JP2014081072A - Heat insulation material and manufacturing method thereof - Google Patents

Heat insulation material and manufacturing method thereof Download PDF

Info

Publication number
JP2014081072A
JP2014081072A JP2013187354A JP2013187354A JP2014081072A JP 2014081072 A JP2014081072 A JP 2014081072A JP 2013187354 A JP2013187354 A JP 2013187354A JP 2013187354 A JP2013187354 A JP 2013187354A JP 2014081072 A JP2014081072 A JP 2014081072A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
less
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013187354A
Other languages
Japanese (ja)
Other versions
JP6431252B2 (en
Inventor
Yukihisa Matsuo
幸久 松尾
Nobuhiro Sato
信博 佐藤
Hiroshi Katsura
裕氏 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50785425&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014081072(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2013187354A priority Critical patent/JP6431252B2/en
Publication of JP2014081072A publication Critical patent/JP2014081072A/en
Application granted granted Critical
Publication of JP6431252B2 publication Critical patent/JP6431252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation material exhibiting a predetermined heat resistance property even at a high temperature, concretely at 1000°C.SOLUTION: In a heat insulation material, a pore volume with a pore diameter of 100 nm or less is 27 vol% or more, a heat transfer coefficient at 600°C is 0.1 W/mK or less, and a contraction coefficient after heating for three hours at 1000°C is 4% or less. The heat insulation material is obtained by calcining a row material of the heat insulation material containing an amorphous fireproof material of 30 mass% or more under a calcination condition in which the contraction coefficient after calcination is 7-40%.

Description

本発明は、低熱伝導率であり、耐熱性に優れた断熱材及びその製造方法に関するものである。特に、取鍋、TPC、TD等の製鋼用炉の断熱材、均熱炉、加熱炉等の圧延炉の断熱材、浸炭炉、金属焼結炉、誘導処理炉等の熱処理用炉の断熱材、溶解炉、燃料加熱炉等の非鉄金属用炉の断熱材、ガラス溶解炉、セメント焼成炉、耐火物焼成炉等の窯業用炉の断熱材、又は燃料電池用の断熱材、及びこれら断熱材の製造方法に関する。   The present invention relates to a heat insulating material having low thermal conductivity and excellent heat resistance, and a method for producing the same. In particular, heat insulation materials for steelmaking furnaces such as ladle, TPC, TD, heat insulation materials for rolling furnaces such as soaking furnaces, heating furnaces, heat insulation materials for heat treatment furnaces such as carburizing furnaces, metal sintering furnaces, induction processing furnaces, etc. , Insulation materials for non-ferrous metal furnaces such as melting furnaces, fuel heating furnaces, insulation materials for ceramic furnaces such as glass melting furnaces, cement firing furnaces, refractory firing furnaces, or insulation materials for fuel cells, and these insulation materials It relates to the manufacturing method.

かかる断熱材として、直径が数十nm程度のフュームド原料を含有した微多孔性断熱材が知られている。微多孔性断熱材は、熱伝導率が0.02W/mK程度の断熱特性に優れた低熱伝導率材料である。   As such a heat insulating material, a microporous heat insulating material containing a fumed raw material having a diameter of about several tens of nanometers is known. The microporous heat insulating material is a low heat conductivity material excellent in heat insulating properties with a heat conductivity of about 0.02 W / mK.

微多孔性断熱材は通常、シリカ質あるいはアルミナ質のフュームド原料と、炭化珪素、チタニア、ジルコン等の赤外線不透過材と、ガラス繊維、シリカ繊維等の補強繊維で構成され、これを乾式成形したものである。したがって、結合材がないため強度が低く座屈しやすいという欠点があった。強度が低いと外力、熱応力に耐えられない問題、加工性に乏しい問題、金具締結工法の場合は断熱材が座屈するのでナットが陥没したり、使用時にナットが緩んだ場合、熱リークが発生し、断熱性が低下する問題があった。   The microporous insulation is usually composed of a siliceous or alumina fumed raw material, an infrared opaque material such as silicon carbide, titania or zircon, and a reinforcing fiber such as glass fiber or silica fiber, which is dry-molded. Is. Therefore, since there is no binder, the strength is low and it is easy to buckle. If strength is low, external force and heat stress cannot be resisted, workability is poor, and in the case of bracket fastening method, the heat insulation material buckles, so if the nut sinks or loosens during use, heat leak will occur However, there was a problem that the heat insulating property was lowered.

特開昭56−73684号公報JP-A-56-73684 特開2012−136891号公報JP 2012-136891 A

微多孔性断熱材の強度が低いという問題の解決策として、特許文献1には、BET比表面積10〜700m/gのケイ素及び/又はアルミニウム元素の金属酸化化合物と、鉱物性懸濁剤と、−900kJ/モル以下の基準生成エンタルピーを有する固体酸化物を生成し得る元素と、鉱物性繊維とからなる断熱成形体を約200〜900℃で化学反応させる技術が開示されている。この技術によれば、成形体全体にわたって高強度化され、また、上記化学反応は焼結を生じないので、断熱性、体積、多孔度は変化せず、耐水性があるとされている。 As a solution to the problem that the strength of the microporous heat insulating material is low, Patent Document 1 discloses that a metal oxide compound of silicon and / or aluminum element having a BET specific surface area of 10 to 700 m 2 / g, a mineral suspending agent, and , A technique of chemically reacting an insulating molded body composed of an element capable of generating a solid oxide having a reference generation enthalpy of −900 kJ / mol or less and a mineral fiber at about 200 to 900 ° C. is disclosed. According to this technique, the strength of the entire molded body is increased, and since the chemical reaction does not cause sintering, the heat insulating property, volume, and porosity are not changed, and water resistance is assumed.

