JP4870371B2 - Light weight inorganic board and method for producing the light weight inorganic board - Google Patents

Light weight inorganic board and method for producing the light weight inorganic board Download PDF

Info

Publication number
JP4870371B2
JP4870371B2 JP2005088248A JP2005088248A JP4870371B2 JP 4870371 B2 JP4870371 B2 JP 4870371B2 JP 2005088248 A JP2005088248 A JP 2005088248A JP 2005088248 A JP2005088248 A JP 2005088248A JP 4870371 B2 JP4870371 B2 JP 4870371B2
Authority
JP
Japan
Prior art keywords
mass
inorganic
cement
layer
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005088248A
Other languages
Japanese (ja)
Other versions
JP2006265063A (en
Inventor
秀憲 河合
忠史 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2005088248A priority Critical patent/JP4870371B2/en
Publication of JP2006265063A publication Critical patent/JP2006265063A/en
Application granted granted Critical
Publication of JP4870371B2 publication Critical patent/JP4870371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば外壁材、内装材等の建築板に使用される軽量無機質板および該無機質板の製造方法に関するものである。   The present invention relates to a lightweight inorganic board used for building boards such as outer wall materials and interior materials, and a method for producing the inorganic board.

〔発明の背景〕
シリカ、アルミナ等のセラミック粉体を板状に成形し焼成した無機質板は耐久性に優れ、また美感や質感を有し高級感のある意匠を有する建築板として多用されている。
上記無機質板はセラミック粉体にバインダーと水とを添加して混練し、該混練物を押出成形あるいは鋳込み成形によって板状に成形し、該板状成形物を焼成することによって製造されるが、高硬度であり切削加工性が悪く、現場で簡単に所定寸法に切断することが困難である。また大板の場合は、重量が大きく運搬、構築作業に労力を要するし、壁躯体等に取付けた場合、壁躯体にかゝる重量負荷が大きくなる。
BACKGROUND OF THE INVENTION
An inorganic plate obtained by molding and firing ceramic powders such as silica and alumina into a plate shape is excellent in durability, and is frequently used as a building plate having a high-quality design with a sense of beauty and texture.
The inorganic plate is manufactured by adding a binder and water to a ceramic powder and kneading, forming the kneaded product into a plate shape by extrusion molding or casting, and firing the plate-shaped product, It has high hardness and poor machinability, and it is difficult to easily cut to a predetermined size on site. In the case of a large plate, the weight is large and labor is required for transportation and construction work, and when it is attached to a wall frame or the like, the weight load on the wall frame becomes large.

〔従来の技術〕
そこで上記無機質板の問題点を解決するための手段として、高炉スラグや消石灰等の水硬性無機材料に木片、木粉等の可燃性有機成分を添加した原料混合物を基板上に散布してマットをフォーミングし、該マットを圧締養生硬化して生板とし、該生板を焼成して該生板中に含まれている該可燃性有機成分を燃焼揮散させることによって多孔質軽量な無機質板を得ることが提案されている。(例えば特許文献1〜5参照)。
[Conventional technology]
Therefore, as a means for solving the problems of the above-mentioned inorganic board, a mat is formed by spraying a raw material mixture in which a flammable organic material such as blast furnace slag or slaked lime is added with a combustible organic component such as wood chips or wood powder on a substrate. A porous and lightweight inorganic board is formed by forming, pressing and curing the mat to form a green board, firing the green board, and burning off the combustible organic components contained in the green board. It has been proposed to obtain. (For example, refer to Patent Documents 1 to 5).

特開平6−345529号公報JP-A-6-345529 特開平6−144923号公報JP-A-6-144923 特開平9−30873号公報Japanese Patent Laid-Open No. 9-30873 特開2005−60163号公報JP 2005-60163 A 特願2003−312856号Japanese Patent Application No. 2003-31856

上記従来技術にあっては、原料混合物のマットを圧締養生硬化して得られる生板の強度が充分でないために欠けたり変形したり崩れたりし易く、ハンドリング性に問題がある。また板表面にエンボス加工によって凹凸模様を形成する場合、余り深い凹凸模様を形成することが出来ず、したがって凹凸模様が制約を受けてしまう。更に板端縁に実等を切削加工する場合の必要な強度が得られず、加工中に欠け易いと云う問題点もある。
生板の強度を上げるためには養生を長時間行えばよいが、そうすれば無機質板の生産効率が悪化する。
In the above prior art, the strength of the green plate obtained by press-curing and curing the mat of the raw material mixture is not sufficient, so that it is easily chipped, deformed or collapsed, and there is a problem in handling properties. In addition, when a concavo-convex pattern is formed on the plate surface by embossing, a too deep concavo-convex pattern cannot be formed, and thus the concavo-convex pattern is restricted. Furthermore, there is a problem that the strength required for cutting a real edge or the like on the edge of the plate cannot be obtained, and it is easily chipped during processing.
In order to increase the strength of the green plate, curing may be performed for a long time, but if so, the production efficiency of the inorganic plate is deteriorated.

