JPH11147101A - プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法 - Google Patents

プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法

Info

Publication number
JPH11147101A
JPH11147101A JP30853897A JP30853897A JPH11147101A JP H11147101 A JPH11147101 A JP H11147101A JP 30853897 A JP30853897 A JP 30853897A JP 30853897 A JP30853897 A JP 30853897A JP H11147101 A JPH11147101 A JP H11147101A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
less
rolling
rmax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30853897A
Other languages
English (en)
Inventor
Chikako Fujinaga
千香子 藤長
Takaaki Hira
隆明 比良
Osamu Furukimi
古君  修
Takashi Obara
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30853897A priority Critical patent/JPH11147101A/ja
Publication of JPH11147101A publication Critical patent/JPH11147101A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

(57)【要約】 【課題】 熱延後、酸洗して使用される、プレス成形加
工用の使途に好適な熱延鋼板およびその製造方法を提案
する。 【解決手段】 熱間仕上圧延の最終スタンドのロールを
所定の表面粗さを有するロールとし、最終スタンドでの
圧下率、仕上圧延温度、巻取り温度を制御し、熱延板の
表面粗さを調整する。あるいは熱間仕上圧延後に急冷処
理を施し、スケール厚さを薄くして調質圧延を施す。こ
れにより、酸洗後の鋼板の表面粗さを、Ra: 1.3μm以
下、Rmax:5.0 μm 以上、Rv(μm)とRmax(μm)と
の比、Rv/Rmax>0.50、平滑化率:30%以下とし、降伏
強さYS:35kgf/mm2 以下とする。これら鋼板では、摩擦
係数が低下し、プレス成形性、耐型かじり性が改善され
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は熱延鋼板とその製造
方法に係り、とくに熱延後、酸洗して使用され、プレス
成形性および耐型かじり性が良好であり、成形加工用の
使途に好適な熱延鋼板およびその製造方法に関する。
【0002】
【従来の技術】一般に、熱延鋼板は連続鋳造法あるいは
造塊法によって得た素材を熱間圧延して製造されてい
る。これら熱延鋼板は、冷間圧延用素材として利用され
るか、あるいは熱延のままで使用されている。最近、製
品コストを低減させる方策として、従来冷延鋼板が用い
られていた部位に熱延鋼板を使用しようとする動きがあ
る。特に自動車分野において、板厚1.2mm 以下の冷延鋼
板が使用されているプレス部位に、より低コストの熱延
鋼板を使用しようとする試みがある。最近の圧延技術の
進歩により、薄い冷延鋼板と競合し得る熱延鋼板が製造
できるようになってきているが、一般に、熱延鋼板はr
値(ランクフォード値)が1よりも小さく、冷延鋼板に
比べて加工性に劣るため、冷延鋼板に替えて熱延鋼板を
使用するには、熱延鋼板の加工性の改善が必要となる。
【0003】加工性を改善するため、鋼板の表面粗度を
適切に調整してプレス成形性を改善し、大きなコストア
ップを伴うことなく、加工性を向上しようとする技術
が、冷延鋼板を主体とする技術において、いくつか提案
されている。例えば、特開平6-99202 号公報には、連続
焼鈍されたプレス用薄鋼板において、引張強さTSが35〜
70kgf/mm2 、降伏強さYSが20kgf/mm2 以上であり、鋼板
の少なくとも片面において、十点平均粗さRzとYSが、26
0/YS−4≦Rz≦260/YSを満足し、かつ中心線平均粗さRa
とYSが、12/YS +0.3 ≦Ra≦12/YS +1.0 を満足するプ
レス成形性に優れた高張力薄鋼板が提案されている。
【0004】一方、熱延鋼板においても、簡単な表面粗
さ調整を行うことにより加工性を改善しようとする提案
がある。例えば、特開平9-118918号公報には、鋼板の少
なくとも一方の面の表面粗さがRa 0.8μm 以下、Rmax
4.0μm 以下およびRv/Rmax 0.7以下であることを特徴
とする摺動性および延性に優れた熱延鋼板が開示されて
いる。さらに同公報には、鋼素材を熱間粗圧延し、得ら
れたシートバーの少なくとも一方の面に、衝突圧25kgf/
cm2 以上の超高圧デスケーリングを施し、ついで熱間仕
上げ圧延、酸洗を経たのち、伸び率0.8 %以下の調質圧
延を行うことを特徴とする熱延鋼板の製造方法が開示さ
れている。また、特開昭60−234922号公報には、熱間圧
延後コイルに巻取った熱延鋼板を、酸洗後、圧下率1〜
5%で調質圧延し、鋼板の表面粗さRaを0.5 〜1.3 μm
に調整することを特徴とする板厚1.2 〜4mmのプレス成
形性の優れた熱延鋼板の製造法が開示されている。
【0005】
【発明が解決しようとする課題】特開平6-99202 号公報
に記載された技術は、スキンパス圧延において、非常に
高度にパターン制御された圧延ロールを用い、得られる
冷延鋼板の表面粗さを厳密に制御して良好な摺動性を確
保し、加工性を改善しようとするものである。しかしな
