JP3381888B2 - Method and apparatus for measuring characteristics of optical elements and the like - Google Patents

Method and apparatus for measuring characteristics of optical elements and the like

Info

Publication number
JP3381888B2
JP3381888B2 JP28875695A JP28875695A JP3381888B2 JP 3381888 B2 JP3381888 B2 JP 3381888B2 JP 28875695 A JP28875695 A JP 28875695A JP 28875695 A JP28875695 A JP 28875695A JP 3381888 B2 JP3381888 B2 JP 3381888B2
Authority
JP
Japan
Prior art keywords
scanning
measuring
optical element
measurement
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28875695A
Other languages
Japanese (ja)
Other versions
JPH09133606A (en
Inventor
伸夫 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP28875695A priority Critical patent/JP3381888B2/en
Publication of JPH09133606A publication Critical patent/JPH09133606A/en
Application granted granted Critical
Publication of JP3381888B2 publication Critical patent/JP3381888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子又はこれ
に類するものの面形状、面精度、内部歪み等の特性測定
方法及び測定装置に関するもので、高精度面を有する物
体の面形状、面精度等の測定に利用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring characteristics such as surface shape, surface accuracy, and internal distortion of an optical element or the like, and more particularly to surface shape and surface accuracy of an object having a highly accurate surface. Etc. can be used for measurement.

【0002】[0002]

【従来の技術】光学素子など、反射もしくは透過性のあ
る高精度面が要求される素子や部品などの表面の形状、
面精度等の測定は、従来、干渉測定、接触針による測
定、光触針による測定や、レーザーのような電磁波ビー
ム走査による測定等が行われている。これらのうち、干
渉測定は面を一度に高精度に測定できるという大きな長
所があるが、非球面や特にアナモフィック面の測定が難
しい。接触針による測定方法は面を傷つけたり汚したり
する恐れがあるのに対し、光触針ではそのような心配が
ない代わりに、反射率の違いがノイズとなり精度が悪化
するという問題点がある。また触針(光触針も含む)に
よる測定では、原理的に一次元的な測定であるため、二
次元的な測定には時間がかかるという問題点もある。そ
の点、レーザーのような電磁波ビーム走査による測定方
法によれば、このような問題点はなく、優れた測定方法
といえる。そこで、電磁波ビーム走査による測定方法の
各種従来例について説明しておく。
2. Description of the Related Art The shape of the surface of an element or component, such as an optical element, which requires a highly accurate reflective or transmissive surface,
Conventionally, the surface accuracy and the like have been measured by interference measurement, contact needle measurement, optical stylus measurement, electromagnetic wave beam scanning such as laser measurement, and the like. Of these, interferometry has the great advantage of being able to measure surfaces with high accuracy at one time, but it is difficult to measure aspherical surfaces and especially anamorphic surfaces. While the measuring method using a contact needle may damage or stain the surface, the photo-contact needle does not cause such a problem, but has a problem that the difference in reflectance causes noise and the accuracy deteriorates. In addition, in the measurement by the stylus (including the optical stylus), since the measurement is one-dimensional in principle, there is a problem that two-dimensional measurement takes time. In this respect, the measuring method using electromagnetic beam scanning such as a laser does not have such a problem and can be said to be an excellent measuring method. Therefore, various conventional examples of the measuring method using the electromagnetic beam scanning will be described.

【0003】特開平2−201142号公報記載の「感
光層表面の異常検出方法」は、感光層に対して高吸光度
であるレーザー光を照射し、該感光層表面にて反射され
たレーザー光の光学的情報に基づき該感光層表面の異常
を検出することを特徴とするものである。
The "method for detecting an abnormality on the surface of a photosensitive layer" described in Japanese Patent Application Laid-Open No. 2-201142 discloses a method of irradiating a laser beam having a high absorbance on a photosensitive layer to detect a laser beam reflected on the surface of the photosensitive layer. It is characterized in that an abnormality on the surface of the photosensitive layer is detected based on optical information.

【0004】特開平2−201143号公報記載の「コ
ーティング物表面の異常検出装置」は、コーティング物
の表面にレーザー光を照射し、その表面の異常を検出す
る装置であって、レーザー光源とレーザー光を所定方向
に順次走査する走査手段と、走査されたレーザー光をコ
ーティング物の表面へ常に所定の角度で入射するように
する光路変更手段と、反射されたレーザー光の光学的情
報の検出手段を具備してなるものである。
The "abnormality detection device for the surface of a coating" described in Japanese Patent Laid-Open No. 2-201143 is a device for irradiating the surface of a coating with a laser beam to detect an abnormality on the surface. Scanning means for sequentially scanning light in a predetermined direction, optical path changing means for making the scanned laser light always enter the surface of the coating at a predetermined angle, and means for detecting optical information of the reflected laser light It is equipped with.

【0005】特開平3−295408号公報記載の「凹
凸面の検査法方およびその装置」は、被検査面上の一直
線に沿って所定幅を有する帯状に設定された検査領域に
対して、少なくとも上記一直線に直交する面内で平行な
可干渉光線束を被検査面と所定角度をなすように照射
し、反射光の回折像が、検査領域のほぼ全面に存在する
非欠陥とみなせる凹凸に対しては上記直線にほぼ平行な
パターンになり、局所的に存在し欠陥になる凹凸に対し
ては上記直線にほぼ直交するパターンになるように、上
記光線束の照射角を設定し、上記回折像を画像入力装置
に入力し画像処理を施すことにより被検査面の凹凸形状
を検出することを特徴とする。
The "method of inspecting uneven surface and its apparatus" described in Japanese Patent Application Laid-Open No. 3-295408 at least for an inspection area set in a strip shape having a predetermined width along a straight line on the surface to be inspected. Irradiate parallel coherent ray bundles in a plane orthogonal to the straight line so as to make a predetermined angle with the surface to be inspected, and the diffraction image of the reflected light is relative to the unevenness that can be regarded as a non-defect existing in almost the entire inspection area Is set to be a pattern substantially parallel to the straight line, and the unevenness which locally exists and becomes a defect, the irradiation angle of the light beam bundle is set so as to be a pattern substantially orthogonal to the straight line. Is input to the image input device and image processing is performed to detect the uneven shape of the surface to be inspected.