本発明は上記従来の課題を解決するための手段として、セメント系無機材料15〜45質量%、ガラス質含有材料1〜15質量%、骨材20〜45質量%、補強繊維15〜35質量%を含有する原料混合物の硬化焼成層を表裏層とし、セメント系無機材料15〜45質量%、ガラス質含有材料1〜15質量%、骨材0〜30質量%、補強繊維20〜30質量%、可燃性有機成分および/または無機質軽量体15〜30質量%を含有する原料混合物の硬化焼成層を芯層とする軽量無機質板を提供するものである。
上記軽量無機質板を製造するための望ましい方法としては、セメント系無機材料15〜45質量%、ガラス質含有材料1〜15質量%、骨材20〜45質量%、補強繊維15〜35質量%を含有する表裏層用原料混合物を基板上に散布して表層または裏層マットをフォーミングし、セメント系無機材料15〜45質量%、ガラス質含有材料1〜15質量%、骨材0〜30質量%、補強繊維20〜30質量%、可燃性有機成分および/または無機質軽量体15〜30質量%を含有する芯層用原料混合物を該表層または裏層マット上に散布して芯層マットをフォーミングし、更に該表裏層用原料混合物を該芯層マット上に散布して裏層または表層マットをフォーミングし、このようにして得られた3層構造のマットを水分存在下に圧締養生硬化させることによって生板とし、該生板を焼成する。
上記焼成の温度は1100℃以上(1100℃を含む)1300℃以下(1300℃を含む)の範囲に設定されることが望ましい。
In the present invention, as means for solving the above-described conventional problems, 15 to 45% by mass of a cement-based inorganic material, 1 to 15% by mass of a vitreous material, 20 to 45% by mass of aggregate, and 15 to 35% by mass of reinforcing fibers The hardened and fired layers of the raw material mixture containing the front and back layers are cement-based inorganic materials 15 to 45% by mass, glassy materials 1 to 15% by mass, aggregates 0 to 30% by mass, reinforcing fibers 20 to 30% by mass, The present invention provides a lightweight inorganic plate having a core layer of a cured and fired layer of a raw material mixture containing a combustible organic component and / or an inorganic lightweight body of 15 to 30% by mass.
As a desirable method for producing the lightweight inorganic board, cement inorganic material 15 to 45% by mass, glassy material 1 to 15% by mass, aggregate 20 to 45% by mass, reinforcing fiber 15 to 35% by mass are included. The raw material mixture for the front and back layers contained is sprinkled on the substrate to form the front layer or the back layer mat. The core layer mat is formed by spraying the raw material mixture for the core layer containing 20 to 30% by mass of the reinforcing fiber, 15 to 30% by mass of the combustible organic component and / or the inorganic lightweight body on the surface layer or the back layer mat. Further, the raw material mixture for the front and back layers is sprayed on the core layer mat to form the back layer or the surface layer mat, and the mat having the three-layer structure thus obtained is pressed and hardened in the presence of moisture. Making a raw plate by Rukoto, firing the organism plate.
The firing temperature is desirably set in a range of 1100 ° C. or higher (including 1100 ° C.) and 1300 ° C. or lower (including 1300 ° C.).

〔作用〕
本発明にあっては、水硬性無機材料としてセメント系無機材料を使用するが、該セメント系無機材料は水硬反応が速いので、該3層構造のマットを圧締養生硬化する過程において、短時間で硬化が円滑に進み、高強度の生板が得られる。
[Action]
In the present invention, a cement-based inorganic material is used as the hydraulic inorganic material. However, since the cement-based inorganic material has a fast hydraulic reaction, in the process of pressing and curing the three-layer structure mat, the cement-based inorganic material is short. Curing proceeds smoothly over time, and a high strength green plate is obtained.

〔効果〕
したがって本発明においては、生板が取扱い中あるいは実等の切削加工中に欠けたり、変形したり、崩れたりしにくいので、ハンドリング性および加工性が向上し、また深い凹凸模様もエンボス加工によって容易に形成することが出来、凹凸模様の自由度が高くなる。更に圧締養生硬化に要する時間が短縮され、生産効率が向上する。
〔effect〕
Therefore, in the present invention, the raw plate is not easily chipped, deformed or collapsed during handling or actual cutting processing, so that handling and workability are improved, and deep uneven patterns are easily formed by embossing. The degree of freedom of the concavo-convex pattern can be increased. Furthermore, the time required for the compression curing and curing is shortened, and the production efficiency is improved.

以下に本発明を詳細に説明する。
〔セメント系無機材料〕
本発明にあっては、上記したように水硬性無機材料としてセメント系無機材料を使用する。上記セメント系無機材料としては、例えば普通ポルトランドセメント、早強ポルトランドセメント、アルミナセメント、高炉スラグセメント、シリカセメント、フライアッシュセメント等が例示される。
該セメント系無機材料は水硬反応速度が大きいので、圧締養生硬化に要する時間が短縮され、得られる生板の強度が向上する。
The present invention is described in detail below.
[Cement-based inorganic materials]
In the present invention, as described above, a cement-based inorganic material is used as the hydraulic inorganic material. Examples of the cement-based inorganic material include ordinary Portland cement, early-strength Portland cement, alumina cement, blast furnace slag cement, silica cement, fly ash cement and the like.
Since the cement-based inorganic material has a high hydraulic reaction rate, the time required for compression biocure is shortened, and the strength of the green plate obtained is improved.

