JPH0632673A - Alumina-based porous body - Google Patents

Alumina-based porous body

Info

Publication number
JPH0632673A
JPH0632673A JP18966592A JP18966592A JPH0632673A JP H0632673 A JPH0632673 A JP H0632673A JP 18966592 A JP18966592 A JP 18966592A JP 18966592 A JP18966592 A JP 18966592A JP H0632673 A JPH0632673 A JP H0632673A
Authority
JP
Japan
Prior art keywords
pore
alumina
pore volume
specific surface
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18966592A
Other languages
Japanese (ja)
Inventor
Toshimi Fukui
俊巳 福井
Makoto Hori
誠 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP18966592A priority Critical patent/JPH0632673A/en
Publication of JPH0632673A publication Critical patent/JPH0632673A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Abstract

PURPOSE:To provide an alumina porous body utilizable as a carrier for a heterogeneous catalyst for cleaning waste gases used in catalyst combustors, internal combustion engines, treating petroleum fractions, organic synthesis, etc. CONSTITUTION:The objective alumina-based porous body has >=2.0ml/g total pore volume, 50-500m<2>/g specific surface area and 0.1-6.0ml/g pare volume of pores having <=100nm pore radius, >=30% pore volume having 10-100nm pore radius and one or more peaks of the pore radius above 0.01mum pore radius and is excellent in heat resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃エンジンの排ガス
浄化、高圧下で反応が行われる石油留分の処埋や有機合
成等の不均質触媒用坦体等に好適に利用できるアルミナ
質多孔体に関する。
FIELD OF THE INVENTION The present invention relates to an alumina porous material which can be suitably used for purification of exhaust gas of an internal combustion engine, treatment of petroleum fractions which are reacted under high pressure, carrier for heterogeneous catalysts for organic synthesis and the like. Regarding the body

【0002】[0002]

【従来技術】かかる用途に使用される不均質触媒坦体
は、広い反応活性面積を得るために高い比表面積と様々
な処理によってもその比表面積が高く保持されると共
に、内燃エンジンの排ガス浄化においては850℃程
度、石油化学プロセス、有機合成等においては200〜
600℃等の高温に耐えうる耐熱性を有する必要があ
る。
2. Description of the Related Art Heterogeneous catalyst carriers used for such applications have a high specific surface area in order to obtain a wide reaction active area and a high specific surface area even by various treatments, and in purification of exhaust gas of an internal combustion engine. Is about 850 ° C, 200 ~ in petrochemical processes, organic synthesis, etc.
It must have heat resistance to withstand high temperatures such as 600 ° C.

【0003】この不均質触媒坦体における耐熱性の必要
性はさらに苛酷なものとなりつつある。例えば、排ガス
浄化用触媒としては、NOxの規制強化に伴い、従来の
一段階の酸化触媒処理から、酸化−還元の二段階触媒の
方向に進みつつあり、このため、触媒層をより高温のエ
ンジンに近接させる必要性が出てきており、1000℃
前後での安定した耐熱性が要求されるようになった。
The need for heat resistance in this heterogeneous catalyst carrier is becoming more severe. For example, as an exhaust gas purifying catalyst, with the tightening of NOx regulations, it is progressing from the conventional one-step oxidation catalyst treatment to a two-step oxidation-reduction catalyst. Therefore, the catalyst layer has a higher temperature in the engine. Need to be close to the
Stable heat resistance before and after has come to be required.

【0004】一方において、近年触媒を用いて燃料と酸
素の反応を促進する接触燃焼法が注目を浴びている。こ
の接触燃焼法は、低温度での完全燃焼が可能、広範囲の
燃料/空気比で完全燃焼が可能、サーマルノックスの発
生が少ないなどの利点がある。この技術を確立するため
には1000℃以上で安定な耐熱性を有する触媒担体の
開発が必要である。
On the other hand, in recent years, a catalytic combustion method, which uses a catalyst to promote the reaction between fuel and oxygen, has been receiving attention. This catalytic combustion method has advantages such as complete combustion at a low temperature, complete combustion in a wide range of fuel / air ratio, and less generation of thermal knox. In order to establish this technology, it is necessary to develop a catalyst carrier that has stable heat resistance at 1000 ° C or higher.