また、特許文献2には、5〜50nm未満のシリカを含む小粒子と、50nm〜100μmのシリカを含む大粒子と、アルカリ金属元素及びアルカリ土類元素の1種以上とを混合し、得られた混合物を400℃以上の温度で加熱する技術が開示されている。この技術によれば、加熱処理で塩基性元素が溶融してシリカと反応し、粒子界面で融着し高い圧縮強度を有する一方、塩基性元素の含有量を5%以下にすることで必要以上に大きい融着面が形成されないとされている。   Patent Document 2 is obtained by mixing small particles containing silica of less than 5 to 50 nm, large particles containing silica of 50 to 100 μm, and one or more of alkali metal elements and alkaline earth elements. A technique for heating the above mixture at a temperature of 400 ° C. or higher is disclosed. According to this technique, the basic element is melted by the heat treatment, reacts with silica, is fused at the particle interface, and has a high compressive strength. On the other hand, the basic element content is reduced to 5% or less. It is said that a large fusion surface is not formed.

しかしながら、本発明者らが、上記特許文献1の実施例1について、750,800,850℃で3時間加熱した結果、その収縮率は、前二者は0.1, 2.2であったが、850℃では18.8%と急激に大きくなった。また、上記特許文献2の実施例1について、900,950,1000℃で3時間加熱した結果、その収縮率は、前二者は0.2, 1.5であったが、1000℃では12.3%であった。   However, as a result of heating the inventors at 750, 800, and 850 ° C. for 3 hours with respect to Example 1 of Patent Document 1 above, the shrinkage ratios of the former two were 0.1 and 2.2. However, it rapidly increased to 18.8% at 850 ° C. Moreover, about Example 1 of the said patent document 2, as a result of heating at 900,950,1000 degreeC for 3 hours, as for the shrinkage rate, the former two were 0.2, 1.5, but at 1000 degreeC, it is 12 at 1000 degreeC. 3%.

断熱材の収縮が著しいと、その収縮に伴い断熱材の施工部に隙間が生じて熱が背面側にリークし、本来の断熱性を発揮できなくなる。したがって、例えばJISでは、収縮率について、繊維質断熱材の場合4〜2%以下(JIS R3311)、耐火断熱れんがの場合±2%未満(JIS R2611)と規定している。   If the heat insulating material is significantly contracted, a gap is generated in the construction portion of the heat insulating material along with the contraction, and heat leaks to the back side, so that the original heat insulating property cannot be exhibited. Therefore, for example, JIS stipulates that the shrinkage rate is 4 to 2% or less (JIS R3311) in the case of a fibrous heat insulating material, and less than ± 2% (JIS R2611) in the case of a fireproof heat insulating brick.

本発明が解決しようとする課題は、高温、具体的には1000℃においても所定の耐熱性を発揮する断熱材を提供することにある。   The problem to be solved by the present invention is to provide a heat insulating material that exhibits a predetermined heat resistance even at a high temperature, specifically 1000 ° C.

上記課題を解決するため、本発明の断熱材は、第一に、気孔径100nm以下の気孔体積が27vol%以上である微構造組織を有することを特徴としている。   In order to solve the above problems, the heat insulating material of the present invention is characterized in that it has a microstructure having a pore volume of 27 vol% or more with a pore diameter of 100 nm or less.

このような微多孔性断熱材の伝熱(熱伝導率)は、気体分子の伝熱、固体同士の接触による伝導、輻射の総和で表される。微多孔性断熱材は固体量が少なく、一般的に主原料となる気相法で製造される乾式のフュームドシリカやフュームドアルミナは、直径が数十nm程度の球状粒子であるため接触面積が非常に小さく、実質的な伝熱は気体分子の伝熱と輻射で決定される。気体分子の伝熱は気孔径が平均自由行程以下の場合に抑制でき、輻射は赤外線不透過材で制御することが可能である。伝熱特性上、前者は低温域(400℃程度以下)、後者は高温域(600℃程度以上)が支配的である。しかしながら、伝熱は総和であるため、低温域で断熱性が悪い場合、気体分子の運動が更に活発となる高温域では更に悪化するため、気体分子の伝熱を抑制するには組織制御が重要となる。   The heat transfer (thermal conductivity) of such a microporous heat insulating material is represented by the sum of heat transfer of gas molecules, conduction due to contact between solids, and radiation. Microporous insulation has a small amount of solid, and dry fumed silica and fumed alumina, which are generally produced by the gas phase method, which is the main raw material, are spherical particles with a diameter of about several tens of nanometers. Is very small, and the actual heat transfer is determined by the heat transfer and radiation of gas molecules. Heat transfer of gas molecules can be suppressed when the pore diameter is equal to or less than the mean free path, and radiation can be controlled by an infrared opaque material. In terms of heat transfer characteristics, the former is dominant in the low temperature range (about 400 ° C. or less), and the latter is in the high temperature range (about 600 ° C. or more). However, since heat transfer is a summation, if the heat insulation is poor at low temperatures, it deteriorates further at high temperatures where the movement of gas molecules becomes more active. Therefore, tissue control is important to suppress heat transfer of gas molecules. It becomes.

そこで、本発明者らは、気孔径分布の異なる試験片を作製し、気孔径及び気孔体積と600℃における熱伝導率との関係を種々調査した結果、気孔径100nm以下の気孔体積が27vol%以上の場合、熱伝導率を0.1W/mK以下に抑制できることを見出した。また、熱伝導率を微多孔性断熱材の特徴が現れやすい0.08W/mK以下にするには、同気孔体積を53vol%以上とすることが好ましいこともわかった。   Accordingly, the present inventors made test pieces having different pore diameter distributions and conducted various investigations on the relationship between the pore diameter and the pore volume and the thermal conductivity at 600 ° C. As a result, the pore volume with a pore diameter of 100 nm or less was 27 vol%. In the above case, it has been found that the thermal conductivity can be suppressed to 0.1 W / mK or less. In addition, it was also found that the volume of the pores is preferably 53 vol% or more in order to make the thermal conductivity 0.08 W / mK or less where the characteristics of the microporous heat insulating material easily appear.