がら、この技術は、主に冷延鋼板、表面処理鋼板のよう
にスキンパス圧延前の鋼板の表面粗さが小さく、スキン
パス圧延ロールの表面粗さを正確に鋼板に転写できる場
合に限定されている。この技術を熱延鋼板に適用して
も、熱延鋼板では熱間圧延中にスケールの押し込み等に
より鋼板の表面粗さが大きくなっており、スキンパス圧
延ロールの表面粗さを正確に鋼板に転写できず、スキン
パス圧延による高度の表面粗さ調整が困難となる。
【0006】また、特開平9-118918号公報に記載された
技術で製造された鋼板は、表面粗さRa、Rmaxがともに低
減しているため、自動車内板のような大きな加工量を伴
う成形を行う場合には、変形量の大きな部分でかじりが
発生しやすく、それに伴う割れが生じる場合があり問題
として残されていた。一方、特開昭60−234922号公報に
記載された技術は、酸洗後の調質圧延によりRaを適正範
囲に低減し型かじりを防止し、熱延鋼板の加工性を改善
しようとする提案である。しかしながら、熱延時に得ら
れた粗い表面粗度を有する鋼板に、単に酸洗後に調質圧
延を施し、鋼板表面のRaを低減しただけでは、摺動性が
十分でなく、プレス成形性に劣るものしか得られなかっ
た。これは、調質圧延によって、凸部の潰された部分が
非常に平滑となり、プレス時に金型と直接接触しやす
く、摩擦抵抗が大きくなったためと考えられた。
【0007】本発明は以上のような問題に鑑み、熱延
後、酸洗して使用される用途に好適な、プレス成形性お
よび耐型かじり性に優れ、加工性の良好な熱延鋼板を提
供することを目的とするものである。
【0008】
【課題を解決するための手段】本発明者らは、上記した
課題を解決するため、プレス成形性に影響する要因につ
いてまず検討した。本発明者らは、良好なプレス成形性
を確保するためには、プレス成形時、特にコーナ部のよ
うに面圧が高く表面の変形量の多い部分では、鋼板の表
面凹部と金型との間に潤滑油が封じ込められ、これが成
形時に鋼板と金型が直接接触している面に供給されるこ
とが重要であり、表面粗さRaが同じであるならば、比較
的深い谷と、平坦な高原部を有しプレス金型と鋼板との
接触面積が広い表面状態とすれば、潤滑油の封じ込めが
起こりやすく、摩擦抵抗の低減が期待できることに思い
到った。このような表面状態は、中心線谷深さRv(μ
m)と最大高さRmax(μm)との比、Rv/Rmax>0.50と
することにより得られる。
【0009】しかし、酸洗後の調質圧延により、このよ
うな比較的深い谷と平坦な高原部を有し、Rv/Rmax>0.
50とする粗度パターンを得ても、プレス成形性が悪くな
る場合が多い。この平坦な高原部上での保油力が非常に
小さいため、とくに、プレス成形時のフランジ部のよう
に、面圧が低い部分では金型との接触面に油切れが起こ
りやすくプレス成形性が悪くなるものと考えられる。低
面圧部では、油の封じ込め効果が小さく、金型−鋼板接
触面への凹部からの潤滑油の供給が起りにくい。
【0010】そこで、平坦な高原部での保油力を確保す
るためには、平坦な高原部を酸洗のままのエッチピット
のような微細な凹凸を有する面とすることが有効である
のではないかとの着想のもと、本発明者らは、更なる検
討を行った。鋼板表面を観察すると、調質圧延無しの酸
洗のままの鋼板には、エッチピット状の非常に微細な凹
凸が存在するが、酸洗後に調質圧延を施した鋼板には、
この微細な凹凸が潰れ消失している。本発明者らは、こ
の微細な凹凸の消失がプレス成形性に対し重要な影響を
与えていると考え、微細な凹凸の消失度合いを評価する
ための手段を考えた。
【0011】鋼板表面を光学顕微鏡で観察すると、非常
に微細な凹凸が多数存在する部分は黒く見え、微細な凹
凸が潰されてしまった部分は白く見える。この現象を利
用し、微細な凹凸が潰れた白く見える部分を平滑化した
領域とし、以下のような方法で平滑化率を測定した。鋼
板表面を光学顕微鏡で倍率50倍で観察し、鋼板表面の光
学顕微鏡写真を撮影し、この写真を画像解析装置にか
け、濃度ヒストグラムを作製する。この場合、微細な凹
凸が潰されて白く見える部分は濃度が高く、微細な凹凸
が多数存在する黒く見える部分は濃度が低いものとす
る。このヒストグラムにおける最も濃度の高い値(A)
と最も濃度の低い値(B)の中央値((A+B)/2)
をしきい値として2値化し、濃度の高い部分(すなわ
ち、微細な凹凸が潰されて白く見える白色部)の面積率
を求め、平滑化率とした。
【0012】平滑化率が低く、平坦な高原部上に微細な
凹凸が存在する場合には、微細な凹凸中に保持された潤
滑油により良好なプレス成形性を確保することができ、
平坦な高原部上にこの微細な凹凸が存在しない場合に
は、低面圧部で油切れが起こりやすくなり、接触部での
摩擦抵抗が大きく摺動性が劣化したためプレス成形性が
悪くなったと考えられる。
【0013】なお、酸洗後、調質圧延を行わず、平坦な
高原部上の保油力が確保できている状態では、平滑化率
は30%を超えることはなかったが、0.5 %程度の軽圧下
でも酸洗後に調質圧延を行うと平滑化率は50%以上の大
きな値となった。さらに、本発明者らは、熱延鋼板に冷
延鋼板と同等以上の加工性を付与する方法について検討
した。
【0014】まず、熱延条件により種々に表面粗さを変
化させた、板厚1.2mm 、YS:28kgf/mm2 の酸洗済み熱延
鋼板に、18cSt の防錆油を潤滑油として塗油し、冷延鋼
板の限界絞り比(LDR )で成形した場合の成形の可否を
調査した。その結果を成功(○)、割れ発生(×)で表
し、表面粗さ、平滑化率とあわせて表1に示す。なお、
冷延鋼板のLDR は平均r値:1.2 および1.4 、YS:28kg
f/mm2 、Ra:1.1 μmのショットダル仕上の板厚1.2mm
の冷延鋼板を用い、表面に潤滑油として18cStの防錆油
を塗油し、ポンチ径50mmφで種々のブランク径で円筒深
絞り成形を行い、破断せずに絞り抜けた時の最大ブラン
ク径を求め、この最大ブランク径をポンチ径で割った値
を用いた。今回用いた冷延材のLDR は2.0 (平均r値:
