JP2000063172A - Production of highly strong lightweight ceramic plate - Google Patents

Production of highly strong lightweight ceramic plate

Info

Publication number
JP2000063172A
JP2000063172A JP10226345A JP22634598A JP2000063172A JP 2000063172 A JP2000063172 A JP 2000063172A JP 10226345 A JP10226345 A JP 10226345A JP 22634598 A JP22634598 A JP 22634598A JP 2000063172 A JP2000063172 A JP 2000063172A
Authority
JP
Japan
Prior art keywords
weight
parts
ceramic plate
lightweight ceramic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10226345A
Other languages
Japanese (ja)
Inventor
Kazuo Oda
和生 小田
Michio Oda
倫穂 小田
Kiyonori Ono
清典 小野
Nobuaki Miyao
信昭 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ODA KENSETSU KK
Original Assignee
ODA KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ODA KENSETSU KK filed Critical ODA KENSETSU KK
Priority to JP10226345A priority Critical patent/JP2000063172A/en
Publication of JP2000063172A publication Critical patent/JP2000063172A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a highly strong lightweight ceramic plate from main components comprising fly ash and glass cullet whose treatments as wastes have become problems. SOLUTION: This method for producing the highly strong lightweight ceramic plate comprises mixing 100 pts.wt. of fly ash particles having a particle diameter of 5-50 μm with 3-50 pts.wt. of glass cullet particles having a particle diameter of 50-150 μm and 3-30 pts.wt. of a binder such as water glass, molding the obtained base material in a plate-like shape and subsequently sintering the molded plate at 850-1,200 deg.C. They are preferable to add a refractory fine aggregate such as silica particles, blast furnace slag particles or wollastonite powder to the base material, and to further add a nucleus-forming agent for crystallizing the glass. It is also preferable to further embed a heat-resistant material mesh sheet (for example, a stainless steel mesh net) in the base material. The obtained highly strong lightweight ceramic plate can suitably be used as a building material, a ceramic end tab or welding, or a ceramic surface cover for welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は産業廃棄物であるフラ
イアッシュとガラスカレットを主原料とした高強度軽量
セラミック板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength and lightweight ceramic plate mainly composed of industrial waste such as fly ash and glass cullet.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
らフライアッシュを原料として混合使用した建築ボード
類の製造開発が続けられているが、一般にその配合比率
は10〜30%程度であり、セメント混和材として又は
粘土原料の代替として使用されている。また、近年工場
や公共建物あるいは個人住宅の建物は増加の一途をただ
りつつあり、さらに増改築も激増している。従来からこ
れら建築の内外裝の表面材料として、天然石、人造タイ
ル、セメント、コンクリート・鋼板あるいは木材や合板
などが使用されてきている。しかし、今日では人手不足
と建築様式の変化などにより材料の形状が大きくなり、
人手不足の解消と共に施工時間の短縮と美観、さらには
総工費の軽減をはかる必要に迫られている。
2. Description of the Related Art Conventionally, the manufacturing and development of building boards using fly ash as a raw material has been continued, but generally the compounding ratio is about 10 to 30%, and the cement is generally used. Used as an admixture or as an alternative to clay raw materials. In recent years, the number of factories, public buildings, and private residences has been increasing, and the number of renovations has also increased dramatically. Conventionally, natural stone, artificial tile, cement, concrete / steel plate, wood, plywood, etc. have been used as the surface material for the interior and exterior of these buildings. However, today, due to lack of manpower and changes in architectural style, the shape of the material has become large,
It is necessary to solve the labor shortage, shorten the construction time, improve the appearance, and reduce the total construction cost.

【0003】一方、セラミックタイルは、製造時におけ
る焼成温度が1,200℃前後の高温度であるために、
製品にしばしばそりや亀裂を生じ、また原材料も豊富に
供給できないためコスト高となり、かつ材料の比重が大
きいために製品の運搬経費もかさむ。さらに製品の加工
や接着・接合に多大な労力と時間を要する。このような
状況から、軽量で強度も高く、耐候性も良い板状体を廉
価でかつ大量に供給することが望まれている。
On the other hand, the ceramic tile has a high firing temperature of about 1,200 ° C. during manufacture,
Products often warp or crack, and the raw materials cannot be abundantly supplied, resulting in high cost, and the large specific gravity of the materials increases the transportation cost of the products. Furthermore, a great deal of labor and time are required for processing, bonding and joining products. Under such circumstances, it has been desired to inexpensively supply a large amount of plate-like bodies that are lightweight, have high strength, and have good weather resistance.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を行った結果、高強度軽量で吸水
率の低い耐候性の良いセラミック板を低コストで製造す
ることに成功した。
DISCLOSURE OF THE INVENTION As a result of intensive studies to solve the above-mentioned problems, the present inventors have decided to produce a high-strength, lightweight ceramic plate with low water absorption and good weather resistance at low cost. Successful.

【0005】すなわち、本発明は下記の高強度軽量セラ
ミック板の製造方法である。 (1)粒径5〜50μmのフライアッシュ微粉末100
重量部に、粒径50〜150μmガラスカレット微粉末
3〜50重量部と結合剤3〜30重量部を添加混合して
なる素地を板状に成形した後、850〜1200℃で焼
成することを特徴とする高強度軽量セラミック板の製造
方法。 (2)粒径5〜50μmのフライアッシュ微粉末100
重量部に、粒径50〜150μmガラスカレット微粉末
3〜50重量部とシリカ微粉末5〜20重量部と高炉ス
ラグ微粉末5〜20重量部と結合剤3〜30重量部を添
加混合してなる素地を板状に成形した後、850〜12
00℃で焼成することを特徴とする高強度軽量セラミッ
ク板の製造方法。 (3)粒径5〜50μmのフライアッシュ微粉末100
重量部に、粒径50〜150μmガラスカレット微粉末
3〜50重量部と粘土鉱物微粉末5〜20重量部とウォ
ラストナイト粉末5〜20重量部と結合剤3〜30重量
部を添加混合してなる素地を板状に成形した後、850
〜1200℃で焼成することを特徴とする高強度軽量セ
ラミック板の製造方法。 (4)粒径5〜50μmのフライアッシュ微粉末100
重量部に、粒径50〜150μmガラスカレット微粉末
3〜50重量部とウォラストナイト粉末5〜20重量部
と高炉スラグ微粉末5〜20重量部と結合剤3〜30重
量部を添加混合してなる素地を板状に成形した後、85
0〜1200℃で焼成することを特徴とする高強度軽量
セラミック板の製造方法。
That is, the present invention is the following method of manufacturing a high-strength lightweight ceramic plate. (1) Fine fly ash powder 100 having a particle size of 5 to 50 μm
It is preferable that 3 to 50 parts by weight of glass cullet fine powder having a particle diameter of 50 to 150 μm and 3 to 30 parts by weight of a binder are added to and mixed in parts by weight, and the mixture is molded into a plate shape and then fired at 850 to 1200 ° C. A method for producing a high-strength, lightweight ceramic plate characterized by the above. (2) Fly ash fine powder 100 having a particle size of 5 to 50 μm
To 50 parts by weight, 3 to 50 parts by weight of glass cullet powder having a particle size of 50 to 150 μm, 5 to 20 parts by weight of silica powder, 5 to 20 parts by weight of blast furnace slag powder, and 3 to 30 parts by weight of binder are added and mixed. After forming the base material into a plate shape, 850-12
A method for manufacturing a high-strength lightweight ceramic plate, which comprises firing at 00 ° C. (3) Fine fly ash powder 100 having a particle size of 5 to 50 μm
3 to 50 parts by weight of glass cullet fine powder having a particle size of 50 to 150 μm, 5 to 20 parts by weight of fine clay mineral powder, 5 to 20 parts by weight of wollastonite powder, and 3 to 30 parts by weight of a binder are added and mixed in parts by weight. 850 after forming the base material into a plate shape
A method for manufacturing a high-strength lightweight ceramic plate, which comprises firing at ˜1200 ° C. (4) Fly ash fine powder 100 having a particle size of 5 to 50 μm
3 to 50 parts by weight of glass cullet fine powder having a particle size of 50 to 150 μm, 5 to 20 parts by weight of wollastonite powder, 5 to 20 parts by weight of fine powder of blast furnace slag, and 3 to 30 parts by weight of a binder are added and mixed in parts by weight. After forming the base material into a plate shape,
A method for producing a high-strength lightweight ceramic plate, which comprises firing at 0 to 1200 ° C.

