JPS61140802A - Light wave interference device preventing reverse surface reflected light - Google Patents

Light wave interference device preventing reverse surface reflected light

Info

Publication number
JPS61140802A
JPS61140802A JP59262734A JP26273484A JPS61140802A JP S61140802 A JPS61140802 A JP S61140802A JP 59262734 A JP59262734 A JP 59262734A JP 26273484 A JP26273484 A JP 26273484A JP S61140802 A JPS61140802 A JP S61140802A
Authority
JP
Japan
Prior art keywords
light
reflected light
beam splitter
interference device
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59262734A
Other languages
Japanese (ja)
Other versions
JPH0650243B2 (en
Inventor
Koji Nakazawa
中沢 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59262734A priority Critical patent/JPH0650243B2/en
Publication of JPS61140802A publication Critical patent/JPS61140802A/en
Publication of JPH0650243B2 publication Critical patent/JPH0650243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02059Reducing effect of parasitic reflections, e.g. cyclic errors

Abstract

PURPOSE:To remove interference fringes formed by reverse-surface reflected light from an optical component such as an objective and to improve precision by setting a beam splitter so that its incidence surface and projection surfaces do not cross the optical axis of irradiation light at right angles. CONSTITUTION:This device guides the irradiation light 3 to a sample-side objective 7 and a reference-mirror side objective 8 by the beam splitter 20, whose incidence surface and projection surfaces 20-1 and 20-2 are not at right angles to the optical axis of the irradiation light 3. For the purpose, the beam splitter is formed in the sectional shape of, for example, a rectangle, parallelogram, or diamond. Consequently, reverse-surface reflected light beams 5 and 6 from the projection surfaces 20-1 and 20-2 and reverse-surface reflected light from the objectives deviate greatly from regular reflected light 13 and do not strike a photodetection part, so no interference fringe is formed.

Description

【発明の詳細な説明】 〔発明のオU用分野〕 本発明は光波干渉装置の光学系において、対・物レンズ
等光学部品の裏面反射光を防止し、か・つ直交光学系を
維持した光学装置に関する。 ・〔発明の背景〕 従来、試料の形状を非接触で光学的に紬足す、)る方法
としてトワイマン干渉計が仰られている。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is an optical system for a light wave interference device, which prevents light reflected from the back surface of optical components such as an objective lens, and maintains an orthogonal optical system. Related to optical devices. - [Background of the Invention] Conventionally, the Twyman interferometer has been used as a method for optically adding the shape of a sample in a non-contact manner.

(例えば、山田;光字の知識、東京電機大学出。(For example, Yamada: Knowledge of Hikariji, graduated from Tokyo Denki University.

版局P256〜257(昭和46−5)がある。)。。There are editions P256-257 (Showa 46-5). ). .

ここで試料の形状の木ならず表面粗さを干渉縞。Here, interference fringes reflect the shape of the sample and the surface roughness.

により測足しようとすると対物レンズを試料及1゜び参
照面に対向して設げる必要があると考えら。
If we try to measure the foot by 1°, we think that it is necessary to set up the objective lens to face the sample and the reference plane by 1°.

れるが、従来このような対物レンズを組込んだ。However, in the past, such an objective lens was incorporated.

光波干渉装置及びそれによって生ずる問題点に。On light wave interference devices and the problems caused by them.

ついては全く検討されていなかった。This was not considered at all.

〔発明9目的〕 本発明の目的は試料、参照ミラに対向して対。[Purpose of invention 9] The purpose of the invention is to pair the sample with a reference mirror.

物レンズまたはその他の光学部品を設けるよ5゜にした
光波干渉装置において、これら光学部品。
In a light wave interference device in which an object lens or other optical components are provided at an angle of 5 degrees, these optical components.

の裏面反射光によって生ずる干渉縞を除去でき“る光波
干渉装置を提供することにある。
An object of the present invention is to provide a light wave interference device that can remove interference fringes caused by light reflected from the back surface of a light wave.

〔発明の概要〕[Summary of the invention]

本発明では、上記対物レンズの裏面反射光が。 In the present invention, the light reflected from the back surface of the objective lens.

王にビームスグリツタの出射面における反射光゛と干渉
して干渉縞像を形成し、本来検出しよう。
First, it interferes with the reflected light on the exit surface of the beam sinter to form an interference fringe image and detect it.