1.2 の鋼板)、2.2 (平均r値:1.4 の鋼板)であっ
た。冷延鋼板の表面粗さをあわせて表1に示す。
【0015】
【表1】
【0016】表1から、Rv/Rmax>0.5 、平滑化率を30
%以下、Raを1.3 μm 以下とすることにより同等の強度
を有するr値1.2 の冷延鋼板並み以上の深絞り性を有す
る熱延鋼板とすることができ、また、Raを0.8 μm 以下
とすることにより、同等の強度を有するr値1.4 の冷延
鋼板並以上の深絞り性を有する熱延鋼板とすることがで
きることがわかる。
【0017】Rv/Rmax>0.5 、平滑化率を30%以下と
し、Raを低減することにより、成形性が向上した原因と
しては、フランジ部の摩擦抵抗が小さくなるとともに、
大きな面圧のかかる絞りダイス部での摩擦抵抗も小さ
く、深絞り成形時に破断危険部にかかる荷重が小さくな
ったことが考えられる。なお、表1からは、Raが小さい
ほど摩擦抵抗が小さく、成形性は良好であることがわか
る。
【0018】さらに、本発明者らは、鋼板の特性と摩擦
係数の関係を種々検討し、摩擦係数には表面粗さパター
ン、表面粗さに加え、降伏強さが影響することを知見し
た。すなわち、降伏強さが大きいと表面の変形が起こり
にくくなり、油の封じ込め効果が得にくく、加工性が低
下する。本発明の効果は、降伏強さが35kgf/mm2 以下の
鋼板においてとくに有効である。
【0019】なお、熱延鋼板ではRaを低減すると型かじ
りが発生しやすくなるが、Rmaxを5.0 μm 以上とすれば
問題なくなることを知見した。また、本発明者らは、Rv
/Rmax>0.5 、平滑化率を30%以下とする表面粗度調整
の手段として、酸化スケール付きのまま圧延を行うこと
を思い至った。従来、スケールをつけたままで圧延する
と、例えば特開昭60−234922号公報に開示されているよ
うに、表面粗度を小さくする効果が少ない上に、スケー
ルの噛み込み疵が生じ、表面の荒れがかえって大きくな
ると考えられていた。
【0020】しかしながら本発明者らが種々検討した結
果、熱間圧延において比較的スケールの薄い仕上圧延最
終段階で粗度を調整するか、あるいは熱間圧延により形
成されるスケール厚を薄くしたのち、スケール付きのま
まで調質圧延することにより、粗度を調整することが可
能であることを見いだした。とくに、調質圧延により適
正に粗度調整を行った後、酸洗することにより、Rv/Rm
ax>0.5 、平滑化率:30%以下、Ra: 0.8μm以下でRm
ax:5μm 以上となり、とくにプレス成形性に優れさら
に耐型かじり性に優れた熱延鋼板を製造することができ
ることを新たに知見した。
【0021】従来、Raを0.8 μm 以下とするには、酸洗
後に調質圧延を行うか、あるいは特開平9-118918号公報
に開示されているように超高圧デスケーリング設備が必
要と考えられていた。しかし、酸洗後に調質圧延を行う
方法では、平滑化率が大きくなり摺動性が低下してしま
う。また、特開平9-118918号公報に開示された技術で
は、摺動性は良好であるが、Rmaxが4μm 以下と小さ
く、とくに加工が厳しい部分での型かじり性が問題とな
ることがあった。
【0022】この点について、本発明者らは種々検討
し、スケール付きのままで調質圧延を行うことにより、
効率よくプレス成形性、耐型かじり性に優れた熱延鋼板
を製造することができることを見いだした。本発明は、
上記した知見をもとに、さらに検討を加え、構成された
ものである。
【0023】すなわち、請求項1に記載の本発明は、酸
洗後の鋼板の表面粗さが、中心線平均粗さRa: 1.3μm
以下、最大高さRmax:5.0 μm 以上、中心線谷深さRv
(μm)と最大高さRmax(μm)との比、Rv/Rmax:0.
50超、平滑化率:30%以下で、かつ鋼板の降伏強さYSが
35kgf/mm2 以下であることを特徴とするプレス成形性お
よび耐型かじり性に優れた熱延鋼板である。
【0024】また、請求項2に記載の本発明は、酸洗後
の鋼板の表面粗さが、中心線平均粗さRa: 0.8μm以
下、最大高さRmax:5.0 μm 以上、中心線谷深さRv(μ
m)と最大高さRmax(μm)との比、Rv/Rmax:0.50
超、平滑化率:30%以下で、かつ鋼板の降伏強さYSが35
kgf/mm2 以下であることを特徴とするプレス成形性およ
び耐型かじり性に優れた熱延鋼板である。
【0025】また、請求項3に記載の本発明は、鋼素材
に、仕上最終スタンドのロールを表面粗さRa:3μm 以
下のロールとして、該仕上げ最終スタンドでの圧下率を
10〜20%、仕上圧延温度FDT を800 ℃以上870 ℃以下に
制御する熱間仕上圧延を施し熱延板としたのち、700 ℃
以下の温度で巻取ることを特徴とするプレス成形性およ
び耐型かじり性に優れた熱延鋼板の製造方法である。な
お、熱間圧延後、酸洗前に調質圧延を行う場合には、調
質圧延の圧下率は1%以下とするのが好ましい。本発明
では、熱延板に調質圧延を施したのち、酸洗を施す。
【0026】また、請求項4に記載の本発明は、鋼素材
に熱間圧延を施し熱延板とする際に、該熱延板表面のス
ケール層厚みを4μm以下に調整したのち、ブライトロ
ールによる調質圧延を施すことを特徴とするプレス成形
性および耐型かじり性に優れた熱延鋼板の製造方法であ
る。なお、本発明では、熱延板に調質圧延を施したの
ち、酸洗を施す。
【0027】また、請求項5に記載の本発明は、鋼素材
に、仕上圧延温度FDT を800 ℃以上に制御する熱間仕上
圧延を施し熱延板とし、該熱間仕上圧延終了後0.5sec以
内に冷却を開始し700 ℃以下まで急冷する急冷処理を施
し、700 ℃以下の温度で巻取り、その後ブライトロール
で圧下率:1〜6%の調質圧延を施すことを特徴とする
プレス成形性および耐型かじり性に優れた熱延鋼板の製
造方法である。なお、本発明では、熱延板に調質圧延を
施したのち、酸洗を施す。
【0028】なお、本発明における鋼素材は、重量%
で、C:0.015 〜0.2 %、Si:0.5 %以下、Mn:0.05〜
