtained sample 11 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.1 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例8]
配合割合を、断熱骨材40質量%、耐火繊維10質量%、無機フィラー40質量%、及び赤外線散乱材10質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料12の断熱材を作製した。得られた試料12の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ0.6MPa、圧縮強さ0.7MPa、加熱線収縮率2.3%であった。
[Example 8]
The total pore volume is the same as in the case of sample 2 of Example 1 except that the blending ratio is set to 40 mass% of heat insulation aggregate, 10 mass% of fire resistant fiber, 40 mass% of inorganic filler, and 10 mass% of infrared scattering material. A heat insulating material of sample 12 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The heat insulating material of the obtained sample 12 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 0.6 MPa, a compressive strength of 0.7 MPa, and a heating linear shrinkage of 2.3%.

[実施例9]
配合割合を、断熱骨材10質量%、耐火繊維30質量%、無機フィラー52質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料13の断熱材を作製した。得られた試料13の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ0.9MPa、圧縮強さ1.0MPa、加熱線収縮率2.4%であった。
[Example 9]
The total pore volume is the same as in the case of the sample 2 of the example 1 except that the blending ratio is 10 mass% of heat insulation aggregate, 30 mass% of fireproof fiber, 52 mass% of inorganic filler, and 8 mass% of infrared scattering material. A heat insulating material of sample 13 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The heat insulating material of the obtained sample 13 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 0.9 MPa, a compressive strength of 1.0 MPa, and a heating linear shrinkage of 2.4%.

[実施例10]
配合割合を、断熱骨材10質量%、耐火繊維22質量%、無機フィラー48質量%、及び赤外線散乱材20質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料14の断熱材を作製した。得られた試料14の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ0.8MPa、圧縮強さ1.0MPa、加熱線収縮率2.6%であった。
[Example 10]
The total pore volume is the same as in the case of sample 2 of Example 1 except that the blending ratio is 10 mass% of heat insulation aggregate, 22 mass% of fireproof fiber, 48 mass% of inorganic filler, and 20 mass% of infrared scattering material. The heat insulating material of the sample 14 of 30 volume% of the volume ratio of the pore of 100-2000 nm of pore diameters was produced. The heat insulating material of the obtained sample 14 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 0.8 MPa, a compressive strength of 1.0 MPa, and a heating linear shrinkage of 2.6%.

[比較例1]
配合割合を、断熱骨材42質量%、耐火繊維10質量%、無機フィラー40質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料15の断熱材を作製した。得られた試料15の断熱材は、熱伝導率が0.14W/(m・K)であった。
Comparative Example 1
The total pore volume is the same as in the case of sample 2 of Example 1 except that the blending ratio is 42 mass% of heat insulation aggregate, 10 mass% of fire resistant fiber, 40 mass% of inorganic filler, and 8 mass% of infrared scattering material. The heat insulating material of the sample 15 of 30 volume% of volume ratio of the pore of 100-2000 nm of pore diameters was produced. The heat insulator of the obtained sample 15 had a thermal conductivity of 0.14 W / (m · K).

[比較例2]
配合割合を、断熱骨材9質量%、耐火繊維23質量%、無機フィラー60質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料16の断熱材を作製した。得られた試料16の断熱材は、熱伝導率0.14W/(m・K)であった。
Comparative Example 2
The total pore volume is the same as in the case of the sample 2 of the example 1 except that the blending ratio is 9 mass% of heat insulation aggregate, 23 mass% of fireproof fiber, 60 mass% of inorganic filler, and 8 mass% of infrared scattering material. The heat insulating material of the sample 16 of 30 volume% of volume ratio of the pore with a hole diameter of 100-2000 nm was produced. The thermal insulation of the obtained sample 16 had a thermal conductivity of 0.14 W / (m · K).

[比較例3]
配合割合を、断熱骨材10質量%、耐火繊維31質量%、無機フィラー51質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料17の断熱材を作製した。得られた試料17の断熱材は、熱伝導率0.14W/(m・K)であった。
Comparative Example 3
The total pore volume is the same as in the case of the sample 2 of Example 1 except that the blending ratio is 10 mass% of heat insulation aggregate, 31 mass% of fireproof fiber, 51 mass% of inorganic filler, and 8 mass% of infrared scattering material. The heat insulating material of the sample 17 of 30 volume% of the volume ratio of the pore with a hole diameter of 100-2000 nm was produced. The heat insulator of the obtained sample 17 had a thermal conductivity of 0.14 W / (m · K).