【0005】従来、かかる用途に使用されているアルミ
ナ質多孔体としては、例えば触媒講座5、触媒設計、p
128〜133(1985)に記載されている比表面積
が100〜300m2 /g、細孔容積が0.5〜1.5
ml/g、細孔半径ピーク位置の制御可能なベーマイト
が知られている。
As the alumina porous body conventionally used for such applications, for example, Catalyst Course 5, Catalyst Design, p.
128-133 (1985) has a specific surface area of 100-300 m 2 / g and a pore volume of 0.5-1.5.
ml / g, a boehmite having a controllable pore radius peak position is known.

【0006】また、アルミニウムアルコキシドの加水分
解生成物を加熱処理したγ相を主成分とする遷移アルミ
ナも知られているが、比表面積は100〜300m2
g、細孔容積は0.4〜0.6ml/g、細孔半径ピー
ク及び細孔の大部分が10nm以下である。
[0006] Further, a transition alumina having a γ phase as a main component, which is obtained by heat-treating a hydrolysis product of an aluminum alkoxide, is also known, but has a specific surface area of 100 to 300 m 2 /
g, the pore volume is 0.4 to 0.6 ml / g, the pore radius peak and most of the pores are 10 nm or less.

【0007】さらにδ相を主成分とする遷移アルミナも
知られており、これは、比表面積は50〜100m2
g、細孔容積は0.4ml/g以下、細孔半径ピーク及
び細孔の大部分は10nm以下である。
Further, transition alumina containing a δ phase as a main component is also known, which has a specific surface area of 50 to 100 m 2 /
g, the pore volume is 0.4 ml / g or less, the pore radius peak and most of the pores are 10 nm or less.

【0008】また、さらに、α相を主成分とする高強度
のアルミナも知られており、この比表面積は10m2
g以下、細孔容積はきわめて小さいものである。
Further, high-strength alumina containing an α phase as a main component is also known, and its specific surface area is 10 m 2 /
Below g, the pore volume is extremely small.

【0009】かかる耐熱性を有する触媒担体として加熱
処理後も高い比表面積を保持することが可能な多孔質ア
ルミナの使用が試みられている。
As a catalyst carrier having such heat resistance, it has been attempted to use porous alumina capable of retaining a high specific surface area even after heat treatment.

【0010】従来、かかるアルミナとして、アルミニウ
ム塩、アルミン酸塩の中和又は交換分解やアルミニウム
アマルガム、アルミニウムアルコキシドの加水分解で合
成する比表面積が高いγ−アルミナの使用が知られてい
る。
As such alumina, it has been known to use γ-alumina having a high specific surface area which is synthesized by neutralization or exchange decomposition of aluminum salt or aluminate, or hydrolysis of aluminum amalgam or aluminum alkoxide.

【0011】しかしながら、γ−アルミナは、1000
〜1100℃でα−アルミナに転移する。そのため、比
表面積が激減し反応活性面積が低下し、1000℃以上
の高温域での使用はできず、その適用可能温度は精々6
00℃が限度である。
However, γ-alumina is 1000
Transition to α-alumina at ˜1100 ° C. Therefore, the specific surface area is drastically reduced, the reaction active area is reduced, and it cannot be used in a high temperature range of 1000 ° C or higher, and the applicable temperature is 6
The limit is 00 ° C.

【0012】また、特公昭58−53569号公報に
は、編目構造を有するα−アルミナ坦体が開示されてい
るが、その製造の過程でのアルミナのγ→α転移によっ
て急激に比表面積と強度が低下する。とくに、得られた
坦体の比表面積は精々30m2/gであって、γ−アル
ミナに比べると極めて低く、触媒担体能において劣った
ものとなる。
Further, Japanese Patent Publication No. 58-53569 discloses an α-alumina carrier having a knitting structure, and the γ → α transition of alumina in the process of production thereof causes a sudden increase in specific surface area and strength. Is reduced. In particular, the specific surface area of the obtained carrier is at most 30 m 2 / g, which is extremely low as compared with γ-alumina, which is inferior in catalyst support ability.

【0013】さらに、かかるアルミナ触媒担体の細孔分
布の制御と構造に関して多くの発明が開示されている。
Further, many inventions have been disclosed regarding the control and structure of the pore distribution of the alumina catalyst carrier.