微多孔性断熱材の熱伝導率は、類種の断熱材との比較において600℃における熱伝導率が0.1W/mK以下が有用とされる場合が多い。600℃とは微多孔性断熱材の加熱面側温度が最大1000〜1100℃程度、背面側温度が40〜300℃程度で使用されることが多いため、中間温度として通常目安的に使われている温度である。また、JIS
R2611で規定される耐火断熱れんがの熱伝導率の測定温度も600℃である。
As for the thermal conductivity of the microporous heat insulating material, a thermal conductivity at 600 ° C. of 0.1 W / mK or less is often useful in comparison with various types of heat insulating materials. Since 600 ° C is often used at a heating surface side temperature of about 1000 to 1100 ° C at the maximum and a back side temperature of about 40 to 300 ° C, it is usually used as an intermediate temperature. Temperature. Also, JIS
The measurement temperature of the thermal conductivity of the refractory insulating brick defined by R2611 is also 600 ° C.

本発明の断熱材は、第二に、1000℃で3時間加熱後の収縮率が4%以下であることを特徴としている。同収縮率が4%を超えると、背面側への熱リークが起こり、本来の断熱性能を発揮できない。同収縮率が2%以下であれば、実用上、熱リークの影響はほとんど無視できるので、同収縮率は2%以下であることが好ましい。   Secondly, the heat insulating material of the present invention is characterized in that the shrinkage after heating at 1000 ° C. for 3 hours is 4% or less. If the shrinkage rate exceeds 4%, heat leaks to the back side, and the original heat insulating performance cannot be exhibited. If the shrinkage rate is 2% or less, the effect of heat leakage can be neglected practically. Therefore, the shrinkage rate is preferably 2% or less.

また、本発明の断熱材は、0.1耐力時におけるセカント弾性係数は8N/mm以上であることが好ましい。この値を下回ると座屈が起こり、金具締結作業に支障を来す場合がある。 Further, the heat insulating material of the present invention preferably has a secant elastic modulus at 0.1 proof stress of 8 N / mm 2 or more. Below this value, buckling occurs, which may hinder the metal fitting operation.

ここで、「0.1耐力時におけるセカント弾性係数」について説明する。非線形の弾性的性質を持つ材料について、応力−ひずみ線の曲線上の点において任意の点での応力をひずみで割った値をセカンド弾性係数と言う。ここでは、圧縮強度に対し10%相当応力時のセカント弾性係数を0.1耐力時におけるセカント弾性係数と定義する。   Here, “second elastic modulus at 0.1 proof stress” will be described. For a material having a non-linear elastic property, a value obtained by dividing the stress at an arbitrary point by a strain at a point on the curve of the stress-strain line is called a second elastic modulus. Here, the secant elastic modulus at a stress equivalent to 10% of the compressive strength is defined as the secant elastic modulus at 0.1 proof stress.

上記本発明の断熱材を製造するための本発明の製造方法は、断熱材用原料から成る成形体を、焼成後の収縮率が7〜40%になる焼成条件で焼成することを特徴とする。焼成後の収縮率が7%未満では、焼結が不十分で0.1耐力時におけるセカント弾性係数は8N/mm未満となり、特に座屈が問題となる用途には不適である(座屈がそれほど問題とならない用途には適用可能である。)。同収縮率40%は、熱伝導率に対する変曲点であり、これを超えると100nm以下の気孔体積が27vol%未満となり、熱伝導率が大幅に増大するので40%を超えてはならない。焼成後の収縮率が40%を超えると熱伝導率が著しく増大する理由としては、断熱材の原料に含まれる非晶質耐火原料(フュームド原料)の固相焼結の進行に伴い気孔径の増大が著しくなり、気体分子の伝熱抑制効果が低減(消失)するためと考えられる。 The manufacturing method of the present invention for manufacturing the heat insulating material of the present invention is characterized in that a molded body made of a raw material for heat insulating material is fired under firing conditions such that the shrinkage ratio after firing is 7 to 40%. . If the shrinkage after firing is less than 7%, sintering is insufficient and the secant elastic modulus at 0.1 proof stress is less than 8 N / mm 2, which is not suitable for applications where buckling is a problem (buckling). It can be applied to applications where there is no significant problem.) The shrinkage rate of 40% is an inflection point with respect to the thermal conductivity. If the shrinkage rate exceeds 40%, the pore volume of 100 nm or less becomes less than 27 vol%, and the thermal conductivity increases significantly, so it should not exceed 40%. The reason why the thermal conductivity increases remarkably when the shrinkage ratio after firing exceeds 40% is that the pore diameter of the amorphous refractory raw material (fumed raw material) contained in the heat insulating material is increased with the progress of solid phase sintering. This is thought to be due to a significant increase and a reduction (disappearance) of the heat transfer suppression effect of gas molecules.

本発明において、アルカリ金属元素あるいはアルカリ土類金属を無添加にすると、焼成時の急激な収縮を抑制できるが、1000℃3時間加熱後の収縮率が4%を超えない範囲で用いることには問題はない。この範囲内でアルカリ金属元素あるいはアルカリ土類金属を適量添加すると、セカント弾性係数を向上させることができる。   In the present invention, when no alkali metal element or alkaline earth metal is added, rapid shrinkage during firing can be suppressed, but the shrinkage after heating at 1000 ° C. for 3 hours does not exceed 4%. No problem. When an appropriate amount of alkali metal element or alkaline earth metal is added within this range, the secant elastic modulus can be improved.