としている試料と参照ミラの干渉縞像に重畳し・・)て
検出される不都合さを改善するために、ビー・ムスブリ
ツタの入射面、出射面を照明光光軸と・直交させないよ
うにして、上記元軸と直交して・設けられた対物レンズ
裏面との干渉を回避したb〔発明の実施例〕 試料の表面粗さを光字的に非接触測定するた。
In order to improve the inconvenience of detection due to interference fringes being superimposed on the interference fringe images of the sample and reference mirror, the incident and exit surfaces of the beam musburitr are made not to be perpendicular to the optical axis of the illumination light. b [Embodiment of the Invention] The surface roughness of the sample was optically measured in a non-contact manner.

めの光波干渉装置を第1図に示す。光源1から。Figure 1 shows the first optical wave interference device. From light source 1.

出た光は照明レンズ2を通過後ビームス1リツ。The emitted light becomes one beam after passing through the illumination lens 2.

り4により2分割され1反射光は対物レンズ7゜を通っ
てステージ12にのっている試料1oに集光2.。
The reflected light is divided into two by the mirror 4, and the reflected light passes through the objective lens 7° and is focused on the sample 1o placed on the stage 12.2. .

サレる。一方ビームスグリツタにおける透過光。Saleru. On the other hand, the transmitted light in the beam sliver.

は対物レンズ8を通って参照ミラ11に集光され。is focused on the reference mirror 11 through the objective lens 8.

る。これら試料と参照ミラからの反射光13は再。Ru. The reflected light 13 from these samples and the reference mirror is re-reflected.

びビームスグリツタ4で合成されて干渉し、そ。The two beams are synthesized by the beam sinter 4 and interfere with each other.

の干渉縞像を結像レンズ14により受光部15に投−・
影する。16はモニタ用TVである。このTV画゛面1
9には例えば第3図に示すように試料と参照゛ミラの反
射光の干渉縞像26の他に対物レンズの・Am反射光と
他の光学部品の反射光の干渉縞像“27−1 、27−
2等が検出されるため、本来検出し11ようとしている
干渉縞像26を検出し日動的に信・勺処理しようとする
際に大きな障害となり正確・な試料の表面粗さ、うねり
等の測定が不可能に・なる。試料の反射率が低くなる程
この傾向は強・(なり1例えば試料10が対物レンズと
四じガラ15ス材質であるような場合は、27−1 、
27−2の干。
The interference fringe image is projected onto the light receiving section 15 by the imaging lens 14.
shadow 16 is a monitor TV. This TV screen 1
For example, as shown in FIG. 3, in addition to the interference fringe image 26 of the reflected light from the sample and the reference mirror, there is also an interference fringe image 27-1 of the Am reflected light from the objective lens and the reflected light from other optical components. , 27-
2, etc. is detected, which becomes a major hindrance when trying to detect the interference fringe image 26 that was originally intended to be detected and then transmit and process it, making it difficult to accurately measure the surface roughness, waviness, etc. of the sample. becomes impossible. The lower the reflectance of the sample, the stronger this tendency is.
27-2 dry.

渉縞のノイズ成分の強度の方が、26の信号成分。The intensity of the noise component of the interference fringes is higher than that of the 26 signal components.

の干渉縞強度よりも大きくなってしまうため、。This is because the intensity of the interference fringe becomes larger than the intensity of the interference fringe.

試料10の表面粗さ、うねりの開示は全く不可能。It is completely impossible to disclose the surface roughness and waviness of sample 10.

となる。becomes.

このノイズ成分の干渉縞27−t 、 27−2が生ず
Interference fringes 27-t and 27-2 of this noise component are generated.

る原因を調べてみると、対物レンズ7.9の裏。When I investigated the cause of this, I found that it was behind the objective lens 7.9.

圓反射元が関与していることがわかる。対物し。It can be seen that the circular reflection source is involved. Objective.

ンズは例えば第1図に示すように複数枚のレン。For example, as shown in FIG. 1, the lens may include multiple lenses.

ズ群でMH,されており、これら各レンズの表裏面で反
射かわずかながら生する。これらをまと。
The lens group is MH, and a small amount of reflection occurs on the front and back surfaces of each lens. Wear these.

めて対物レンズの裏面反射光9で表わす。一方゛ビーム
ス1リッタ4の出射面4−1 、4−2におい″ても反
射光5.6が生ずる。検討した結果、試。
This is represented by the light 9 reflected from the back surface of the objective lens. On the other hand, reflected light 5.6 is also generated at the exit surfaces 4-1 and 4-2 of the Beams 1 liter 4.As a result of investigation, a trial.

