JPH11142289A - Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam - Google Patents

Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam

Info

Publication number
JPH11142289A
JPH11142289A JP9302909A JP30290997A JPH11142289A JP H11142289 A JPH11142289 A JP H11142289A JP 9302909 A JP9302909 A JP 9302909A JP 30290997 A JP30290997 A JP 30290997A JP H11142289 A JPH11142289 A JP H11142289A
Authority
JP
Japan
Prior art keywords
light
scanning
light amount
amount
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9302909A
Other languages
Japanese (ja)
Inventor
Hideaki Kamimura
秀明 上村
Fumio Ichikawa
文雄 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9302909A priority Critical patent/JPH11142289A/en
Publication of JPH11142289A publication Critical patent/JPH11142289A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure and evaluate the variation of the quantity of light of a scanning beam quantitatively in the direction of scanning without printing. SOLUTION: In a detection plane (Y-Z plane) in parallel with a Z-axis including a target scanning line A1 on a rotating drum plane 6, a photosensor 11 with a light receiving plane narrow in a Z direction 5 and a light quantity sensor 12 are provided on a moving stage 20 movable in the direction of a Y-axis. The stage 20 is moved in the direction of the Y-axis by an instruction from a control box 21 to move the sensors 11 and 12 sequentially to predetermined measurement points. Every time the sensor 11 captures a beam at the measurement point, a plane number counter 26 counts it. At the time when the counted number reaches a predetermined number, the sensor 12 measures the quantity of light. The quantity of light at a specific plane of a rotating polygon mirror 4 is stored in memory 25 for every measurement point, and they are compared with each other by a computer 22 to evaluate the variation of the quantity of light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査光学系を有す
る画像形成装置に関し、特にレーザービームプリンタや
レーザーファクシミリ等の画像形成装置における走査ビ
ームの光量ムラの測定評価方法及び測定評価装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus having a scanning optical system, and more particularly to a method and apparatus for measuring and evaluating unevenness in the amount of light of a scanning beam in an image forming apparatus such as a laser beam printer or a laser facsimile. is there.

【0002】[0002]

【従来の技術】近年、レーザービームを走査して例えば
記録媒体である感光体ドラム面上をレーザービームで光
走査して、画像の記録を行うレーザービームプリンタ
(LBP)等の画像形成装置が広く使用されている。
2. Description of the Related Art In recent years, an image forming apparatus such as a laser beam printer (LBP) for recording an image by scanning a laser beam with a laser beam on a photosensitive drum surface as a recording medium, for example, has been widely used. in use.

【0003】図5はこの種の画像形成装置に用いられる
走査光学系の要部概略図である。図5において半導体レ
ーザー等からなる光源手段71から放射されたレーザー
ビームはコリメーターレンズ72により平行なレーザー
ビームとなり、副走査方向に所定の屈折力を有するシリ
ンドリカルレンズ73により集光した後、回転多面鏡
(ポリゴンミラ)より成る光偏向器74の反射面(偏向
面)74aに入射される。そして回転多面鏡より成る光
偏向器74の反射面74aによって反射偏向したレーザ
ービームは、f−θ特性を有する結像レンズ(Fθレン
ズ)75を介して、被走査面である例えば感光体ドラム
76面上に導光される。そして光偏向器74を図中の矢
印A方向に一定角速度で回転させることによって、感光
体ドラム76の被走査面上を矢印B方向に等速で光走査
が行われる。
FIG. 5 is a schematic view of a main part of a scanning optical system used in this type of image forming apparatus. In FIG. 5, a laser beam emitted from a light source means 71 composed of a semiconductor laser or the like is converted into a parallel laser beam by a collimator lens 72, and is condensed by a cylindrical lens 73 having a predetermined refractive power in the sub-scanning direction. The light is incident on a reflection surface (deflection surface) 74a of an optical deflector 74 composed of a mirror (polygon mirror). The laser beam reflected and deflected by the reflection surface 74a of the optical deflector 74 composed of a rotating polygon mirror passes through an imaging lens (Fθ lens) 75 having f-θ characteristics, for example, a photosensitive drum 76 as a surface to be scanned. Light is guided on the surface. By rotating the optical deflector 74 at a constant angular velocity in the direction of arrow A in the figure, optical scanning is performed on the surface to be scanned of the photosensitive drum 76 in the direction of arrow B at a constant speed.