〔ガラス質含有材料〕
更に本発明では、焼成により溶融してバインダーとなるガラス質含有材料を添加する。このようなガラス質含有材料としては、例えばシラス、フライアッシュ、坑火石、ガラス粉、板ガラスの粉砕品等がある。該ガラス質含有材料として望ましいものは、軟化点が900℃以下の低融点ガラスであり該低融点ガラスとしては、PbO,B23,ZnO等の低融点成分の含有量を多くしたガラスがあり、例えば軟化点840℃、融点1200℃のEガラス粉末は望ましい低融点ガラスである。Eガラス即ちElectrical glassはガラス繊維の粉末のことであり、平均粒径は30μm、主成分はSiO2 54質量%、Al2315質量%、CaO23質量%、B237質量%でありB23を含有しているので低融点であり、1000℃前後の低温焼成を可能にする。
[Glass-containing material]
Furthermore, in this invention, the vitreous content material which fuse | melts by baking and becomes a binder is added. Examples of such a vitreous material include shirasu, fly ash, mine stone, glass powder, and ground glass. What is desirable as the glassy-containing material is a low-melting glass having a softening point of 900 ° C. or lower. As the low-melting glass, a glass having an increased content of low-melting-point components such as PbO, B 2 O 3 and ZnO is used. For example, E glass powder having a softening point of 840 ° C. and a melting point of 1200 ° C. is a desirable low-melting glass. E glass, or electrical glass, is a glass fiber powder, the average particle size is 30 μm, the main components are SiO 2 54 mass%, Al 2 O 3 15 mass%, CaO 23 mass%, B 2 O 3 7 mass%. Because it contains B 2 O 3 , it has a low melting point and enables low-temperature firing at around 1000 ° C.

〔骨材〕
更に本発明では、焼成により溶融して板構造の主体的要素となる骨材が添加される。上記骨材としては、例えば陶石、長石、ろう石、カオリン、ハロサイト、木節粘土、蛙目粘土、セリサイト、シャモット(陶石粉)、ドロマイト等の粘土質鉱物やケイ砂、ケイ石粉、珪藻土、キラ、シリカフューム等のケイ酸質原料がある。上記骨材の中で望ましいものは、ブレーン値3800、SiO2の純度95質量%以上のケイ砂またはケイ石粉、あるいはシャモットである。
〔aggregate〕
Furthermore, in the present invention, an aggregate which is melted by firing and becomes a main element of the plate structure is added. Examples of the aggregate include clay minerals such as porcelain stone, feldspar, wax stone, kaolin, halosite, kibushi clay, lacquered clay, sericite, chamotte (ceramic stone powder), dolomite, silica sand, quartzite powder, There are siliceous materials such as diatomaceous earth, glitter, and silica fume. Among the above-mentioned aggregates, silica sand or quartzite powder having a brain value of 3800 and a SiO 2 purity of 95% by mass or more, or chamotte is preferable.

〔補強繊維〕
更に本発明では、焼成による膨張収縮を抑制するために補強繊維が添加される。上記補強繊維としては、例えばワラストナイト、セピオライト等の鉱物繊維、スチールファイバー、ステンレスファイバー等の金属繊維、ガラス繊維、セラミック繊維等がある。望ましい補強繊維としては、ワラストナイトがある。ワラストナイトはアスペクト比(15)が一般の補強繊維と比べて大きい。ワラストナイトは原料混合物の分散性を向上せしめ、該原料混合物を型板上に散布する乾式法では原料混合物中に凝集物や塊りが生成することが防止され、散布作業性が良好になる。ワラストナイトは一般に平均繊維長600μm、平均繊維径40μmのものを使用する。更にワラストナイトは保形性、切断性を改良し、大きなサイズの板の製造を容易にする。
[Reinforcing fiber]
Furthermore, in the present invention, reinforcing fibers are added to suppress expansion and contraction due to firing. Examples of the reinforcing fibers include mineral fibers such as wollastonite and sepiolite, metal fibers such as steel fibers and stainless fibers, glass fibers, and ceramic fibers. A desirable reinforcing fiber is wollastonite. Wollastonite has a larger aspect ratio (15) than ordinary reinforcing fibers. Wollastonite improves the dispersibility of the raw material mixture, and the dry method in which the raw material mixture is sprayed on the template prevents the formation of agglomerates and lumps in the raw material mixture and improves the spraying workability. . Generally, wollastonite having an average fiber length of 600 μm and an average fiber diameter of 40 μm is used. Further, wollastonite improves shape retention and cutting properties, and facilitates the production of large size plates.