R1jl対物レンズの裏面反射光9とビームスプリ・・
・ツタ出射[lI]4−1の反射光5が干渉縞を形成し
て・おり、lrl+1様のことが参照ミラ側対物レンズ
でも・生じていることがわかった。これらの干渉縞ノ・
イズ成分が第3図27−1 、27−2に相当している
Back reflection light 9 of R1jl objective lens and beam split...
- It was found that the reflected light 5 of the ivy output [lI] 4-1 forms interference fringes, and that something similar to lrl+1 also occurs with the objective lens on the reference mirror side. These interference fringes
The noise components correspond to FIG. 3, 27-1 and 27-2.

そこで、上記干渉縞ノイズ成分を除去する方1゜末とし
ては%元軸と直交している対物レンズ7.98に対して
ビームスプリッタの各面が平行とな。
Therefore, in order to remove the interference fringe noise component, each surface of the beam splitter is parallel to the objective lens 7.98, which is perpendicular to the % axis.

らないように第4図4′に示すように傾けてやれ。Tilt it as shown in Figure 4 4' to prevent it from falling.

ばよいことが考えられる。しかるにこの場合、。I can think of something better. However, in this case.

対物レンズ7に向5元は垂直方向からずれ、試11,1
科からの反射光も13に示すように垂直方向から。
The direction of the objective lens 7 is deviated from the vertical direction, and trials 11 and 1
The reflected light from the family is also from the vertical direction, as shown in Figure 13.

ずれてしまい、光学系の光軸が縦・横直交する゛ような
直交光学系とはならな(なるため装置と。
It is not an orthogonal optical system in which the optical axis of the optical system is perpendicular to the vertical and horizontal directions.

して不都合が生ずる。This causes inconvenience.

従来のw4微鏡では照明系に平板状ハーフミラ)が用い
られているが、これを第2図17に示すよ・うに干渉装
置に組込んだ場曾、参照ミラからの・反射光は18に示
すようにハーフミラの裏面でも・着干反射され、正規の
反射光13に対して横ずれ・を生じてしまうので干渉縞
像がだぶってしまい・([不具合である。
In the conventional W4 microscope, a flat half mirror is used in the illumination system, but when this is incorporated into an interference device as shown in Fig. 2, the reflected light from the reference mirror is 18. As shown, the light is reflected even on the back surface of the half mirror, causing a lateral shift with respect to the normal reflected light 13, resulting in overlapping interference fringe images ([This is a problem).

本発明では上記問題点を解決し、光学部品の・裏面反射
光による干渉物ノイズ成分の発生を防・止しかつ直交光
学系となるような光波干渉装置。
The present invention solves the above-mentioned problems, and provides a light wave interference device that prevents the generation of interference noise components due to light reflected from the back surface of optical components and that serves as an orthogonal optical system.

を可能とするものである。本発明をW、5〜8図1゜で
説明する。
This makes it possible to The present invention will be explained with reference to W, 5-8, 1°.

第6図は断面形状が長方形のビームス1リッ、□り20
′でその対角線方向に反射01121を有する。。
Figure 6 shows a beam with a rectangular cross-sectional shape, 1 rim, □ri 20
' has a reflection 01121 in its diagonal direction. .

このビームスプリッタ20′の左右を削って短く。Cut the left and right sides of this beam splitter 20' to make it shorter.

し、断面形状を正方彰にしたのが第5図のビー、。However, the B in Figure 5 has a square cross-sectional shape.

ムス1リッタ20であり、θ、〜θ、である。mass 1 liter 20, and θ, ˜θ,.

第5図において照明光3と試料反射光13とが゛直交す
るための条件はα1−偽であり2γ+θ1+θ2゜ミπ
、θ1+θ、=ヲからγ=7であれば上記直交。
In Fig. 5, the condition for the illumination light 3 and the sample reflected light 13 to be orthogonal is α1-false, and 2γ+θ1+θ2゜π
, θ1+θ, = wo, so if γ=7, the above is orthogonal.

条件が満足される。condition is satisfied.

ビームスグリツタ20の出射面20−1 、20−2で
At the exit surfaces 20-1 and 20-2 of the beam sinter 20.

反射された照面光は破線5.6で承すようになり、試料
及び参照ミラかもの反射光13からそれていくため、受
光部には入射せず干渉縞のノイズ成分とならない。そし
てビームスプリッタ20″または20′の傾斜角α、を
大きくすればする根皮・射光5.6のそれは大きくなる
ことがわかる。
The reflected illumination surface light is received along the broken line 5.6 and is diverted from the reflected light 13 from the sample and reference mirror, so that it does not enter the light receiving section and does not become a noise component of the interference fringes. It can be seen that if the inclination angle α of the beam splitter 20'' or 20' is increased, the amount of light 5.6 emitted from the root bark becomes larger.