[比較例4]
配合割合を、断熱骨材23質量%、耐火繊維9質量%、無機フィラー60質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料18の断熱材を作製した。得られた試料18の断熱材は、曲げ強さ0.4MPa、圧縮強さ0.5MPaであった。
Comparative Example 4
The total pore volume is the same as in the case of sample 2 of Example 1 except that the blending ratio is 23 mass% of heat insulation aggregate, 9 mass% of fireproof fiber, 60 mass% of inorganic filler, and 8 mass% of infrared scattering material. A heat insulating material of sample 18 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The obtained heat insulating material of sample 18 had a bending strength of 0.4 MPa and a compressive strength of 0.5 MPa.

[比較例5]
配合割合を、断熱骨材10質量%、耐火繊維21質量%、無機フィラー61質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料19の断熱材を作製した。得られた試料19の断熱材は、熱伝導率0.14W/(m・K)であった。
Comparative Example 5
The total pore volume is the same as in the case of sample 2 of Example 1 except that the blending ratio is 10 mass% of heat insulation aggregate, 21 mass% of fireproof fiber, 61 mass% of inorganic filler, and 8 mass% of infrared scattering material. A heat insulating material of sample 19 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The thermal insulation of the obtained sample 19 had a thermal conductivity of 0.14 W / (m · K).

[比較例6]
配合割合を、断熱骨材30質量%、耐火繊維24質量%、無機フィラー38質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料20の断熱材を作製した。得られた試料20の断熱材は、熱伝導率0.14W/(m・K)であった。
Comparative Example 6
The total pore volume was the same as in the case of sample 2 of Example 1 except that the blending ratio was changed to 30% by mass of heat insulation aggregate, 24% by mass of refractory fiber, 38% by mass of inorganic filler, and 8% by mass of infrared scattering material. A heat insulating material of sample 20 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The heat insulating material of the obtained sample 20 had a thermal conductivity of 0.14 W / (m · K).

[比較例7]
配合割合を、断熱骨材10質量%、耐火繊維23質量%、無機フィラー60質量%、及び赤外線散乱材7質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料21の断熱材を作製した。得られた試料21の断熱材は、熱伝導率0.14W/(m・K)であった。
Comparative Example 7
The total pore volume was the same as in the case of sample 2 of Example 1 except that the blending ratio was changed to 10% by mass of heat insulation aggregate, 23% by mass of fireproof fiber, 60% by mass of inorganic filler, and 7% by mass of infrared scattering material. A heat insulating material of sample 21 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The thermal insulation of the obtained sample 21 had a thermal conductivity of 0.14 W / (m · K).

[比較例8]
配合割合を、断熱骨材10質量%、耐火繊維22質量%、無機フィラー46質量%、及び赤外線散乱材22質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料22の断熱材を作製した。得られた試料22の断熱材は、熱伝導率0.14W/(m・K)であった。上記の試料1〜22の原料の配合割合及び評価結果を下記表1にまとめた。
Comparative Example 8
The total pore volume is the same as in the case of the sample 2 of Example 1 except that the blending ratio is 10 mass% of heat insulation aggregate, 22 mass% of fireproof fiber, 46 mass% of inorganic filler, and 22 mass% of infrared scattering material. A heat insulating material of sample 22 having a volume fraction of pores with a pore diameter of 100 to 2000 nm of 30% by volume was produced. The heat insulator of the obtained sample 22 had a thermal conductivity of 0.14 W / (m · K). The mixing ratios of the raw materials of the samples 1 to 22 and the evaluation results are summarized in Table 1 below.

Figure 2019078337
Figure 2019078337

上記表1の結果から、本発明の要件を満たす断熱材は、1200℃の熱伝導率が0.12W/(m・K)以下であり、曲げ強さがハンドリング可能な0.5MPa以上であり、1400℃での加熱線収縮率は4%以下となることが分かった。これに対して本発明の要件を満たさない断熱材は、上記の特性のいずれかにおいて満足な結果が得られなかった。   From the results in Table 1 above, the thermal insulator satisfying the requirements of the present invention has a thermal conductivity of 1200 ° C. of not more than 0.12 W / (m · K), and a bending strength of not less than 0.5 MPa that can be handled It was found that the heating linear shrinkage at 1400 ° C. was 4% or less. On the other hand, the heat insulating material which does not satisfy the requirements of the present invention did not obtain satisfactory results in any of the above-mentioned characteristics.