2.0 %、P:0.05%以下、S:0.05%以下、Al:0.01〜
0.1 %、N:0.01%以下を含み、残部Feおよび不可避的
不純物からなる組成とするのが好ましい。
【0029】
【発明の実施の形態】本発明の熱延鋼板は、酸洗後の表
面粗さが、中心線平均粗さRa: 1.3μm以下、最大高さ
Rmax:5.0 μm 以上、中心線谷深さRv(μm)と最大高
さRmax(μm)との比、Rv/Rmax:0.50超え、平滑化
率:30%以下、かつ降伏強さYSが35kgf/mm2 以下の鋼板
である。なお、本発明の熱延鋼板には、酸洗後の鋼板表
面が上記した表面粗さとなる黒皮付熱延鋼板が含まれる
ことはいうまでもない。
【0030】中心線平均粗さRa: 1.3μm以下、あるい
は0.8 μm 以下 Raは小さい方がプレス成形時の摩擦係数が小さくなり、
プレス成形性は良好となるが、Raが1.3 μmを超えて大
きくなると、r値1.2 を有する冷延鋼板並みの加工性を
確保できないため、Raは1.3 μm 以下に限定した。な
お、耐型かじり性を確保するため、Raは0.2 μm 以上と
するのが好ましい。また、r値1.4 を有する冷延鋼板並
みの加工性を確保する場合には、Raは0.8 μm 以下に限
定するのが好ましい。
【0031】最大高さRmax:5.0 μm 以上 Rmaxは、良好な耐型かじり性の確保のために、5.0 μm
以上とする。Rmaxが5.0 μm 未満では、型かじり発生ま
での摺動距離が短く、耐型かじり性が劣化する。このた
め、Rmaxは、5.0 μm以上に限定した。 中心線谷深さRv(μm)と最大高さRmax(μm)との
比、Rv/Rmax>0.50 Rv/Rmaxが0.5 以下では、プレス成形時、特にコーナ部
のように面圧が高く表面の変形量の多い部分で、鋼板の
表面凹部と金型との間に封じ込められる潤滑油量が少な
くなる。このため、摺動時に鋼板と金型が直接接触して
いる面に供給される潤滑油量が減少し、摺動性が劣化し
プレス成形性が低下する。このため、Rv/Rmaxを0.5 超
えに限定した。
【0032】平滑化率:30%以下 平滑化率が30%を超えると、成形中にミクロな油溜まり
の役割を果たす微細な凹凸が減少し、プレス成形時の接
触面積が非常に大きくなり、接触部での摩擦抵抗が大き
くなり、良好なプレス成形性が確保できない。このよう
なことから、平滑化率は30%以下に限定した。
【0033】平滑化率は次のようにして求める。鋼板表
面を光学顕微鏡で観察すると、非常に微細な凹凸が多数
存在する部分は黒く見え、微細な凹凸が潰されてしまっ
た部分は白く見える。この現象を利用し、以下のような
方法で平滑化率を測定する。鋼板表面を光学顕微鏡で倍
率50倍で観察し、鋼板表面の光学顕微鏡写真を撮影す
る。この写真を画像解析装置にかけ、濃度ヒストグラム
を作製する。この場合、微細な凹凸が潰されて白く見え
る部分は濃度が高く、微細な凹凸が多数存在する黒く見
える部分は濃度が低いものとする。このヒストグラムに
おける最も濃度の高い値(A)と最も濃度の低い値
(B)の中央値((A+B)/2)をしきい値として2
値化し、濃度の高い部分(すなわち、微細な凹凸が潰さ
れて白く見える白色部)の面積率を求め、平滑化率とす
る。
【0034】鋼板の降伏強さYS:35kgf/mm2 以下 YSが、大きいと表面の変形が起こりにくくなり、油の封
じ込め効果が低下し、プレス成形性が低下するため、35
kgf/mm2 以下に限定した。なお、板厚が薄いほど、成形
性にr値が寄与するため、従来とくに板厚2.0mm以下の
冷延鋼板並みのプレス成形性を有する熱延鋼板を得るの
は困難であった。したがって、本発明は、板厚2.0mm 以
下より好ましくは1.2mm 以下の鋼板において有効であ
る。
【0035】次に、本発明の鋼板の好ましい鋼組成につ
いて説明する。 C:0.015 〜0.2wt % C量が0.2wt %を超えると、降伏強さが増加するほか、
スケールと地鉄の界面にCOガスを発生して圧延途中にス
ケール疵の原因となる。また、Raが大きくなり、外観不
良となりやすいため、C量の上限は0.2wt %とした。一
方、C量が少ないと、Ar3 変態点が上昇し、熱間圧延を
困難として形状不良を引き起こしやすくなる。したがっ
てC量の下限を0.015wt %とした。
【0036】Si:0.5wt %以下 Siは多量に存在すると高温で剥離しにくいスケールを形
成し、表面疵の原因となり、熱延条件を本発明範囲内と
してもRaを1.3 μm 以下、もしくは0.8 μm 以下とする
ことが難しくなるため、できるだけ低減するのが望まし
いが、0.5wt %まで許容できる。したがってSi量の上限
を0.5wt %とした。
【0037】Mn:0.05〜2.0wt % Mnは熱間加工時の脆化の原因となる固溶SをMnS として
無害化するため積極的に添加する。しかし、その添加量
が多いと、スケールを安定化し、表面疵を発生させやす
くなる。そのため、Mn量は0.05〜2.0wt %の範囲に限定
した。 P:0.05wt%以下 Pは多量に存在すると粒界脆化を引起こすため、できる
だけ低減するのが好ましいが、0.05wt%までは許容でき
るため、上限を0.05wt%とする。なお、現状の精錬技術
では0.001wt %以下に低下させるには、製鋼コストが著
しく増大するので、下限は0.001wt %とするのが好まし
い。
【0038】S:0.05wt%以下 Sは熱間加工性や靱性を著しく劣化させる元素である。
S含有量が0.05wt%を超えるとこれらの効果が大きくな
るので、0.05wt%以下、好ましくは0.02wt%以下とす
る。なお、現状の精錬技術では0.001wt %以下に低下さ
せるには製鋼コストが著しく増大するので、下限は0.00
1wt %とする。
【0039】Al:0.01〜0.1wt % Alは脱酸剤として添加されるが、0.01wt%に満たないと
効果がなく、一方、0.10wt%を超えて添加してもコスト
アップとなるばかりか鋼板を脆化させるので、0.01〜0.