すなわち従来用いられているビームスプリツ・り(第1
図、4)は2等辺3角形を2個組合せ・たものであるた
め断面形状は正方形で、第5図・。
In other words, the conventionally used beam splitter (first
Figure 4) is a combination of two isosceles triangles, so the cross-sectional shape is square, and Figure 5.

においてθ1=θ、となっている。このためビーム。θ1=θ. Beam for this.

スプリッタを傾けると直交光学系にならな(なる。これ
に対し本発明では、第5図に示すようにθ−〇、として
いるため従来の問題点を解決す。
If the splitter is tilted, it will not become an orthogonal optical system.In contrast, in the present invention, as shown in FIG.

ることができる。can be done.

第7図は本発明の別例である。断面形状が平。FIG. 7 is another example of the present invention. The cross-sectional shape is flat.

行四辺形または菱形のビームスプリッタ22にお。into a row quadrilateral or rhombic beam splitter 22.

いて対角線方向に反射面25を有している。この゛よう
にすることにより、ビームスプリッタ出射゛面における
反射光は同図破線で示すごと(、試−科及び参照ミラか
らの反射光13から大きくそれ。
It has a reflective surface 25 in the diagonal direction. By doing this, the reflected light at the beam splitter output surface is significantly different from the reflected light 13 from the test and reference mirrors, as shown by the broken line in the figure.

るため受光部に入射せず、干渉縞のノイズ成分・となら
ない。また入射光30元軸とビームスプ・リッタ反射面
23との成す角度を45°にすると、・入射光3と試料
からの反射光13とは直交する。(・第8図は余り望ま
しい例ではないが1本発明。
Therefore, it does not enter the light receiving section and does not become a noise component of interference fringes. Furthermore, if the angle between the 30-source axis of the incident light and the beam splitter reflecting surface 23 is set to 45°, then the incident light 3 and the reflected light 13 from the sample are perpendicular to each other. (・Although Figure 8 is not a very desirable example, it is an invention.

の−物である。断面形状が楔形のビームスプリ。It is a thing of. A beam sprit with a wedge-shaped cross section.

ツタ24の一面が反射[&I25である。入射光3に対
One side of the ivy 24 is a reflection [&I25. For incident light 3.

し試料、参照ミラからの反射光13は直交はしな。However, the reflected lights 13 from the sample and reference mirrors are not perpendicular to each other.

いで楔角夏に応じて傾(が、対物レンズ7に向1・。At this point, the wedge angle is tilted according to the angle (but the objective lens 7 is oriented 1°).

かう元は入射光3と直交する。また対物し/ズ。The light source is perpendicular to the incident light 3. Also objective/zu.

8から戻ってまた参照ミラの反射光がビームス。Returning from 8, the reflected light of the reference mirror is beams again.

プリンタ24の裏面で反射した光18は、目的とす。The light 18 reflected from the back surface of the printer 24 is the target.

る反射光13からそれていくので梗出すべき干渉。The interference should be extracted because it deviates from the reflected light 13.

縞のノイズ成分とはならない。従って、従来の第2.4
図に示す方法よりは優れている。  ゛また本発明第5
〜8図においては、ビームス。
It does not become a noise component of the stripes. Therefore, the conventional 2.4
This is better than the method shown in the figure.゛Also, the fifth aspect of the present invention
~ In Figure 8, BEAMS.

1リツタ入射而は入射光5に対して傾いている゛ので該
入射口における反射光は光源の方には戻゛らず、レーザ
等のコヒーレント元諒の出力を不安定にするという問題
は生じない。
Since the incident light on the 1st lens is tilted with respect to the incident light 5, the reflected light at the entrance does not return to the light source, causing the problem of destabilizing the output of a coherent source such as a laser. do not have.

上述したように1本発明においては光学部品の裏面反射
光は受光部に戻らないため、゛第3図゛において27−
1 、27−2のごとき裏面反射光に起因した干渉縞ノ
イズ成分は除去され、検出すべき試料と参照εうの干渉
縞26のみを明瞭に検出゛し、試料の微細な表面形状を
高精度に測定できる。しかも直交光学系を維持できるの
で光学系・が容易に構成でき、従来の光学顕微鏡をその
ま・まオυ用することができる。□ 〔発明の効果〕 本発明により、従来の顕微跳のビームスプリッタ(葉た
はハーフミラ)を本発明の形状に変更するだけで、容易
に尚精度な光波干渉装置を。
As mentioned above, in the present invention, the light reflected from the back surface of the optical component does not return to the light receiving section, so the light reflected from the back surface of the optical component does not return to the light receiving section.
1 and 27-2 are removed, and only the interference fringes 26 between the sample to be detected and the reference ε are clearly detected, allowing the fine surface shape of the sample to be detected with high precision. can be measured. Furthermore, since an orthogonal optical system can be maintained, the optical system can be easily configured, and a conventional optical microscope can be used as is. □ [Effects of the Invention] According to the present invention, a highly accurate light wave interference device can be easily obtained by simply changing a conventional microscope beam splitter (leaf or half mirror) to the shape of the present invention.

作ることができる。can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るビームスプリッタを示。 す図、第2図から第4図は本発明に係る他のビ。 −ムスグリツタを示す図、第5図は、従来の干。 渉計分牌能を向上させた新しい光波干渉計を示−す図、
第6図は、従来の顕微鏡ハーフミラの間゛題点説四図、
第7図は第5図光波干渉計の干渉“鍋パターン説明図、
第8図は従来のビームス1゛リツタを傾斜させた場合の
問題点説明図であるgl・・・光源      2・・
・照明レンズ系  ・3・・・照明光 4・・・プリズムのビームスプリッタ 4−1 、4−2・・・出射面 5.6・・・出射面からの反射光 7.8・・・対物レンズ           ・9・
・・対物レンズ裏面反射光 10・・・試料      11・・・参照ミラ12・
・・ステージ 13・・・試料及び参照ミラからの反射光14・・・結
像レンズ   15・・・受光部16・・・TVモニタ 17・・・平板形状のハーフミラ 18・・・裏面反射光   19・・・7’ V画面 
   。 20・・・台形プリズムのビームスプリッタ   ・2
0′・・・長方形状のビームスグリツタ21.23.2
5・・・反射間 22・・・平行四辺形状のビームスプリッタ24・・・
楔形状のビームスプリッタ 第1Y i 力?7 第3区 箔4図 第5区 第6V Ir′
FIG. 1 shows a beam splitter according to the present invention. Figures 2 to 4 show other views according to the present invention. - Figure 5, which shows the Japanese ivy, is a conventional drying method. Diagram showing a new light wave interferometer with improved interferometer separation ability,
Figure 6 shows the four diagrams of problems in the conventional microscope half-mirror.
Figure 7 is an illustration of the interference "pan pattern" of the light wave interferometer shown in Figure 5.
FIG. 8 is an explanatory diagram of problems when a conventional beam slitter is tilted.gl...Light source 2...
・Illumination lens system ・3...Illumination light 4...Beam splitter of prism 4-1, 4-2...Emission surface 5.6...Reflected light from the emission surface 7.8...Objective Lens ・9・
...Objective lens back surface reflected light 10...Sample 11...Reference mirror 12.
... Stage 13 ... Reflected light from the sample and reference mirror 14 ... Imaging lens 15 ... Light receiving section 16 ... TV monitor 17 ... Flat plate-shaped half mirror 18 ... Back reflected light 19 ...7' V screen
. 20...Trapezoidal prism beam splitter ・2
0'... Rectangular beam sinter 21.23.2
5...Reflection interval 22...Parallelogram-shaped beam splitter 24...
Wedge-shaped beam splitter 1st Y i force? 7 Section 3 Foil 4 Figure 5 Section 6 V Ir'

Claims (3)