【0014】例えば、特開昭57−123820号公
報、特開昭57−135721号公報、特開昭57−1
70822号公報には、カーボンブラックの添加によっ
てバイモーダルな細孔半径分布を得ることが開示され、
また、特開昭58−252号公報には、2種以上の酸化
物を水蒸気下で加熱処理することによって細孔容積を調
整することが、さらには、特開昭58−119341号
公報には、アルミナ化合溶液を噴霧乾燥して全細孔容積
が0.8〜1.7ml/g、比表面積が80〜135m
2 /gの多孔質表面を得ることが開示されている。さら
に、特開昭58−216740号公報には、2種以上の
ベーマイトゾルを混合することによって、マルチモーダ
ルな細孔径分布を得ることが開示され、さらには、特開
平1−254254号公報には噴霧乾燥による方法が開
示されている。
For example, JP-A-57-123820, JP-A-57-135721, and JP-A-57-1
Japanese Patent No. 70822 discloses that a bimodal pore radius distribution is obtained by adding carbon black,
Further, in JP-A-58-252, it is possible to adjust the pore volume by heat-treating two or more kinds of oxides under steam, and further in JP-A-58-119341. , The alumina compound solution was spray-dried to have a total pore volume of 0.8 to 1.7 ml / g and a specific surface area of 80 to 135 m.
It is disclosed to obtain a porous surface of 2 / g. Further, JP-A-58-216740 discloses that a multimodal pore size distribution is obtained by mixing two or more kinds of boehmite sols, and further JP-A-1-254254 discloses. A method by spray drying is disclosed.

【0015】しかしながら、以上の特許文献は、何れも
が比較的低温域における細孔構造の制御に係るもので、
1000℃以上の高温域で使用されるアルミナ多孔体の
耐熱性の改善についての開示はない。
However, all of the above patent documents relate to the control of the pore structure in a relatively low temperature range,
There is no disclosure about improvement in heat resistance of the alumina porous body used in a high temperature range of 1000 ° C. or higher.

【0016】唯一、特開平3−199120号公報には
アルミナエアロゲルを臨界温度と臨界圧力を超えた状態
の下での乾燥によって、大きな比表面積と高温での優れ
た耐熱性を有するアルミナ多孔体が開示されている。
The only one disclosed in Japanese Patent Laid-Open No. 3-199120 is an alumina porous body having a large specific surface area and excellent heat resistance at high temperature, by drying the alumina airgel under the condition of exceeding the critical temperature and the critical pressure. It is disclosed.

【0017】しかしながら、何れのアルミナ多孔質体
も、高温下や高圧下での長期使用には十分ではない。
However, none of the alumina porous bodies is sufficient for long-term use under high temperature or high pressure.

【0018】[0018]

【発明が解決しようとする課題】本発明は、従来のγ−
アルミナに比べ高い耐熱性を有し、且つα−アルミナに
比べ高い活性表面を有し、その活性が高温、高圧下にお
いても長時間保持されるアルミナ質多孔体を提供するも
のである。
The present invention is based on the conventional γ-
It is intended to provide an alumina-based porous body which has higher heat resistance than alumina and has a higher active surface than α-alumina, and whose activity is retained for a long time even under high temperature and high pressure.

【0019】[0019]

【課題を解決するための手段】本発明のアルミナ質多孔
体は、全細孔容積が2.0ml/g以上あり、細孔径半
径が100nm以下の細孔による比表面積と細孔容積
が、それぞれ50〜500m2 /gと0.1〜6.0m
l/gであって、10〜100nmの細孔容積が100
nm以下の細孔容積の30%以上であり、細孔半径0.
01μm以上に1つ以上の細孔径のピークを有すること
を特徴とする耐熱性に優れるものである。
The alumina-based porous material of the present invention has a total pore volume of 2.0 ml / g or more, and the specific surface area and the pore volume due to the pores having a pore diameter radius of 100 nm or less are respectively 50-500 m 2 / g and 0.1-6.0 m
1 / g and the pore volume of 10 to 100 nm is 100
30% or more of the pore volume of not more than nm and a pore radius of 0.
It has excellent heat resistance, which is characterized by having one or more peaks of pore size at 01 μm or more.

【0020】また、結晶相の全て、または大部分が、γ
相またはθ相から構成されており、優れた耐水性も併せ
持つ。
Further, all or most of the crystal phase is γ
It is composed of a phase or theta phase and also has excellent water resistance.