Claims (7)

耐熱温度が1200℃以上の高耐熱性の組成物からなり孔径500〜1000nmの細孔を有する多孔質の断熱骨材を10〜40質量%含有し、耐火繊維を10〜30質量%含有し、平均粒径100nm以下の金属酸化物粒子からなる無機フィラーを40〜60質量%含有し、及び赤外線散乱材を8〜20質量%含有する焼結体であって、孔径100〜2000nmの気孔が全気孔の容積の30%以上60%以下を占めていることを特徴とする断熱材。   10 to 40% by mass of a porous heat insulating aggregate having a heat resistant temperature of 1200 ° C. or more and having a pore size of 500 to 1000 nm and containing 10 to 30% by mass of a fire resistant fiber, A sintered body containing 40 to 60% by mass of an inorganic filler consisting of metal oxide particles having an average particle size of 100 nm or less and 8 to 20% by mass of an infrared scattering material, and all pores with a pore diameter of 100 to 2000 nm A heat insulating material characterized in that it occupies 30% or more and 60% or less of the volume of pores. 前記耐火繊維は、1400℃以上の高耐熱性の組成物からなり、アルミナ質繊維、ムライト質繊維、CaO・6Al(カルシアアルミネート)繊維、ジルコニア繊維、及び生体溶解性繊維からなる群より選択される1種以上である、請求項1に記載の断熱材。 The refractory fiber is composed of a highly heat-resistant composition at 1400 ° C. or higher, and is a group consisting of an alumina fiber, a mullite fiber, a CaO · 6Al 2 O 3 (calcia aluminate) fiber, a zirconia fiber, and a biosoluble fiber The heat insulating material according to claim 1, which is at least one selected from the group consisting of 前記無機フィラーは、アルミナ、マグネシア、ムライト、及びジルコニアからなる群より選択される1種以上である、請求項1又は2に記載の断熱材。   The heat insulating material according to claim 1, wherein the inorganic filler is one or more selected from the group consisting of alumina, magnesia, mullite, and zirconia. 前記赤外線散乱材は、珪酸ジルコニウム、ジルコニア、及びアルミナからなる群より選択される1種以上である、請求項1〜3のいずれか1項に記載の断熱材。   The heat insulating material according to any one of claims 1 to 3, wherein the infrared scattering material is one or more selected from the group consisting of zirconium silicate, zirconia, and alumina. 1200℃における熱伝導率が0.12W/(m・K)以下であり、曲げ強さが0.5MPa以上で、1400℃で24時間加熱したときの加熱線収縮率が4%以下であることを特徴とする、請求項1〜4のいずれか1項に記載の断熱材。   Thermal conductivity at 1200 ° C. is 0.12 W / (m · K) or less, bending strength is 0.5 MPa or more, and heating linear shrinkage when heated at 1400 ° C. for 24 hours is 4% or less The heat insulation material of any one of Claims 1-4 characterized by these. 請求項1〜5のいずれか1項に記載の断熱材の製造方法であって、前記断熱骨材、前記耐火繊維、前記無機フィラー、及び前記赤外線散乱材を乾式混合する混合工程と、得られた混合物を加圧成形する成形工程と、得られた前記加圧成形体を焼結する焼結工程とを有する断熱材の製造方法。   It is a manufacturing method of the heat insulating material of any one of Claims 1-5, Comprising: The mixing process of carrying out the dry mixing of the said heat insulation aggregate, the said fireproof fiber, the said inorganic filler, and the said infrared rays scattering material, The manufacturing method of the heat insulating material which has the formation process of pressure-molding the obtained mixture, and the sintering process of sintering the obtained said pressure forming body. 前記焼結工程において、前記加圧成形体の表面温度が1200℃以上になるように加熱することで焼結することを特徴とする、請求項6に記載の断熱材の製造方法。 The method of manufacturing a heat insulating material according to claim 6, characterized in that sintering is performed by heating so that the surface temperature of the pressure-formed body is 1200 ° C or more in the sintering step.
JP2017205809A 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof Active JP6602827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205809A JP6602827B2 (en) 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205809A JP6602827B2 (en) 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2019078337A true JP2019078337A (en) 2019-05-23
JP6602827B2 JP6602827B2 (en) 2019-11-06