1wt %とする。 N:0.01wt%以下 Nは鋼板中に多量に存在すると、延性を低下させるため
できるだけ低減するのが好ましいが、0.01wt%までは許
容できるため、上限を0.01wt%とする。また、0.001wt
%以下とするには製鋼上のコストが著しく増大するの
で、下限を0.001wt %とする。
【0040】上記した組成範囲内であれば、通常の条件
の熱間圧延により降伏強さ35kg/mm2以下の熱延板とする
ことができる。つぎに、本発明の熱延鋼板の製造条件に
ついて説明する。上記した組成の鋼素材を加熱し、熱間
圧延により所定の寸法の熱延板とする。鋼素材の加熱は
完全な溶体化処理がなされればよく、とくに限定する必
要はないが、Ac3 点以上に加熱されるのが好ましく、通
常のスラブ加熱温度範囲である1050〜1250℃が好適であ
る。
【0041】なお、鋼素材の冷却を伴わず、熱延前の温
度がAc3 点以上を確保できる場合には、鋳造後直接圧延
を行ってもよいのはいうまでもない。熱間圧延は、所定
の寸法の熱延板とするため、通常、粗圧延によりシート
バーとしたのち、仕上圧延により所定の寸法の熱延板と
するのが好ましいが、粗圧延を行わなくてもよいのはい
うまでもない。
【0042】本発明は、Ac3 点以上の温度の鋼素材を熱
間仕上圧延するにあたり、熱間仕上圧延の仕上最終スタ
ンドのロールを表面粗さRa:3μm 以下のロールとし
て、該仕上げ最終スタンドでの圧下率を10〜20%、仕上
圧延温度FDT を800 ℃以上870℃以下に制御する。この
ような熱間仕上圧延の制御により、酸洗後の鋼板表面粗
さが、Ra: 1.3μm以下、最大高さRmax:5.0 μm 以
上、中心線谷深さRv(μm)と最大高さRmax(μm)と
の比、Rv/Rmax:0.50超え、かつ平滑化率:30%以下と
なる。
【0043】仕上圧延温度FDT は、できるだけ低いほう
が表面粗さRaを小さくでき、プレス成形性を向上させ
る。しかし、870 ℃を超えると、表面粗さが大きくな
り、Raを1.3μm以下とすることが難しくなる。一方、8
00 ℃未満では、鋼板の形状が悪くなるとともに、スケ
ールの延性も低下し、好適な表面粗さパターンが得にく
くなる。このためFDT は800 〜870 ℃とした。
【0044】仕上圧延最終スタンドの圧下率が20%より
も大きい場合には、熱延ロールの粗度転写、スケールの
押し込み等によりRaが大きくなり、表面粗さパターンの
Rv/Rmax>0.50を満足できなくなる。一方、圧下率が10
%未満では、前段以前の圧延の影響を大きく受け、表面
粗さパターンのRv/Rmaxが望ましい範囲に調整できな
い。このため、仕上圧延最終スタンドの圧下率を10〜20
%の範囲に限定した。
【0045】仕上圧延最終スタンドのロール粗度が重要
であり、ロール粗度がRa:3μm を超えて大きくなりす
ぎると、鋼板のRaが大きくなり、またRv/Rmaxが望まし
い範囲に調整できない。このため、仕上圧延最終スタン
ドのロール粗度はRaで3μm以下とした。熱間仕上圧延
を施し熱延板としたのち、700 ℃以下の温度で巻取る。
【0046】巻取温度が700 ℃を超えると巻取り後のス
ケール成長が著しく、酸洗効率が非常に悪くなる。この
ため、酸洗時に部分的に過剰酸化となり、地鉄の粗度が
目標値を外れることがある。また、巻取温度が低すぎる
と鋼板形状が悪くなるため、400 ℃以上とするのが好ま
しい。このため、巻取温度は700 ℃以下、好ましくは70
0 ℃〜400 ℃である。
【0047】以上のように熱間圧延および巻取処理まで
された熱延板は、調質圧延等を施されたのち、酸洗によ
りスケール剥離される。酸洗に先立つ調質圧延は、1%
以下の圧下率とするのが好ましい。調質圧延の圧下率が
1%を超えると圧延による不規則なスケールの押し込み
等により熱延により得られた表面粗さパターンが破壊さ
れることがある。このため、特別な要求がない限り、ス
キンパス圧下率は1%以下とすることが好ましい。
【0048】なお、上記した熱延条件内であれば、Rmax
5.0μm 以上は確保される。また、本発明では、通常行
われているように、テンションレベラによる形状矯正を
付与することも可能である。また、本発明におけるスケ
ール剥離の目的で行う酸洗は、通常公知の条件で行えば
よく、とくに限定する必要はないが酸洗条件としては、
例えば85℃−10%塩酸を使用するのが好ましい。
【0049】r値1.4 の冷延鋼板並みの加工性を有す
る、とくにプレス成形性に優れさらに耐型かじり性に優
れた熱延鋼板は、上記したように、酸洗後の鋼板の表面
粗さが、中心線平均粗さRa: 0.8μm以下、最大高さRm
ax:5.0 μm 以上、中心線谷深さRv(μm)と最大高さ
Rmax(μm)との比、Rv/Rmax:0.50超、平滑化率:30
%以下で、かつ降伏強さYS:35kgf/mm2 以下である鋼板
とするのが好ましい。このような表面粗さの鋼板は、鋼
素材に、仕上最終スタンドのロールを表面粗さRa:3μ
m 以下のロールとして、該仕上げ最終スタンドでの圧下
率を10〜20%、仕上圧延温度FDT を800 ℃以上830 ℃以
下に制御する熱間仕上圧延を施し熱延板とすることによ
り製造できる。熱延板の巻取り以降の条件は上記したプ
レス成形性および耐型かじり性に優れた熱延鋼板の製造
方法と同様でよい。しかし、この製造方法では、FDT の
温度範囲が狭く、かつ歩留りがやや低下するという問題
がある。
【0050】そこで、とくにプレス成形性に優れさらに
耐型かじり性に優れた熱延鋼板を、歩留りよく製造する
には、スケール厚さを薄くし、酸洗前に高圧下率の調質
圧延を行うのが好ましい。まず、調質圧延におけるスケ
ール厚みの影響について説明する。9μm、4μmのス
ケール厚を有する降伏強さYS:24kgf/mm2 の熱延鋼板
に、ブライトロール(Ra:0.2 μm)で調質圧延を行
い、次いで酸洗したのちの、表面粗さRaと調質圧延の圧
下率との関係を図1に示す。
【0051】図1から、スケール厚9μm(通常のスケ