【0006】(5)粒径5〜50μmのフライアッシュ
微粉末100重量部に対して、粒径50〜150μmガ
ラスカレット微粉末を20〜40重量部添加することを
特徴とする前項1〜4のいずれか1項に記載の高強度軽
量セラミック板の製造方法。 (6)結合剤が無機系のものであることを特徴とする前
項1〜5のいずれか1項に記載の高強度軽量セラミック
板の製造方法。 (7)結合剤が、アルカリ金属珪酸塩水溶液であること
を特徴とする前項1〜6のいずれか1項に記載の高強度
軽量セラミック板の製造方法。 (8)アルカリ金属珪酸塩水溶液が、珪酸ナトリウム水
溶液(水ガラス)であることを特徴とする前項7に記載
の高強度軽量セラミック板の製造方法。 (9)結合剤が無機系結合剤と有機系結合剤であること
を特徴とする前項1〜8のいずれか1項に記載の高強度
軽量セラミック板の製造方法。 (10)焼成温度が、1000〜1150℃であること
を特徴とする前項1〜9のいずれか1項に記載の高強度
軽量セラミック板の製造方法。 (11)素地に、ガラスの結晶化のための核形成剤を添
加することを特徴とする前項1〜10のいずれか12項
に記載の高強度軽量セラミック板の製造方法。 (12)素地の焼成後に、ガラスの結晶化を促進するた
めの徐冷処理を行うことを特徴とする前項11記載の高
強度軽量セラミック板の製造方法。(13)素地が、粒
径5〜50μmのフライアッシュ粉末100重量部に対
して、更に金属繊維、ガラス繊維、炭素繊維、セラミッ
ク繊維の内の一種又は2種以上を5〜10重量部添加し
てなるものであることを特徴とする前項1〜12のいず
れか1項に記載の高強度軽量セラミック板の製造方法。
(5) 20 to 40 parts by weight of glass cullet fine powder having a particle size of 50 to 150 μm is added to 100 parts by weight of fly ash fine powder having a particle size of 5 to 50 μm. The method for producing a high-strength lightweight ceramic plate according to any one of items. (6) The method for producing a high-strength lightweight ceramic plate according to any one of items 1 to 5, wherein the binder is an inorganic binder. (7) The method for producing a high-strength lightweight ceramic plate according to any one of items 1 to 6, wherein the binder is an aqueous solution of an alkali metal silicate. (8) The method for producing a high-strength lightweight ceramic plate according to item 7, wherein the alkali metal silicate aqueous solution is a sodium silicate aqueous solution (water glass). (9) The method for producing a high-strength lightweight ceramic plate according to any one of items 1 to 8 above, wherein the binder is an inorganic binder or an organic binder. (10) The method for producing a high-strength lightweight ceramic plate according to any one of items 1 to 9 above, wherein the firing temperature is 1000 to 1150 ° C. (11) The method for producing a high-strength lightweight ceramic plate according to any one of the above items 1 to 10, wherein a nucleating agent for crystallizing glass is added to the substrate. (12) The method for producing a high-strength lightweight ceramic plate according to the above item 11, wherein a slow cooling treatment for promoting crystallization of glass is performed after firing of the base material. (13) The base material is added to 5 to 10 parts by weight of one or two or more kinds of metal fibers, glass fibers, carbon fibers and ceramic fibers with respect to 100 parts by weight of fly ash powder having a particle size of 5 to 50 μm. 13. The method for producing a high-strength lightweight ceramic plate according to any one of items 1 to 12 above, which is characterized by comprising:

【0007】(14)素地中に、耐熱材料製メッシュシ
ートを埋設して板状に圧縮成形した後、該成形体を焼成
することを特徴とする前項1〜13のいずれか1項に記
載の高強度軽量セラミック板の製造方法。 (15)耐熱材料製メッシュシートが、ステンレスメッ
シュシートであることを特徴とする前項14記載の高強
度軽量セラミック板の製造方法。 (16)無機系結合剤が、下記(a)〜(c)からなる
群から選ばれる1種又は2種以上のものの総量3〜30
重量部であることを特徴とする前項1〜15のいずれか
に記載の高強度軽量セラミック板の製造方法。 (a)ケイ酸ナトリウム水溶液(水ガラス1号)、
(b)ケイ酸ナトリウム、水酸化アルミニウム、酸化亜
鉛、ウォラストナイト、カオリン、硼酸及びアルミン酸
ソーダの混合物溶液、(c)(a)及び(b)の溶液に
アルギン酸ソーダを混合した溶液。 (17)前項1〜16のいずれか1項に記載の素地を板
状に成形した後、焼成することによって溶接用セラミッ
クエンドダブを製造することを特徴とする溶接用セラミ
ックエンドダブの製造方法。 (18)前項1〜16のいずれか1項に記載の素地を板
状に成形した後、焼成することによって溶接用セラミッ
ク表当て材を製造することを特徴とする溶接用セラミッ
ク表当て材の製造方法。
(14) The heat-resistant material mesh sheet is embedded in the base material, compression-molded into a plate shape, and the molded body is fired. Manufacturing method of high strength and lightweight ceramic plate. (15) The method for producing a high-strength lightweight ceramic plate according to the above item 14, wherein the heat-resistant material mesh sheet is a stainless mesh sheet. (16) The total amount of the inorganic binder is one or two or more selected from the group consisting of the following (a) to (c): 3 to 30
16. The method for producing a high-strength lightweight ceramic plate according to any one of items 1 to 15 above, wherein the high-strength lightweight ceramic plate is parts by weight. (A) Sodium silicate aqueous solution (water glass No. 1),
(B) A mixed solution of sodium silicate, aluminum hydroxide, zinc oxide, wollastonite, kaolin, boric acid and sodium aluminate, and a solution obtained by mixing the solutions of (c) (a) and (b) with sodium alginate. (17) A method for producing a welding ceramic end dove, which comprises producing the welding ceramic end dove by forming the base material according to any one of the preceding items 1 to 16 into a plate shape and then firing the plate. (18) Manufacture of a ceramic ceramic backing material for welding, characterized in that the ceramic ceramic backing material for welding is manufactured by forming the base material according to any one of the above 1 to 16 into a plate shape and then firing the plate. Method.