【0006】特開平5−180628号公報記載の「光
学的三次元形状測定方法と測定装置」は、スポット光を
ミラーにより被測定物表面で走査し、そのスポット光を
センサーで検知して被測定物の表面形状を計測する光学
的三次元形状測定方法において、測定寸法が既知の基準
測定物の表面をスポット光によりポリゴンミラーを用い
て走査し、基準測定物からのスポット光像をセンサで検
出して、上記スポット光像によるセンサ上の受光位置デ
ータと、上記基準測定物の既知の表面データに基づいて
理論式から導かれるスポット光像のセンサ上の位置デー
タとの差を、ポリゴンミラーの各位置について算出し、
被測定物の表面形状算出式中の補正算出値を演算し、こ
れを繰り返して所望の補正算出値を求めるループ処理を
行い、各パラメーターの値に対応した上記各補正算出値
を形状算出テーブルとして作成しかつ記憶し、未知の被
測定物の測定時に上記テーブルを基に被測定物の表面形
状を算出することを特徴とする。
The "optical three-dimensional shape measuring method and measuring device" described in Japanese Patent Application Laid-Open No. 5-180628 discloses a method of measuring a spot light by scanning the surface of the object with a mirror and detecting the spot light with a sensor. In an optical three-dimensional shape measurement method that measures the surface shape of an object, the surface of a reference measurement object whose measurement dimensions are known is scanned with a spot light using a polygon mirror, and a spot light image from the reference measurement object is detected by a sensor. Then, the difference between the light receiving position data on the sensor by the spot light image and the position data on the sensor of the spot light image derived from the theoretical formula based on the known surface data of the reference measurement object is calculated as Calculate for each position,
The correction calculation value in the surface shape calculation formula of the DUT is calculated, and a loop process for repeating the calculation to obtain a desired correction calculation value is performed, and each correction calculation value corresponding to the value of each parameter is used as a shape calculation table. It is characterized in that it is created and stored, and the surface shape of the measured object is calculated based on the above table when the unknown measured object is measured.

【0007】特開平6−167322号公報記載の「立
体電極外観検査装置」は、基板上に形成された三次元配
列のバンプ電極に光を照射し、その反射光を受光して該
バンプ電極の外観を検査するもので、光源よりの出射光
を前記基板に対してライン状に走査する走査手段と、バ
ンプ電極からの反射光を受光する検知手段と、検知信号
により該バンプ電極の高さを算出するとともに前記光走
査手段による走査タイミングより位置補正して、バンプ
高さの検査を行う高さ検査手段を有することを特徴とす
る。
The "three-dimensional electrode appearance inspection device" described in Japanese Patent Laid-Open No. 6-167322 irradiates light on bump electrodes in a three-dimensional array formed on a substrate and receives the reflected light to detect the bump electrodes. The appearance is inspected. A scanning unit that linearly scans the emitted light from the light source with respect to the substrate, a detection unit that receives the reflected light from the bump electrode, and a height of the bump electrode by the detection signal. It is characterized in that it has a height inspection means for inspecting the bump height by calculating and correcting the position based on the scanning timing by the optical scanning means.

【0008】[0008]

【発明が解決しようとする課題】以上説明したように、
光学素子などの表面の形状、面精度等の測定に、レーザ
ーのような電磁波ビームを使用し、その走査によって測
定するようにしたものが各種公表されているが、それぞ
れ以下のような難点がある。
As described above,
Various types have been published that use an electromagnetic wave beam such as a laser to measure the surface shape and surface accuracy of optical elements and the like, but each has the following drawbacks. .

【0009】特開平2−201142号公報及び特開平
2−201143号公報記載のものは、双方とも被検体
表面の異常を検出することを目的としており、被検体の
形状や面精度の測定はできない。
Both the Japanese Patent Laid-Open No. 2-201142 and Japanese Patent Laid-Open No. 2-201143 have the purpose of detecting an abnormality on the surface of the object, and cannot measure the shape or surface accuracy of the object. .

【0010】特開平3−295408号公報記載のもの
は、ビームの照射によって発生する回折パターンが、欠
陥と非欠陥で異なることを利用して被検査面の凹凸欠陥
を検出するもので、被検査面の形状や面精度を測定する
事はできない。また、この発明は、ほぼ平坦な被検査面
に形成されている凹凸を検査する方法および装置に関す
るものであり、球面、非球面、アナモフィック面等の形
状や面精度を測定することはできない。
The one disclosed in Japanese Patent Laid-Open No. 3-295408 is for detecting an uneven defect on a surface to be inspected by utilizing the fact that the diffraction pattern generated by irradiation of a beam differs between a defect and a non-defect. It is not possible to measure the surface shape or surface accuracy. The present invention also relates to a method and apparatus for inspecting irregularities formed on a substantially flat surface to be inspected, and cannot measure the shape or surface accuracy of a spherical surface, aspherical surface, anamorphic surface, or the like.

【0011】特開平5−180628号公報記載のもの
は、各種従来例の中で本願にかかる発明に最も近いもの
であるが、三角測量方式で三次元形状を測定するため、
波長オーダーの高精度測定が難しい。
Among the various conventional examples, the one described in Japanese Patent Application Laid-Open No. 5-180628 is the closest to the invention according to the present application, but since the three-dimensional shape is measured by the triangulation method,
It is difficult to measure wavelength order accurately.

【0012】本発明は、このような従来技術の問題点に
鑑みてなされたもので、非接触で、高速度、高精度に、
面形状、面精度、又は内部の歪み、異物等による変動な
どの内部情報を測定する方法およびその装置を提供する
ことを目的とする。ここでいう「面」とは、設計値が明
らかでさえあれば、平面、球面はもとより、アナモフィ
ック面等の特殊面でもよいこと、そして、「面形状」に
は、光学素子等の被検体が透過性のものであり、透過測
定を行う場合は、面間隔及び屈折率を含むものであるこ
とが大きな特徴である。
The present invention has been made in view of the above problems of the prior art, and is non-contact, high speed, high precision,
It is an object of the present invention to provide a method and apparatus for measuring internal information such as surface shape, surface accuracy, internal distortion, and fluctuation due to foreign matter. The "surface" referred to here may be a flat surface, a spherical surface, or a special surface such as an anamorphic surface as long as the design value is clear, and the "surface shape" includes an object such as an optical element. It is transmissive, and when transmissivity is measured, it is a major feature that it includes the surface spacing and the refractive index.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載の方法は、反射もしくは透過性の高
精度面を有しその面の設計値が既知である光学素子等の
被検体を、レーザー等の電磁波ビームで走査し、反射
ームもしくは透過ビームの特定位置での走査位置及び走
査速度を測定し、上記被検体を含む測定系におけるビー
ムの走査位置及び走査速度の、シミュレーション値に対
する差をとることにより、被検体の面形状、面精度又は
内部情報を測定するようにした。
In order to achieve the above object, the method according to claim 1 is an optical element or the like which has a highly accurate reflective or transmissive surface and whose design value is known. the subject was scanned electromagnetic beam such as a laser, the reflected-bi
The scanning position and scanning speed at the specific position over beam or transmitted beam is measured, the scanning position and scanning speed of the beam in the measurement system including the subject, by taking the difference from the simulation value, the surface of the subject The shape, surface accuracy, or internal information was measured.