〔可燃性有機成分〕
本発明にあっては、焼成時に焼滅して芯層に多孔質構造を形成するために無機質軽量体と共に、あるいは無機質軽量体に代えて可燃性有機成分が添加されてもよい。このような可燃性有機成分としては、例えば木片、木質繊維束、木質パルプ、木毛、木粉等の木質材、ポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、ビニロン繊維等の有機繊維、発泡ポリスチレンビーズ、発泡性ポリエチレンビーズ、発泡性ポリプロピレンビーズ等の合成樹脂成分、あるいは木質セメント板廃材等がある。
可燃性有機成分のソースとして使用される木質セメント板廃材とは、木片、木質繊維束、木質パルプ、木毛、木粉等の木質補強材と、普通ポルトランドセメント、早強セメント、アルミナセメント、高炉スラグセメント、フライアッシュセメント等のセメント類や生石灰、消石灰等の石灰類、あるいは石膏、炭酸マグネシウム等の水硬性無機質材料とを主体とする原料混合物を使用し、乾式法、半乾式法、湿式法、押出成形法等で板状に成形した木質セメント板の廃材であるが、製造工程中の端材や、増改築時に発生するこれらの廃材を粉砕して再利用するものである。
上記木質セメント板には上記木質分が通常10〜30質量%含有される。
[Flammable organic components]
In the present invention, a flammable organic component may be added together with the inorganic lightweight body or in place of the inorganic lightweight body in order to burn out during firing and form a porous structure in the core layer. Examples of such combustible organic components include wood materials such as wood chips, wood fiber bundles, wood pulp, wood wool, and wood flour, and organic materials such as polyester fibers, polyamide fibers, polyethylene fibers, polypropylene fibers, acrylic fibers, and vinylon fibers. There are synthetic resin components such as fibers, expanded polystyrene beads, expandable polyethylene beads, expandable polypropylene beads, or wood cement board waste.
Wood cement board waste materials used as a source of combustible organic components are wood reinforcing materials such as wood chips, wood fiber bundles, wood pulp, wood wool, wood flour, ordinary Portland cement, early strength cement, alumina cement, blast furnace Using a raw material mixture mainly composed of cements such as slag cement and fly ash cement, limes such as quick lime and slaked lime, or hydraulic inorganic materials such as gypsum and magnesium carbonate, dry method, semi-dry method, wet method The waste material of the wood cement board formed into a plate shape by the extrusion molding method or the like is used to grind and recycle the end material in the manufacturing process and these waste materials generated at the time of extension and reconstruction.
The wood cement board usually contains 10 to 30% by mass of the wood content.

上記木質セメント板には更にポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、ビニロン繊維等の有機繊維や発泡ポリスチレンビーズ、ポリエチレンビーズ、ポリプロピレンビーズ等の可燃性有機成分が含まれる場合があり、焼成時にはこれら可燃性有機成分も焼滅し、木質分と共に芯層の多孔質化に寄与する。   The wood cement board may further contain organic fibers such as polyester fiber, polyamide fiber, polyethylene fiber, polypropylene fiber, acrylic fiber, and vinylon fiber, and flammable organic components such as expanded polystyrene beads, polyethylene beads, and polypropylene beads. During burning, these combustible organic components are also burned out, contributing to the porous structure of the core layer together with the wood.

上記木質セメント板廃材は衝撃型粉砕機、磨砕型粉砕機等によって、通常粒径10〜100μm程度に粉砕され、本発明の原料として使用される。   The wood cement board waste is usually pulverized to a particle size of about 10 to 100 μm by an impact type pulverizer or a grinding type pulverizer, and used as a raw material of the present invention.

〔無機質軽量体〕
本発明にあっては芯層に多孔質構造を形成するために、上記可燃性有機成分に代えてあるいは上記可燃性有機成分と共に無機質軽量体が添加されてもよい。該無機質軽量体としては、例えばパーライト、フライアッシュバルーン、シラスバルーン、ガラス発泡体等が例示され、特にかさ比重が0.4以下で圧縮強度が10N/mm2以上のものが好ましい。
[Inorganic lightweight body]
In the present invention, in order to form a porous structure in the core layer, an inorganic lightweight body may be added instead of the combustible organic component or together with the combustible organic component. Examples of the inorganic lightweight body include pearlite, fly ash balloon, shirasu balloon, and glass foam, and those having a bulk specific gravity of 0.4 or less and a compressive strength of 10 N / mm 2 or more are preferable.

〔表裏層用原料混合物〕
表裏層用原料としては、上記セメント系無機材料、ガラス質含有材料、骨材、および補強繊維が使用される。
表裏層用原料混合物にあっては、該セメント系無機材料15〜45質量%、ガラス質含有材料1〜15質量%、骨材20〜45質量%、補強繊維は15〜35質量%程度の比率とされる。骨材が45質量%を上回る量で添加された場合には板の比重が高くなり、軽量化が実施されにくゝ、かつ加工性も劣化する。一方骨材が20質量%を下回る量で添加された場合には、板の強度が低下しかつ耐凍性も劣化する。また上記表裏層用原料混合物には、芯層に使用する可燃性有機成分および/または無機質軽量体が添加されてもよい。
[Raw material mixture for front and back layers]
As the raw material for the front and back layers, the above-mentioned cement-based inorganic material, glassy-containing material, aggregate, and reinforcing fiber are used.
In the raw material mixture for the front and back layers, the cement-based inorganic material is 15 to 45% by mass, the glassy-containing material is 1 to 15% by mass, the aggregate is 20 to 45% by mass, and the reinforcing fiber is about 15 to 35% by mass. It is said. When the aggregate is added in an amount exceeding 45% by mass, the specific gravity of the plate becomes high, and it is difficult to reduce the weight, and the workability also deteriorates. On the other hand, when the aggregate is added in an amount less than 20% by mass, the strength of the plate is lowered and the frost resistance is also deteriorated. Moreover, the combustible organic component and / or inorganic lightweight body which are used for a core layer may be added to the said raw material mixture for front and back layers.