【0008】[0008]

【発明の実施の形態】上記本願発明で主原料として使用
されるフライアッシュは、石炭や石油ピッチ等を燃焼さ
せたあとに出る残渣灰であり、火力発電所等から大量に
排出されるものであって、現在、その利用技術、利用量
が少ないために、各分野にてその利用が鋭意検討されて
いるものである。その中でも、粒径5〜50μmのフラ
イアッシュ微粉末が使用される。フライアッシュの成分
組成は、例えばSiO:50〜68%,Al3
20〜35%、Fe3:2〜7%,CaO:0.6
〜7%、MgO:0.2〜2%,NaO:0.1〜2
%、KO:0.3〜1.5%,Ig.loss:2〜
4%からなり、非晶質であり、かつ各フライアッシュ粒
子は粒径5〜50μmの球状体で内部が中空となってい
るものである。よって、フライアッシュ粒子は、転動性
がよく、充填性に優れ、かつ焼結性が良い。また、上記
本願発明においては、得られる製品の強度(曲げ強度)
の増大のほか、吸水率の低下を実現するため、配合組
成、焼成温度を研究・調整している。すなわち、フライ
アッシュ微粉末ベースの配合組成物に、ガラスカレット
微粉末を加配し、特定焼成温度範囲において焼成する点
を特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Fly ash used as a main raw material in the present invention is residual ash produced after burning coal, petroleum pitch, etc., and is discharged in large quantities from thermal power plants and the like. Therefore, the utilization technology and the amount of utilization are small at present, and the utilization thereof is being studied earnestly in each field. Among them, fine fly ash powder having a particle size of 5 to 50 μm is used. The composition of fly ash is, for example, SiO 2 : 50 to 68%, Al 2 O 3 :
20~35%, Fe 2 O 3: 2~7%, CaO: 0.6
~7%, MgO: 0.2~2%, Na 2 O: 0.1~2
%, K 2 O: 0.3 to 1.5%, Ig. loss: 2
The fly ash particles are composed of 4% and are amorphous, and each fly ash particle is a spherical body having a particle size of 5 to 50 μm and the inside thereof is hollow. Therefore, the fly ash particles have good rolling properties, excellent filling properties, and good sinterability. Further, in the invention of the present application, the strength (bending strength) of the obtained product
In addition to increasing the water content, we are studying and adjusting the composition and firing temperature in order to achieve a reduction in water absorption. That is, it is characterized in that glass cullet fine powder is added to a blended composition based on fly ash fine powder and the mixture is baked in a specific baking temperature range.

【0009】本願発明の高強度軽量セラミック板の製造
においては、まず成形性を付与させるため、フライアッ
シュ微粉末、ガラスカレット微粉末に少量のコーンスタ
ーチ、CMC、水ガラス等の結合材(粘結剤)を添加混
合した後、所要の板状に加圧成形する。なお、加圧成形
のための結合材としては、通常有機系のもの、例えばコ
ーンスターチ、CMC、アルギン酸ソーダー、PVA、
ポリアクリル系エマルジン、多価アルコール系ワックス
等が使用されるが、またフライアッシュ粒子の焼結のた
めの焼結剤を兼ねる結合材として水ガラスやアルミナゲ
ル等の無機材料ゲルが使用される。また、本発明ではガ
ラスカレット微粉末が配合・使用されるが、ガラスカレ
ットは、一般に使用済みガラスびんの廃棄処理において
生成するガラス屑で、廃棄物として単に廃棄又は各種製
品製造原料としての有用活用が求められているものであ
り、その組成は例えば、SiO;60〜70%,Ca
O;10〜15%,NaO;8〜15%、Al
3;1〜8%,Fe3;1〜8%,その他少量か
らなり、粒径が50〜150μmに微粉化されたものが
好適に採用される。本発明ではそれを、得られる高強度
軽量セラミック板の強度増強剤兼焼結剤兼吸水率低下剤
として活用する。
In the production of the high-strength lightweight ceramic plate of the present invention, first, in order to impart formability, a small amount of fly ash fine powder, glass cullet fine powder, and a small amount of a binder (binder) such as corn starch, CMC and water glass. ) Is added and mixed, and then pressure-molded into a desired plate shape. The binder for pressure molding is usually an organic material such as corn starch, CMC, sodium alginate, PVA,
Polyacrylic emulgin, polyhydric alcohol wax and the like are used, and water glass and inorganic material gel such as alumina gel are also used as a binder also serving as a sintering agent for sintering fly ash particles. Further, although glass cullet fine powder is blended and used in the present invention, glass cullet is generally a glass scrap produced in the disposal of used glass bottles, and is simply discarded as waste or usefully utilized as a raw material for manufacturing various products. Is required, and the composition thereof is, for example, SiO 2 ; 60 to 70%, Ca
O; 10~15%, Na 2 O ; 8~15%, Al
2 O 3 ; 1 to 8%, Fe 2 O 3 ; 1 to 8%, and other small amounts, which are finely pulverized to a particle size of 50 to 150 μm, are preferably used. In the present invention, it is utilized as a strength enhancer / sintering agent / water absorption reducing agent of the resulting high strength lightweight ceramic plate.

【0010】なお、その際それに加えて、ガラスを結晶
化させて強度をより増強するため、核形成剤を添加する
ことも好ましく、結晶化ガラス製造用に使用される蛍
石、銀、金、チタニア、ジルコニア等の公知の核形成剤
を添加使用することができる。その結晶化剤を添加製造
する際には、焼成後の冷却時に常法にしたがい、良好な
結晶化を生成する冷却温度パターンにしたがって徐冷に
よる温度管理をすべきである。その結果、製品強度が格
段に増強された高強度軽量セラミック板が提供されるこ
ととなる。
At this time, in addition to this, it is also preferable to add a nucleating agent in order to crystallize the glass and further enhance the strength, and fluorite, silver, gold, and the like used for producing crystallized glass. Known nucleating agents such as titania and zirconia can be added and used. When the crystallization agent is added and manufactured, the temperature should be controlled by slow cooling according to a cooling temperature pattern that produces good crystallization, according to a conventional method at the time of cooling after firing. As a result, it is possible to provide a high-strength, lightweight ceramic plate with significantly enhanced product strength.