ール厚さ)場合には、調質圧延を行ってもRaは変化せ
ず、小さくならない。これは従来のようにスケール厚の
厚い場合には、調質圧延を行っても、スケールが不規則
に変形するためRaを小さくすることはできないのであ
る。一方、スケール厚4μmの場合には、Raは圧下率の
増加とともに小さくなる。調質圧延によりブライトロー
ルの粗度を転写をでき、Raは圧下率の増加とともに小さ
くなる。すなわち、薄スケール化して、調質圧延を施せ
ば、ロールの粗度の転写率を大きくすることができ、Ra
を小さくすることができたものと考えられる。
【0052】図1から、スケール厚さを4μm 以下と薄
くして、ブライトロールによる調質圧延を施せば、表面
粗さRaを効率よく調整することができる。また、スケー
ル厚さを4μm 以下と薄くして、調質圧延の圧下率を1
〜6%とすることにより、Ra: 0.8μm以下、Rmax:5.
0 μm 以上とすることができる。なお、調質圧延に用い
るブライトロールの表面粗さはRaで0.5 μm 以下とする
のが好ましい。調質圧延の圧下率が1%未満では、Ra、
Rv/Rmaxの粗度パターンを所定の範囲に調整するのが難
しい。なお、好ましくは、圧下率を2%以上とすること
により、より効率よくRaを小さくできる。一方、圧下率
が6%を超えると強度が増加し延性が低下して、加工性
の劣化が著しくなるうえ、Rmaxを5.0 μm以上とするこ
とが困難となる。したがって、調質圧延の圧下率は1%
〜6%とするのが好ましく、より好ましくは2%〜6%
である。
【0053】調質圧延後、酸洗してスケール剥離を行
う。また、スケール厚4μm以下の薄スケール化した熱
延鋼板を製造するためには、FDT を800 ℃以上として、
熱間仕上圧延終了後0.5sec以内に冷却を開始し700℃以
下まで急冷する急冷処理を施してもよい。この場合、熱
延条件は、酸洗前の調質圧延により粗度パターンを調整
することができるため、鋼板形状を確保するために、FD
T を800 ℃以上とすればよい。FDT は低いほどスケール
厚を薄くすることができる。しかし、FDT が900 ℃を超
えるとスケール疵が発生しやすくなるため、FDT は好ま
しくは900 ℃以下とする。なお、粗度パターンをより精
度よく調整するためには、FDT を800 ℃以上870 ℃以下
とし、仕上げ最終スタンドでの圧下率を10〜20%とする
のがより好ましい。
【0054】また、冷却開始が、圧延終了後0.5secを超
えて遅くなると、スケール生成が著しくなる。急冷処理
を行う温度範囲はスケールの成長が速い700 ℃までの温
度範囲とする。急冷終了温度が700 ℃を超えると、スケ
ール生成が著しくなる。なお、急冷の冷却速度は40℃/
sec 以上とするのが好ましい。本発明では、スケール厚
み4μm 以下の薄スケール熱延板とする方法は、上記し
た巻取りまでの冷却速度制御の他に、例えば熱延後、巻
き取るまでの間を雰囲気制御し、かつ熱間仕上げ圧延の
出側速度で800 m/min 以上の高速通板を行いスケールの
付着を少なくする、スケール制御の方法も好適に適用で
きる。なお、この場合熱間圧延前後の工程は常法もしく
は上記した条件でよい。
【0055】
【実施例】(実施例1)表2に示す組成の鋼スラブを、
表3に示す熱間仕上圧延条件で熱間圧延を行い熱延板と
したのち、該熱延板に調質圧延を施し、酸洗したこれら
熱延鋼板について、表面粗さ、降伏強さ、プレス成形
性、型かじり性の調査を行った。
【0056】
【表2】
【0057】
【表3】
【0058】各特性の試験方法を下記に示す。 (1)表面粗さ 表面粗さは、JIS B 0601に準拠して、中心線平均粗さR
a、最大高さRmaxを求めた。また中心線谷深さRvは、断
面曲線の測定長さ内における最高の谷と中心線までの距
離(μm)を測定しRv(μm)とした。 (2)引張特性 JIS Z 2201に準拠して、引張試験を行い、降伏強さYS
を求めた。 (3)加工性 深絞り試験を行い、成形の可否を調査し、プレス成形性
を評価した。
【0059】深絞り試験の要領は下記の通りである。鋼
板に、18cSt の防錆油を潤滑油として塗油し、冷延鋼板
の限界絞り比(LDR)で成形した場合の成形の可否を調
査した。その結果を成功(○)、割れ発生(×)で表し
た。冷延鋼板のLDR は、平均r値:1.2 および1.4 、Y
S:28kgf/mm2、Ra:1.1 μmのショットダル仕上の板厚
1.2mm 冷延鋼板を用い、潤滑油として18cSt の防錆油を
塗油し、ポンチ径50mmφで種々のブランク径で円筒深絞
り成形を行い、破断せずに絞り抜けた時の最大ブランク
径を求め、この最大ブランク径をポンチ径で割った値、
2.0 (鋼板のr値:1.2 の場合)、2.2 (鋼板のr値:
1.4 の場合)を用いた。 (4)型かじり性 JIS G 4404に規定される冷間金型用鋼SKD11 製の治具を
用い、平均面圧20kgf/mm2 、引き抜き速度100mm/sec と
して供試材を押し付け、100mm の距離を引き抜く摺動試
験を、目視でかじりが発生するまで繰り返し行い、この
積算距離を求めた。この型かじりが発生するまでの積算
距離が長いものほど、耐型かじり性が良好として評価し
た。
【0060】各特性の調査結果を表4に示す。
【0061】
【表4】
【0062】表4より、FDT :800 〜870 ℃で、仕上最
終スタンドのロールをRa:3μm 以下とし、仕上最終ス
タンドの圧下率10〜20%とする熱間圧延を施し熱延板と
して、該熱延板に圧下率1%以下の調質圧延を施した本
発明範囲内の鋼板(本発明例)は、Raが1.3 μm 以下、
Rmaxが5.0 μm 以上、Rv/Rmax が0.50超え、平滑化率が
30%以下であり、プレス成形性が良好であった。
【0063】また、FDT が830 ℃である試験No.5は、Ra
が0.80となり、r値1.4 の冷延鋼板並みのとくに優れた
プレス成形性を有している。試験No.2は酸洗後に調質圧
延を施した比較例であり、試験No.1に比べRaはやや小さ
いものの平滑化率が大きく、プレス成形性に劣る。試験