【特許請求の範囲】[Claims] 1.照明光をビームスプリッタにより試料側と参照面側
に導くようにした干渉装置において、ビームスプリツタ
の入射面,出射面を照明光光軸に対して垂直にならない
ような形状のビームスプリツタを設けたことを特徴とす
る裏面反射光を防止した光波干渉装置。
1. In an interference device in which the illumination light is guided to the sample side and the reference surface side by a beam splitter, the beam splitter is provided with a shape such that the entrance and exit surfaces of the beam splitter are not perpendicular to the optical axis of the illumination light. A light wave interference device that prevents back reflected light.
2.特許請求の範囲第1項において、ビームスプリツタ
の断面形状が長方形、平行四辺形もしくは菱形で、その
対角線上に反射面を有しており、かつ上記ビームスプリ
ツタの全体または部分形状が光路中に設けられているこ
とを特徴とする裏面反射光を防止した光波干渉装置。
2. In claim 1, the beam splitter has a cross-sectional shape of a rectangle, a parallelogram, or a rhombus, and has a reflective surface on a diagonal thereof, and the beam splitter is entirely or partially in the optical path. A light wave interference device that prevents back-reflected light, characterized in that it is provided in a.
3.特許請求の範囲第1項において、ビームスプリツタ
の断面形状が楔形で、その一面に反射面を有しており、
かつ上記ビームスプリツタの全体または部分形状が光路
中に設けられていることを特徴とする裏面反射光を防止
した光波干渉装置。
3. In claim 1, the beam splitter has a wedge-shaped cross-section and has a reflective surface on one side,
A light wave interference device that prevents back-reflected light, characterized in that the entire or partial shape of the beam splitter is provided in the optical path.
JP59262734A 1984-12-14 1984-12-14 Light wave interferometer Expired - Lifetime JPH0650243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262734A JPH0650243B2 (en) 1984-12-14 1984-12-14 Light wave interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262734A JPH0650243B2 (en) 1984-12-14 1984-12-14 Light wave interferometer

Publications (2)

Publication Number Publication Date
JPS61140802A true JPS61140802A (en) 1986-06-27
JPH0650243B2 JPH0650243B2 (en) 1994-06-29

Family

ID=17379840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262734A Expired - Lifetime JPH0650243B2 (en) 1984-12-14 1984-12-14 Light wave interferometer

Country Status (1)

Country Link
JP (1) JPH0650243B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206205A (en) * 1988-02-12 1989-08-18 Keyence Corp Speckle pattern interferometer
US6636317B2 (en) 2000-02-18 2003-10-21 Ando Electric Co., Ltd. Optical interferometer
JP2008046162A (en) * 2006-08-10 2008-02-28 Canon Inc Reflecting optical element and imaging device
JP2009162539A (en) * 2007-12-28 2009-07-23 Fujinon Corp Light wave interferometer apparatus
JP2009244227A (en) * 2008-03-31 2009-10-22 Fujinon Corp Light wave interference measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184267A (en) * 1975-01-21 1976-07-23 Konishiroku Photo Ind Kanshosochi
JPS59171038A (en) * 1983-03-18 1984-09-27 Hitachi Ltd Polarized beam splitter for video disk player

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184267A (en) * 1975-01-21 1976-07-23 Konishiroku Photo Ind Kanshosochi
JPS59171038A (en) * 1983-03-18 1984-09-27 Hitachi Ltd Polarized beam splitter for video disk player

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206205A (en) * 1988-02-12 1989-08-18 Keyence Corp Speckle pattern interferometer
US6636317B2 (en) 2000-02-18 2003-10-21 Ando Electric Co., Ltd. Optical interferometer
JP2008046162A (en) * 2006-08-10 2008-02-28 Canon Inc Reflecting optical element and imaging device
JP2009162539A (en) * 2007-12-28 2009-07-23 Fujinon Corp Light wave interferometer apparatus
JP2009244227A (en) * 2008-03-31 2009-10-22 Fujinon Corp Light wave interference measuring method

Also Published As

Publication number Publication date
JPH0650243B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JPH0650903A (en) Apparatus and method for detecting surface particle
JPH0363001B2 (en)
JPS6089735A (en) Detector for defect of flat article
JPH045508A (en) Method and device for detecting shape of body
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
JPH04278408A (en) Device for optically measuring surface height of object
JP2533514B2 (en) Depth / thickness measuring device
US5383025A (en) Optical surface flatness measurement apparatus
US4105335A (en) Interferometric optical phase discrimination apparatus
US5039213A (en) Optical equipment with a semitransparent mirror
JP3040131B2 (en) Spherical surface scratch inspection device
JP3354698B2 (en) Flatness measuring device
JP3139862B2 (en) Surface defect inspection equipment
JP2000258144A (en) Flatness and thickness measurement device for wafer
JPH08247713A (en) Displacement sensor
JPH0861927A (en) Contour measuring method and device therefor
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JP3845717B2 (en) Beam collimation method using multiple beam shearing interference and lens focal length or point light source displacement measurement method using the same
JPH04106732U (en) interferometer
JPH03173452A (en) Wafer surface plate pit defects detection optical system
JPH0642929A (en) Surface displacement sensor
JPH0344504A (en) Method and apparatus for measuring three-dimensional shape of surface
JPH0989535A (en) Surface configuration measuring method
JP2574175B2 (en) Flatness measurement device