【0011】本願発明においては、さらに耐火性細骨材
を加配することもできる。このような耐火性細骨材とし
ては、例えばシリカ微粉末、高炉スラグ微粉末、粘土鉱
物微粉末、ウォラストナイト粉末、シャモット粉末等が
採用でき、これら耐火性細骨材を加配し、焼結して得ら
れたセラミック板は、高い機械的強度及び耐熱性を備え
たものとなる。また、本発明においては補強用の各種繊
維、例えば金属繊維、ガラス繊維、炭素繊維、各種セラ
ミック繊維を配合することができる。
In the present invention, a refractory fine aggregate may be further added. As such a refractory fine aggregate, for example, silica fine powder, blast furnace slag fine powder, clay mineral fine powder, wollastonite powder, chamotte powder, etc. can be adopted, and these refractory fine aggregates are added and sintered. The ceramic plate thus obtained has high mechanical strength and heat resistance. In the present invention, various reinforcing fibers such as metal fibers, glass fibers, carbon fibers and various ceramic fibers can be mixed.

【0012】さらに、本発明においては、製品の曲げ強
度増強、破壊時の飛散防止のため、耐熱材料製メッシュ
シート、例えばステンレススチール製メッシュシートを
埋設することができ、その形状は、本発明に係る高強度
軽量セラミック板の厚さにも依るが、厚さ6mm前後に
おいては、ステンレス線の太さは直径0.3〜0.5m
m程度が好ましく、網目の開きは5〜15mm程度が望
ましい。本願発明で使用される原料の粒度範囲は、微粉
末が好ましく、フライアッシュが粒径5〜50μm、ウ
ォラストナイト(珪灰石)は40〜70μm、高炉スラ
グ微粉末の粒径は10〜100μm及びシリカ微粉末は
1μm以下であることが好ましい。
Further, in the present invention, a mesh sheet made of a heat-resistant material, for example, a mesh sheet made of stainless steel, can be embedded in order to enhance the bending strength of the product and prevent scattering at the time of breakage. Although it depends on the thickness of the high-strength lightweight ceramic plate, the thickness of the stainless wire is 0.3 to 0.5 m at a thickness of about 6 mm.
m is preferable, and the opening of the mesh is preferably about 5 to 15 mm. The particle size range of the raw material used in the present invention is preferably fine powder, particle size of fly ash is 5 to 50 μm, wollastonite (wollastonite) is 40 to 70 μm, and particle size of blast furnace slag fine powder is 10 to 100 μm. The fine silica powder is preferably 1 μm or less.

【0013】ここで上記本発明で使用される各配合原料
の作用について説明する。まず、前記したとおり主な粉
体原料の粒度組成では大部分がサブミクロンから約70
ミクロンまでの粒径を有し、その中で10〜30ミクロ
ン付近を最も多くすることにより成形性を高めることが
できる。しかも高炉スラグの少量の微粉末がアルカリ性
溶液と反応して一種の水硬性を呈するが、特にアルカリ
性溶液存在のもとでは少量の微粉末が存在することによ
り加熱乾燥によってより早く凝固を呈する。また炭素繊
維、セラミック繊維等の無機繊維は、粉体原料と縦横に
混同して成形体の曲げ強度とたわみ性を飛躍的に増大
し、結合材により粉体原料との結合を強固にする。
The action of each of the blended raw materials used in the present invention will be described below. First, as described above, most of the particle size composition of the main powder raw materials is from submicron to about 70.
The moldability can be improved by having a particle size up to micron, and by making the maximum around 10 to 30 micron among them. In addition, a small amount of fine powder of blast furnace slag reacts with an alkaline solution to exhibit a kind of hydraulic property, and particularly in the presence of an alkaline solution, the presence of a small amount of fine powder causes the solidification to occur more quickly by heating and drying. Inorganic fibers such as carbon fibers and ceramic fibers are confused with the powder raw material in the vertical and horizontal directions to dramatically increase the bending strength and flexibility of the molded body, and the binder strengthens the bond with the powder raw material.

【0014】特に、水ガラス(珪酸ナトリウム水溶液)
を含む結合材は、上記フライアッシュ粉体原料の粒子表
面を大いに溶解とゲル化を推進し、まんべんなく包み込
みながら焼成温度が上昇するにしたがい粉体相互を強固
に焼結する作用を発揮し、850〜1200℃の焼成温
度で十分に高強度を発現するセラミック体を形成するた
めの強固な接着成分となる。なお、該水ガラスを含む結
合材の粘性の調整には、粘土鉱物、例えばカオリン微粉
末を加えることによって制御することが好ましい。
In particular, water glass (sodium silicate aqueous solution)
The binder containing the above-mentioned material greatly promotes the dissolution and gelation of the particle surface of the fly ash powder raw material, and exerts the function of strongly sintering the powder particles as the firing temperature rises while uniformly enclosing the particles, and 850 It becomes a strong adhesive component for forming a ceramic body exhibiting sufficiently high strength at a firing temperature of up to 1200 ° C. The viscosity of the binder containing water glass is preferably adjusted by adding a clay mineral, for example, kaolin fine powder.

【0015】[0015]

【実施例】次に本発明に係る高強度軽量セラミック板の
製造の実施例を説明する。 実施例1:フライアッシュ微粉末(平均粒径20μm)
100重量部に、ガラスカレット微粉末(平均粒粒径7
0μm)30重量部と結合剤(38Be水ガラス)16
重量部を添加混合してなる素地を、ロール成形により6
0kgf/cmの圧力で転圧により厚さ6mm、幅3
00mm、長さ300mmの板状に成形し、乾燥した
後、1150℃で2時間焼成し、放冷した。放冷により
得られたてセラミック板は曲げ強度210kgf/cm
の高強度で、かさ比重1.9の軽量なものであった。
EXAMPLE Next, an example of manufacturing a high-strength lightweight ceramic plate according to the present invention will be described. Example 1: Fly ash fine powder (average particle size 20 μm)
100 parts by weight of glass cullet fine powder (average particle size 7
0 μm) 30 parts by weight and binder (38Be water glass) 16
The base formed by adding and mixing parts by weight is roll-formed to 6
Thickness of 6 mm, width of 3 by rolling at a pressure of 0 kgf / cm 2.
It was molded into a plate having a length of 00 mm and a length of 300 mm, dried, baked at 1150 ° C. for 2 hours, and allowed to cool. The bending strength of the ceramic plate obtained by cooling is 210 kgf / cm.
It had a high strength of 2 and a light weight with a bulk specific gravity of 1.9.

【0016】実施例2: .フライアッシュ微粉末(平均粒径10μm)83重
量%、カオリン11重量%、ウォラトナイト(珪灰石)
5重量%及びデキストリン1重量%とからなるフライア
ッシュ基材と..ガラスカレット微粉末(平均粒径9
0μm)と、.水ガラスとを表1に示す各種配合組成
(供試体No:A1〜A5)で混合・混練して得られた
素地を、60kgf/cmの圧力でプレス成形して、
厚さ6mm、幅200mm、長さ200mmの未焼成板
体を作製した。
Example 2: Fine fly ash powder (average particle size 10 μm) 83% by weight, kaolin 11% by weight, wollastonite (wollastonite)
A fly ash base material comprising 5% by weight and 1% by weight of dextrin. . Glass cullet fine powder (average particle size 9
0 μm) ,. A base material obtained by mixing and kneading water glass with various compounding compositions (specimen No. A1 to A5) shown in Table 1 was press-molded at a pressure of 60 kgf / cm 2 ,
An unfired plate body having a thickness of 6 mm, a width of 200 mm and a length of 200 mm was produced.