No.4は、FDT が高い比較例であり、Raが大きく、プレス
成形性が劣化している。また、試験No.8は仕上圧延最終
スタンドの圧下率が小さく、Rv/Rmax が0.50以下となり
プレス成形性が劣化している。また、試験No.9は仕上圧
延最終スタンドの圧下率が大きく、Raが本発明範囲を超
えて大きく、Rv/Rmax が0.50以下と小さく、プレス成形
性が劣化している。
【0064】試験No.10 は仕上圧延最終スタンドのロー
ル粗度が大きいため、鋼板のRaが大きく、またRv/Rmax
が小さくなり、プレス成形性が劣化している。試験No.1
1 はCが好ましい範囲を大きく外れ、YSが35kgf/mm2
超えたため、良好な表面粗度パターンにもかかわらずプ
レス成形性が低下している。 (実施例2)表5に示す組成の鋼スラブを1200℃に加熱
後、粗圧延を施して35mmのシートバーとしたのち、表6
に示す条件で仕上げ圧延を行い、板厚1.2 mmとし、圧延
終了後、表6に示す条件で冷却を行い、コイルに巻取っ
た。
【0065】熱延板のスケール厚を表6に示す。つい
で、これらスケール付き熱延板を表6の条件でブライト
ロール(Ra:0.2 μm)による調質圧延を施した後、80
℃−10%塩酸の条件で酸洗した。また一部材料について
は、調質圧延を酸洗後に行った。このようにして得られ
た鋼板について、降伏強さ、表面粗さ、プレス成形性、
型かじり性を調査し表6に併記して示す。なお、試験方
法は実施例1と同様とした。なお、プレス成形性は、冷
延鋼板のLDR 2.2 の場合のみについて評価した。
【0066】
【表5】
【0067】
【表6】
【0068】試験No.2-1〜No.2-3は、薄スケール化した
熱延板に酸洗前に調質圧延を施した本発明例であり、プ
レス成形性、耐型かじり性が良好である。試験No.4は、
仕上げ最終スタンドで粗度の調整をし、FDT を低温とし
て、Raを0.8 μm 以下とした本発明例であり、プレス成
形性、耐型かじり性ともに良好である。一方、試験No.5
は、熱延板のスケールは薄いが、調質圧延の圧下率が低
く、粗度コントロールが不十分でRa、Rv/Rmax が本発明
の範囲から外れている。試験No.6は、調質圧延の圧下率
が大きいため、YSが35kgf/mm2 を超えて大きくなり、Rm
axも5.0 μm 未満と小さく、プレス成形性、耐型かじり
性が低下している。試験No.7は、熱延板のスケールが厚
いまま調質圧延を行ったため、Ra、Rv/Rmax が本発明の
範囲から外れ、プレス成形性が低下している。試験No.8
は、酸洗後に高圧下率の調質圧延を行ったため、平滑化
率が本発明範囲を外れプレス成形性が低下している。ま
た、Rmaxも4.0 μm と小さく耐型かじり性が低下してい
る。
【0069】
【発明の効果】以上説明したように、本発明によれば、
プレス成形性および耐型かじり性に優れた熱延鋼板を容
易に製造でき、従来、プレス成形用材料として用いられ
てきた冷延鋼板の一部を熱延鋼板で代替させることが可
能となり、自動車部材等の低コスト化に大きく貢献で
き、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】表面粗さRaと調質圧延圧下率の関係に及ぼすス
ケール厚さの影響を示すグラフである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C21D 9/52 102 C21D 9/52 102 C22C 38/00 301 C22C 38/00 301W (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 小原 隆史 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 酸洗後の鋼板の表面粗さが、中心線平均
    粗さRa: 1.3μm以下、最大高さRmax:5.0 μm 以上、
    中心線谷深さRv(μm)と最大高さRmax(μm)との
    比、Rv/Rmax:0.50超、平滑化率:30%以下で、かつ鋼
    板の降伏強さYSが35kgf/mm2 以下であることを特徴とす
    るプレス成形性および耐型かじり性に優れた熱延鋼板。
  2. 【請求項2】 酸洗後の鋼板の表面粗さが、中心線平均
    粗さRa: 0.8μm以下、最大高さRmax:5.0 μm 以上、
    中心線谷深さRv(μm)と最大高さRmax(μm)との
    比、Rv/Rmax:0.50超、平滑化率:30%以下で、かつ鋼
    板の降伏強さYSが35kgf/mm2 以下であることを特徴とす
    るプレス成形性および耐型かじり性に優れた熱延鋼板。
  3. 【請求項3】 鋼素材に、仕上最終スタンドのロールを
    表面粗さRa:3μm以下のロールとして、該仕上げ最終
    スタンドでの圧下率を10〜20%、仕上圧延温度FDT を80
    0 ℃以上870 ℃以下に制御する熱間仕上圧延を施し熱延
    板としたのち、700 ℃以下の温度で巻取ることを特徴と
    するプレス成形性および耐型かじり性に優れた熱延鋼板
    の製造方法。
  4. 【請求項4】 鋼素材に熱間圧延を施し熱延板とする際
    に、該熱延板表面のスケール層厚みを4μm以下に調整
    したのち、ブライトロールによる調質圧延を施すことを
    特徴とするプレス成形性および耐型かじり性に優れた熱
    延鋼板の製造方法。
  5. 【請求項5】 鋼素材に、仕上圧延温度FDT を800 ℃以
    上に制御する熱間仕上圧延を施し熱延板とし、該熱間仕
    上圧延終了後0.5sec以内に冷却を開始し700℃以下まで
    急冷する急冷処理を施し、700 ℃以下の温度で巻取り、
    その後ブライトロールで圧下率:1〜6%の調質圧延を
    施すことを特徴とするプレス成形性および耐型かじり性
    に優れた熱延鋼板の製造方法。