【0014】請求項2記載の方法は、走査光学系に用い
られる光学素子を被検体とする場合の特性測定方法であ
って、光学素子を、実使用と略等しい状態でレーザー等
の電磁波ビームで走査し、反射ビームもしくは透過ビー
特定位置での走査位置及び走査速度を測定し、上記
光学素子を含む測定系におけるビームの走査位置及び走
査速度の、シミュレーション値に対する差をとることに
より、上記光学素子の面形状、面精度又は内部情報を測
定するようにした。
A second aspect of the present invention is a method for measuring characteristics when an optical element used in a scanning optical system is used as a subject, and the optical element is irradiated with an electromagnetic wave beam such as a laser in a state substantially equal to that in actual use. scanned, the reflected beam or transmitted Bee
Measuring the scanning position and scanning speed at the specific position of the beam, the beam scanning position and scanning speed in the measurement system including the optical element, by taking the difference from the simulation value, the surface shape of the optical element, a surface The accuracy or internal information was measured.

【0015】請求項3記載の方法は、請求項1又は2記
載の特性測定方法において、被検体を含まない測定系の
特性を予め求めておき、測定系の加工及び設置誤差の影
響を除去するようにした。
According to a third aspect of the present invention, in the characteristic measuring method according to the first or second aspect, the characteristics of the measurement system that does not include the object to be examined are obtained in advance, and the influence of processing and installation errors of the measurement system is eliminated. I did it.

【0016】請求項4記載の装置は、光学素子等の被検
体をレーザー等の電磁波ビームで走査する走査手段と、
反射ビームもしくは透過ビームの特定位置での走査位置
及び走査速度を測定する測定手段と、上記被検体を含む
測定系におけるビームの走査位置及び走査速度の、シミ
レーション値に対する差をとることにより、上記被検
体の面形状、面精度又は内部情報を測定する計算手段と
を有してなる。
According to a fourth aspect of the present invention, there is provided a scanning means for scanning an object such as an optical element with an electromagnetic wave beam such as a laser,
Measuring means for measuring a scanning position and a scanning speed of the reflected beam or the transmitted beam at a specific position, and a spot of the scanning position and the scanning speed of the beam in the measurement system including the subject.
By taking the difference from the Interview configuration value, and a calculating means for measuring the surface shape, surface accuracy or internal information of the subject.

【0017】請求項5記載の装置は、走査光学系に用い
られる光学素子を被検体とする場合の特性測定装置であ
って、光学素子を、実使用と略等しい状態でレーザー等
のビームで走査する走査手段と、反射ビームもしくは透
ビーム特定位置での走査位置及び走査速度を測定す
る測定手段と、上記光学素子を含む測定系におけるビー
ムの走査位置及び走査速度の、シミュレーション値に対
する差をとることにより、上記光学素子の面形状、面精
度または内部情報を測定する計算手段とを有してなる。
An apparatus according to a fifth aspect is a characteristic measuring apparatus in the case where an optical element used in a scanning optical system is an object to be inspected, and the optical element is scanned with a beam such as a laser in a state substantially equal to actual use. scanning means for, measuring means for measuring the scanning position and scanning speed at the specific position of the reflected beam or transmitted beam, the beam scanning position and scanning speed in the measurement system including the optical element, the difference from the simulation value By so doing, it has a calculating means for measuring the surface shape, surface accuracy or internal information of the optical element.

【0018】請求項6記載の装置は、請求項4又は5記
載の特性測定装置において、特性測定装置は、被検体を
含まない測定系の特性をあらかじめ求めるものであり、
計算手段は、求めた特性に応じて測定系の加工及び設置
誤差の影響を除去するものであることを特徴とする。
An apparatus according to a sixth aspect is the characteristic measuring apparatus according to the fourth or fifth aspect, wherein the characteristic measuring apparatus obtains the characteristic of the measuring system not including the object in advance.
The calculation means is characterized by removing the influence of processing and installation errors of the measurement system according to the obtained characteristics.

【0019】[0019]

【発明の実施の形態】以下、図面を参照しながら本発明
にかかる光学素子等の特性測定方法及びその装置の実施
の形態について説明する。本発明にかかる光学素子等の
特性測定装置の実施の形態は、レーザー等の電磁波ビー
ムを発生させる装置と、このビームを光学素子等の高精
度面を有する被検体上で走査させるためのビーム偏向手
段を含む走査手段と、被検体面で反射されるか又は被検
体を透過した電磁波ビームの、走査位置と走査速度を特
定の位置で測定するための測定手段と、測定結果を、無
欠陥の被検体とした場合のシュミレーション値と比較
し、これらの差を導出するための計算手段及び表示手段
とを有してなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention will be described below with reference to the drawings. An embodiment of a characteristic measuring apparatus for an optical element or the like according to the present invention is an apparatus for generating an electromagnetic wave beam such as a laser, and a beam deflection for scanning this beam on a subject having a highly accurate surface such as an optical element. A scanning means including a means, a measuring means for measuring the scanning position and the scanning speed of the electromagnetic beam reflected by the surface of the object or transmitted through the object at a specific position; It has a calculation means and a display means for comparing with a simulation value of a subject and deriving a difference between them.

【0020】上記電磁波ビームの発生手段としては、例
えば可視光や赤外光のレーザーや電子ビーム、X線など
の放射装置の何れかを用いることができる。ビーム偏向
手段としては、ポリゴンミラーやガルバノミラーなどを
用いることができる。走査位置検知手段としては、CC
D(チャージ・カップルド・デバイス)や位置検知型の
受光素子などを用いることができる。また、走査速度の
測定のためには、スリット又はナイフエッジ、フォトダ
イオード等の組み合せなどを用いることができる。
As the means for generating the electromagnetic wave beam, for example, any of a visible light or infrared light laser, an electron beam, and an X-ray emitting device can be used. As the beam deflecting means, a polygon mirror or a galvano mirror can be used. As the scanning position detecting means, CC
A D (charge coupled device), a position detection type light receiving element, or the like can be used. Further, for the measurement of the scanning speed, a combination of slits or knife edges, photodiodes and the like can be used.

【0021】また、ここに示す測定方法では、被検体の
被測定面を含む全測定系の設計値が既知であることを前
提としており、それ故、以下に示す各種実施の形態のよ
うに、基本的にはfθ光学系を用いることなく測定する
ことが可能である。従って、被検体はレーザー書込光学
系等、走査光学系用のものばかりでなく、複写機用、カ
メラ用等の光学素子についても測定することができる。
以下、各種実施の形態について具体的に説明する。
Further, the measuring method shown here is premised on that the design values of all measuring systems including the surface to be measured of the object to be measured are known, and therefore, as in the following various embodiments, Basically, it is possible to measure without using the fθ optical system. Therefore, the object can be measured not only for a laser writing optical system or the like for a scanning optical system, but also for an optical element for a copying machine or a camera.
Hereinafter, various embodiments will be specifically described.