〔芯層用原料混合物〕
芯層用原料としては、上記表裏層用原料に加えて上記可燃性有機成分および/または無機質軽量体が使用される。芯層用原料混合物にあっては、セメント系無機材料15〜45質量%、ガラス質含有材料1〜15質量%、骨材0〜30質量%、補強繊維20〜30質量%、可燃性有機成分および/または無機質軽量体15〜30質量%の比率とされる。
該芯層用原料混合物にあっては、該可燃性有機成分および/または無機質軽量体の量が15質量%を下回ると芯層に多孔性が充分付与されず、軽量化が実施されない。また該可燃性有機成分および/または無機質軽量体の量が30質量%を上回ると芯層が過度に多孔性になり、機械的強度や耐凍性に劣るようになる。
[Raw material mixture for core layer]
As the raw material for the core layer, in addition to the raw material for the front and back layers, the combustible organic component and / or the inorganic lightweight body is used. In the raw material mixture for the core layer, cement-based inorganic material 15 to 45% by mass, glassy material 1 to 15% by mass, aggregate 0 to 30% by mass, reinforcing fibers 20 to 30% by mass, combustible organic component And / or it is set as the ratio of 15-30 mass% of inorganic lightweight bodies.
In the raw material mixture for the core layer, when the amount of the combustible organic component and / or the inorganic lightweight body is less than 15% by mass, the core layer is not sufficiently porous and the weight is not reduced. On the other hand, when the amount of the combustible organic component and / or the inorganic lightweight body is more than 30% by mass, the core layer becomes excessively porous, resulting in poor mechanical strength and frost resistance.

〔軽量無機質板の製造方法〕
本発明の軽量無機質板の製造方法としては、原料混合物に水を所定量(通常5〜20質量%)添加したものを使用する半乾式法が一般に適用されるが、原料混合物に水を添加せず、圧締養生硬化直前あるいは圧締養生硬化時に水を添加する乾式法が適用されてもよい。
即ち本発明の製造方法にあっては、型板、搬送板、平板等の基板上に表裏層用原料混合物を散布して表層または裏層マットをフォーミングし、該表層または裏層マット上に芯層用原料混合物を散布して芯層マットをフォーミングし、該芯層マット上に表裏層用原料混合物を散布して裏層または表層マットをフォーミングし、このようにして得られた3層構造のマットを水分存在下で圧締養生硬化せしめ、得られた無機質板生板を焼成して本発明の軽量無機質板とする。
[Method for producing lightweight inorganic board]
As a method for producing the lightweight inorganic board of the present invention, a semi-dry method using a raw material mixture in which a predetermined amount (usually 5 to 20% by mass) of water is added is generally applied, but water is added to the raw material mixture. Alternatively, a dry method in which water is added immediately before or after compression curing biocure may be applied.
That is, in the production method of the present invention, a raw material mixture for front and back layers is formed on a substrate such as a template, a conveyance plate, and a flat plate to form a surface layer or a back layer mat, and a core is formed on the surface layer or the back layer mat. The raw material mixture for the layer is sprayed to form the core layer mat, the raw material mixture for the front and back layers is sprayed on the core layer mat to form the back layer or the surface layer mat, and the three-layer structure thus obtained is formed. The mat is cured by pressing and curing in the presence of moisture, and the resulting inorganic plate green plate is fired to obtain the lightweight inorganic plate of the present invention.

上記方法において上記基板面には所定の凹凸陰模様を形成してもよい。また圧締はフォーミングされた3層構造のマット上に更に基板を重ねた圧締装置において通常面圧5〜8MPaの圧力で行うが、該マットの上側の面を表面として上側の基板の面に所定の凹凸陰模様を形成してもよい。
養生硬化は上記圧締状態で行われ、通常45〜65℃の温度で6〜10時間の条件が採用される。
養生硬化後は解圧脱型し、望ましくは絶乾状態に乾燥させ、実加工等の所定の加工を施す。更に所望なれば該無機質板生板の少なくとも表面に釉薬を塗布する。本発明に使用される釉薬としては、鉛ユウ、フリットユウ、ブリストルユウ、磁器ユウ等の一般的な釉薬が使用される。その後該無機質板生板を焼成炉中に導入して焼成を行う。望ましい焼成条件としては、1100℃以上(1100℃を含む)1300℃以下(1300℃を含む)、望ましくは1150℃以上(1150℃を含む)1250℃以下(1250℃を含む)で10〜20分の条件が採用される。
このようにして製造された軽量無機質板は、通常厚み12〜25mm、表裏層の比重は1.5〜1.8、芯層の比重は0.8〜1.3程度である。
In the above method, a predetermined uneven shade pattern may be formed on the substrate surface. The pressing is usually performed at a surface pressure of 5 to 8 MPa in a pressing apparatus in which a substrate is further stacked on a formed three-layer mat, and the upper surface of the mat is used as a surface to the upper substrate surface. A predetermined uneven shade pattern may be formed.
Curing and curing is performed in the above-mentioned pressed state, and a condition of 6 to 10 hours is usually employed at a temperature of 45 to 65 ° C.
After curing and curing, it is depressurized and desirably dried in an absolutely dry state, and subjected to predetermined processing such as actual processing. Further, if desired, a glaze is applied to at least the surface of the raw inorganic plate. As the glaze used in the present invention, general glazes such as lead yu, frit yu, bristol yu, porcelain yu and the like are used. Thereafter, the raw inorganic plate is introduced into a firing furnace and fired. Desirable firing conditions are 1100 ° C. or higher (including 1100 ° C.) and 1300 ° C. or lower (including 1300 ° C.), preferably 1150 ° C. or higher (including 1150 ° C.) and 1250 ° C. or lower (including 1250 ° C.) for 10 to 20 minutes. The following conditions are adopted.
The lightweight inorganic board thus produced usually has a thickness of 12 to 25 mm, a specific gravity of the front and back layers of 1.5 to 1.8, and a specific gravity of the core layer of about 0.8 to 1.3.