JP30853897A 1997-11-11 1997-11-11 プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法 Pending JPH11147101A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30853897A JPH11147101A (ja) 1997-11-11 1997-11-11 プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30853897A JPH11147101A (ja) 1997-11-11 1997-11-11 プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法

Publications (1)

Publication Number Publication Date
JPH11147101A true JPH11147101A (ja) 1999-06-02

Family

ID=17982241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30853897A Pending JPH11147101A (ja) 1997-11-11 1997-11-11 プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法

Country Status (1)

Country Link
JP (1) JPH11147101A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016695A (ja) * 2005-08-25 2006-01-19 Jfe Steel Kk 表面性状に優れた鋼板およびその製造方法
JP2014065935A (ja) * 2012-09-25 2014-04-17 Jfe Steel Corp 高炭素熱延鋼帯の製造方法
CN109252110A (zh) * 2018-11-06 2019-01-22 鞍钢股份有限公司 一种汽车用低碳热轧酸洗板及其制备方法
JP2022505367A (ja) * 2018-11-26 2022-01-14 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 高温の2つの金属製品を摩擦溶接するための方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016695A (ja) * 2005-08-25 2006-01-19 Jfe Steel Kk 表面性状に優れた鋼板およびその製造方法
JP2014065935A (ja) * 2012-09-25 2014-04-17 Jfe Steel Corp 高炭素熱延鋼帯の製造方法
CN109252110A (zh) * 2018-11-06 2019-01-22 鞍钢股份有限公司 一种汽车用低碳热轧酸洗板及其制备方法
JP2022505367A (ja) * 2018-11-26 2022-01-14 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 高温の2つの金属製品を摩擦溶接するための方法

Similar Documents

Publication Publication Date Title
CA2203996C (en) Hot rolled steel sheet and its production process
JP4782056B2 (ja) 熱間プレス時のスケール密着性に優れた高強度鋼板およびその製造方法
EP2116311B1 (en) High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate
KR101423849B1 (ko) 내표면거침성이 우수한 캔용 강판 및 그 제조방법
JP2001107186A (ja) 高強度缶用鋼板およびその製造方法
JP2009079255A (ja) 高張力冷延鋼板及び高張力冷延鋼板の製造方法
JPH09310150A (ja) 加工性、ノンイヤリング性および耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JP4311284B2 (ja) 高強度冷延鋼板の製造方法
JPH11147101A (ja) プレス成形性および耐型かじり性に優れる熱延鋼板ならびにその製造方法
JP2008189984A (ja) 熱延鋼板及びその製造方法
JP7028379B1 (ja) 鋼板、部材及びそれらの製造方法
JP3434080B2 (ja) デスケーリング用線材
JPH1081919A (ja) ノンイヤリング性および耐肌荒れ性に優れる2ピース缶用鋼板の製造方法
JP4249860B2 (ja) 容器用鋼板の製造方法
JP3596037B2 (ja) 製缶用鋼板の製造方法
JPH09279302A (ja) 張出し成形性に優れた鋼板およびその製造方法
JPH11222647A (ja) 耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板およびその製造方法
JP2009046721A (ja) 熱処理用鋼板
JP2008240047A (ja) 熱間プレス時のスケール密着性に優れた高強度鋼板およびその製造方法
JP3707260B2 (ja) 面内異方性および面内異方性のコイル内均一性に優れた2ピース缶用極薄鋼板の製造方法
JP3546286B2 (ja) 良成形性冷延鋼板用の熱延母板およびその製造方法、ならびに良成形性冷延鋼板の製造方法
WO2022209306A1 (ja) 鋼板及びその製造方法
JP3572756B2 (ja) 成形性に優れる熱延鋼板およびその製造方法
JPH09118918A (ja) 摺動性および延性に優れる熱延鋼板ならびにその製造方法
JPH10330882A (ja) 成形性に優れた冷延鋼板およびその製造方法