【0022】図1に示す実施の形態は、被検体が、平面
で反射するもの、例えば光学素子としての平面鏡である
場合の例である。図1において、電磁波ビーム発生手段
によって発生されたレーザー等の電磁波ビーム1は、光
走査手段を構成するビーム偏向手段2で所定の角度範囲
で偏向される。ビーム偏向手段2による偏向光の進路上
には被検体として高精度の反射面を有する平面鏡3が設
置されており、平面鏡3による反射光路上に光の走査面
4がある。この走査面4に沿ってCCDや位置検知型の
受光素子などからなる測定手段5が移動しながら平面鏡
3からの反射光を受光する。なお、測定手段としてCC
D等からなるラインセンサを用いる場合は、このライン
センサを走査面4に沿って固定し、ビーム偏向手段2の
回転角度と上記ラインセンサによる受光位置との関係を
測定するようにしてもよい。
The embodiment shown in FIG. 1 is an example in which the subject is one that reflects on a plane, for example, a plane mirror as an optical element. In FIG. 1, an electromagnetic wave beam 1 such as a laser generated by the electromagnetic wave beam generating means is deflected within a predetermined angle range by a beam deflecting means 2 which constitutes an optical scanning means. A plane mirror 3 having a highly accurate reflecting surface is installed as a subject on the path of the light deflected by the beam deflecting means 2, and a light scanning surface 4 is on the light path reflected by the plane mirror 3. The measuring means 5 including a CCD and a position detection type light receiving element moves along the scanning surface 4 and receives the reflected light from the plane mirror 3. In addition, CC as a measuring means
When a line sensor made of D or the like is used, the line sensor may be fixed along the scanning surface 4 and the relationship between the rotation angle of the beam deflecting means 2 and the light receiving position of the line sensor may be measured.

【0023】測定手段5は、平面鏡3から反射されたビ
ームを特定の走査位置ごとに検知することにより、それ
ぞれの特定位置での走査速度を測定し、測定結果を適宜
の表示手段に表示する。上記ビーム偏向手段2、走査面
4、測定手段5を有してなる測定装置は、あらかじめ、
被検体としての平面鏡に欠陥がない場合の値をシュミレ
ーション値として用意しており、このシュミレーション
値と上記被検体としての平面鏡3との測定値との差を図
示されない計算手段により計算し、計算結果を適宜の表
示手段に表示する。これにより、上記被検体としての平
面鏡3の面形状、面精度又は内部情報(例えば歪み、不
純物の混入による変動等)を測定することができる。上
記シミュレーション値は、計算によって求めてもよい
し、例えば上記測定系に被検体としての平面鏡3に代わ
る欠陥のない標準の平面鏡を設置し、上記と同様に特定
の走査位置ごとに走査速度を測定して、この測定結果を
シュミレーション値として用いてもよい。
The measuring means 5 detects the beam reflected from the plane mirror 3 at each specific scanning position, measures the scanning speed at each specific position, and displays the measurement result on an appropriate display means. The measuring device including the beam deflecting means 2, the scanning surface 4, and the measuring means 5 is prepared in advance.
A value is prepared as a simulation value when there is no defect in the flat mirror as the subject, and the difference between the simulation value and the measured value of the flat mirror 3 as the subject is calculated by a calculation means (not shown), and the calculation result is obtained. Is displayed on an appropriate display means. As a result, the surface shape, surface accuracy, or internal information (for example, distortion, fluctuation due to mixing of impurities, etc.) of the flat mirror 3 as the subject can be measured. The above simulation value may be obtained by calculation, or for example, a standard plane mirror having no defect in place of the plane mirror 3 as the subject is installed in the measurement system, and the scanning speed is measured at each specific scanning position in the same manner as above. Then, this measurement result may be used as a simulation value.

【0024】以上説明した実施の形態によれば、面形状
の設計値が既知である被検体3の表面を測定あるいは検
査したいという場合に、レーザー等の電磁波ビーム1で
被検体3を走査し、その反射ビームの走査位置および走
査速度を測定手段5で測定し、被検体3を含む測定系に
おけるビームの走査位置および走査速度の、シュミレー
ション値に対する差をとることによって、被検体3の特
性の測定あるいは被検体3の良否等の検査ができるよう
にしたため、測定、検査のための全系の走査等速性や走
査線曲りがそれほど高い精度に補正されていなくても、
被検体の設計値からの加工ずれおよび設置ずれ等を、高
精度かつ迅速に測定することができる利点がある。
According to the embodiment described above, when it is desired to measure or inspect the surface of the subject 3 whose surface shape design value is known, the subject 3 is scanned with the electromagnetic wave beam 1 such as a laser, The characteristic of the subject 3 is measured by measuring the scanning position and the scanning velocity of the reflected beam by the measuring means 5 and taking the difference between the scanning position and the scanning velocity of the beam in the measurement system including the subject 3 with respect to the simulation value. Alternatively, since the quality of the object 3 can be inspected, even if the scanning constant velocity of the entire system for measurement and inspection and the scanning line bending are not corrected with such high accuracy,
There is an advantage that it is possible to measure the processing deviation and the installation deviation from the design value of the subject with high accuracy and speed.

【0025】なお、従来もレーザー等の電磁波ビームで
被検体を走査し、反射もしくは透過ビームを測定して、
面形状などを測定する方法が提案されているが、本発明
の上記実施の形態のように被検体に欠陥がない場合のシ
ュミレーション値との差をとるものではないため、高精
度かつ迅速に測定や検査をすることは難しい。本発明の
上記実施の形態によれば、特に走査速度のシュミレーシ
ョン値との差は、面形状や面精度又は内部情報(歪み、
異物による変動等)の微分情報となるため、通常の形状
測定に比して感度が高いという特徴がある。
Conventionally, an object is scanned with an electromagnetic wave beam such as a laser and a reflected or transmitted beam is measured,
Although a method of measuring a surface shape or the like has been proposed, it does not take a difference from a simulation value when the object does not have a defect like the above-described embodiment of the present invention, so that the measurement can be performed with high accuracy and speed. And it is difficult to inspect. According to the above-described embodiment of the present invention, in particular, the difference between the scanning speed and the simulation value indicates that the surface shape, surface accuracy, or internal information (distortion,
Since it is differential information (variation due to foreign matter, etc.), it has a characteristic that the sensitivity is higher than that in normal shape measurement.