〔実施例1〜参考例1,2、比較例1〜4〕
表1に示す表裏層用原料混合物を型板上に散布し、その上に芯層用原料混合物を散布し、更にその上に表裏層用原料混合物を散布した3層構造のマットを形成し、該3層構造のマットを水分存在下で面圧5MPa、温度50℃の条件で10時間の圧締養生硬化を行い、得られた無機質板生板を温度105℃、24時間の絶乾状態に乾燥させ、表面に釉薬を塗布した上焼成炉中に導入し、表記載の温度で10分焼成して、厚み18mmとする3層構造の実施例1〜参考例1,2、および比較例1〜4の軽量無機質板試料を作成し下記の物性評価を行った。結果を表1に示す。
[Examples 1 to 5 , Reference Examples 1 and 2, Comparative Examples 1 to 4]
Spread the raw material mixture for the front and back layers shown in Table 1 on the template, spread the raw material mixture for the core layer on it, and form a mat with a three-layer structure on which the raw material mixture for the front and back layers is further spread, The mat having the three-layer structure is subjected to pressing and curing and curing for 10 hours under the conditions of a surface pressure of 5 MPa and a temperature of 50 ° C. in the presence of moisture, and the resulting inorganic plate green plate is kept in an absolutely dry state at a temperature of 105 ° C. for 24 hours. Examples 1 to 5 , Reference Examples 1 and 2, and Comparative Examples having a three-layer structure that was dried, coated with glaze on the surface, introduced into a baking furnace and baked for 10 minutes at the temperatures shown in the table to a thickness of 18 mm The lightweight inorganic board sample of Examples 1-4 was created, and the following physical-property evaluation was performed. The results are shown in Table 1.

〔物性評価〕
(1) 収縮率:成形後の寸法と焼成後の寸法の比率(%)
(2) 比 重:絶乾比重
(3) 曲げ強度:JIS A 1408に準じる(N/mm2
(4) 表面高意匠性:テーブルテストで板厚25mmに設定し、エンボス深さ11mm、エンボス角度60°の凹部の逆凸部を有する型板にて半乾式法で成形した硬化物につき下記基準で評価した。
◎:異状なし ○:凸部に若干の巣穴 △:凸部に欠け少し
×:凸部に欠け大(柄抜け)
(5) 切断性:ハンドソーで切断出来、また切断時に割れや欠けがなくスムーズに切断可能 かどうか。(スムーズに切断出来た場合○)
(6) 耐凍結融解性:ASTM B法 300サイクルにて異状がないかどうか。(異状な し○)
(7) 耐衝撃性:JIS A 1408に準じ、500gの鉄球の落下でひび割れが生じな い高さ。(m)
〔Evaluation of the physical properties〕
(1) Shrinkage ratio: Ratio of dimension after molding to dimension after firing (%)
(2) Specific gravity: Absolute dry specific gravity
(3) Bending strength: according to JIS A 1408 (N / mm 2 )
(4) High surface design: The following standards are given for a cured product formed by a semi-dry method using a mold plate having a concave convex portion with an embossing depth of 11 mm and an embossing angle of 60 °, set to a plate thickness of 25 mm by a table test. It was evaluated with.
◎: No irregularity ○: Slight burrow in the convex part △: Slightly missing in the convex part ×: Large chipped in the convex part (pattern missing)
(5) Cutability: Can be cut with a hand saw, and can be cut smoothly without cracks or chipping. (If you can cut smoothly ○)
(6) Freezing and thawing resistance: ASTM B method Whether there is any abnormality after 300 cycles. (No abnormality ○)
(7) Impact resistance: According to JIS A 1408, the height at which a 500 g iron ball does not crack when dropped. (M)