【0017】[0017]

【表1】 [Table 1]

【0018】次いで、前記未焼成板体を各種温度で焼成
し、放冷して高強度軽量セラミック板を取得した。その
結果を、表2及び図1〜図4に示した。
Next, the green plate was baked at various temperatures and allowed to cool to obtain a high strength lightweight ceramic plate. The results are shown in Table 2 and FIGS.

【0019】[0019]

【表2】 [Table 2]

【0020】表2及び図1〜図4からみて、ガラスカレ
ットを加配した素地を焼成したものは、曲げ強度が高
く、吸水率も低く、かつ焼成減量率も少ないことが解っ
た。特に、焼成温度が1000〜1150℃のものは曲
げ強度が高いものであることが解った。
It can be seen from Table 2 and FIGS. 1 to 4 that the material obtained by firing the glass cullet-added material has a high bending strength, a low water absorption rate and a low firing weight loss rate. In particular, it was found that the one having a firing temperature of 1000 to 1150 ° C. had high bending strength.

【0021】実施例3: .フライアッシュ微粉末(平均粒径10μm)79重
量%、シリカ微粉末6重量%、高炉スラグ微粉末9重量
%及びカオリン6重量%とからなるフライアッシュ基材
と..ガラスカレット微粉末(平均粒径100μm)
と、.水ガラスとを表3に示す各種配合組成(供試体
No:B1〜B5)で混合・混練し、60kgf/cm
の圧力でプレス成形して、厚さ6mm×幅200mm
×長さ200mmの未焼成板体を作製した。
Example 3: A fly ash base material comprising 79% by weight of fine fly ash powder (average particle size 10 μm), 6% by weight silica fine powder, 9% by weight fine blast furnace slag powder, and 6% by weight kaolin. . Glass cullet fine powder (average particle size 100 μm)
When,. Water glass and various compounding compositions shown in Table 3 (specimen No. B1 to B5) were mixed and kneaded to obtain 60 kgf / cm.
Press-molded at a pressure of 2 , thickness 6mm x width 200mm
× An unfired plate having a length of 200 mm was produced.

【0022】[0022]

【表3】 [Table 3]

【0023】次いで、前記未焼成板体を各種温度で焼成
し、放冷して高強度軽量セラミック板を取得した。その
結果を、表4及び図5〜図8に示した。
Next, the green plate was baked at various temperatures and allowed to cool to obtain a high strength lightweight ceramic plate. The results are shown in Table 4 and FIGS.

【0024】[0024]

【表4】 [Table 4]

【0025】表4及び図5〜図8からみて、ガラスカレ
ットを加配した素地を焼成したものは、曲げ強度が高
く、吸水率も低く、かつ焼成減量率も少ないことが解っ
た。特に、焼成温度が1000〜1150℃のものは曲
げ強度が高いものであることが解った。
It can be seen from Table 4 and FIGS. 5 to 8 that the material obtained by firing the glass cullet-added material has a high bending strength, a low water absorption rate and a low firing weight loss rate. In particular, it was found that the one having a firing temperature of 1000 to 1150 ° C. had high bending strength.

【0026】実施例4:次に、図9に示す高強度軽量セ
ラミック板の成形装置を使用して、ホッパー8内の前記
実施例2で使用した配合物(A3)素材1を、成形ライ
ン上の左方において、送行中のコンベアシート3上にな
らし板4によって15〜20mm厚さに調整して供給
し、同時に、前記コンベアシート3上の素材1中へ、ス
テンレスメッシュシート2を挿入した。この際におい
て、ステンレスメッシュシート2はコンベアシート3面
よりやや浮かした位置から素材1中に挿入する。その後
方において、ならし板4により、ステンレスメッシュシ
ート2を上下から素材1で挟んだサンドウイッチ状物に
して厚みを調整した後、転圧ローラ5,5にかけて50
〜70kgf/cmで転圧し、次いでカッター(図示
せず)で切断して、厚み6mm×幅900mm×長さ9
00mmの板状体とした後、乾燥装置6に移送されて1
00〜120℃で乾燥し、さらに250℃で乾燥する。
前記の転圧により、巾と厚さの調整、ステンレスメッシ
ュシートとの強固な接着と1列目のローラーによる一部
脱泡及び素地組成の均質化が図られた。以上のようにし
て得られた乾燥複合板7を、最後にトンネル窯等の加熱
装置(図示せず)に移送して高温度で焼成処理した。こ
うしてステンレスメッシュシートが埋設された高強度軽
量セラミック複合板が製造された。
Example 4 Next, the compound (A3) material 1 used in Example 2 in the hopper 8 was placed on the molding line using the high-strength lightweight ceramic plate molding apparatus shown in FIG. On the left side, the sheet was adjusted to a thickness of 15 to 20 mm by the leveling plate 4 on the conveyor sheet 3 being fed, and at the same time, the stainless mesh sheet 2 was inserted into the material 1 on the conveyor sheet 3. . At this time, the stainless mesh sheet 2 is inserted into the material 1 from a position slightly floating from the surface of the conveyor sheet 3. After that, the stainless mesh sheet 2 is sandwiched between the materials 1 from above and below by a leveling plate 4 to form a sandwich, and the thickness is adjusted.
Rolled at ~ 70 kgf / cm 2 and then cut with a cutter (not shown), thickness 6 mm x width 900 mm x length 9
After making a plate of 00 mm, it is transferred to the drying device 6 and
It is dried at 00 to 120 ° C, and further dried at 250 ° C.
By the above-mentioned rolling compaction, adjustment of width and thickness, firm adhesion with the stainless mesh sheet, partial defoaming by the roller in the first row and homogenization of the base composition were achieved. Finally, the dried composite plate 7 obtained as described above was transferred to a heating device (not shown) such as a tunnel kiln and fired at a high temperature. In this way, a high-strength lightweight ceramic composite plate having a stainless mesh sheet embedded therein was manufactured.

【0027】製造された高強度セラミック複合板は、嵩
比重は、1.89g/cm、吸水率は、4.8%以
下、曲げ強度は、215kgf/cm 耐熱温度は、1200℃ 凍結融解試験結果は、良好であった。一方、ステンレス
メッシュシートを埋設しなかったものは、曲げ強度が1
0%程度低下していた。
The produced high-strength ceramic composite plate has a bulk specific gravity of 1.89 g / cm 3 , a water absorption rate of 4.8% or less, a bending strength of 215 kgf / cm 2, a heat resistant temperature of 1200 ° C., and a freeze-thaw. The test results were good. On the other hand, when the stainless mesh sheet was not embedded, the bending strength was 1
It was reduced by about 0%.