【0004】このような光走査光学系を用いた従来の画
像形成装置においては、組立等に際し、あらかじめ評価
装置を用いて走査光学系の光学的な性能評価を行ってい
る。
In a conventional image forming apparatus using such an optical scanning optical system, the optical performance of the scanning optical system is evaluated in advance by using an evaluation device when assembling or the like.

【0005】すなわち、評価装置を用いた走査光学系の
光学的な性能評価方法は、走査光学系からの走査光束
を、走査方向において異なる複数の位置、例えばビーム
の走査開始位置、中間位置、走査終り位置等で受光し
て、走査方向と直交する方向における走査位置(以下単
に走査位置と称する)、光束径及び走査開始タイミング
等を測定し性能評価を行っていた。
In other words, a method for evaluating the optical performance of a scanning optical system using an evaluation device is to scan a scanning light beam from a scanning optical system at a plurality of positions different in the scanning direction, for example, a beam scanning start position, an intermediate position, and a scanning position. Light is received at an end position or the like, and a scanning position (hereinafter, simply referred to as a scanning position) in a direction orthogonal to the scanning direction, a beam diameter, a scanning start timing, and the like are measured to evaluate the performance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、光学的
な性能評価の一つである走査方向の光量ムラについて
は、上述した従来の評価装置では行なわれずに、走査光
学系を画像形成装置に組込んだ後、実際に紙に印字させ
て、その印字濃度ムラを人が目視で検査するという性能
評価方法をとっている。したがって検査は官能検査であ
るために、評価基準が明確でなく、その評価結果にばら
つきが大きくかつあいまいであるという欠点がある。ま
た性能評価にあたっては、走査光学系を画像形成装置本
体に組み込んで、製品として完成した状態で印字しなけ
ればならないため、もし光量ムラの不良が印字評価で検
出された場合には、再び装置本体を分解して走査光学系
を取り外さなければならないという手間がかかり、コス
ト高を招くという欠点がある。
However, unevenness in the light amount in the scanning direction, which is one of the optical performance evaluations, is not performed by the above-described conventional evaluation apparatus, but the scanning optical system is incorporated in the image forming apparatus. Thereafter, a performance evaluation method is adopted in which printing is actually performed on paper, and the print density unevenness is visually inspected by a person. Therefore, since the test is a sensory test, there is a disadvantage that the evaluation criteria are not clear, and the evaluation results vary widely and are ambiguous. In the performance evaluation, the scanning optical system must be incorporated into the main body of the image forming apparatus, and printing must be performed in a state in which the product is completed. Has to be disassembled and the scanning optical system must be removed, which is disadvantageous in that the cost is increased.

【0007】本発明の目的は、上述の従来技術の有する
未解決の課題を解決するために、走査方向の光量ムラの
評価を、あいまいな官能評価に基づいて行わずに、定量
的に測定、評価し、他の光学的な性能評価と同様に、走
査光学系のみでの性能評価をおこなうことによって、確
実にしかも短時間で評価可能となり、印字による評価の
手間を省き、かつ不良品を画像形成装置本体に組み込ん
でしまって再度分解しなければならないというような手
間を省くことのできる、走査ビームの光量ムラ測定評価
方法および装置を提供することにある。
An object of the present invention is to quantitatively measure the unevenness of the light amount in the scanning direction without performing an evaluation based on an ambiguous sensory evaluation, in order to solve the above-mentioned unresolved problems of the prior art. Evaluate and evaluate the performance only with the scanning optical system in the same way as other optical performance evaluations, so that the evaluation can be performed reliably and in a short time. An object of the present invention is to provide a method and an apparatus for measuring and evaluating unevenness in the amount of light of a scanning beam, which can save the trouble of assembling it in a forming apparatus main body and having to disassemble it again.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の走査ビームの光量ムラ測定評価方法は、回
転多面鏡によって所定の走査方向に走査する走査ビーム
のうち、回転多面鏡の特定の一面のみによるビームの光
量を、走査方向に離間した複数の測定ポイントにおい
て、光路上に配置された検出手段によってそれぞれ検出
する工程と、その検出した光量を比較演算する工程とを
有することを特徴としている。検出手段は、走査ビーム
の走査方向に平行な方向に移動して、移動方向に沿って
設定された複数の測定ポイントにおいて光量を検出する
ようになっている。
In order to achieve the above object, a method for measuring and evaluating unevenness in the amount of light of a scanning beam according to the present invention comprises identifying a rotating polygon mirror among scanning beams scanned in a predetermined scanning direction by the rotating polygon mirror. A step of detecting the light amount of the beam by only one surface at a plurality of measurement points separated in the scanning direction by detecting means arranged on the optical path, and a step of comparing and calculating the detected light amount. And The detecting means moves in a direction parallel to the scanning direction of the scanning beam, and detects the amount of light at a plurality of measurement points set along the moving direction.