【0026】次に、図2に示す第2の実施の形態につい
て説明する。この実施の形態が上記第1の実施の形態と
異なる点は、被検体6が光透過性の高精度面を有するも
の、例えば平行平板ガラスであり、ビーム偏向手段2に
よる偏向光を上記被検体6に透過させ、この透過光を走
査面4上で測定手段5により検知し、透過特性を測定す
るようにした点である。この実施の形態においても、欠
陥のない被検体の場合のシミュレーション値と上記被検
体6との実測値との差を測定手段により求めるものであ
るため、測定、検査のための全系の走査等速性や走査線
曲りがそれほど高い精度に補正されていなくても、高精
度かつ迅速に測定することができる。
Next, a second embodiment shown in FIG. 2 will be described. The difference between this embodiment and the first embodiment is that the subject 6 has a light-transmissive highly accurate surface, for example, parallel plate glass, and the light deflected by the beam deflecting means 2 is applied to the subject. 6 is transmitted, and the transmitted light is detected on the scanning surface 4 by the measuring means 5 to measure the transmission characteristic. Also in this embodiment, since the difference between the simulation value in the case of an object having no defect and the actual measurement value of the object 6 is obtained by the measuring means, the scanning of the whole system for measurement and inspection, etc. Even if the speed and the curve of the scanning line are not corrected with high accuracy, the measurement can be performed with high accuracy and speed.

【0027】図3に示す第3の実施の形態は、被検体が
楔形プリズム7でその透過特性を測定する場合である。
この場合の測定系の構成及び測定方法は図2に示す例と
同じである。この実施の形態の場合も、上記第2の実施
の形態と同様に、欠陥のない被検体の場合のシミュレー
ション値と上記被検体7との実測値との差を測定手段に
より求めることにより、測定検査のための全系の走査等
速性や走査線曲りがそれほど高い精度に補正されていな
くても、高精度かつ迅速に測定することができる。
The third embodiment shown in FIG. 3 is a case where the subject measures the transmission characteristics of the wedge prism 7.
The configuration of the measurement system and the measurement method in this case are the same as those in the example shown in FIG. Also in the case of this embodiment, as in the case of the second embodiment, the difference between the simulation value in the case of a defect-free object to be inspected and the actual measurement value of the object to be inspected 7 is obtained by the measuring means, thereby performing Even if the scanning uniform velocity of the whole system for inspection and the scanning line curve are not corrected with such high accuracy, the measurement can be performed with high accuracy and speed.

【0028】図4に示す第4の実施の形態は、被検体が
球面の反射面を持つ凹面鏡8でその反射特性を測定する
場合である。この場合の測定系の構成及び測定方法は図
1に示す例と同じである。この実施の形態の場合も、前
記第1の実施の形態と同様に、欠陥のない被検体の場合
のシミュレーション値と上記被検体としての凹面鏡8と
の実測値との差を測定手段により求めることにより、測
定検査のための全系の走査等速性や走査線曲りがそれほ
ど高い精度に補正されていなくても、高精度かつ迅速に
測定することができる。
The fourth embodiment shown in FIG. 4 is a case where the subject measures its reflection characteristics with a concave mirror 8 having a spherical reflecting surface. The configuration of the measurement system and the measurement method in this case are the same as those in the example shown in FIG. Also in the case of this embodiment, as in the first embodiment, the difference between the simulation value in the case of a defect-free subject and the actual measurement value of the concave mirror 8 as the subject is obtained by the measuring means. Thus, even if the scanning constant velocity property of the entire system for measurement and inspection and the curve of the scanning line are not corrected with such high accuracy, the measurement can be performed with high accuracy and speed.

【0029】なお、図1や図4に示す実施の形態は、共
軸非球面からなる反射面の測定、アナモフィック面から
なる反射面の測定にも適用することができる。
The embodiment shown in FIGS. 1 and 4 can also be applied to the measurement of a reflecting surface formed of a coaxial aspherical surface and the measurement of a reflecting surface formed of an anamorphic surface.

【0030】図5に示す第5の実施の形態は、被検体が
球面単レンズ9でその透過特性を測定する場合である。
この場合の測定系の構成及び測定方法は図2、図3に示
す例と同じであり、図2、図3に示す例と同じ効果を奏
する。なお、図2、図3、図5に示す実施の形態は、共
軸非球面単レンズの透過特性の測定、アナモフィック単
レンズの透過特性の測定にも適用することができる。
The fifth embodiment shown in FIG. 5 is a case where the subject measures the transmission characteristics of the spherical single lens 9.
The configuration of the measurement system and the measurement method in this case are the same as those in the examples shown in FIGS. 2 and 3, and have the same effects as the examples shown in FIGS. The embodiments shown in FIGS. 2, 3, and 5 can also be applied to the measurement of the transmission characteristic of the coaxial aspherical single lens and the measurement of the transmission characteristic of the anamorphic single lens.

【0031】これまで説明してきた各実施の形態は、偏
向されたビームの被検体及び走査面上での走査速度が偏
向角度によって異なる構成になっていた。このような構
成でも、シミュレーション値と被検体の実測値との差を
求めることにより、被検体の特性を測定するものである
から、高精度かつ迅速に測定することができる。しか
し、被検体が図1〜図3に示すように平面での反射面、
あるいは平面的な透過面である場合には、被検体に対し
て電磁波ビームが常に同じ条件で入射した方が測定精度
が高まるはずである。そこで、図6に示す第6の実施の
形態では、被検体3が図1の場合と同様に平面ミラーで
ある場合に、ビーム偏向手段2と被検体3との間にfθ
レンズ10を配置し、ビーム偏向手段2によるビームの
偏向角度にかかわらず、被検体3及び走査面4上での走
査速度が常に一定になるようにしている。
In each of the embodiments described so far, the scanning speed of the deflected beam on the object and the scanning surface differs depending on the deflection angle. Even with such a configuration, since the characteristic of the subject is measured by obtaining the difference between the simulation value and the actually measured value of the subject, the measurement can be performed with high accuracy and speed. However, as shown in FIGS. 1 to 3, the object is a plane reflection surface,
Alternatively, in the case of a flat transmission surface, the measurement accuracy should be improved if the electromagnetic wave beam always enters the subject under the same conditions. Therefore, in the sixth embodiment shown in FIG. 6, when the subject 3 is a plane mirror as in the case of FIG. 1, fθ is between the beam deflecting means 2 and the subject 3.
A lens 10 is arranged so that the scanning speed on the subject 3 and the scanning surface 4 is always constant regardless of the beam deflection angle of the beam deflecting means 2.