【0028】以上により製造された高強度軽量セラミツ
ク板あるいは高強度軽量セラミック複合板は、軽量で比
較的強度が高くかつ吸水率も低いため、建物内の内装材
あるいは外装材として、又は溶接用セラミックエンドタ
ブや溶接用セラミック表当て材として好ましいものであ
った。
The high-strength lightweight ceramic plate or high-strength lightweight ceramic composite plate manufactured as described above is lightweight and has relatively high strength and low water absorption, so that it can be used as an interior or exterior material in a building, or as a ceramic for welding. It was preferable as an end tab and a ceramic surface covering material for welding.

【0029】[0029]

【発明の効果】以上の本願発明の高強度軽量セラミック
板は、下記のような優れた作用効果を発揮するものであ
る。 .フライアッシュ及びガラスカレットを主原料として
おり、その非晶質性(ガラス質)のため、850〜12
00℃で十分に焼結可能となり、燃費コストも大幅に低
減できる。 .本発明により得られる高強度軽量セラミック板は、
ガラスカレット微粉末が溶融したガラス状マトリックス
としてフライアッシュ粒子間に介在するため、比較的高
強度な製品となり、かつ耐水性も良好となる。 .メッシュシートを介在させた本発明により得られる
高強度軽量セラミック板は、物理的衝撃を受けてもメッ
シュシートによる補強効果が発揮されるため破壊され難
く、また破壊されても破片となって飛散することがない
ため安全である。 .本発明により得られる高強度軽量セラミック板は安
価なフライアッシュ及びガラスカレットを主原料として
使用するため、従来品よりも製品製造コストが大幅に低
減できる。そして本願発明は、従来、大量に廃棄されて
きたフライアッシュ及びガラスカレットの有効活用に多
大な活路を開くものでもある。
The high-strength, lightweight ceramic plate of the present invention as described above exhibits the following excellent operational effects. . Fly ash and glass cullet are the main raw materials, and due to their amorphous nature (glassy), 850-12
Sintering can be sufficiently performed at 00 ° C, and fuel cost can be significantly reduced. . The high-strength lightweight ceramic plate obtained by the present invention is
Since the glass cullet fine powder is present as a molten glass-like matrix between the fly ash particles, it becomes a relatively high-strength product and also has good water resistance. . The high-strength lightweight ceramic plate obtained by the present invention with the mesh sheet interposed therebetween is hard to be destroyed because the reinforcing effect by the mesh sheet is exerted even when subjected to a physical impact, and even if it is destroyed, it is scattered as a fragment. It is safe because it never happens. . Since the high-strength lightweight ceramic plate obtained by the present invention uses inexpensive fly ash and glass cullet as main raw materials, the product manufacturing cost can be significantly reduced as compared with the conventional product. The present invention also opens a great way to effectively utilize fly ash and glass cullet, which have been conventionally discarded in large quantities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例により得られた高強度軽量セラミ
ツク板の吸水率の変化を示すグラフ図。
FIG. 1 is a graph showing a change in water absorption of a high-strength lightweight ceramic plate obtained in an example of the present invention.

【図2】本発明実施例により得られた高強度軽量セラミ
ツク板の吸水率の変化を示すグラフ図。
FIG. 2 is a graph showing a change in water absorption of a high-strength lightweight ceramic plate obtained in an example of the present invention.

【図3】本発明実施例により得られた高強度軽量セラミ
ツク板の曲げ強度の変化を示すグラフ図。
FIG. 3 is a graph showing the change in bending strength of the high-strength lightweight ceramic plate obtained in the example of the present invention.

【図4】本発明実施例により得られた高強度軽量セラミ
ツク板の曲げ強度の変化を示すグラフ図。
FIG. 4 is a graph showing the change in bending strength of the high-strength lightweight ceramic plate obtained in the example of the present invention.

【図5】本発明実施例により得られた高強度軽量セラミ
ツク板の吸水率の変化を示すグラフ図。
FIG. 5 is a graph showing the change in water absorption of the high-strength lightweight ceramic plate obtained in the example of the present invention.

【図6】本発明実施例により得られた高強度軽量セラミ
ツク板の吸水率の変化を示すグラフ図。
FIG. 6 is a graph showing changes in water absorption of the high-strength lightweight ceramic plate obtained in the example of the present invention.

【図7】本発明実施例により得られた高強度軽量セラミ
ツク板の曲げ強度の変化を示すグラフ図。
FIG. 7 is a graph showing the change in bending strength of the high-strength lightweight ceramic plate obtained in the example of the present invention.

【図8】本発明実施例により得られた高強度軽量セラミ
ツク板の曲げ強度の変化を示すグラフ図。
FIG. 8 is a graph showing a change in bending strength of the high-strength lightweight ceramic plate obtained in the example of the present invention.

【図9】本発明実施例の高強度軽量セラミック板の製造
装置の側面図。
FIG. 9 is a side view of an apparatus for manufacturing a high-strength lightweight ceramic plate according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:素地、 2:ステンレスメッシュシート、 3:コンベアシート、 4:ならし板、 5:転圧ローラ、 6:乾燥装置、 7:乾燥複合板 8:ホッパー 1: substrate 2: Stainless mesh sheet, 3: Conveyor sheet, 4: Leveling board, 5: Rolling roller, 6: Drying device, 7: Dry composite plate 8: Hopper

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA37 BA20 GA11 GA13 GA14 GA27 HA05 HA20 HA22 HA25 PA03 PA07 PA11    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G030 AA37 BA20 GA11 GA13 GA14                       GA27 HA05 HA20 HA22 HA25                       PA03 PA07 PA11