表1を参照すると、実施例1はセメント系無機材料の含有量は最適値であるが、焼成温度は設定範囲内の最低値であるため、若干耐衝撃性が劣るが設定範囲内であり、他の物性については良好である。実施例2はセメント系無機材料の含有量、焼成温度とも最適設定の範囲内であり、得られた軽量無機質板の強度も大きく、他の物性についても良好である。実施例3はセメント系無機材料の含有量は最適値であるが、焼成温度は設定範囲内の高めではあるが、得られた軽量無機質板の強度も大きく、他の物性も良好である。実施例4はセメント系無機材料の含有量は最適値であるが、焼成温度は設定範囲内の最高値であるが硬化後の強度も大きく、他の物性も良好である。実施例5はセメント系無機材料が設定範囲内の少なめであるため、硬化後の曲げ強度が若干低く、表面高意匠性に少し劣るが設定範囲内であり、他の物性は良好である。参考例1はセメント系無機材料が設定範囲内の多めであるため収縮率が若干大きいが設定範囲内であり、他の物性は良好である。参考例2はセメント系無機材料が多く、芯層に骨材が添加されていないので、収縮率が若干大きく、耐凍結融解性、耐衝撃性に少し劣るが設定範囲内であり、他の物性は良好である。 Referring to Table 1, in Example 1, the content of the cementitious inorganic material is an optimum value, but the firing temperature is the lowest value within the set range, so the impact resistance is slightly inferior, but within the set range, Other physical properties are good. In Example 2, both the content of the cementitious inorganic material and the firing temperature are within the optimum setting range, the strength of the obtained lightweight inorganic board is high, and the other physical properties are also good. In Example 3, the content of the cementitious inorganic material is an optimum value, but the firing temperature is high within the set range, but the strength of the obtained lightweight inorganic board is high and other physical properties are also good. In Example 4, the content of the cementitious inorganic material is an optimum value, but the firing temperature is the highest value within the set range, but the strength after curing is large, and other physical properties are also good. In Example 5, since the cement-based inorganic material is less within the set range, the bending strength after curing is slightly low and slightly inferior to the high surface design, but it is within the set range and other physical properties are good. In Reference Example 1, since the cement-based inorganic material is larger in the set range, the shrinkage rate is slightly larger, but it is within the set range, and other physical properties are good. In Reference Example 2, there are many cement-based inorganic materials and no aggregate is added to the core layer. Therefore, the shrinkage rate is slightly large, and the freeze-thaw resistance and impact resistance are slightly inferior, but within the set range. Is good.

比較例1は水硬性無機材料としてセメント系無機材料を用いていないので、硬化後の曲げ強度が著しく低く、そのために表面高意匠性が著しく低下している。比較例2は水硬性無機材料としてセメント系無機材料を用いずしかも該水硬性無機材料の量も少なめであるため、硬化後の曲げ強度が著しく低く、そのために表面高意匠性が著しく低下した。比較例3は水硬性無機材料としてセメント系無機材料を用いずしかも該水硬性無機材料の量は多いが、硬化後の曲げ強度は低く、そのために表面高意匠性も低下した。比較例4も水硬性無機材料としてセメント系無機材料を用いずしかも芯層に骨材が添加されていないので、硬化後の曲げ強度は低く、そのために表面高意匠性も低下した。   Since the comparative example 1 does not use a cement-type inorganic material as a hydraulic inorganic material, the bending strength after hardening is remarkably low, and therefore the surface high designability is remarkably lowered. In Comparative Example 2, a cement-based inorganic material was not used as the hydraulic inorganic material, and the amount of the hydraulic inorganic material was small, so that the bending strength after curing was extremely low, and thus the surface high designability was significantly lowered. In Comparative Example 3, no cement-based inorganic material was used as the hydraulic inorganic material, and the amount of the hydraulic inorganic material was large, but the bending strength after curing was low, and thus the high surface design was also lowered. In Comparative Example 4, the cement-based inorganic material was not used as the hydraulic inorganic material, and the aggregate was not added to the core layer. Therefore, the bending strength after curing was low, and thus the high surface design was also lowered.

本発明の無機質板は高い生産性を有し、軽量で運搬性、施工性、加工性が良好で、機械的性質や耐凍結融解性にも優れ、また表面に深い凹凸模様を付することが出来、意匠性にも優れているので外壁材や内装材に有用である。   The inorganic board of the present invention has high productivity, is lightweight, has good transportability, workability and workability, is excellent in mechanical properties and freeze-thaw resistance, and has a deep uneven pattern on the surface. It can be used and is useful for exterior wall materials and interior materials.

Claims (3)