【0021】結晶相の全て、または大部分がγ相から構
成されるアルミナ質多孔体は、全細孔容積が2.5ml
/g以上あり、細孔径半径が100nm以下の細孔によ
る比表面積と細孔容積が、それぞれ200〜500m2
/gと0.5〜6.0ml/gであり、且つ、10〜1
00nmの細孔容積が100nm以下の細孔容積の40
%以上であり、且つ細孔径半径0.01μm以上に1つ
以上の細孔径のピークを有し、高い細孔容積と比表面積
を有する。
The alumina porous body composed of all or most of the crystal phase of the γ phase has a total pore volume of 2.5 ml.
/ G or more and the pore diameter radius is 100 nm or less, the specific surface area and the pore volume of the pores are 200 to 500 m 2 respectively.
/ G and 0.5 to 6.0 ml / g, and 10 to 1
The pore volume of 00 nm is 40 of the pore volume of 100 nm or less.
%, And has one or more peaks of pore diameter at pore diameter radius of 0.01 μm or more, and has high pore volume and specific surface area.

【0022】また、結晶相の全て、または、大部分がθ
相から構成されるアルミナ質多孔体は、細孔半径が10
0nm以下の細孔による比表面積と細孔容積が、それぞ
れ50−250m2 /gと0.1〜1.0ml/gであ
り、かつ10〜100nmの細孔容積が100nm以下
の細孔容積の30%以上であり、且つ細孔径半径0.0
1μm以上に1つ以上の細孔径のピークを有し、γ相か
ら構成されるアルミナと比べ細孔半径の100nm以下
の細孔による比表面積と細孔容積が小さくなるが、逆に
より耐水性や高温での耐熱性に優れたものとなる。
Further, all or most of the crystal phase is θ.
The alumina porous body composed of phases has a pore radius of 10
The specific surface area and pore volume due to pores of 0 nm or less are 50-250 m 2 / g and 0.1 to 1.0 ml / g, respectively, and the pore volume of 10 to 100 nm is 100 nm or less. 30% or more and a pore diameter radius of 0.0
It has one or more pore diameter peaks at 1 μm or more, and has a smaller specific surface area and pore volume due to pores having a pore radius of 100 nm or less compared to alumina composed of γ phase, but conversely, It has excellent heat resistance at high temperatures.

【0023】本発明における物性は、BET法により測
定したものである。
The physical properties in the present invention are measured by the BET method.

【0024】また、100nm以上の細孔容積は、Hg
圧入法により測定した結果を示す。
The pore volume of 100 nm or more is Hg
The result measured by the press fitting method is shown.

【0025】本発明にかかるアルミナは、以下の方法で
製造することができる。
The alumina according to the present invention can be manufactured by the following method.

【0026】Rをアルキル基として示す化学式Al(O
R)3 で表されるアルコキシドとO.5〜2モル倍の多
官能有機化合物(β−ケトエステル、β−ジケトン等)
のアルコール混合溶液や、Al(OR)3 の多官能有機
化合物で置換された化合物のアルコール溶液をアルコキ
シドの0.5〜2倍モルの水で加水分解しゲルを作製す
る。得られたゲルをオートクレーブ中、270℃、25
0気圧の条件で加熱処理し乾燥ゲルを得る。得られたゲ
ルを500〜1200℃で加熱処理する。その温度範囲
で焼成時間を変えることにより目的の比表面積と細孔容
積を持つ耐水性及び耐熱性に優れたアルミナ質多孔体が
得られる。
The chemical formula Al (O
R) 3 and an alkoxide represented by O. 5 to 2 mole times polyfunctional organic compound (β-ketoester, β-diketone, etc.)
The alcohol mixed solution or the alcohol solution of the compound substituted with the polyfunctional organic compound of Al (OR) 3 is hydrolyzed with 0.5 to 2 times mol of water of the alkoxide to prepare a gel. The gel thus obtained was placed in an autoclave at 270 ° C. and 25
Heat treatment is performed under the condition of 0 atm to obtain a dry gel. The obtained gel is heat-treated at 500 to 1200 ° C. By changing the firing time within that temperature range, it is possible to obtain an alumina porous body having a desired specific surface area and pore volume and excellent in water resistance and heat resistance.

【0027】[0027]

【作用】本発明にかかるアルミナ多孔質体は、優れた細
孔分布を有する。
The porous alumina material according to the present invention has an excellent pore distribution.

【0028】まず、細孔容積において、従来は、1.5
ml/g以下であったものが、それ以上の大きな細孔容
積を有する。10nm以下の微細気孔を有し、高い比表
面積を有する。10nm以上の細孔半径領域に細孔径の
ピークが存在する。
First, in the pore volume, conventionally, it is 1.5
What was less than or equal to ml / g has a larger pore volume than that. It has fine pores of 10 nm or less and a high specific surface area. There is a peak of the pore diameter in the pore radius region of 10 nm or more.