【0009】回転多面鏡の特定の一面による光量ムラ評
価を、多面鏡の面数分繰り返して、評価値を比較するこ
とにより、回転多面鏡の各反射面の欠陥を検出すること
もできる。
Defects on each reflecting surface of the rotary polygonal mirror can be detected by repeating the evaluation of the light amount unevenness on one specific surface of the rotary polygonal mirror for the number of surfaces of the polygonal mirror and comparing the evaluation values.

【0010】本発明の走査ビームの光量ムラ測定評価装
置は、回転多面鏡によって所定の走査方向に走査する走
査ビームのうち、回転多面鏡の特定の一面のみのビーム
の光量を検出可能である検出手段と、その検出手段を走
査方向と平行な方向に移動させる移動ステージと、検出
手段の出力を計数する手段と、計数値と光量の検出値と
を対応させて記憶するメモリと、光量の検出値を比較演
算する判定手段とを具備している。
An apparatus for measuring and evaluating unevenness in the amount of light of a scanning beam according to the present invention is capable of detecting the light amount of a beam on only one specific surface of a rotating polygonal mirror among scanning beams scanned in a predetermined scanning direction by a rotating polygonal mirror. Means, a moving stage for moving the detecting means in a direction parallel to the scanning direction, means for counting the output of the detecting means, a memory for storing the count value and the detected light quantity in association with each other, and detecting the light quantity. Determining means for comparing and calculating the values.

【0011】上述の本発明の走査ビームの光量ムラ測定
評価方法においては、検出手段を走査方向と平行な方向
に移動しながら、設定された複数の測定ポイントにおい
て、ビームの走査回数を計数し、その値から走査ビーム
のうち回転多面鏡の特定の一面のみの光量を検出する。
そしてその各測定ポイントでの検出光量を比較して光量
ムラを評価するようになっている。
In the above-described method for measuring and evaluating unevenness in the amount of light of a scanning beam according to the present invention, the number of times of scanning of the beam is counted at a plurality of set measurement points while moving the detecting means in a direction parallel to the scanning direction. From the value, the light amount of only one specific surface of the rotating polygon mirror in the scanning beam is detected.
The detected light amount at each measurement point is compared to evaluate the light amount unevenness.

【0012】このように、各測定ポイントにおいて、回
転多面鏡のある特定の一面のみの光量を検出して、その
検出値で評価を行うので、多面鏡の各面精度の不均一、
及び反射面上のゴミ、ケバ等による反射光量のばらつき
に関係なく、光学系の光量ムラを定量的に評価できる。
したがって走査光学系を画像形成装置等に組み込んで印
字させる必要がなく、しかも短時間で正確に測定評価で
きるため、大幅に評価の信頼性向上を図ることができ、
また走査光学系を用いた画像形成装置等の製造コストを
低減することができるので、画像形成装置等の低価格化
に大きく貢献できる。
As described above, at each measurement point, the amount of light on only one specific surface of the rotating polygon mirror is detected and the detected value is used for evaluation, so that the accuracy of each surface of the polygon mirror is not uniform.
Irrespective of variations in the amount of reflected light due to dust, fluff, etc. on the reflecting surface, it is possible to quantitatively evaluate unevenness in the amount of light in the optical system.
Therefore, there is no need to incorporate the scanning optical system into an image forming apparatus or the like for printing, and since the measurement and evaluation can be performed accurately in a short time, the reliability of the evaluation can be greatly improved.
Further, since the manufacturing cost of an image forming apparatus or the like using a scanning optical system can be reduced, it can greatly contribute to lowering the price of the image forming apparatus or the like.