気孔径100nm以下の気孔体積27vol%以上を確保し、熱伝導率0.1W/mK以下を達成し、かつ0.1耐力時におけるセカント係数8N/mm以上を確保するには、断熱材の原料中の非晶質耐火原料のBET比表面積は50m/g以上とし、その含有量は30質量%以上とすることが好ましい。より好ましくは、非晶質耐火原料の含有量は、50質量%以上90質量%以下とする。 In order to ensure a pore volume of 27 vol% or more with a pore diameter of 100 nm or less, achieve a thermal conductivity of 0.1 W / mK or less, and ensure a secant coefficient of 8 N / mm 2 or more at 0.1 proof stress, The BET specific surface area of the amorphous refractory raw material in the raw material is preferably 50 m 2 / g or more, and the content thereof is preferably 30% by mass or more. More preferably, the content of the amorphous refractory raw material is 50% by mass or more and 90% by mass or less.

非晶質耐火原料の材質は特段の制約はなく、設計する最高使用温度に応じて選定、あるいは適宜組み合わせて使用すれば良いが、典型的にはシリカ質又はアルミナ質のフュームド原料(フュームドシリカ又はフュームドアルミナ)を使用できる。そのほか、フュームド原料としてはチタニア質等の金属酸化物を使用することができ、気相法で製造されるフュームド原料以外としては、湿式法、アーク法、熱分解法により製造されたものを使用することができる。いずれの非晶質耐火原料も、上記の理由からBET比表面積は50m/g以上であることが好ましい。 The material of the amorphous refractory raw material is not particularly limited and may be selected according to the maximum operating temperature to be designed, or may be used in combination as appropriate. Typically, siliceous or alumina fumed raw material (fumed silica) Alternatively, fumed alumina) can be used. In addition, titania and other metal oxides can be used as the fumed raw material, and materials manufactured by the wet method, arc method, and pyrolysis method are used other than the fumed raw material manufactured by the vapor phase method. be able to. Any amorphous refractory raw material preferably has a BET specific surface area of 50 m 2 / g or more for the above reasons.

断熱材の原料(断熱材)として残り最大70質量%を占める他の原料に制約はなく、断熱材の特性に支障を来さない原料を用いれば良い。通常、高温用として使用する場合は、赤外線不透過材としてジルコン(ZrSiO)、炭化珪素(SiC)、チタニア(TiO)等を併用することができる。これらの赤外線不透過材は、断熱材の原料全体(断熱材)に占める割合で合計10質量%以上使用すると効果が得られる。好ましくは、10質量%以上50質量%以下で使用する。 There are no restrictions on other raw materials that occupy the remaining 70% by mass as the heat insulating material (heat insulating material), and raw materials that do not interfere with the properties of the heat insulating material may be used. Normally, when used for high temperature, zircon (ZrSiO 4 ), silicon carbide (SiC), titania (TiO 2 ), etc. can be used in combination as an infrared opaque material. When these infrared opaque materials are used in a ratio of 10% by mass or more in total in the ratio of the total amount of the heat insulating material (heat insulating material), an effect can be obtained. Preferably, it is used in an amount of 10% to 50% by mass.

また、必要に応じ、鉱物性繊維を使用することができる。鉱物性繊維の材質は問わないが、収縮率を小さくする観点からはアルカリ成分の少ない、例えばシリカ繊維(高純度ガラス繊維とも称される。)、アルミナ繊維等を使用することができる。繊維の直径は発がん性も考慮し、通常7μm程度のものが使用されている。使用量は、成形後のハンドリング性及び補強の点から、0.2質量%以上とすると効果が得られる。好ましくは、0.2質量%以上5質量%以下で使用する。   Moreover, a mineral fiber can be used as needed. The material of the mineral fiber is not limited, but from the viewpoint of reducing the shrinkage rate, for example, silica fiber (also referred to as high-purity glass fiber), alumina fiber or the like having a small alkali component can be used. In consideration of carcinogenicity, the fiber diameter is usually about 7 μm. An effect is acquired when the usage-amount is 0.2 mass% or more from the point of the handleability after shaping | molding, and a reinforcement. Preferably, it is used at 0.2 mass% or more and 5 mass% or less.

本発明の断熱材は、1000℃においても所定の耐熱性を発揮する。また、本発明の断熱材の製造方法によれば、上記本発明の断熱材を安定的に製造でき、断熱材の強度も確保できる。   The heat insulating material of the present invention exhibits predetermined heat resistance even at 1000 ° C. Moreover, according to the manufacturing method of the heat insulating material of this invention, the said heat insulating material of this invention can be manufactured stably and the intensity | strength of a heat insulating material can also be ensured.

本発明の断熱材は、断熱材の原料を混合後、成形し、その成形体を焼成後の収縮率が7〜40%になる焼成条件で焼成することにより製造できる。   The heat insulating material of the present invention can be produced by mixing the raw materials of the heat insulating material and then forming the material, and baking the formed body under the baking conditions that the shrinkage ratio after baking is 7 to 40%.

断熱材の原料としては上述のとおり、BET比表面積が50m/g以上の非晶質耐火原料を30質量%以上含有するものを好適に使用できる。残りの最大70質量%には上述のとおり、赤外線不透過材や鉱物性繊維を使用できる。 As described above, a material containing 30% by mass or more of an amorphous refractory material having a BET specific surface area of 50 m 2 / g or more can be suitably used as the heat insulating material. As described above, an infrared opaque material or mineral fiber can be used for the remaining 70% by mass.