セメント系無機材料15〜45質量%、ガラス質含有材料としてB23を含有するEガラス粉末1〜15質量%、骨材20〜45質量%、補強繊維としてワラストナイト15〜35質量%を含有する原料混合物の硬化焼成層を表裏層とし、セメント系無機材料15〜45質量%、ガラス質含有材料としてB23を含有するEガラス粉末1〜15質量%、骨材0〜30質量%、補強繊維としてワラストナイト2〜30質量%、可燃性有機成分および/または無機質軽量体15〜30質量%を含有する原料混合物の硬化焼成層を芯層とすることを特徴とする軽量無機質板。 Cement-based inorganic material 15 to 45% by mass, E glass powder 1 to 15% by mass containing B 2 O 3 as a vitreous material, aggregates 20 to 45% by mass, wollastonite 15 to 35% by mass as reinforcing fibers 1 to 15% by mass of E glass powder containing 15 to 45% by mass of a cement-based inorganic material and B 2 O 3 as a vitreous material, and 0 to 30 aggregates. wt%, wollastonite 2 5 weight to 30% by weight as a reinforcing fiber, characterized in that the combustible organic component and / or core layer a cured fired layer of the raw material mixture containing an inorganic lightweight material 15 to 30 wt% Lightweight inorganic board. セメント系無機材料15〜45質量%、ガラス質含有材料としてB23を含有するEガラス粉末1〜15質量%、骨材20〜45質量%、補強繊維としてワラストナイト15〜35質量%を含有する表裏層用原料混合物を基板上に散布して表層または裏層マットをフォーミングし、セメント系無機材料15〜45質量%、ガラス質含有材料としてB23を含有するEガラス粉末1〜15質量%、骨材0〜30質量%、補強繊維としてワラストナイト2〜30質量%、可燃性有機成分および/または無機質軽量体15〜30質量%を含有する芯層用原料混合物を該表層または裏層マット上に散布して芯層マットをフォーミングし、更に該表裏層用原料混合物を該芯層マット上に散布して裏層または表層マットをフォーミングし、このようにして得られた3層構造のマットを水分存在下に圧締養生硬化させることによって生板とし、該生板を焼成することを特徴とする請求項1に記載の軽量無機質板の製造方法。 Cement-based inorganic material 15 to 45% by mass, E glass powder 1 to 15% by mass containing B 2 O 3 as a vitreous material, aggregates 20 to 45% by mass, wollastonite 15 to 35% by mass as reinforcing fibers An E glass powder 1 containing 15 to 45% by mass of a cement-based inorganic material and B 2 O 3 as a vitreous material is formed by spreading a raw material mixture for front and back layers on the substrate to form a surface layer or a back layer mat. A raw material mixture for a core layer containing 15 to 30% by mass, 0 to 30% by mass of aggregate, 25 to 30% by mass of wollastonite as a reinforcing fiber, and 15 to 30% by mass of a combustible organic component and / or an inorganic lightweight body. The core layer mat is formed by spraying on the front layer or the back layer mat, and the raw material mixture for the front and back layers is further sprayed on the core layer mat to form the back layer or the surface layer mat. Method for producing a lightweight inorganic board according to claim 1, characterized in that to a raw plate by pressing cure cured mat having a three-layer structure obtained in the presence moisture, calcining the organism plate. 上記焼成は温度が1150℃以上(1150℃を含む)1300℃以下(1300℃を含む)の範囲で10〜20分に設定される請求項2に記載の軽量無機質板の製造方法。 The said baking is a manufacturing method of the lightweight inorganic board of Claim 2 set to 10 to 20 minutes in the range whose temperature is 1150 degreeC or more (1150 degreeC included) 1300 degrees C or less (1300 degreeC included).
JP2005088248A 2005-03-25 2005-03-25 Light weight inorganic board and method for producing the light weight inorganic board Active JP4870371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088248A JP4870371B2 (en) 2005-03-25 2005-03-25 Light weight inorganic board and method for producing the light weight inorganic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088248A JP4870371B2 (en) 2005-03-25 2005-03-25 Light weight inorganic board and method for producing the light weight inorganic board

Publications (2)

Publication Number Publication Date
JP2006265063A JP2006265063A (en) 2006-10-05
JP4870371B2 true JP4870371B2 (en) 2012-02-08

Family

ID=37201408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088248A Active JP4870371B2 (en) 2005-03-25 2005-03-25 Light weight inorganic board and method for producing the light weight inorganic board

Country Status (1)

Country Link
JP (1) JP4870371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008637A (en) * 2015-06-24 2017-01-12 ケイミュー株式会社 Building board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168189A (en) * 1990-10-31 1992-06-16 Mitsubishi Heavy Ind Ltd High-temperature gasket
JP2579298B2 (en) * 1991-01-31 1997-02-05 ニチハ株式会社 Method for producing porous cement molding
JP2000109380A (en) * 1998-10-01 2000-04-18 Nichiha Corp Lightweight inorganic board
JP2001205608A (en) * 2000-01-27 2001-07-31 Nichiha Corp Method for manufacturing woody cement board
JP4318403B2 (en) * 2001-03-06 2009-08-26 ニチアス株式会社 Manufacturing method of ceramic plate
JP4343617B2 (en) * 2003-08-12 2009-10-14 ニチハ株式会社 Lightweight inorganic board and method for producing the inorganic board

Also Published As

Publication number Publication date
JP2006265063A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
KR101279881B1 (en) Slag brick coated with glaze composition and method for manufacturing the same
JP5173208B2 (en) Method for producing inorganic fired body
JP6350703B2 (en) Large ceramic plate and manufacturing method thereof
JP4343617B2 (en) Lightweight inorganic board and method for producing the inorganic board
JP4870371B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP2000281424A (en) Lightweight nonburned tile
JP4938234B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP2000063172A (en) Production of highly strong lightweight ceramic plate
JP4611073B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP4611074B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP4878734B2 (en) Manufacturing method of inorganic board
JP4611071B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
JP4488404B2 (en) Porous sintered pavement material and manufacturing method thereof
JP4870333B2 (en) Manufacturing method of inorganic board
JP4673556B2 (en) Manufacturing method of lightweight inorganic board
JP4870334B2 (en) Inorganic board
JP4684608B2 (en) Manufacturing method of inorganic board
JP4570429B2 (en) Manufacturing method of inorganic board
KR100446091B1 (en) sinter brick in contained copper slag
KR101153343B1 (en) Manufacturing process of ceramic materials using stone-dust and ceramic manufactures made by pottery molding type using ceramic materials
JP2005082407A (en) Method of producing inorganic board
JP2709744B2 (en) Method of manufacturing ceramic products
DK177125B1 (en) Plastic mass for the manufacture of tile element
KR100940869B1 (en) Clay Bricks for Interior Using Stone Sludge and Methods for Preparing Thereof
JP2005272235A (en) Calcium sulfoaluminate based composition and method of manufacturing hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3