【0013】[0013]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。図1は本発明の走査ビームの
光量ムラ測定評価装置E1の、一実施の形態と走査光学
系を示す説明図、図2は図1の装置の受光部の説明図で
ある。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an embodiment and a scanning optical system of a scanning beam light amount unevenness measurement evaluation device E1 of the present invention, and FIG. 2 is an explanatory diagram of a light receiving section of the device of FIG.

【0014】走査光学系1の半導体レーザー1aから発
生されたレーザー光は、コリメータレンズ2によって平
行化され、シリンドルカルレンズ3によって回転多面鏡
4の鏡面4aに線状に集光され、回転多面鏡4の回転に
よって偏向走査され、走査ビームL1が球面レンズ5a
やトーリックレンズ5bを有する結像レンズ系5によっ
て回転ドラム面6上の感光体に結像される。結像レンズ
系5はfθレンズであって、走査ビームL1をドラム面
6上において等速化し、さらに感光体に結像する点像の
歪を補正することができるいわゆるfθ機能を有するも
ので、感光体上の点像は、回転多面鏡4の回転による走
査方向であるY軸方向の主走査と、回転ドラム6の回転
によるZ軸方向の副走査によって静電潜像を形成する。
The laser light generated from the semiconductor laser 1a of the scanning optical system 1 is collimated by a collimator lens 2 and condensed linearly on a mirror surface 4a of a rotary polygon mirror 4 by a cylindrical lens 3 to form a rotary polygon. The beam is deflected and scanned by the rotation of the mirror 4, and the scanning beam L1 is converted into a spherical lens 5a.
And an imaging lens system 5 having a toric lens 5b. The imaging lens system 5 is an fθ lens, which has a so-called fθ function capable of equalizing the scanning beam L1 on the drum surface 6 and correcting distortion of a point image formed on the photosensitive member. The point image on the photoreceptor forms an electrostatic latent image by main scanning in the Y-axis direction, which is the scanning direction by the rotation of the rotary polygon mirror 4, and sub-scanning in the Z-axis direction by the rotation of the rotating drum 6.

【0015】走査ビームの測定評価装置E1は、走査ビ
ームL1の回転ドラム6上の目標走査線A1(図2参
照)を含むZ軸に平行な検出面(YZ平面)内に、Z方
向に細長い受光面11aを有する第1の検出手段である
フォトセンサ11と、検出面内にZ方向に細長い受光面
12aを有する第2の検出手段である光量センサ12と
を有し、これら両センサは、目標走査線A1に沿ってY
軸方向に移動可能な移動ステージ20の上に所定の間隔
を隔てて搭載されている。
The scanning beam measurement and evaluation device E1 is elongated in the Z direction on a detection surface (YZ plane) parallel to the Z axis including the target scanning line A1 (see FIG. 2) of the scanning beam L1 on the rotating drum 6. It has a photosensor 11 which is a first detecting means having a light receiving surface 11a, and a light quantity sensor 12 which is a second detecting means having a light receiving surface 12a elongated in the Z direction in the detecting surface. Y along the target scanning line A1
It is mounted on a movable stage 20 movable in the axial direction at a predetermined interval.

【0016】フォトセンサ11の受光面11aおよび光
量センサ12の受光面12aは、Z軸方向に細長く形成
されているとともに、Y軸方向に一定の幅を有してい
る。特に光量センサ12の受光面12aのY軸方向の幅
は、光量ムラ検出の分解能設定によって変更される。走
査光学系の光量ムラ評価の目的は、特に結像レンズ系5
のゴミ、汚れ、傷、歪等を検出することにあるので、こ
の結像レンズ系5上での走査ビーム径の数分の一を分解
能として設定するとよい。例えば結像レンズ系5上での
走査ビームの径が1mmの場合には、測定分解能の幅を
0.3mm程度にすることにより結像レンズ系5上での
不良要因は検出可能となる。また走査ビームL1は目標
走査線A1上にかならずしも沿っているわけではなく、
例えば曲線B1のように走査される。そのような場合に
も走査ビームを捕らえるようにするために、センサ1
1、12はZ軸方向に細長い受光面11a、12aを持
つから、ビームの光量変化を検出することができる。
The light receiving surface 11a of the photo sensor 11 and the light receiving surface 12a of the light amount sensor 12 are formed to be elongated in the Z-axis direction and have a constant width in the Y-axis direction. In particular, the width of the light receiving surface 12a of the light amount sensor 12 in the Y-axis direction is changed by setting the resolution for light amount unevenness detection. The purpose of the unevenness evaluation of the scanning optical system is particularly
In order to detect dust, dirt, scratches, distortion, etc., it is preferable to set a resolution of a fraction of the scanning beam diameter on the imaging lens system 5. For example, when the diameter of the scanning beam on the imaging lens system 5 is 1 mm, the cause of the defect on the imaging lens system 5 can be detected by setting the width of the measurement resolution to about 0.3 mm. Also, the scanning beam L1 does not always follow the target scanning line A1,
For example, scanning is performed as shown by a curve B1. In order to capture the scanning beam even in such a case, the sensor 1
Since the light receiving surfaces 1 and 12 have light receiving surfaces 11a and 12a which are elongated in the Z-axis direction, a change in the light amount of the beam can be detected.

【0017】測定評価装置E1による走査ビームL1の
測定評価は以下のように行われる。まずコントロールボ
ックス21の指令によって、移動ステージ20をY軸方
向に移動し、これによってフォトセンサ11と光量セン
サ12とを順次目標走査線A1上に設定した所定の測定
ポイントに移動させる。移動していたフォトセンサ11
と光量センサ12とが所定の測定ポイントに達し、そし
てフォトセンサ11が光束を捕らえる度に、その回数を
面数カウンタ26により計数する。カウント数が事前に
定めた数αに対して(α+回転多面鏡の面数×n)に達
した時点で、光量センサ12が光束を取込み光量を測定
する。この測定においては、ホストコンピュータ22が
フォトセンサ11で走査ビームを検知したのち、一定の
時間遅延させて光量センサ12の信号を読み出すように
する(図4参照)。そして光量センサ12の信号をカウ
ンタ26で計数した値と対応づけて、メモリ25に格納
する。これにより回転多面鏡4のある特定の1面の光量
が測定ポイント毎にメモリ25に格納される。事前に定
める数αは回転多面鏡の面数以内であればいくつでもよ
い。またnは任意に定めた自然数である。このようにし
て検出された走査ビームL1の目標走査線上に設定した
各測定ポイント毎の光量は、ホストコンピュータ22で
算出され、その値の比較により測定ポイント毎の光量ム
ラの評価が行われる。
The measurement and evaluation of the scanning beam L1 by the measurement and evaluation device E1 are performed as follows. First, in response to a command from the control box 21, the moving stage 20 is moved in the Y-axis direction, whereby the photosensor 11 and the light amount sensor 12 are sequentially moved to predetermined measurement points set on the target scanning line A1. Photo sensor 11 that was moving
Each time the light sensor 12 reaches a predetermined measurement point and the photosensor 11 captures a light beam, the number of times is counted by the surface number counter 26. When the counted number reaches a predetermined number α (α + the number of rotating polygon mirrors × n), the light quantity sensor 12 takes in the light flux and measures the light quantity. In this measurement, after the host computer 22 detects the scanning beam with the photosensor 11, the host computer 22 reads out the signal of the light amount sensor 12 with a certain delay (see FIG. 4). Then, the signal of the light amount sensor 12 is stored in the memory 25 in association with the value counted by the counter 26. As a result, the amount of light on one specific surface of the rotary polygon mirror 4 is stored in the memory 25 for each measurement point. The number α determined in advance may be any number as long as it is within the number of surfaces of the rotary polygon mirror. N is an arbitrarily determined natural number. The light amount at each measurement point set on the target scanning line of the scanning beam L1 detected in this way is calculated by the host computer 22, and the value is compared to evaluate the light amount unevenness at each measurement point.

【0018】つぎに、上述の本発明による走査ビームの
光量ムラ測定評価方法をフローチャートによって説明す
る。図3は、測定評価装置E1による測定評価の手順を
示すフローチャートであって、まず、対象となる走査光
学系を所定の位置に設置し、半導体レーザー(光源)を
発光させ、回転多面鏡を回転させて走査状態とする(1
01)。次に移動ステージ20をY軸方向に連続移動さ
せながらフォトセンサ11と光量センサ12で測定を開
始する(102)。ステージが移動して、測定ポイント
に光量センサ12が達し、かつ光束が回転多面鏡の所定
の面になった時点でフォトセンサ11で光束を取込み
(103)、面数カウンタ26が走査回数カウントし
(104)、一定時間遅れて光量センサ12で光量測定
を行う(107)。これを測定ポイント分繰り返し(1
05)(106)(108)、測定を終了する。そして
得られた各測定ポイントの光量(回転多面鏡の特定の一
面分)を比較し、光量ムラの評価を行う(109)。
Next, a method of measuring and evaluating unevenness in the amount of light of a scanning beam according to the present invention will be described with reference to a flowchart. FIG. 3 is a flowchart showing the procedure of measurement evaluation by the measurement evaluation apparatus E1. First, a target scanning optical system is installed at a predetermined position, a semiconductor laser (light source) is emitted, and a rotary polygon mirror is rotated. (1)
01). Next, measurement is started by the photo sensor 11 and the light amount sensor 12 while continuously moving the moving stage 20 in the Y-axis direction (102). When the stage moves and the light amount sensor 12 reaches the measurement point and the light beam reaches a predetermined surface of the rotary polygon mirror, the light sensor captures the light beam (103), and the surface number counter 26 counts the number of scans. (104), the light amount is measured by the light amount sensor 12 after a certain time delay (107). This is repeated for the number of measurement points (1
05) (106) (108), the measurement ends. Then, the obtained light amounts at the respective measurement points (for one specific surface of the rotary polygon mirror) are compared, and the light amount unevenness is evaluated (109).

【0019】また、上記の回転多面鏡のある特定の一面
による光量ムラ評価を面数分繰り返し、その評価値を比
較すれば、回転多面鏡の各反射面のゴミ等の欠陥を検出
することも可能である。
Further, by repeating the evaluation of the light amount unevenness on one specific surface of the rotary polygon mirror by the number of surfaces, and comparing the evaluation values, it is possible to detect a defect such as dust on each reflection surface of the rotary polygon mirror. It is possible.

【0020】[0020]

【発明の効果】以上説明したように本発明は、ビームの
走行方向と平行に移動可能に設けた検出手段により、多
面鏡の特定の一面の光量を検出して、これを各測定ポイ
ント毎に比較評価するので、多面鏡の各面精度の不均一
による反射光量のばらつきに関係なく、走査光学系の光
量ムラを定量的に評価することができる。そしてその結
果により走査光学系にあるゴミ、ケバ等の位置が特定で
き、その場で清掃又は交換することで欠陥を除くことが
出来る。したがって走査ビームの光量ムラの測定評価に
大幅の信頼性向上を図ることができ、また走査光学系を
画像形成装置等に組み込んで印字させて評価する必要も
なくなり、短時間で正確に測定評価できるため、走査光
学系を用いる画像形成装置等の製造コストを大幅に低減
できるという効果がある。
As described above, according to the present invention, the light amount on a specific surface of the polygon mirror is detected by the detecting means provided so as to be movable in parallel with the traveling direction of the beam, and this is detected for each measurement point. Since the comparative evaluation is performed, the unevenness in the light amount of the scanning optical system can be quantitatively evaluated regardless of the variation in the reflected light amount due to the unevenness of each surface of the polygon mirror. The position of dust, fluff or the like in the scanning optical system can be specified based on the result, and the defect can be removed by cleaning or replacing on the spot. Therefore, it is possible to greatly improve the reliability of the measurement and evaluation of the unevenness of the light amount of the scanning beam, and it is not necessary to incorporate the scanning optical system into an image forming apparatus or the like to print and evaluate the measurement. Therefore, there is an effect that the manufacturing cost of an image forming apparatus or the like using a scanning optical system can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の走査ビームの光量ムラ測定評価装置の
一実施の形態を説明する説明図である。
FIG. 1 is an explanatory diagram illustrating an embodiment of a scanning beam light amount unevenness measurement evaluation apparatus of the present invention.

【図2】図1の測定評価装置の受光部を説明する説明図
である。
FIG. 2 is an explanatory diagram illustrating a light receiving unit of the measurement evaluation device of FIG.

【図3】図1の装置によって走査ビームの測定評価を行
う手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure for performing measurement and evaluation of a scanning beam by the apparatus of FIG. 1;

【図4】本発明のフォトセンサと光量センサの信号読み
出しタイミングを説明する線図である。
FIG. 4 is a diagram illustrating signal readout timings of the photosensor and the light amount sensor of the present invention.

【図5】画像形成装置に用いられる走査光学系の要部を
説明する概略図である。
FIG. 5 is a schematic diagram illustrating a main part of a scanning optical system used in the image forming apparatus.

【符号の説明】[Explanation of symbols]

1 走査光学系 1a、71 半導体レーザ/光源手段 2、72 コリメータレンズ 3、73 シリンドリカルレンズ 4 回転多面鏡 4a 鏡面 5、75 結像レンズ系 5a 球面レンズ 5b トーリックレンズ 6、76 回転ドラム面/感光体ドラム 11 フォトセンサ 11a、12a 受光面 12 光量センサ 20 移動ステージ 21 コントロールボックス 22 ホストコンピュータ 25 メモリ 26 面数カウンタ 74 光偏向器 74a 反射面 A1 目標走査線 B1 走査曲線 E1 測定評価装置 Reference Signs List 1 scanning optical system 1a, 71 semiconductor laser / light source means 2, 72 collimator lens 3, 73 cylindrical lens 4 rotating polygon mirror 4a mirror surface 5, 75 imaging lens system 5a spherical lens 5b toric lens 6, 76 rotating drum surface / photoconductor Drum 11 Photosensor 11a, 12a Light receiving surface 12 Light amount sensor 20 Moving stage 21 Control box 22 Host computer 25 Memory 26 Surface counter 74 Optical deflector 74a Reflecting surface A1 Target scanning line B1 Scan curve E1 Measurement evaluation device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 走査光学系を有する画像形成装置におけ
る走査ビームの光量ムラ測定評価方法であって、 回転多面鏡によって所定の走査方向に走査する走査ビー
ムのうち、回転多面鏡の特定の一面のみの光量を、前記
走査方向に離間した複数の測定ポイントにおいて、光路
上に配置された検出手段によってそれぞれ検出する工程
と、 該検出した光量を比較演算する工程とを有する、走査ビ
ームの光量ムラ測定評価方法。
1. A method for measuring and evaluating unevenness in the amount of light of a scanning beam in an image forming apparatus having a scanning optical system, wherein only a specific surface of a rotating polygonal mirror among scanning beams scanned in a predetermined scanning direction by a rotating polygonal mirror. Detecting a light amount at a plurality of measurement points separated in the scanning direction by detecting means disposed on an optical path, and comparing and calculating the detected light amount. Evaluation methods.
【請求項2】 前記検出手段が、前記走査ビームの走査
方向と平行な方向に移動し、該移動方向に沿って設けら
れた前記複数の測定ポイントにおいて光量を検出する、
請求項1記載の走査ビームの光量ムラ測定評価方法。
2. The method according to claim 1, wherein the detecting unit moves in a direction parallel to a scanning direction of the scanning beam, and detects an amount of light at the plurality of measurement points provided along the moving direction.
The method for measuring and evaluating unevenness in light amount of a scanning beam according to claim 1.
【請求項3】 前記回転多面鏡の特定の一面による光量
ムラ評価を、該多面鏡の面数分繰り返して、該評価値を
比較することにより、前記回転多面鏡の各反射面の欠陥
を検出する、請求項1記載の走査ビームの光量ムラ測定
評価方法。
3. A defect of each reflection surface of the rotating polygon mirror is detected by repeating the evaluation of light amount unevenness on a specific surface of the rotating polygon mirror by the number of faces of the polygon mirror and comparing the evaluation values. The method for measuring and evaluating unevenness in the amount of light of a scanning beam according to claim 1.
【請求項4】 前記回転多面鏡によって所定の走査方向
に走査する走査ビームのうち、回転多面鏡の特定の一面
のみの光量を検出可能な検出手段と、該検出手段を走査
方向と平行な方向に移動させる移動ステージと、前記検
出手段の出力を計数する手段と、該計数値と前記光量の
検出値とを対応させて記憶するメモリと、前記検出値を
比較演算する判定手段を有することを特徴とする走査ビ
ームの光量ムラ測定評価装置。
4. A detecting means capable of detecting the amount of light on only one specific surface of the rotating polygonal mirror among the scanning beams scanned in a predetermined scanning direction by the rotating polygonal mirror, and the detecting means detects the light amount in a direction parallel to the scanning direction. A moving stage, a means for counting the output of the detecting means, a memory for storing the counted value and the detected value of the light amount in association with each other, and a determining means for comparing and calculating the detected value. Characteristic scanning beam light amount unevenness measurement and evaluation device.
JP9302909A 1997-11-05 1997-11-05 Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam Pending JPH11142289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9302909A JPH11142289A (en) 1997-11-05 1997-11-05 Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9302909A JPH11142289A (en) 1997-11-05 1997-11-05 Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam

Publications (1)

Publication Number Publication Date
JPH11142289A true JPH11142289A (en) 1999-05-28

Family

ID=17914579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9302909A Pending JPH11142289A (en) 1997-11-05 1997-11-05 Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam

Country Status (1)

Country Link
JP (1) JPH11142289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026076A (en) * 2006-07-19 2008-02-07 Fuji Xerox Co Ltd Laser optical system inspection system
JP2011257639A (en) * 2010-06-10 2011-12-22 Ricoh Co Ltd Method for measuring scan optical system light quantity, method for inspecting scan optical system, and optical system inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026076A (en) * 2006-07-19 2008-02-07 Fuji Xerox Co Ltd Laser optical system inspection system
JP2011257639A (en) * 2010-06-10 2011-12-22 Ricoh Co Ltd Method for measuring scan optical system light quantity, method for inspecting scan optical system, and optical system inspection device

Similar Documents

Publication Publication Date Title
US7098448B2 (en) Method and apparatus for measuring beam spot of scanning light
JPH01292310A (en) Scanning optical device
US5903377A (en) Scanning apparatus having a cascade scanning optical system
JPH11142289A (en) Method and apparatus for measuring and evaluating nonuniformity in quantity of light of scanning beam
US7889221B2 (en) Optical scanning apparatus
JPH11142235A (en) Method and apparatus for measurement and evaluation of irregularity in quantity of light of scanning beam
JP3412976B2 (en) Scanning beam measurement and evaluation equipment
JP2002162585A (en) Optically scanning optical device
JP2000238330A (en) Image-forming apparatus
JPS6156655B2 (en)
JPH07253552A (en) Image forming device
JP4261079B2 (en) Scanning beam measurement evaluation apparatus and image forming apparatus
JPH10197336A (en) Laser beam-measuring apparatus
JP3537608B2 (en) Scanning light intensity measurement method and apparatus
JP4133667B2 (en) Beam beam inspection apparatus, beam beam inspection method, image forming unit, and image forming apparatus
JP3313985B2 (en) Laser beam measuring device
JP2002372675A (en) Optical scanner
JP2940962B2 (en) Jitter measurement device for polygon scanner
JP2006011300A (en) Laser scanner of image forming apparatus
JP3381888B2 (en) Method and apparatus for measuring characteristics of optical elements and the like
JP3681547B2 (en) Scanning position measuring device for scanning optical system
JPH02204713A (en) Dynamic measuring instrument for face unevenness in radii
JPH06288819A (en) Method for measuring quantity of face inclination of scanning optical system
JP2001311899A (en) Scanning optical system inspecting device
JP2006267665A (en) Scanning type exposure device and image forming device