これらの断熱材の原料の混合及び成形は、従来一般的な方法で行うことができる。また、焼成は、焼成後の収縮率が7〜40%になる焼成条件で行うが、その焼成自体は、従来一般的な方法で行うことができる。   Mixing and forming of these heat insulating materials can be performed by conventional methods. Moreover, although baking is performed on the baking conditions which the shrinkage rate after baking becomes 7 to 40%, the baking itself can be performed by a conventionally general method.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

表1に示す断熱材の原料粉末を高速ミキサーを使用して均一に混合し、その混合粉末を加圧成形し、その成形体を表1に示す焼成条件にて焼成し、断熱材の試料を作製した。焼成は酸化雰囲気で行い、焼成後の収縮率は、JIS R2613により求めた。   The raw material powder of the heat insulating material shown in Table 1 is uniformly mixed using a high-speed mixer, the mixed powder is pressure-molded, the molded body is fired under the firing conditions shown in Table 1, and a sample of the heat insulating material is prepared. Produced. Firing was performed in an oxidizing atmosphere, and the shrinkage after firing was determined according to JIS R2613.

各試料につき、その特性として、(1)加熱後収縮率、(2)気孔体積、(3)熱伝導率、(4)圧縮強度、(5)セカント弾性係数を評価した。各特性の評価方法は以下のとおりである。   For each sample, (1) shrinkage after heating, (2) pore volume, (3) thermal conductivity, (4) compressive strength, and (5) secant elastic modulus were evaluated as characteristics. The evaluation method of each characteristic is as follows.

(1)加熱後収縮率
幅40×長さ40×厚さ20mmの試験片を電気炉に設置し、1000℃で3時間加熱する。加熱前後の幅と長さを測定し、幅と長さから平均した残存線変化率(JIS R2613)を求め、これを加熱後収縮率とする。
(1) Shrinkage ratio after heating A test piece of width 40 × length 40 × thickness 20 mm is placed in an electric furnace and heated at 1000 ° C. for 3 hours. The width and length before and after heating are measured, the residual line change rate (JIS R2613) averaged from the width and length is obtained, and this is defined as the shrinkage rate after heating.

(2)気孔体積
試験片は8mmの立方体である。水銀圧入式ポロシメーターで細孔分布を測定し、細孔径と累計気孔量の関係から100nm以下の気孔体積を求める。
(2) Pore volume The test piece is an 8 mm cube. The pore distribution is measured with a mercury intrusion porosimeter, and the pore volume of 100 nm or less is determined from the relationship between the pore diameter and the cumulative pore volume.

(3)熱伝導率
JIS A1412−1「熱絶縁材の熱抵抗及び熱伝導率の測定方法−第1部:保護熱板法(GHP法)」により測定する。測定温度は600℃とする。
(3) Thermal conductivity Measured according to JIS A1412-1 “Measuring method of thermal resistance and thermal conductivity of thermal insulation material—Part 1: Protection hot plate method (GHP method)”. The measurement temperature is 600 ° C.

(4)圧縮強度
試験片の形状は幅40×長さ40×厚さ20mmとする。圧縮応力度は0.05〜0.2MPa/sとする。JIS R2206−2「耐火れんがの圧縮強さの試験方法−第2
部:パッキングを用いる方法」により測定する。
(4) Compressive strength The shape of a test piece shall be width 40x length 40x thickness 20mm. The degree of compressive stress is 0.05 to 0.2 MPa / s. JIS R2206-2 "Test method for compressive strength of refractory bricks-Part 2
Part: method using packing ".

(5)セカント弾性係数
試験片の形状は幅40×長さ40×厚さ20mmとする。試験片を載荷速度0.01mm/sで載荷し圧縮破壊させる。この間、応力−ひずみの関係を記録する。圧縮強度に対
し10%相当応力時のセカント弾性係数を求め、これを0.1耐力時におけるセカント弾性係数とする。
(5) Secant elastic modulus The shape of a test piece shall be width 40x length 40x thickness 20mm. The test piece is loaded at a loading speed of 0.01 mm / s and subjected to compression fracture. During this time, the stress-strain relationship is recorded. A secant elastic modulus at a stress equivalent to 10% of the compressive strength is obtained, and this is defined as a secant elastic modulus at a 0.1 proof stress.

Figure 2014081072
Figure 2014081072

表1の実施例1〜5は、焼成条件を変化させることで焼成後収縮率を7.7%から40%まで変化させたものである。焼成後収縮率が増加するに従い、加熱後収縮率及び気孔体積は減少、熱伝導率、圧縮強度及びセカント弾性係数は増加する傾向が見られるが、いずれも気孔体積が27vol%以上、熱伝導率が0.1W/mK以下、加熱後収縮率が4%以下という本発明の要件を満たしており、セカント弾性係数が8N/mmという好ましい要件も満たしている。特に、気孔体積が53vol%以上である実施例1〜4は、熱伝導率が0.08W/mK以下で、より優れた断熱性が得られている。この点から、気孔体積は53vol%以上が好ましい。 In Examples 1 to 5 of Table 1, the shrinkage after firing was changed from 7.7% to 40% by changing the firing conditions. As the shrinkage after firing increases, the shrinkage after heating and the pore volume decrease, and the thermal conductivity, compressive strength, and secant elastic modulus tend to increase, but in all cases, the pore volume is 27 vol% or more, the thermal conductivity Of 0.1 W / mK or less, the shrinkage ratio after heating is 4% or less, and the preferred elastic modulus of 8 N / mm 2 is also satisfied. In particular, in Examples 1 to 4 in which the pore volume is 53 vol% or more, the thermal conductivity is 0.08 W / mK or less, and more excellent heat insulation is obtained. In this respect, the pore volume is preferably 53 vol% or more.

実施例6及び7は、断熱材の原料にアルカリ金属元素を含む化合物を添加したものである。表1においてその添加量は、その他の原料100質量%に対する外掛けの質量%で示している。アルカリ金属元素を添加すると、添加なしの実施例1に比べ焼結が促進され、結果として加熱後収縮率が減少し、セカント弾性係数が増加している。アルカリ土類金属元素を含む化合物を添加した場合も同様の結果が得られることは、当業者に自明である。   In Examples 6 and 7, a compound containing an alkali metal element is added to a heat insulating material. In Table 1, the amount of addition is shown as outer mass% with respect to 100 mass% of other raw materials. When an alkali metal element is added, sintering is promoted as compared with Example 1 without addition, and as a result, the shrinkage after heating is reduced and the secant elastic modulus is increased. It is obvious to those skilled in the art that similar results can be obtained when a compound containing an alkaline earth metal element is added.

実施例8〜11は、非晶質耐火原料である乾式フュームドシリカのBET比表面積を変化させたものである。いずれもの実施例も、気孔体積が27vol%以上、熱伝導率が0.1W/mK以下、加熱後収縮率が4%以下という本発明の要件は満たしているが、BET比表面積が20g/mの実施例8は、セカント弾性係数が8N/mm未満となった。実施例9の結果と併せて考慮すると、非晶質耐火原料のBET比表面積は50g/m以上が好ましいと言える。 Examples 8-11 change the BET specific surface area of the dry-type fumed silica which is an amorphous refractory raw material. Although all the examples satisfy the requirements of the present invention that the pore volume is 27 vol% or more, the thermal conductivity is 0.1 W / mK or less, and the shrinkage after heating is 4% or less, the BET specific surface area is 20 g / m. In Example 8 of 2 , the secant elastic modulus was less than 8 N / mm 2 . Considering together with the results of Example 9, it can be said that the BET specific surface area of the amorphous refractory raw material is preferably 50 g / m 2 or more.

実施例12〜15は、非晶質耐火原料である乾式フュームドシリカの含有量を変化させたものである。いずれもの実施例も、気孔体積が27vol%以上、熱伝導率が0.1W/mK以下、加熱後収縮率が4%以下という本発明の要件は満たしているが、乾式フュームドシリカの含有量が20質量%の実施例12は、セカント弾性係数が8N/mm未満となった。実施例13の結果と併せて考慮すると、非晶質耐火原料の含有量は30質量%以上が好ましいと言える。 In Examples 12 to 15, the content of dry fumed silica, which is an amorphous refractory raw material, is changed. In any of the examples, the pore volume is 27 vol% or more, the thermal conductivity is 0.1 W / mK or less, and the shrinkage ratio after heating is 4% or less, but the content of dry fumed silica is satisfied. However, in Example 12, the second elastic modulus was less than 8 N / mm 2 . Considering together with the result of Example 13, it can be said that the content of the amorphous refractory raw material is preferably 30% by mass or more.

実施例16は、非晶質耐火原料として乾式フュームドシリカに代えて乾式フュームドアルミナを使用したものである。この実施例17も、気孔体積が27vol%以上、熱伝導率が0.1W/mK以下、加熱後収縮率が4%以下という本発明の要件を満たしており、セカント弾性係数が8N/mmという好ましい要件も満たしている。 In Example 16, dry fumed alumina was used in place of dry fumed silica as an amorphous refractory raw material. This Example 17 also satisfies the requirements of the present invention that the pore volume is 27 vol% or more, the thermal conductivity is 0.1 W / mK or less, and the shrinkage after heating is 4% or less, and the second elastic modulus is 8 N / mm 2. The preferable requirement is also satisfied.

実施例17〜20は、赤外線不透過材としてチタニアに代えて炭化珪素又はジルコンを使用したものである。これらの実施例17〜20も、気孔体積が27vol%以上、熱伝導率が0.1W/mK以下、加熱後収縮率が4%以下という本発明の要件を満たしており、セカント弾性係数が8N/mmという好ましい要件も満たしている。 Examples 17-20 use silicon carbide or zircon instead of titania as the infrared opaque material. These Examples 17 to 20 also satisfy the requirements of the present invention that the pore volume is 27 vol% or more, the thermal conductivity is 0.1 W / mK or less, and the shrinkage after heating is 4% or less, and the second elastic modulus is 8N. The preferable requirement of / mm 2 is also satisfied.

実施例18及び19は実施例17に対し、アルカリ金属元素を含む化合物を添加した例である。焼結を適度に促進できるので、加熱後収縮率がやや大きくなるものの焼成時間の短縮が可能になる。ただし、アルカリ金属元素あるいはアルカリ土類金属を添加すると、加熱後収縮率の制御がやや難しくなるため、無添加の方が好ましい。   Examples 18 and 19 are examples in which a compound containing an alkali metal element was added to Example 17. Since sintering can be moderately promoted, the firing time can be shortened although the shrinkage ratio after heating is slightly increased. However, the addition of an alkali metal element or alkaline earth metal makes it difficult to control the shrinkage rate after heating, so it is preferable to add no additive.

比較例1及び2は、上記実施例1〜5と同じ断熱材の原料を使用したものであるが、比較例1は、焼成後収縮率が42.2%と過焼結の条件で焼成されたもので、気孔体積が27vol%未満となり、熱伝導率が0.1W/mKを上回った。一方、比較例2は、焼成後収縮率が2.2%で焼結不足であり、加熱後収縮率が4%を上回った。   Comparative Examples 1 and 2 use the same heat insulating material as in Examples 1 to 5 above, but Comparative Example 1 is fired under the condition of oversintering with a shrinkage ratio after firing of 42.2%. As a result, the pore volume was less than 27 vol%, and the thermal conductivity exceeded 0.1 W / mK. On the other hand, in Comparative Example 2, the shrinkage ratio after firing was 2.2% and the sintering was insufficient, and the shrinkage ratio after heating exceeded 4%.

比較例3は、上記特許文献2の実施例1に相当するもので、焼成後収縮率が1.2%で焼結不足であり、加熱後収縮率が4%を上回った。   Comparative Example 3 corresponds to Example 1 of Patent Document 2 described above. The shrinkage rate after firing was 1.2%, the sintering was insufficient, and the shrinkage rate after heating exceeded 4%.

Claims (10)

気孔径100nm以下の気孔体積が27vol%以上、600℃における熱伝導率が0.1W/mK以下、1000℃3時間加熱後の収縮率が4%以下である断熱材。   A heat insulating material having a pore volume of 27 vol% or more with a pore diameter of 100 nm or less, a thermal conductivity at 600 ° C of 0.1 W / mK or less, and a shrinkage rate of 4% or less after heating at 1000 ° C for 3 hours. 気孔径100nm以下の気孔体積が53vol%以上である請求項1に記載の断熱材。   The heat insulating material according to claim 1, wherein a pore volume having a pore diameter of 100 nm or less is 53 vol% or more. 1000℃3時間加熱後の収縮率が2%以下である請求項1又は2に記載の断熱材。   The heat insulating material according to claim 1 or 2, wherein a shrinkage ratio after heating at 1000 ° C for 3 hours is 2% or less. 0.1耐力時におけるセカント弾性係数が8N/mm以上である請求項1から3のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 3, wherein a second elastic modulus at a proof stress is 8 N / mm 2 or more. アルカリ金属元素及びアルカリ土類金属を含有しない請求項1から4のいずれかに記載の断熱材。   The heat insulating material in any one of Claim 1 to 4 which does not contain an alkali metal element and an alkaline-earth metal. 非晶質耐火原料を30質量%以上含有する請求項1から5のいずれかに記載の断熱材。   The heat insulating material in any one of Claim 1 to 5 which contains 30 mass% or more of amorphous refractory raw materials. ジルコン、炭化珪素、チタニアのいずれか1種又は2種以上を10質量%以上含有する請求項1から6のいずれかに記載の断熱材。   The heat insulating material according to any one of claims 1 to 6, comprising 10% by mass or more of any one or more of zircon, silicon carbide, and titania. 請求項1から7のいずれかに記載の断熱材を製造する断熱材の製造方法において、断熱材用原料から成る成形体を、焼成後の収縮率が7〜40%になる焼成条件で焼成することを特徴とする断熱材の製造方法。   In the manufacturing method of the heat insulating material which manufactures the heat insulating material in any one of Claim 1 to 7, the molded object which consists of a raw material for heat insulating materials is baked on the baking conditions from which the shrinkage rate after baking becomes 7 to 40%. The manufacturing method of the heat insulating material characterized by the above-mentioned. 前記断熱材用原料が、非晶質耐火原料を30質量%以上含有する請求項8に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material of Claim 8 in which the said raw material for heat insulating materials contains 30 mass% or more of amorphous refractory raw materials. 前記非晶質耐火原料が、BET比表面積が50m/g以上のフュームドシリカ又はフュームドアルミナである請求項9に記載の断熱材の製造方法。 The method for producing a heat insulating material according to claim 9, wherein the amorphous refractory raw material is fumed silica or fumed alumina having a BET specific surface area of 50 m 2 / g or more.
JP2013187354A 2012-09-28 2013-09-10 Insulating material and manufacturing method thereof Active JP6431252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187354A JP6431252B2 (en) 2012-09-28 2013-09-10 Insulating material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012216897 2012-09-28
JP2012216897 2012-09-28
JP2013187354A JP6431252B2 (en) 2012-09-28 2013-09-10 Insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014081072A true JP2014081072A (en) 2014-05-08
JP6431252B2 JP6431252B2 (en) 2018-11-28

Family

ID=50785425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187354A Active JP6431252B2 (en) 2012-09-28 2013-09-10 Insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6431252B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020767A (en) * 2014-07-14 2016-02-04 黒崎播磨株式会社 Lining structure for industrial furnace
WO2016147665A1 (en) * 2015-03-16 2016-09-22 ニチアス株式会社 Heat insulator and method for producing same
JP2016173178A (en) * 2015-03-16 2016-09-29 ニチアス株式会社 Heat insulation material and method of manufacturing the same
JP2019078337A (en) * 2017-10-25 2019-05-23 イソライト工業株式会社 Heat insulation material and manufacturing method thereof
JPWO2019107343A1 (en) * 2017-11-28 2020-12-17 株式会社クラレ Fireproof material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022082216A (en) 2020-11-20 2022-06-01 黒崎播磨株式会社 Molded aerogel composite

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221578A (en) * 1979-02-12 1980-09-09 Corning Glass Works Method of making controlled-pore silica structures for high temperature insulation
JPH0632673A (en) * 1992-07-16 1994-02-08 Kurosaki Refract Co Ltd Alumina-based porous body
JPH082980A (en) * 1994-06-17 1996-01-09 Shinagawa Refract Co Ltd Zirconia-based refractory for heat insulation and its production
JPH11240777A (en) * 1998-02-27 1999-09-07 Sumitomo Chem Co Ltd Alpha-alumina porous aggregated sintered compact, its production and use thereof
JP2000104110A (en) * 1998-09-29 2000-04-11 Nippon Steel Corp Heat-insulating structure of molten metal vessel
JP2001261439A (en) * 2000-03-23 2001-09-26 Nippon Karu Kk Carbonaceous foamed body and its production process
JP2002068854A (en) * 2000-08-30 2002-03-08 National Institute Of Advanced Industrial & Technology Alumina porous material and production method thereof
JP2003082936A (en) * 2000-10-06 2003-03-19 Hayashibara Biochem Lab Inc Fireproofing storehouse
WO2004031254A1 (en) * 2002-10-04 2004-04-15 E-Tec Co., Ltd. Cold-curing binder and process for producing molding with the same
JP2008013430A (en) * 2006-06-07 2008-01-24 Nippon Steel Corp Method of manufacturing heat insulating material, heat insulating material, kiln vessel, method of applying heat insulating material and method of recycling heat insulating material
JP2008056531A (en) * 2006-08-31 2008-03-13 Nippon Steel Corp Heat-insulating brick, manufacturing method of heat-insulating brick, and refractory structure
JP2011001204A (en) * 2009-06-16 2011-01-06 Jfe Steel Corp High performance heat insulating material and method of manufacturing the same
WO2012036218A1 (en) * 2010-09-16 2012-03-22 小松精練株式会社 Porous ceramic sintered body
JP2012166977A (en) * 2011-02-14 2012-09-06 Asahi Kasei Chemicals Corp Heat-insulating material, and method for preparation thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221578A (en) * 1979-02-12 1980-09-09 Corning Glass Works Method of making controlled-pore silica structures for high temperature insulation
JPH0632673A (en) * 1992-07-16 1994-02-08 Kurosaki Refract Co Ltd Alumina-based porous body
JPH082980A (en) * 1994-06-17 1996-01-09 Shinagawa Refract Co Ltd Zirconia-based refractory for heat insulation and its production
JPH11240777A (en) * 1998-02-27 1999-09-07 Sumitomo Chem Co Ltd Alpha-alumina porous aggregated sintered compact, its production and use thereof
JP2000104110A (en) * 1998-09-29 2000-04-11 Nippon Steel Corp Heat-insulating structure of molten metal vessel
JP2001261439A (en) * 2000-03-23 2001-09-26 Nippon Karu Kk Carbonaceous foamed body and its production process
JP2002068854A (en) * 2000-08-30 2002-03-08 National Institute Of Advanced Industrial & Technology Alumina porous material and production method thereof
JP2003082936A (en) * 2000-10-06 2003-03-19 Hayashibara Biochem Lab Inc Fireproofing storehouse
WO2004031254A1 (en) * 2002-10-04 2004-04-15 E-Tec Co., Ltd. Cold-curing binder and process for producing molding with the same
JP2008013430A (en) * 2006-06-07 2008-01-24 Nippon Steel Corp Method of manufacturing heat insulating material, heat insulating material, kiln vessel, method of applying heat insulating material and method of recycling heat insulating material
JP2008056531A (en) * 2006-08-31 2008-03-13 Nippon Steel Corp Heat-insulating brick, manufacturing method of heat-insulating brick, and refractory structure
JP2011001204A (en) * 2009-06-16 2011-01-06 Jfe Steel Corp High performance heat insulating material and method of manufacturing the same
WO2012036218A1 (en) * 2010-09-16 2012-03-22 小松精練株式会社 Porous ceramic sintered body
JP2012166977A (en) * 2011-02-14 2012-09-06 Asahi Kasei Chemicals Corp Heat-insulating material, and method for preparation thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020767A (en) * 2014-07-14 2016-02-04 黒崎播磨株式会社 Lining structure for industrial furnace
WO2016147665A1 (en) * 2015-03-16 2016-09-22 ニチアス株式会社 Heat insulator and method for producing same
JP2016173178A (en) * 2015-03-16 2016-09-29 ニチアス株式会社 Heat insulation material and method of manufacturing the same
JP2019078337A (en) * 2017-10-25 2019-05-23 イソライト工業株式会社 Heat insulation material and manufacturing method thereof
JPWO2019107343A1 (en) * 2017-11-28 2020-12-17 株式会社クラレ Fireproof material
JP7216010B2 (en) 2017-11-28 2023-01-31 株式会社クラレ refractory material
US11718718B2 (en) 2017-11-28 2023-08-08 Kuraray Co., Ltd. Refractory material

Also Published As

Publication number Publication date
JP6431252B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6431252B2 (en) Insulating material and manufacturing method thereof
JP6602827B2 (en) Insulating material and manufacturing method thereof
JP5069301B2 (en) Firing refractory ceramic products
JP6499464B2 (en) Insulated refractory
WO2014091665A1 (en) Insulation material and method of manufacturing same
JP5361795B2 (en) Lined casting material
JP6498515B2 (en) Refractory composition and refractory concrete block using the same
JP2010254545A (en) Silicon nitride-based composite ceramic and method for producing the same
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
TWI659007B (en) Prefabricated refractory for coke oven
JP6959809B2 (en) Amorphous refractory for pouring work
JP2003238250A (en) Yttria refractory
JP6319769B2 (en) Insulation
JP2015036346A (en) Composite refractory heat-resistant material
JP5885799B2 (en) Insulating material and manufacturing method thereof
JP6441684B2 (en) Castable refractories for lids of molten metal containers
JP2012046398A (en) Heat-resistant ceramics and heat-insulating material
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
JP4795754B2 (en) High thermal shock-resistant ceramic composite and manufacturing method thereof
JP2002316869A (en) Roller for roller hearth kiln consisting of heat resistant mullite sintered compact
JP2015143532A (en) Heat insulator and method of manufacturing the same
JP4319866B2 (en) Method for producing inorganic fibrous refractory insulation
JP3176836B2 (en) Irregular refractories
TW201641469A (en) Silicon carbide-natured refractory block
JP2017149617A (en) Chamotte brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181102

R150 Certificate of patent or registration of utility model

Ref document number: 6431252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250