Family

ID=66627686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205809A Active JP6602827B2 (en) 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6602827B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112169A1 (en) * 2019-12-03 2021-06-10 デンカ株式会社 Inorganic fiber molded body, heating furnace, structure, and method for manufacturing inorganic fiber molded body
WO2022014611A1 (en) * 2020-07-13 2022-01-20 日本碍子株式会社 Composite member
CN114080719A (en) * 2020-03-12 2022-02-22 住友理工株式会社 Heat insulating material for battery pack and battery pack
CN115448739A (en) * 2022-11-14 2022-12-09 长兴华泰高温窑具股份有限公司 Corrosion-resistant zirconium mullite product for soft magnetic ferrite nitrogen kiln and preparation method thereof
CN115583841A (en) * 2022-09-19 2023-01-10 广州世陶新材料有限公司 Fiber-reinforced porous heat-insulating material and preparation method thereof
WO2023079860A1 (en) * 2021-11-08 2023-05-11 デンカ株式会社 Heat-resistant plate member and structure
WO2023132182A1 (en) * 2022-01-07 2023-07-13 デンカ株式会社 Ca6 particles and method for producing molded inorganic-fiber object using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174525A (en) * 1996-12-18 1998-06-30 Nippon Funen Kk Pot
JP2014081072A (en) * 2012-09-28 2014-05-08 Kurosaki Harima Corp Heat insulation material and manufacturing method thereof
JP2015038365A (en) * 2013-08-09 2015-02-26 イソライト工業株式会社 Heat insulation material and manufacturing method thereof
JP2015221737A (en) * 2014-05-23 2015-12-10 旭化成ケミカルズ株式会社 Porous body
JP2016094329A (en) * 2014-11-07 2016-05-26 クアーズテック株式会社 Heat insulation material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174525A (en) * 1996-12-18 1998-06-30 Nippon Funen Kk Pot
JP2014081072A (en) * 2012-09-28 2014-05-08 Kurosaki Harima Corp Heat insulation material and manufacturing method thereof
JP2015038365A (en) * 2013-08-09 2015-02-26 イソライト工業株式会社 Heat insulation material and manufacturing method thereof
JP2015221737A (en) * 2014-05-23 2015-12-10 旭化成ケミカルズ株式会社 Porous body
JP2016094329A (en) * 2014-11-07 2016-05-26 クアーズテック株式会社 Heat insulation material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112169A1 (en) * 2019-12-03 2021-06-10 デンカ株式会社 Inorganic fiber molded body, heating furnace, structure, and method for manufacturing inorganic fiber molded body
JP2021088475A (en) * 2019-12-03 2021-06-10 デンカ株式会社 Inorganic fiber molded product, heating furnace, structural body, and method for manufacturing inorganic fiber molded product
CN114746379A (en) * 2019-12-03 2022-07-12 电化株式会社 Inorganic fiber molded body, heating furnace, structure, and method for producing inorganic fiber molded body
CN114746379B (en) * 2019-12-03 2023-08-08 电化株式会社 Inorganic fiber molded body, heating furnace, structure, and method for producing inorganic fiber molded body
CN114080719A (en) * 2020-03-12 2022-02-22 住友理工株式会社 Heat insulating material for battery pack and battery pack
CN114080719B (en) * 2020-03-12 2023-04-28 住友理工株式会社 Heat insulating material for battery pack and battery pack
WO2022014611A1 (en) * 2020-07-13 2022-01-20 日本碍子株式会社 Composite member
WO2023079860A1 (en) * 2021-11-08 2023-05-11 デンカ株式会社 Heat-resistant plate member and structure
WO2023132182A1 (en) * 2022-01-07 2023-07-13 デンカ株式会社 Ca6 particles and method for producing molded inorganic-fiber object using same
CN115583841A (en) * 2022-09-19 2023-01-10 广州世陶新材料有限公司 Fiber-reinforced porous heat-insulating material and preparation method thereof
CN115448739A (en) * 2022-11-14 2022-12-09 长兴华泰高温窑具股份有限公司 Corrosion-resistant zirconium mullite product for soft magnetic ferrite nitrogen kiln and preparation method thereof

Also Published As

Publication number Publication date
JP6602827B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6602827B2 (en) Insulating material and manufacturing method thereof
Tsetsekou A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties
JP6818022B2 (en) Sintered zirconia mullite refractory composite, its production method, and its use
KR101506083B1 (en) Heat-insulating material
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
JP2010508231A (en) Compound for manufacturing heat-resistant materials
JP5683739B1 (en) Insulating material and manufacturing method thereof
WO2015011623A1 (en) Product having a high alumina content
Zhang et al. Effects of fiber length and solid loading on the properties of lightweight elastic mullite fibrous ceramics
US10253917B2 (en) Insulation material and method of manufacturing same
JP6607839B2 (en) Insulation
Sadek et al. Preparation of porous forsterite ceramic using waste silica fumes by the starch consolidation method
Foratirad et al. Fabrication of porous titanium carbide ceramics by gelcasting process
JP2016040226A (en) Heat insulator and manufacturing method therefor
JP5080736B2 (en) Refractory manufacturing method and refractory obtained thereby
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
JP2015038365A (en) Heat insulation material and manufacturing method thereof
JP5036110B2 (en) Lightweight ceramic sintered body
KR102211643B1 (en) Foamed glass having high strength and method of manufacturing the same
Eom et al. Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores
JP6432869B2 (en) Refractory brick manufacturing method
JP6214514B2 (en) Insulation
JP6127353B2 (en) Insulating material and manufacturing method thereof
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
CN108137413B (en) Zirconium tin titanate composition, ceramic body comprising same, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250