【0032】このように、図6に示す例によれば、偏向
されたビームがfθレンズ10を通ることにより、被検
体3及び走査面4上での走査速度が常に一定になるた
め、シミュレーション値と被検体の実測値との差をより
高精度に測定することができ、被検体3の特性をより高
精度に測定することができる。なお、fθレンズを用い
た測定系は、反射体ばかりでなく透過体の測定にも適用
することができるし、平面のみでなく、鏡面、非球面、
アナモフィック面等の測定にも適用することができる。
As described above, according to the example shown in FIG. 6, since the deflected beam passes through the fθ lens 10, the scanning speeds on the subject 3 and the scanning surface 4 are always constant, so that the simulation value Can be measured with higher accuracy, and the characteristics of the object 3 can be measured with higher accuracy. The measurement system using the fθ lens can be applied not only to the measurement of the reflector but also to the transmission, and not only the plane but also the mirror surface, the aspherical surface,
It can also be applied to measurement of anamorphic surfaces and the like.

【0033】本発明にかかる特性測定方法及びその装置
は、実際に使われる光走査光学系をそのまま測定系とし
て使うことができる。つまり走査光学系の大部分を測定
系として使い、残りの一部の光学素子を被検体とし、こ
の被検体を次々に入れ替えることにより、測定、検査を
行うのである。この場合、測定系となる部分の光学素子
は一応高精度が要求されるが、この部分だけのシュミレ
ーション値と測定値があれば、それらの差から補正値を
求めておき、被検体の実測値を上記補正値で補正するこ
ともできるため、測定系を構成する光学素子はある程度
の精度があればよいということもできる。
In the characteristic measuring method and apparatus according to the present invention, the optical scanning optical system actually used can be used as it is as a measuring system. That is, most of the scanning optical system is used as a measurement system, the remaining part of the optical elements is used as a test object, and the test objects are sequentially replaced to perform measurement and inspection. In this case, the optical element in the part that becomes the measurement system is required to have high accuracy, but if there is a simulation value and measured value only for this part, the correction value is calculated from the difference between them and the measured value of the object is measured. Can also be corrected with the above-mentioned correction value, and therefore it can be said that the optical element forming the measurement system only needs to have a certain degree of accuracy.

【0034】本発明にかかる特性測定方法及びその装置
は、被検体が光学素子等の合成系である場合にも適用可
能である。図7に示す第7の実施の形態は、被検体11
が、平行平面の透過体11aと鏡面もしくは非球面の反
射面をもつ凹面鏡11bとで構成されている場合の例で
ある。測定系の構成及び測定方法は、図1、図4に示す
例と実質的に同じであり、上記平行平面の透過体11a
と凹面鏡11bとが合成された被検体11の透過及び反
射特性を測定することができる。
The characteristic measuring method and the apparatus therefor according to the present invention can be applied to the case where the object is a synthetic system such as an optical element. The seventh embodiment shown in FIG.
Is an example in the case of being constituted by a parallel-plane transmission body 11a and a concave mirror 11b having a mirror surface or an aspherical reflection surface. The configuration of the measurement system and the measurement method are substantially the same as the examples shown in FIGS. 1 and 4, and the parallel-plane transmissive body 11a is used.
It is possible to measure transmission and reflection characteristics of the subject 11 in which the concave mirror 11b and the concave mirror 11b are combined.

【0035】図8に示す第8の実施の形態は、被検体1
2が、平凸レンズ12aとメニスカス凸レンズ12bと
アナモフィックレンズ12cとで構成されている場合の
例である。測定系の構成及び測定方法は、図2、図3、
図5に示す例と実質的に同じであり、上記閣レンズ12
a,12b,12cとが合成された被検体12の透過特
性を測定することができる。
The eighth embodiment shown in FIG. 8 is the subject 1
2 is an example in the case of being configured by a plano-convex lens 12a, a meniscus convex lens 12b, and an anamorphic lens 12c. The configuration of the measurement system and the measurement method are shown in FIGS.
This is substantially the same as the example shown in FIG.
It is possible to measure the transmission characteristics of the subject 12 in which a, 12b, and 12c are combined.

【0036】図9は、図4に示す第4の実施の形態にお
いて、被検体として共軸非球面の凹面鏡を測定した場合
の走査位置のシュミレーション値と、3つの試料につい
ての実測値(生データ)を示すもので、横軸に像高(m
m)を縦軸に走査位置(mm)とっている。シュミレー
ション値と実測値とを比較すれば各資料の特性を測定す
ることができるが、このままでは3つの試料の違いはわ
かりにくい。そこで、各資料の実測値のシュミレーショ
ン値に対する差をとって示したのが図10である。図1
0によれば、各資料の実測値のシュミレーション値に対
する違いが明らかになっている。ちなみに、試料1は全
体が傾いていることが、また試料2、3は捩れがあるこ
とが定量的に測定される。
FIG. 9 shows a simulation value of the scanning position when a coaxial aspherical concave mirror is measured as the object in the fourth embodiment shown in FIG. 4 and the actual measurement values (raw data) of three samples. ), And the image height (m
m) is the scanning position (mm) on the vertical axis. The characteristics of each sample can be measured by comparing the simulation value with the measured value, but it is difficult to understand the difference between the three samples as it is. Therefore, FIG. 10 shows the difference between the measured value of each material and the simulation value. Figure 1
According to 0, the difference between the actual measurement value of each material and the simulation value is clear. Incidentally, it is quantitatively measured that the sample 1 is entirely tilted and that the samples 2 and 3 are twisted.

【0037】図11、図12は、同じく上記共軸非球面
の凹面鏡を被検体として測定し、その走査速度について
示したもので、図11はシミュレーション値と各資料の
実測値とを比較して示したものであり、図12は各資料
の実測値のシュミレーション値に対する差をとって示し
たものである。この場合も、実測値からシュミレーショ
ン値を引いた図12では、形状や面精度の加工誤差が定
量的に示され、3つの試料の違いも明確に示されてい
る。
11 and 12 show the scanning speed of the same measurement using the coaxial aspherical concave mirror as an object, and FIG. 11 compares the simulation value with the measured value of each material. 12 shows the difference between the actual measurement value of each material and the simulation value. Also in this case, in FIG. 12 in which the simulation value is subtracted from the actual measurement value, the processing error of the shape and surface accuracy is quantitatively shown, and the difference between the three samples is also clearly shown.