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】粒径5〜50μmのフライアッシュ微粉末
100重量部に、粒径50〜150μmガラスカレット
微粉末3〜50重量部と結合剤3〜30重量部を添加混
合してなる素地を板状に成形した後、850〜1200
℃で焼成することを特徴とする高強度軽量セラミック板
の製造方法。
1. A base material comprising 100 parts by weight of fine fly ash powder having a particle size of 5 to 50 μm, 3 to 50 parts by weight of glass cullet powder having a particle size of 50 to 150 μm, and 3 to 30 parts by weight of a binder. 850-1200 after being formed into a plate
A method for manufacturing a high-strength lightweight ceramic plate, which comprises firing at ℃.
【請求項2】粒径5〜50μmのフライアッシュ微粉末
100重量部に、粒径50〜150μmガラスカレット
微粉末3〜50重量部とシリカ微粉末5〜20重量部と
高炉スラグ微粉末5〜20重量部と結合剤3〜30重量
部を添加混合してなる素地を板状に成形した後、850
〜1200℃で焼成することを特徴とする高強度軽量セ
ラミック板の製造方法。
2. 100 parts by weight of fly ash fine powder having a particle size of 5 to 50 μm, 3 to 50 parts by weight of glass cullet fine powder having a particle size of 50 to 150 μm, 5 to 20 parts by weight of silica fine powder and 5 to 5 parts of blast furnace slag fine powder. 850 after molding a substrate formed by adding 20 parts by weight and 3 to 30 parts by weight of a binder into a plate shape
A method for manufacturing a high-strength lightweight ceramic plate, which comprises firing at ˜1200 ° C.
【請求項3】粒径5〜50μmのフライアッシュ微粉末
100重量部に、粒径50〜150μmガラスカレット
微粉末3〜50重量部と粘土鉱物微粉末5〜20重量部
とウォラストナイト粉末5〜20重量部と結合剤3〜3
0重量部を添加混合してなる素地を板状に成形した後、
850〜1200℃で焼成することを特徴とする高強度
軽量セラミック板の製造方法。
3. 100 parts by weight of fly ash fine powder having a particle size of 5 to 50 μm, 3 to 50 parts by weight of glass cullet fine powder of 50 to 150 μm, 5 to 20 parts by weight of clay mineral fine powder, and 5 of wollastonite powder. ~ 20 parts by weight and binder 3 ~ 3
After forming a green body by adding and mixing 0 parts by weight into a plate,
A method for producing a high-strength lightweight ceramic plate, which comprises firing at 850 to 1200 ° C.
【請求項4】粒径5〜50μmのフライアッシュ微粉末
100重量部に、粒径50〜150μmガラスカレット
微粉末3〜50重量部とウォラストナイト粉末5〜20
重量部と高炉スラグ微粉末5〜20重量部と結合剤3〜
30重量部を添加混合してなる素地を板状に成形した
後、850〜1200℃で焼成することを特徴とする高
強度軽量セラミック板の製造方法。
4. 100 parts by weight of fly ash fine powder having a particle size of 5 to 50 μm, 3 to 50 parts by weight of glass cullet fine powder having a particle size of 50 to 150 μm, and 5 to 20 wollastonite powder.
5 parts by weight and blast furnace slag fine powder 5 to 20 parts by weight and binder 3 to
A method for producing a high-strength lightweight ceramic plate, which comprises forming a base material obtained by adding and mixing 30 parts by weight into a plate shape, and then firing the plate-shaped base material at 850 to 1200 ° C.
【請求項5】粒径5〜50μmのフライアッシュ微粉末
100重量部に対して、粒径50〜150μmガラスカ
レット微粉末を20〜40重量部添加することを特徴と
する請求項1〜4のいずれか1項に記載の高強度軽量セ
ラミック板の製造方法。
5. A glass cullet fine powder having a particle diameter of 50 to 150 μm is added in an amount of 20 to 40 parts by weight to 100 parts by weight of fly ash fine powder having a particle diameter of 5 to 50 μm. The method for producing a high-strength lightweight ceramic plate according to any one of items.
【請求項6】結合剤が無機系のものであることを特徴と
する請求項1〜5のいずれか1項に記載の高強度軽量セ
ラミック板の製造方法。
6. The method for producing a high-strength lightweight ceramic plate according to claim 1, wherein the binder is an inorganic binder.
【請求項7】結合剤が、アルカリ金属珪酸塩水溶液であ
ることを特徴とする請求項1〜6のいずれか1項に記載
の高強度軽量セラミック板の製造方法。
7. The method for producing a high-strength lightweight ceramic plate according to claim 1, wherein the binder is an alkali metal silicate aqueous solution.
【請求項8】アルカリ金属珪酸塩水溶液が、珪酸ナトリ
ウム水溶液(水ガラス)であることを特徴とする請求項
7に記載の高強度軽量セラミック板の製造方法。
8. The method for producing a high-strength lightweight ceramic plate according to claim 7, wherein the alkali metal silicate aqueous solution is a sodium silicate aqueous solution (water glass).
【請求項9】結合剤が無機系結合剤と有機系結合剤であ
ることを特徴とする請求項1〜8のいずれか1項に記載
の高強度軽量セラミック板の製造方法。
9. The method for producing a high-strength, lightweight ceramic plate according to claim 1, wherein the binder is an inorganic binder or an organic binder.
【請求項10】焼成温度が、1000〜1150℃であ
ることを特徴とする請求項1〜9のいずれか1項に記載
の高強度軽量セラミック板の製造方法。
10. The method for producing a high-strength lightweight ceramic plate according to claim 1, wherein the firing temperature is 1000 to 1150 ° C.
【請求項11】素地に、ガラスの結晶化のための核形成
剤を添加することを特徴とする請求項1〜10のいずれ
か12項に記載の高強度軽量セラミック板の製造方法。
11. The method for producing a high strength lightweight ceramic plate according to claim 12, wherein a nucleating agent for crystallizing glass is added to the base material.
【請求項12】素地の焼成後に、ガラスの結晶化を促進
するための徐冷処理を行うことを特徴とする請求項11
記載の高強度軽量セラミック板の製造方法。
12. A gradual cooling treatment for promoting crystallization of glass is performed after firing of the base material.
A method for producing the high-strength lightweight ceramic plate described.
【請求項13】素地が、粒径5〜50μmのフライアッ
シュ粉末100重量部に対して、更に金属繊維、ガラス
繊維、炭素繊維、セラミック繊維の内の一種又は2種以
上を5〜10重量部添加してなるものであることを特徴
とする請求項1〜12のいずれか1項に記載の高強度軽
量セラミック板の製造方法。
13. A base material is 5 to 10 parts by weight of one or two or more kinds of metal fibers, glass fibers, carbon fibers and ceramic fibers with respect to 100 parts by weight of fly ash powder having a particle size of 5 to 50 μm. The method for producing a high-strength lightweight ceramic plate according to claim 1, wherein the high-strength lightweight ceramic plate is added.
【請求項14】素地中に、耐熱材料製メッシュシートを
埋設して板状に圧縮成形した後、該成形体を焼成するこ
とを特徴とする請求項1〜13のいずれか1項に記載の
高強度軽量セラミック板の製造方法。
14. The heat-resistant material mesh sheet is embedded in a base material, compression-molded into a plate shape, and then the molded body is fired, according to claim 1. Manufacturing method of high strength and lightweight ceramic plate.
【請求項15】耐熱材料製メッシュシートが、ステンレ
スメッシュシートであることを特徴とする請求項14記
載の高強度軽量セラミック板の製造方法。
15. The method for producing a high-strength lightweight ceramic plate according to claim 14, wherein the heat-resistant material mesh sheet is a stainless mesh sheet.
【請求項16】無機系結合剤が、下記(a)〜(c)か
らなる群から選ばれる1種又は2種以上のものの総量3
〜30重量部であることを特徴とする請求項1〜15の
いずれかに記載の高強度軽量セラミック板の製造方法。 (a)ケイ酸ナトリウム水溶液(水ガラス1号)、
(b)ケイ酸ナトリウム、水酸化アルミニウム、酸化亜
鉛、ウォラストナイト、カオリン、硼酸及びアルミン酸
ソーダの混合物溶液、(c)(a)及び(b)の溶液に
アルギン酸ソーダを混合した溶液。
16. A total amount of one or more inorganic binders selected from the group consisting of the following (a) to (c): 3
The method for producing a high-strength lightweight ceramic plate according to any one of claims 1 to 15, characterized in that the amount is -30 parts by weight. (A) Sodium silicate aqueous solution (water glass No. 1),
(B) A mixed solution of sodium silicate, aluminum hydroxide, zinc oxide, wollastonite, kaolin, boric acid and sodium aluminate, and a solution obtained by mixing the solutions of (c) (a) and (b) with sodium alginate.
【請求項17】請求項1〜16のいずれか1項に記載の
素地を板状に成形した後、焼成することによって溶接用
セラミックエンドダブを製造することを特徴とする溶接
用セラミックエンドダブの製造方法。
17. A ceramic end dove for welding, which is produced by forming the base material according to any one of claims 1 to 16 into a plate shape and then firing it. Production method.
【請求項18】請求項1〜16のいずれか1項に記載の
素地を板状に成形した後、焼成することによって溶接用
セラミック表当て材を製造することを特徴とする溶接用
セラミック表当て材の製造方法。
18. A ceramic ceramic backing material for welding, which is produced by forming the base material according to any one of claims 1 to 16 into a plate and then firing it. Method of manufacturing wood.
JP10226345A 1998-08-10 1998-08-10 Production of highly strong lightweight ceramic plate Pending JP2000063172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10226345A JP2000063172A (en) 1998-08-10 1998-08-10 Production of highly strong lightweight ceramic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10226345A JP2000063172A (en) 1998-08-10 1998-08-10 Production of highly strong lightweight ceramic plate