【0029】この微細な細孔及びそれに起因する比表面
積によって高い触媒活性表面を有することになる。細孔
半径10nm以上の細孔と大きな細孔容積、すなわち、
大きな幾何学的容積を有するものとなる。
Due to the fine pores and the specific surface area resulting therefrom, the surface has a high catalytic activity. Pore with a radius of 10 nm or more and a large pore volume, that is,
It will have a large geometric volume.

【0030】[0030]

【実施例】【Example】

実施例1 エチルアセテートアルミニウムジイソプロピレート27
4gをエタノール500mlに溶解した後、72mlの
水を加え加水分解しゲルを得た。得られたゲルをオート
クレーブ中、270℃、250気圧の条件で48時問加
熱処理し乾燥ゲルを得た。大気中、500℃、800
℃、1000℃、1100℃、および、1200℃で5
時間加熱処理した。得られた乾燥ゲルはベーマイト質で
あり細孔径半径が100nm以下、100nm以上で各
々4.11ml/gと2.01ml/gの細孔容積であ
った。加熱処埋によりγ相からθ相へと変化する。10
0nm以下の細孔容積は4.07ml/gから0.1m
l/gの範囲で変化した。100nm以上の細孔容積は
4.0から2.0ml/gの範囲で変化した。また、細
孔半径が約30nmの場所に細孔分布のピークが存在
し、細孔径半径が10〜100nmの細孔容積が100
nm以下の細孔容積に占める割合は96〜40%の範囲
で変化した。乾燥ゲルの各温度で加熱処理後の結晶相と
細孔容積を表1に比較例1と共に示す。
Example 1 Ethyl acetate aluminum diisopropylate 27
After dissolving 4 g in 500 ml of ethanol, 72 ml of water was added and hydrolyzed to obtain a gel. The obtained gel was heated in an autoclave at 270 ° C. and 250 atm for 48 hours to obtain a dried gel. Atmosphere 500 ° C, 800
5 ° C, 1000 ° C, 1100 ° C, and 1200 ° C
Heat treated for hours. The obtained dried gel was boehmite and had a pore diameter radius of 100 nm or less and a pore volume of 4.11 ml / g and 2.01 ml / g at 100 nm or more, respectively. The γ phase changes to the θ phase by heat treatment. 10
Pore volume of 0 nm or less is 4.07 ml / g to 0.1 m
It varied in the range of 1 / g. The pore volume above 100 nm varied from 4.0 to 2.0 ml / g. Further, there is a peak of pore distribution at a location where the pore radius is about 30 nm, and the pore volume of the pore diameter radius of 10 to 100 nm is 100.
The ratio of the pore volume of nm or less to the pore volume varied in the range of 96 to 40%. The crystal phase and pore volume of the dried gel after heat treatment at each temperature are shown in Table 1 together with Comparative Example 1.

【0031】[0031]

【表1】 図1は、600℃で加熱処理した実施例1のアルミナと
市販のγ−アルミナのBET法による細孔分布を示す。
本発明によるアルミナは20nm付近に細孔ピークを持
つとともに10nm以下にも万遍なく細孔が存在する。
一方、市販アルミナは4nm付近に細孔ピークを持つ
が、10nm以上には殆ど細孔が存在しない。図2は、
Hg圧入法による0.1μm以上の細孔分布を示す。
0.5μm付近に細孔ピークが存在する。市販アルミナ
はこの細孔径範囲に細孔を持たない。アルコール中のA
l金属濃度、乾燥条件を変えることにより表に例示した
以外の特性をもつアルミナ質多孔質体が得られる。ま
た、他の成分、例えば稀土類や貴金属を予め混合された
アルミナ質多孔質体も同様の特性を有することが容易に
類推できる。
[Table 1] FIG. 1 shows the pore size distribution of the alumina of Example 1 heat-treated at 600 ° C. and commercially available γ-alumina measured by the BET method.
The alumina according to the present invention has a pore peak in the vicinity of 20 nm and pores evenly exist in the area of 10 nm or less.
On the other hand, commercially available alumina has a pore peak near 4 nm, but almost no pore exists above 10 nm. Figure 2
It shows a pore distribution of 0.1 μm or more as measured by the Hg press-fitting method.
There is a pore peak near 0.5 μm. Commercially available alumina has no pores in this pore size range. A in alcohol
By changing the metal concentration and the drying conditions, it is possible to obtain an alumina porous body having characteristics other than those exemplified in the table. Further, it can be easily inferred that an alumina-based porous body in which other components such as rare earths and precious metals are mixed in advance has the same characteristics.

【0032】比較例1 市販のγ−アルミナ(Condea社製、商標名PUR
LOX:SBa−180)の細孔容積、比表面積を測定
した。100nm以下の細孔容積は0.48ml/gと
同程度であるが、細孔半径4nmのみに細孔分布のピー
クが見られ100nm以上の細孔は殆ど存在しない。ま
た、この粉末は1000℃迄の加熱処理温度ではα相へ
の転移も殆ど見られず100m2 /g以上の比表面積を
保持するが、1100℃の加熱処理でα相へ転移すると
共に急激に比表面積が18.5m2 /gに低下し、本発
明のアルミナ質多孔体と比べ耐熱性は劣っていた。
Comparative Example 1 Commercially available γ-alumina (trade name PUR, manufactured by Condea)
The pore volume and specific surface area of LOX: SBa-180) were measured. The pore volume of 100 nm or less is about the same as 0.48 ml / g, but the peak of the pore distribution is seen only in the pore radius of 4 nm, and the pores of 100 nm or more hardly exist. Further, this powder hardly shows a transition to the α phase at heat treatment temperatures up to 1000 ° C and retains a specific surface area of 100 m 2 / g or more, but it rapidly transforms to the α phase by heat treatment at 1100 ° C. The specific surface area was reduced to 18.5 m 2 / g, and the heat resistance was inferior to the alumina porous body of the present invention.

【0033】実施例2 実施例1で得られたゲル及び加熱処理後の粉末を水中に
分散した後、再度1200℃までの温度で5時間加熱処
理した。未加熱処理粉末は水中に分散することにより比
表面積の大幅な低下が見られると共に1100℃の加熱
処埋ですでにα相への転移が認められた。予備加熱によ
りγ相やθ相が生成した粉末ではα相への転移は認めら
れなかった。また、高い細孔容積が保持されていること
がわかる。γやθ相の生成は耐水性及び水で処理した後
の耐熱性に有効である。特に、θ相の生成した粉末は比
表面積、細孔容積共に殆ど変化していない。1100℃
で5時間再加熱処埋後の結晶相と細孔容積をそれぞれ表
2に示す。予備加熱後、水分散後及び再加熱後の比表面
積の変化を表3にまとめた。
Example 2 The gel obtained in Example 1 and the powder after heat treatment were dispersed in water, and then heat treated again at a temperature up to 1200 ° C. for 5 hours. When the unheated powder was dispersed in water, the specific surface area was remarkably reduced, and the transition to the α phase was already observed by the heat treatment at 1100 ° C. No transition to α phase was observed in the powder in which γ phase or θ phase was generated by preheating. Further, it can be seen that the high pore volume is maintained. The formation of γ and θ phases is effective for water resistance and heat resistance after treatment with water. In particular, the powder in which the θ phase is generated has almost no change in specific surface area and pore volume. 1100 ° C
Table 2 shows the crystal phase and the pore volume after the reheating treatment for 5 hours. Table 3 shows changes in specific surface area after preheating, after water dispersion and after reheating.

【0034】[0034]

【表2】 [Table 2]

【表3】 比較例2 市販のγ−アルミナを実施例2と同様に処埋し比表面積
の変化を測定した。1000℃以下では100m2 /g
程度の比表面積を保持したが、1100℃以上では急激
な比表面積の低下が見られた。この粉末は1100℃で
既にα化しており、表2に示すように、細孔容積も殆ど
0.04ml/gと未処理の時に比ベ大幅に低下してい
る。水に分散後及び再加熱処理後の比表面積の変化を表
3に示している。
[Table 3] Comparative Example 2 Commercially available γ-alumina was treated in the same manner as in Example 2 and the change in specific surface area was measured. 100 m 2 / g below 1000 ° C
Although the specific surface area was maintained to some extent, a sharp decrease in the specific surface area was observed at 1100 ° C or higher. This powder has already been converted to α at 1100 ° C., and as shown in Table 2, the pore volume is almost 0.04 ml / g, which is significantly lower than that when untreated. Table 3 shows the changes in specific surface area after dispersion in water and after reheat treatment.

【0035】実施例3 実施例1と同様の方法で得られたゲルをオートクレーブ
中、270℃、25気圧の条件で2、5、10時間加熱
処理し乾燥ゲルを得た。600℃で5時間加熱処埋後、
比表面積と細孔径分布を測定した。その結果を表4に示
す。全てγ相が主結晶で、比表面積は処理条件によらず
300m2 /g以上、100nm以下及び、それ以上で
の細孔容積はそれぞれ4.0と2.0ml/g以上であ
った。細孔径分布のピークは加熱処理時間の増加により
13nmから30nmへ移動した。また、細孔半径10
〜100nmの細孔容積が100nm以下の細孔容積に
占める割合は90%以上であった。調整条件及び加熱処
理により本発明の範囲内の細孔容積と細孔分布及び結品
相を持つアルミナ質多孔体を調整できた。
Example 3 The gel obtained in the same manner as in Example 1 was heat-treated in an autoclave at 270 ° C. and 25 atm for 2, 5 and 10 hours to obtain a dry gel. After heat treatment at 600 ℃ for 5 hours,
The specific surface area and pore size distribution were measured. The results are shown in Table 4. All of the γ-phases were main crystals, and the specific surface areas were 300 m 2 / g or more, 100 nm or less, and the pore volumes at and above 300 m 2 / g were 4.0 and 2.0 ml / g or more, respectively. The peak of the pore size distribution moved from 13 nm to 30 nm as the heat treatment time increased. Also, the pore radius is 10
The ratio of the pore volume of ˜100 nm to the pore volume of 100 nm or less was 90% or more. By adjusting the conditions and the heat treatment, it was possible to adjust the alumina porous body having the pore volume and pore distribution within the range of the present invention and the binder phase.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明のアルミナ多孔質体によって以下
の効果を奏する。
The alumina porous body of the present invention has the following effects.

【0038】(1)耐熱性及び耐水性に優れた触媒担体
などに使用可能な優れた細孔分布を有するもので、微細
な細孔と比表面積による高い触媒活性表面を有する。
(1) It has an excellent pore distribution that can be used as a catalyst carrier having excellent heat resistance and water resistance, and has a fine catalytic activity surface due to its fine pores and specific surface area.

【0039】(2)優れた耐水性と耐熱性を有するの
で、ウオッシュコート等の水を用いた処理や水系の触媒
反応系と高温での反応系に有効である。
(2) Since it has excellent water resistance and heat resistance, it is effective for the treatment with water such as washcoat, the catalytic reaction system of water system and the reaction system at high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】 600℃で加熱処理した実施例1のアルミナ
と市販のγ−アルミナのBET法による細孔分布を示
す。
FIG. 1 shows the pore size distribution of the alumina of Example 1 heat-treated at 600 ° C. and a commercially available γ-alumina measured by the BET method.

【図2】 Hg圧入法による0.1μm以上の細孔分布
を示す。
FIG. 2 shows a pore distribution of 0.1 μm or more measured by the Hg press-fitting method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 全細孔容積が2.0ml/g以上あり、
細孔径半径が100nm以下の細孔による比表面積と細
孔容積が、それぞれ50〜500m2 /gと0.1〜
6.0ml/gであって、10〜100nmの細孔容積
が100nm以下の細孔容積の30%以上であり、細孔
半径0.01μm以上に1つ以上の細孔径のピークを有
するアルミナ質多孔体。
1. A total pore volume of 2.0 ml / g or more,
The specific surface area and pore volume of pores having a pore diameter radius of 100 nm or less are 50 to 500 m 2 / g and 0.1 to, respectively.
Alumina having a volume of 6.0 ml / g, a pore volume of 10 to 100 nm is 30% or more of a pore volume of 100 nm or less, and a peak of one or more pore diameters in a pore radius of 0.01 μm or more. Porous body.
【請求項2】 結晶相の全て、または大部分がγ相から
構成されるアルミナ質多孔体は、全細孔容積が2.5m
l/g以上あり、細孔径半径が100nm以下の細孔に
よる比表面積と細孔容積が、それぞれ200〜500m
2 /gと0.5〜6.0ml/gであり、且つ、10〜
100nmの細孔容積が100nm以下の細孔容積の4
0%以上で、且つ細孔半径0.01μm以上に1つ以上
の細孔径のピークを有するアルミナ質多孔体。
2. An alumina-based porous body in which all or most of the crystal phase is composed of γ phase has a total pore volume of 2.5 m.
The specific surface area and the pore volume due to the pores having a pore diameter radius of 100 nm or less are 200 to 500 m, respectively.
2 / g and 0.5-6.0 ml / g, and 10-
The pore volume of 100 nm is 4 of the pore volume of 100 nm or less.
An alumina porous body having 0% or more and one or more pore diameter peaks at a pore radius of 0.01 μm or more.
【請求項3】 結晶相の全て、または、大部分がθ相か
ら構成されるアルミナ質多孔体は、細孔半径が100n
m以下の細孔による比表面積と細孔容積が、それぞれ5
0〜250m2 /gと0.1〜1.0ml/gであり、
且つ10〜100nmの細孔容積が100nm以下の細
孔容積の30%以上で、且つ細孔半径0.01μm以上
に1つ以上の細孔径のピークを有するアルミナ質多孔
体。
3. An alumina-based porous body composed of all or most of the crystal phase having a θ phase has a pore radius of 100 n.
The specific surface area and pore volume due to pores of m or less are 5
0-250 m 2 / g and 0.1-1.0 ml / g,
Further, an alumina porous body having a pore volume of 10 to 100 nm of 30% or more of a pore volume of 100 nm or less and having one or more peaks of pore diameter at a pore radius of 0.01 μm or more.
JP18966592A 1992-07-16 1992-07-16 Alumina-based porous body Pending JPH0632673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18966592A JPH0632673A (en) 1992-07-16 1992-07-16 Alumina-based porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18966592A JPH0632673A (en) 1992-07-16 1992-07-16 Alumina-based porous body

Publications (1)

Publication Number Publication Date
JPH0632673A true JPH0632673A (en) 1994-02-08

Family

ID=16245131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18966592A Pending JPH0632673A (en) 1992-07-16 1992-07-16 Alumina-based porous body

Country Status (1)

Country Link
JP (1) JPH0632673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070126A (en) * 2005-09-02 2007-03-22 Japan Organo Co Ltd Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water
WO2012036218A1 (en) * 2010-09-16 2012-03-22 小松精練株式会社 Porous ceramic sintered body
JP2014081072A (en) * 2012-09-28 2014-05-08 Kurosaki Harima Corp Heat insulation material and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070126A (en) * 2005-09-02 2007-03-22 Japan Organo Co Ltd Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water
WO2012036218A1 (en) * 2010-09-16 2012-03-22 小松精練株式会社 Porous ceramic sintered body
CN103189334A (en) * 2010-09-16 2013-07-03 小松精练株式会社 Porous ceramic sintered body
JP5820382B2 (en) * 2010-09-16 2015-11-24 小松精練株式会社 Porous ceramic sintered body
JP2014081072A (en) * 2012-09-28 2014-05-08 Kurosaki Harima Corp Heat insulation material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100431476B1 (en) Layered Catalyst Composite
KR100723846B1 (en) Composition based on cerium and zirconium oxides having a specific surface which is stable between 900 ℃ and 1000 ℃, method for the production and use thereof as a catalyst
JPH06316416A (en) Preparation of composition wherein mixed oxide of zirconium and cerium are base material
RU2476381C2 (en) Composition based on zirconium oxide, titanium oxide or mixed zirconium and titanium oxide, applied on aluminium oxide or aluminium oxyhydroxide carrier, methods of its obtaining and its application as catalyst
JPH06279027A (en) Composition based on mixture of zirconium oxide and cerium oxide and method for synthetic production and use thereof
JP2002248347A (en) Compound oxide powder and catalyst and manufacturing method thereof
JPS62180751A (en) Heat resistant alumina carrier
JPS6034737A (en) Production of catalyst for treating exhaust gas of internal combustion engine
WO2007053283A1 (en) Stabilized flash calcined gibbsite as a catalyst support
JPH07309619A (en) Alumina stabilized by lanthanum and its production
TW201031464A (en) Catalyst and process for purifying exhaust gas
JPS63205141A (en) Catalyst for purifying exhaust gas
US4122039A (en) Process for preparing catalyst
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
US6667012B1 (en) Catalytic converter
JPH0632673A (en) Alumina-based porous body
JP2001347167A (en) Exhaust gas cleaning catalyst
JPH10225642A (en) Exhaust gas purifying catalyst of internal combustion engine
JPH0352642A (en) Production of catalyst for combustion
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH02126939A (en) Heat resistant catalyst and carrier thereof
JPH07289896A (en) Waste gas purification catalyst and its production
JPH06218282A (en) Heat resistant catalyst carrier and production thereof
JPH0274522A (en) Production of alumina