【0038】[0038]

【発明の効果】請求項1及び請求項4記載の発明によれ
ば、反射もしくは透過性の高精度面を有しその面の設計
値が既知である被検体を、レーザー等の電磁波ビームで
走査し、反射ビームもしくは透過ビームの特定位置での
走査位置及び走査速度を測定し、被検体を含む測定系に
おけるビームの走査位置及び走査速度の、シミュレーシ
ョン値に対する差をとることにより、被検体の面形状、
面精度又は内部情報を測定するようにしたため、測定、
検査のための全系の走査等速性や走査線曲りがそれほど
高い精度に補正されていなくても、被検体の設計値から
のずれ、凹凸、傾き、ねじれなどを高精度かつ迅速に求
めることができる。特に、走査速度測定値のシミュレー
ション値との差は面形状や面精度又は内部情報(歪み、
不純物による変動等)の微分情報となるため、通常の形
状測定に比して感度が高いという特徴がある。
According to the first and fourth aspects of the invention, an object having a highly accurate reflective or transmissive surface and a design value of the surface being known is scanned by an electromagnetic wave beam such as a laser. and, the reflected beam or by measuring the <br/> scanning position and scanning speed at the specific position of the transmitted beam, the beam scanning position and scanning speed in the measurement system including the object, simulation Reshi <br/> tio emission value By taking the difference with respect to the surface shape of the subject ,
Since the surface accuracy or internal information is measured,
Even if the scanning constant velocity of the entire system for inspection and the scan line bending are not corrected with such high accuracy, deviation from the design value of the subject, unevenness, inclination, twist, etc. can be obtained with high accuracy and speed. You can In particular, the difference between the simulation rate <br/> retardation value of the scanning speed measurement surface shape and surface accuracy or the internal information (distortion,
Since it is differential information (variation due to impurities, etc.), it has a characteristic that the sensitivity is higher than that in normal shape measurement.

【0039】請求項2及び請求項5記載の発明によれ
ば、走査光学系に用いられる光学素子を、実使用と略等
しい状態で測定するため、光学素子の測定結果と実際的
な全系の性能との対応が明確になり、評価が正確かつ容
易になる利点がある。
According to the second and fifth aspects of the present invention, since the optical element used in the scanning optical system is measured in a state substantially equal to that in actual use, the measurement result of the optical element and the practical whole system are measured. There is an advantage that the correspondence with the performance becomes clear and the evaluation is accurate and easy.

【0040】請求項3及び請求項6記載の発明によれ
ば、被検体を含まない測定系の特性値をあらかじめ求め
ることにより、測定系の加工および設置誤差の影響を除
去することができるため、測定精度をさらに高めること
ができる。
According to the third and sixth aspects of the invention, since the characteristic values of the measurement system not including the subject are obtained in advance, it is possible to eliminate the influence of processing and installation errors of the measurement system. The measurement accuracy can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光学素子等の特性測定方法及び
その装置の一実施の形態を示す光学配置図である。
FIG. 1 is an optical layout diagram showing an embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図2】本発明にかかる光学素子等の特性測定方法及び
その装置の別の実施の形態を示す光学配置図である。
FIG. 2 is an optical layout diagram showing another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図3】本発明にかかる光学素子等の特性測定方法及び
その装置のさらに別の実施の形態を示す光学配置図であ
る。
FIG. 3 is an optical layout diagram showing still another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図4】本発明にかかる光学素子等の特性測定方法及び
その装置のさらに別の実施の形態を示す光学配置図であ
る。
FIG. 4 is an optical layout diagram showing still another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図5】本発明にかかる光学素子等の特性測定方法及び
その装置のさらに別の実施の形態を示す光学配置図であ
る。
FIG. 5 is an optical layout diagram showing still another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図6】本発明にかかる光学素子等の特性測定方法及び
その装置のさらに別の実施の形態を示す光学配置図であ
る。
FIG. 6 is an optical layout diagram showing still another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図7】本発明にかかる光学素子等の特性測定方法及び
その装置のさらに別の実施の形態を示す光学配置図であ
る。
FIG. 7 is an optical layout diagram showing still another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図8】本発明にかかる光学素子等の特性測定方法及び
その装置のさらに別の実施の形態を示す光学配置図であ
る。
FIG. 8 is an optical layout diagram showing still another embodiment of a characteristic measuring method for an optical element and the like and an apparatus therefor according to the present invention.

【図9】図4に示す実施の形態において共軸非球面凹面
鏡を測定した場合の走査位置の実測値とシュミレーショ
ン値とを比較して示すグラフである。
FIG. 9 is a graph showing a comparison between an actual measurement value of a scanning position and a simulation value when a coaxial aspherical concave mirror is measured in the embodiment shown in FIG.

【図10】同じく上記共軸非球面凹面鏡の走査位置につ
いて実測値のシュミレーション値に対する差を示すグラ
フである。
FIG. 10 is a graph showing the difference between the actual measurement value and the simulation value for the scanning position of the coaxial aspherical concave mirror.

【図11】同じく上記共軸非球面凹面鏡の走査速度につ
いてシミュレーション値と各資料の実測値とを比較して
示すグラフである。
FIG. 11 is a graph showing a comparison between the simulation value and the actual measurement value of each material regarding the scanning speed of the coaxial aspherical concave mirror.

【図12】同じく上記共軸非球面凹面鏡の走査速度につ
いて実測値のシュミレーション値に対する差を示すグラ
フである。
FIG. 12 is a graph showing the difference between the actual measurement value and the simulation value for the scanning speed of the coaxial aspherical concave mirror.

【符号の説明】[Explanation of symbols]

1 電磁波ビーム 2 走査手段を構成する偏向手段 3 被検体 5 測定手段 7 被検体 8 被検体 9 被検体 11 被検体 12 被検体 1 Electromagnetic beam 2 Deflection means constituting scanning means 3 subject 5 Measuring means 7 subject 8 subject 9 subject 11 subject 12 subject

フロントページの続き (56)参考文献 特開 平4−5536(JP,A) 特開 昭51−72459(JP,A) 特開 昭60−95313(JP,A) 特開 平1−176929(JP,A) 特開 平2−77608(JP,A) 実開 昭57−175035(JP,U) 特表 平3−501058(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01M 11/00 - 11/08 G01B 11/00 - 11/30 G01N 21/84 - 21/958 G02B 26/10 Continuation of the front page (56) Reference JP-A-4-5536 (JP, A) JP-A-51-72459 (JP, A) JP-A-60-95313 (JP, A) JP-A-1-176929 (JP , A) Japanese Unexamined Patent Publication No. 2-77608 (JP, A) SAIKAI 57-175035 (JP, U) Tokumei HEI 3-501058 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) G01M 11/00-11/08 G01B 11/00-11/30 G01N 21/84-21/958 G02B 26/10