Publications (1)

Publication Number Publication Date
JP2000063172A true JP2000063172A (en) 2000-02-29

Family

ID=16843719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10226345A Pending JP2000063172A (en) 1998-08-10 1998-08-10 Production of highly strong lightweight ceramic plate

Country Status (1)

Country Link
JP (1) JP2000063172A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085026A (en) * 2001-07-20 2001-09-07 박흥혜 The constituting method of right-ceramic by used iron slag and building materials
KR100902281B1 (en) 2008-02-27 2009-06-11 강원대학교산학협력단 Inorganic binder composition using town waste incineration ashes and manufacture method thereof
KR101336173B1 (en) 2013-07-02 2013-12-03 (주)선일로에스 Permeable eco-friendly special tile and manufacturing method of it
KR101372517B1 (en) 2013-07-29 2014-03-07 한국세라믹기술원 Fire resistant curtain wall light weight board
WO2017082651A1 (en) * 2015-11-13 2017-05-18 강범형 Flame retardant particle, manufacturing method therefor, and flame retardant styrofoam using same
JP2020138888A (en) * 2019-02-28 2020-09-03 日鉄日新製鋼株式会社 Ceramics production method and ceramics
JP2021525217A (en) * 2018-04-18 2021-09-24 ベコー アイピー ホールディングス リミテッド Recycled aluminum silicate material and particulate mixture containing regenerated aluminum silicate material
CN114409421A (en) * 2022-03-09 2022-04-29 陕西科技大学 High-strength multi-morphology Al2O3particles/Al2O3Fiber composite ceramic sheet and preparation method thereof
CN114573327A (en) * 2022-03-10 2022-06-03 蒙娜丽莎集团股份有限公司 Method for preparing high-strength fiber composite ceramic plate based on two-step ball milling and obtained composite ceramic plate
CN116063062A (en) * 2023-02-18 2023-05-05 广东金绿能科技有限公司 Micro-pore light plate and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085026A (en) * 2001-07-20 2001-09-07 박흥혜 The constituting method of right-ceramic by used iron slag and building materials
KR100902281B1 (en) 2008-02-27 2009-06-11 강원대학교산학협력단 Inorganic binder composition using town waste incineration ashes and manufacture method thereof
KR101336173B1 (en) 2013-07-02 2013-12-03 (주)선일로에스 Permeable eco-friendly special tile and manufacturing method of it
KR101372517B1 (en) 2013-07-29 2014-03-07 한국세라믹기술원 Fire resistant curtain wall light weight board
WO2017082651A1 (en) * 2015-11-13 2017-05-18 강범형 Flame retardant particle, manufacturing method therefor, and flame retardant styrofoam using same
JP2021525217A (en) * 2018-04-18 2021-09-24 ベコー アイピー ホールディングス リミテッド Recycled aluminum silicate material and particulate mixture containing regenerated aluminum silicate material
JP2021525216A (en) * 2018-04-18 2021-09-24 ベコー アイピー ホールディングス リミテッド Manufacturing method of ceramic articles
JP7307975B2 (en) 2018-04-18 2023-07-13 ベコー アイピー ホールディングス リミテッド Method for manufacturing ceramic article
JP7362144B2 (en) 2018-04-18 2023-10-17 ベコー アイピー ホールディングス リミテッド Recycled aluminum silicate material and particulate mixture containing recycled aluminum silicate material
JP2020138888A (en) * 2019-02-28 2020-09-03 日鉄日新製鋼株式会社 Ceramics production method and ceramics
CN114409421A (en) * 2022-03-09 2022-04-29 陕西科技大学 High-strength multi-morphology Al2O3particles/Al2O3Fiber composite ceramic sheet and preparation method thereof
CN114573327A (en) * 2022-03-10 2022-06-03 蒙娜丽莎集团股份有限公司 Method for preparing high-strength fiber composite ceramic plate based on two-step ball milling and obtained composite ceramic plate
CN116063062A (en) * 2023-02-18 2023-05-05 广东金绿能科技有限公司 Micro-pore light plate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3038679B2 (en) Porcelain tile
JP3303221B2 (en) Refractory brick as tin bath brick
JP2000063172A (en) Production of highly strong lightweight ceramic plate
RU2374206C1 (en) Raw mixture for making ceramic objects
JPH054864A (en) Production of silica rock brick
JP2000290083A (en) Lightweight cellular ceramics, its production, lightweight cellular tile and tiled board with the tile
JP3094226B2 (en) Crystallized glass composite ceramics and method for producing the same
JPH0674169B2 (en) Ceramic sinter
JPH11246279A (en) Lightweight ceramics and its production
JP3090085B2 (en) Manufacturing method of cement ceramic products
JP4938234B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JPH1025171A (en) Ceramic composite plate having high strength
JP3930752B2 (en) Large ceramic plate for building material and method for producing the same
JP4870371B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JPH11171635A (en) Production of ceramic for construction
JP4684608B2 (en) Manufacturing method of inorganic board
JP4870333B2 (en) Manufacturing method of inorganic board
JP4611071B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP4611073B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP4611074B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
KR100940869B1 (en) Clay Bricks for Interior Using Stone Sludge and Methods for Preparing Thereof
JPH05279097A (en) Heat-resistant cement composition
JPS63195157A (en) Manufacture of burntware
JP3919634B2 (en) Manufacturing method of ceramic products
WO2021260802A1 (en) Large ceramic sheet for building material use