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反射もしくは透過性の高精度面を有しそ
の面の設計値が既知である光学素子等の被検体を、レー
ザー等の電磁波ビームで走査し、反射ビームもしくは透
過ビームの特定位置での走査位置及び走査速度を測定
し、上記被検体を含む測定系におけるビームの走査位置
及び走査速度の、シミュレーション値に対する差をとる
ことにより、被検体の面形状、面精度又は内部情報を測
定することを特徴とする光学素子等の特性測定方法。
1. A specific position of a reflected beam or a transmitted beam by scanning an object such as an optical element having a highly accurate reflective or transmissive surface whose design value is known with an electromagnetic wave beam such as a laser. measuring the scanning position and scanning speed, the scanning position and scanning speed of the beam in the measurement system including the subject, by taking the difference from the simulation value, the surface shape of the object, the surface accuracy or the internal information A method for measuring characteristics of an optical element or the like, characterized by measuring.
【請求項2】 反射もしくは透過性の高精度面を有しそ
の面の設計値が既知であり走査光学系に用いられる光学
素子を、実使用と略等しい状態でレーザー等の電磁波ビ
ームで走査し、反射ビームもしくは透過ビーム特定位
置での走査位置及び走査速度を測定し、上記光学素子を
含む測定系におけるビームの走査位置及び走査速度の、
シミュレーション値に対する差をとることにより、上記
光学素子の面形状、面精度又は内部情報を測定すること
を特徴とする光学素子等の特性測定方法。
2. An optical element having a highly reflective or transmissive surface whose design value is known and which is used in a scanning optical system is scanned with an electromagnetic wave beam such as a laser in a state substantially equal to that in actual use. , Specific position of reflected beam or transmitted beam
Measuring the scanning position and the scanning speed in the position, of the scanning position and the scanning speed of the beam in the measurement system including the optical element,
By taking the difference from the simulation value, characteristic measuring method, such as an optical element characterized by measuring the surface shape, surface accuracy or the internal information of the optical element.
【請求項3】 上記測定方法によって被検体を含まない
測定系の特性をあらかじめ求め、測定系の加工及び設置
誤差の影響を除去しておくことを特徴とする請求項1又
は2記載の光学素子等の特性測定方法。
3. The optical element according to claim 1, wherein the characteristics of a measurement system that does not include an object to be measured are obtained in advance by the measurement method, and effects of processing and installation errors of the measurement system are removed. Method of measuring characteristics such as.
【請求項4】 光学素子等の被検体をレーザー等の電磁
波ビームで走査する走査手段と、反射ビームもしくは透
過ビームの特定位置での走査位置及び走査速度を測定す
る測定手段と、上記被検体を含む測定系におけるビーム
の走査位置及び走査速度の、シミュレーション値に対す
る差をとることにより、上記被検体の面形状、面精度又
は内部情報を測定する計算手段とを有してなる光学素子
等の特性測定装置。
4. A scanning means for scanning an object such as an optical element with an electromagnetic wave beam such as a laser, a measuring means for measuring a scanning position and a scanning speed of a reflected beam or a transmitted beam at a specific position, and the object. the beam scanning position and scanning speed in the measurement system including by taking the difference from the simulation value, the subject of the surface shape, comprising a calculation means for measuring the surface accuracy or internal information, such as an optical element Characteristic measuring device.
【請求項5】 反射もしくは透過性の高精度面を有しそ
の面の設計値が既知であり走査光学系に用いられる光学
素子の特性測定装置であって、この光学素子を、実使用
と略等しい状態でレーザー等の電磁波ビームで走査する
走査手段と、反射ビームもしくは透過ビーム特定位置
での走査位置及び走査速度を測定する測定手段と、上記
光学素子を含む測定系におけるビームの走査位置及び走
査速度の、シミュレーション値に対する差をとることに
より、上記光学素子の面形状、面精度または内部情報を
測定する計算手段とを有してなる光学素子等の特性測定
装置。
5. A characteristic measuring device for an optical element used for a scanning optical system, which has a highly accurate reflective or transmissive surface, a design value of which is known, and the optical element is abbreviated as “actual use”. Scanning means for scanning with an electromagnetic wave beam such as a laser in the same state, and a specific position of a reflected beam or a transmitted beam
Measuring means for measuring the scanning position and scanning speed, the beam scanning position and scanning speed in the measurement system including the optical element, by taking the difference from the simulation value, the surface shape, surface accuracy of the optical element Alternatively, a characteristic measuring device such as an optical element having a calculating means for measuring internal information.
【請求項6】 上記特性測定装置は、被検体を含まない
測定系の特性をあらかじめ求めるものであり、計算手段
は、求めた特性に応じて測定系の加工及び設置誤差の影
響を除去するものであることを特徴とする請求項4又は
5記載の光学素子等の特性測定装置。
6. The characteristic measuring device obtains the characteristic of a measuring system which does not include the object in advance, and the calculating means removes the influence of processing and installation error of the measuring system according to the obtained characteristic. 6. The characteristic measuring device for an optical element or the like according to claim 4 or 5.
JP28875695A 1995-11-07 1995-11-07 Method and apparatus for measuring characteristics of optical elements and the like Expired - Fee Related JP3381888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28875695A JP3381888B2 (en) 1995-11-07 1995-11-07 Method and apparatus for measuring characteristics of optical elements and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28875695A JP3381888B2 (en) 1995-11-07 1995-11-07 Method and apparatus for measuring characteristics of optical elements and the like

Publications (2)

Publication Number Publication Date
JPH09133606A JPH09133606A (en) 1997-05-20
JP3381888B2 true JP3381888B2 (en) 2003-03-04

Family

ID=17734306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28875695A Expired - Fee Related JP3381888B2 (en) 1995-11-07 1995-11-07 Method and apparatus for measuring characteristics of optical elements and the like

Country Status (1)

Country Link
JP (1) JP3381888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008643A (en) * 2007-06-27 2009-01-15 Oputouea Kk Optical scanning type plane inspecting apparatus

Also Published As

Publication number Publication date
JPH09133606A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
US5291271A (en) Measurement of transparent container wall thickness
KR20070121820A (en) Glass inspection systems and methods for using same
KR20140048824A (en) Calibration apparatus, calibration method, and measurement apparatus
US20140250679A1 (en) Optical inspection apparatus and optical inspection system
EP0672901A1 (en) Differential phase contrast inspection system
JP4288490B2 (en) Scanning light beam spot measurement method
JP2009008643A (en) Optical scanning type plane inspecting apparatus
JP3381888B2 (en) Method and apparatus for measuring characteristics of optical elements and the like
CN110044280A (en) A kind of side focal line method laser triangulation calibrator and method
KR100416497B1 (en) Pattern Inspection System
JP3537608B2 (en) Scanning light intensity measurement method and apparatus
JPS6239365B2 (en)
JP4639114B2 (en) Inspection method of rod lens array
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
CN219829789U (en) Line laser profilometer for both highlight surface and rough surface
JP4267781B2 (en) Interferometry apparatus and interference measurement method
JP2001227929A (en) Angle measuring method and apparatus
JP4267780B2 (en) Interference measuring apparatus and interference measuring method
JP4488710B2 (en) Lens characteristic inspection method and apparatus
JPH08193955A (en) Defect inspection method for plate glass
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
JPS6217725B2 (en)
JP2000258144A (en) Flatness and thickness measurement device for wafer
KR900005642B1 (en) Checking machine of dia-meter
KR100588988B1 (en) Method of measuring a thin film thickness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees