JP2574175B2 - Flatness measurement device - Google Patents
Flatness measurement deviceInfo
- Publication number
- JP2574175B2 JP2574175B2 JP63334611A JP33461188A JP2574175B2 JP 2574175 B2 JP2574175 B2 JP 2574175B2 JP 63334611 A JP63334611 A JP 63334611A JP 33461188 A JP33461188 A JP 33461188A JP 2574175 B2 JP2574175 B2 JP 2574175B2
- Authority
- JP
- Japan
- Prior art keywords
- test object
- prototype
- interference fringes
- light
- optical path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は干渉縞によって被検物の平面度を測定する平
面度測定装置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flatness measuring device that measures the flatness of a test object using interference fringes.
[従来技術の説明] 本発明に関連する従来技術のひとつとして、本出願人
が先に提案した特開昭63−122909号公報に記載の平面度
測定装置がある。これは、基準原器の参照面に被測定面
を対向させて被検物を配置させた測定部に単一の可干渉
光を照射し、基準原器の参照面と被検物の被測定面との
間の光路差に応じた干渉縞を発生させて、被検物の被測
定面の平面度を測定するようにしたものである。[Description of the Related Art] As one of related arts related to the present invention, there is a flatness measuring apparatus described in Japanese Patent Application Laid-Open No. 63-122909 previously proposed by the present applicant. This involves irradiating a single coherent light beam to the measuring section where the object to be measured is placed with the surface to be measured facing the reference surface of the standard prototype, and the measurement of the reference surface of the standard prototype and the An interference fringe corresponding to an optical path difference between the target and the surface is generated to measure the flatness of the target surface of the test object.
[発明が解決しようとする課題] このような装置では、基準原器の参照面と被検物の被
測定面との間の光路差すなわち隙間に応じた干渉縞だけ
を発生させることが望まれる。基準原器の参照面と被検
物の被測定面との間の隙間に対して被検物の厚さが極め
て大であれば、従来技術のように単一光を用いた可干渉
距離の長い場合でも、基準原器の参照面と被検物の被測
定面との間の隙間に応じた干渉縞だけを発生させること
ができる。これに対して、被検物が薄くなると、従来技
術のような単一光では可干渉距離が長いことに起因して
被検物の被測定面と反対面との間の光路差すなわち被検
物の厚さによる干渉縞が発生し、これが基準原器の参照
面と被検物の被測定面との間の隙間に応じた干渉縞と重
なり合って目的の干渉縞を判別することができなくな
り、測定が困難になるという問題点があった。[Problems to be Solved by the Invention] In such an apparatus, it is desired to generate only an interference fringe corresponding to an optical path difference, that is, a gap between the reference surface of the reference prototype and the measurement surface of the test object. . If the thickness of the test object is extremely large with respect to the gap between the reference surface of the reference prototype and the measurement surface of the test object, the coherence distance using a single light as in the related art is increased. Even in a long case, it is possible to generate only interference fringes corresponding to the gap between the reference surface of the reference prototype and the measured surface of the test object. On the other hand, when the test object is thin, the optical path difference between the measurement surface and the opposite surface of the test object, that is, the test Interference fringes due to the thickness of the object occur, and this overlaps with the interference fringe corresponding to the gap between the reference surface of the reference prototype and the measurement surface of the test object, making it impossible to determine the target interference fringe However, there is a problem that the measurement becomes difficult.
本発明は上記観点に基づいてなされたもので、その目
的は、被検物の厚みが測定しようとする隙間の間隔と同
程度に薄くて且つその隙間の間隔よりは厚い場合に基準
原器の参照面と被検物の被測定面との間の光路差に応じ
た干渉縞だけを発生させることのできる平面度測定装置
を提供することにある。The present invention has been made based on the above-described viewpoint, and its object is to provide a reference prototype when the thickness of the test object is as thin as the gap between the gaps to be measured and is larger than the gap between the gaps. An object of the present invention is to provide a flatness measuring device capable of generating only interference fringes according to an optical path difference between a reference surface and a measurement surface of a test object.
[課題を解決するための手段] 本発明においては、基準原器の参照面に被測定面を対
向させて被検物を配置させた測定部に可干渉光を照射
し、前記基準原器の参照面と前記被検物の被測定面との
間の光路差に応じた干渉縞を発生させて、前記被測定面
の平面度を測定する平面度測定装置において、同一波長
の複数のレーザ光を発生する発生手段と、各レーザ光を
重ね合わせて前記可干渉光として前記測定部に照射する
照射手段とを有する平面度測定装置によって、上記目的
を達成する。[Means for Solving the Problems] In the present invention, coherent light is applied to a measuring unit in which a test object is placed with a surface to be measured facing a reference surface of a reference prototype, and In a flatness measuring apparatus for generating an interference fringe according to an optical path difference between a reference surface and a measurement surface of the test object to measure the flatness of the measurement surface, a plurality of laser beams having the same wavelength are used. The above object is attained by a flatness measuring apparatus comprising: a generating means for generating a laser beam;
また、前記照射手段が、回転拡散板を含み、当該回転
拡散板を介して、前記重ね合わされた各レーザ光を前記
可干渉光として前記測定部に照射するようにしても良
い。Further, the irradiating means may include a rotary diffusion plate, and irradiate the superposed laser beams to the measurement unit as the coherent light via the rotary diffusion plate.
[作用] 複数のレーザ光を重ね合わせることにより可干渉距離
を短くし、被検物が薄い場合でも、被検物の厚さによる
干渉縞を発生させずに、基準原器の参照面と被検物の被
測定面との間の光路差に応じた干渉縞だけを発生させ
る。[Operation] The coherence length is shortened by superposing a plurality of laser beams, and even when the specimen is thin, the interference fringes due to the thickness of the specimen are not generated, and the reference surface of the reference prototype and the laser beam are not affected. Only interference fringes corresponding to the optical path difference between the object and the surface to be measured are generated.
更に、回転拡散板の表面上の粗さとその集光状態によ
り、干渉縞の投影像にムラとなって現われるスペックル
パターンを視覚的に見えにくくし、干渉縞の投影像にお
けるノイズ防止を図り、複数のレーザ光を重ね合わせる
ことと相俟って、基準原器の参照面と被検物の被測定面
との間の光路差に応じた干渉縞だけの投影像を発生させ
る可干渉距離の調整作用をもたせることができる。Further, due to the roughness on the surface of the rotating diffuser and its condensing state, speckle patterns appearing as irregularities in the projected image of the interference fringes are made difficult to see visually, and noise in the projected image of the interference fringes is prevented. In combination with the superposition of a plurality of laser beams, the coherence distance that generates a projection image of only interference fringes corresponding to the optical path difference between the reference surface of the reference prototype and the measurement surface of the test object is determined. An adjusting action can be provided.
[発明の実施例] 第1図は本発明の一実施例を示す構成図である。[Embodiment of the Invention] FIG. 1 is a configuration diagram showing an embodiment of the present invention.
図において、1および2は同一波長のレーザ光L1,L2
を発生するレーザ光源、3はレーザ光源1,2の前方に配
置されたコリメータレンズである。レーザ光源1,2は本
例では広がり角の大きい例えば半導体レーザである。各
レーザ光源1,2のレーザ光L1,L2は、コリメータレンズ3
を介して重ね合わされた平行光となり、可干渉光Lとし
て基準原器4の入射面4aに当該入射面4aの垂線に対して
角度θで斜入射するようになっている。基準原器4は、
平行平面ガラスなどの透光性の光学部材で、入射面4aと
参照面4bとが互いに平行平面になっている。基準原器4
の参照面4b側にはガラスなどの透光性の被検物5が配置
されている。被検物5は、被測定面5aが基準原器4の参
照面4bと対向しており、被測定面5aの非平面性に起因す
る基準原器4の参照面4bと被測定面5aとの間の隙間6に
支障をきたさないように、基準原器4の参照面4bと極僅
かな間隔を隔てて、あるいは、基準原器4の参照面4b上
に単に置かれる状態となるようなかたちで配置されてい
る。隙間6の間隔は被検物5の厚さよりも小であり、被
検物5の厚さは基準原器4の厚さよりも小である。レー
ザ光L1,L2を重ね合わせた可干渉光Lは、周知のよう
に、TEM00モードが他のモードに移行し多数発振による
可干渉距離が短くなる現象に類似する効果により、単一
レーザ光L1またはL2と比較して可干渉距離が短くなって
おり、これにより、被検物5の厚さおよび基準原器4の
厚さによる光路差では干渉縞は発生せず、最も距離の短
い隙間6による光路差に応じた干渉縞だけが発生するよ
うになっている。被検物5の被測定面5aと反対の面5bに
はスクリーン7が配置されており、発生した干渉縞が投
影されるようになっている。In the figure, 1 and 2 are laser beams L 1 and L 2 having the same wavelength.
Is a collimator lens disposed in front of the laser light sources 1 and 2. In this example, the laser light sources 1 and 2 are, for example, semiconductor lasers having a large spread angle. The laser beams L 1 and L 2 of the respective laser light sources 1 and 2 are
Are collimated, and are incident on the incident surface 4a of the reference prototype 4 at an angle θ with respect to the perpendicular to the incident surface 4a as the coherent light L. Reference prototype 4
A light-transmitting optical member such as a plane-parallel glass, and the incident surface 4a and the reference surface 4b are parallel to each other. Reference prototype 4
On the reference surface 4b side, a light-transmitting test object 5 such as glass is arranged. The test object 5 has the measured surface 5a facing the reference surface 4b of the reference prototype 4 and the reference surface 4b and the measured surface 5a of the reference prototype 4 due to the non-planarity of the measured surface 5a. In order not to disturb the gap 6 between the reference prototype 4 and the reference plane 4b of the reference prototype 4, or simply placed on the reference plane 4b of the reference prototype 4. They are arranged in a form. The space between the gaps 6 is smaller than the thickness of the test object 5, and the thickness of the test object 5 is smaller than the thickness of the reference prototype 4. As is well known, the coherent light L obtained by superimposing the laser beams L 1 and L 2 has a single effect due to an effect similar to the phenomenon that the TEM 00 mode shifts to another mode and the coherence length due to multiple oscillations becomes shorter. coherence length compared with the laser light L 1 or L 2 has become shorter, thereby, not interference fringes were generated by an optical path difference due to the thickness and the thickness of the reference standard 4 of the test object 5, most Only interference fringes corresponding to the optical path difference due to the short gap 6 are generated. A screen 7 is arranged on a surface 5b of the object 5 opposite to the surface 5a to be measured, and the generated interference fringes are projected.
以上のごとき構成で、レーザ光源1,2が駆動される
と、各レーザ光L1,L2が、コリメータレンズ3を介して
重ね合わされた平行光となり、可干渉光Lとして基準原
器4の入射面4aに角度θで斜入射し、斜入射した可干渉
光Lによって、基準原器4の参照面4bと被検物5の被測
定面5aとの間の光路差すなわち隙間6による干渉縞が発
生し、スクリーン7に投影される。すなわち、基準原器
4を通る光LAと、基準原器4および隙間6を通り被検物
5の被測定面5aで反射して参照面4bに向かう光LBの反射
光とが重なり合い、両者の光路差によって隙間6の間隔
のムラに応じた干渉縞が発生する。可干渉光Lはレーザ
光L1,L2の重ね合わせによって可干渉距離が短くなって
いるので、隙間6の間隔よりも大きい被検物5の厚さお
よび基準原器4の厚さによる光路差では干渉縞は生じな
い。With the above configuration, when the laser light sources 1 and 2 are driven, the respective laser beams L 1 and L 2 become parallel beams superimposed via the collimator lens 3, and become the coherent light L of the reference prototype 4. Obliquely incident on the incident surface 4a at an angle θ and the obliquely incident coherent light L causes an optical path difference between the reference surface 4b of the reference prototype 4 and the measured surface 5a of the test object 5, that is, interference fringes due to the gap 6. Is generated and projected on the screen 7. In other words, it overlaps a light L A that passes through the reference standard 4, the reference standard 4 and the reflected light of the light L B toward the reference surface 4b is reflected by the measurement surface 5a of the street specimen 5 the gap 6, An interference fringe corresponding to the unevenness of the interval of the gap 6 is generated by the optical path difference between the two. Since the coherent light L has a shorter coherent distance due to the superposition of the laser beams L 1 and L 2 , the optical path due to the thickness of the test object 5 and the thickness of the reference prototype 4 larger than the gap of the gap 6. No interference fringes occur at the difference.
なお、第1図の実施例において、レーザ光源1,2とし
て広がり角の小さいレーザを用いることも勿論可能であ
り、このような場合には、第2図に示すように、レンズ
8,9を介して各レーザ光の広がり角を大きくした後、コ
リメータレンズ3を介して重ね合わされた平行光とし、
これを可干渉光Lとして照射するようにすれば良い。In the embodiment of FIG. 1, it is of course possible to use lasers having a small divergence angle as the laser light sources 1 and 2. In such a case, as shown in FIG.
After increasing the divergence angle of each laser beam through 8 and 9, it is made into parallel light superimposed via the collimator lens 3,
This may be applied as coherent light L.
第3図は本発明の別の実施例を示す構成図で、第1図
と同符号のものは同一物を示している。FIG. 3 is a block diagram showing another embodiment of the present invention, in which the same reference numerals as in FIG. 1 denote the same components.
これは、レーザ光源1,2からの同一波長のレーザ光L1,
L2を集光レンズ10により重ね合わせて回転拡散板11上に
集光させ、この回転拡散板11を通過した光束を平面鏡12
を介して球面鏡13によって平行光とし、これを可干渉光
Lとして基準原器4の入射面4aに当該入射面4aの垂線に
対し角度θで斜入射させるようにしたものである。回転
拡散板11は、円形の拡散板11aとモータ11bとを有し、モ
ータ11bによって拡散板11aが回転駆動されるようになっ
ている。このような回転拡散板11は、干渉縞の投影像に
ムラとなって現われるスペックルパターンを視覚的に見
えにくくすると共に、可干渉距離を短くする機能を有し
ている。すなわち、拡散板11a上での集光レンズ10によ
る光束のスポット径を大きくすればするほど、スペック
ルパターンが見えにくくなり、可干渉距離が短くなる。
拡散板11a上のスポット径は、スペックルパターンが見
えにくくなり、且つ、基準原器4の参照面4bと被検物5
の被測定面5aとの間の光路差に応じた干渉縞だけが発生
するように、集光レンズ10を光軸に沿って移動させるよ
うにして設定される。その他の構成は第1図で述べた通
りである。This is because the laser light L 1 of the same wavelength from the laser light sources 1 and 2,
L 2 is superimposed by a condenser lens 10 and condensed on a rotating diffusion plate 11, and the light beam passing through the rotating diffusion plate 11 is
Is converted into parallel light by a spherical mirror 13 through the optical axis, and this light is made to coherently enter the incident surface 4a of the reference prototype 4 at an angle θ with respect to a perpendicular to the incident surface 4a as coherent light L. The rotating diffusion plate 11 has a circular diffusion plate 11a and a motor 11b, and the diffusion plate 11a is driven to rotate by the motor 11b. Such a rotating diffusion plate 11 has a function of making a speckle pattern appearing as unevenness in a projected image of interference fringes difficult to visually recognize and shortening a coherent distance. That is, as the spot diameter of the light beam by the condenser lens 10 on the diffusion plate 11a is increased, the speckle pattern becomes less visible and the coherence distance is reduced.
The spot diameter on the diffusion plate 11a is such that the speckle pattern is difficult to see, and the reference surface 4b of the reference prototype 4 and the specimen 5
The converging lens 10 is set to move along the optical axis so that only interference fringes corresponding to the optical path difference with the surface 5a to be measured are generated. Other configurations are as described in FIG.
本例によれば、スクリーン7に投影される干渉縞にム
ラとなって現われるスペックルパターンが視覚的に見え
にくくなり、干渉縞の投影像におけるノイズ防止が図ら
れ、複数のレーザ光を重ね合わせることと相俟って、基
準原器の参照面と被検物の被測定面との間の光路差に応
じた干渉縞だけの投影像がスクリーン7に与えられる。According to this example, the speckle pattern appearing as irregularities in the interference fringes projected on the screen 7 becomes difficult to see visually, preventing noise in the projected image of the interference fringes, and superimposing a plurality of laser beams. In conjunction with this, a projection image of only interference fringes corresponding to the optical path difference between the reference surface of the reference prototype and the measurement surface of the test object is given to the screen 7.
なお、第3図の実施例において、レーザ光源1,2とし
て広がり角の小さいレーザを用いる場合には、第4図に
示すように、集光レンズ10により回転拡散板11上で重な
り合うようにするか、あるいは、第2図で述べたよう
に、レンズを介して各レーザ光の広がり角を大きくした
後に集光レンズ10により重ね合わせて集光させるように
すれば良い。In the embodiment shown in FIG. 3, when lasers having a small divergence angle are used as the laser light sources 1 and 2, as shown in FIG. Alternatively, as described with reference to FIG. 2, the spread angle of each laser beam may be increased through a lens, and then the laser beams may be overlapped and condensed by the condensing lens 10.
以上述べた各実施例では2つのレーザ光源を例に説明
したが、これに限定するものではない。レーザ光源の数
を更に多くすれば各レーザ光の重なりで更に可干渉距離
を短くすることができるので、被検物の厚さによる光路
差では干渉縞を発生させず、基準原器の参照面と被検物
の被測定面との間の隙間による干渉縞だけを発生させる
ように、被検物の厚さに応じて、その数を設定すること
ができる。また、上記実施例では複数のレーザ光源を用
いる場合について述べたが、単一レーザ光源からのレー
ザ光を光学手段によって複数のレーザ光とし、これらを
重ね合わせるようにしても良い。また、上記実施例では
平行平面をもつ基準原器を例に説明したが、プリズム原
器の場合にも適用できることは勿論である。In each of the embodiments described above, two laser light sources have been described as examples, but the present invention is not limited to this. If the number of laser light sources is further increased, the coherence length can be further shortened by the overlap of the laser beams, so that no interference fringes occur due to the optical path difference due to the thickness of the test object, and the reference surface of the reference prototype The number can be set according to the thickness of the test object so that only interference fringes due to the gap between the test object and the measurement surface of the test object are generated. In the above embodiment, the case where a plurality of laser light sources are used has been described. However, the laser light from a single laser light source may be converted into a plurality of laser lights by optical means, and these may be overlapped. In the above embodiment, the reference prototype having a parallel plane has been described as an example. However, it is needless to say that the invention can be applied to a prism prototype.
[発明の効果] 以上説明したように本発明によれば、複数のレーザ光
を重ね合わせて可干渉光として照射するようにしたの
で、測定面に照射するレーザ光の可干渉距離が短くな
り、被検物が薄い場合でも、被検物の厚さによる干渉縞
を発生させずに、基準原器の参照面と被検物の被測定面
との間の光路差に応じた干渉縞だけを発生させることが
でき、また、回転拡散板を用いることで、干渉縞の投影
像におけるノイズ防止が図られ、複数のレーザ光を重ね
合わせることと相俟って、基準原器の参照面と被検物の
被測定面との間の光路差に応じた干渉縞だけの投影像を
得ることができるなどの効果を奏する平面度測定装置を
提供することができる。[Effects of the Invention] As described above, according to the present invention, a plurality of laser beams are superimposed and irradiated as coherent light, so that the coherent distance of the laser beam irradiated on the measurement surface is reduced, Even when the specimen is thin, only interference fringes corresponding to the optical path difference between the reference surface of the reference prototype and the measurement surface of the specimen are generated without generating interference fringes due to the thickness of the specimen. By using a rotating diffuser, noise in the projected image of interference fringes can be prevented, and in combination with the superposition of a plurality of laser beams, the reference surface of the reference prototype can be covered. It is possible to provide a flatness measuring apparatus that has an effect such as being able to obtain a projection image of only interference fringes according to an optical path difference between the inspection object and a measured surface.
第1図は本発明の一実施例を示す構成図、第2図は第1
図において広がり角の小さいレーザ光源を用いる場合の
一例を示す要部構成図、第3図は本発明の別の実施例を
示す構成図、第4図は第3図において広がり角の小さい
レーザ光源を用いる場合の一例を示す要部構成図であ
る。 1,2……レーザ光源、3……コリメータレンズ、4……
基準原器、4b……参照面、5……被検物、5a……被測定
面、8,9……レンズ、10……集光レンズ、11……回転拡
散板、12……平面鏡、13……球面鏡FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing a main part of an example in which a laser light source having a small divergence angle is used, FIG. 3 is a block diagram showing another embodiment of the present invention, and FIG. 4 is a laser light source having a small divergence angle in FIG. FIG. 4 is a main part configuration diagram showing an example in the case of using. 1,2 ... Laser light source, 3 ... Collimator lens, 4 ...
Reference prototype, 4b Reference surface, 5 ... Test object, 5a ... Measurement surface, 8,9 ... Lens, 10 ... Condenser lens, 11 ... Rotating diffuser, 12 ... Plane mirror, 13 …… Spherical mirror
Claims (2)
被検物を配置させた測定部に可干渉光を照射し、前記基
準原器の参照面と前記被検物の被測定面との間の光路差
に応じた干渉縞を発生させて、前記被測定面の平面度を
測定する平面度測定装置において、同一波長の複数のレ
ーザ光を発生する発生手段と、各レーザ光を重ね合わせ
て前記可干渉光として前記測定部に照射する照射手段と
を有する平面度測定装置。A coherent light is applied to a measuring section in which a test object is placed with a surface to be measured opposed to a reference surface of a reference prototype, and a reference surface of the reference prototype and an object of the test object are irradiated. Generating means for generating a plurality of laser beams of the same wavelength in a flatness measuring device for generating an interference fringe according to an optical path difference between the laser beam and a measuring surface and measuring the flatness of the surface to be measured; A flatness measuring device comprising: an irradiation unit configured to irradiate the measuring unit with the light as the coherent light by superimposing light.
回転拡散板を介して、前記重ね合わされた各レーザ光を
前記可干渉光として前記測定部に照射する請求項1に記
載の平面度測定装置。2. The plane according to claim 1, wherein said irradiating means includes a rotary diffuser, and irradiates each of said superposed laser beams to said measuring section as said coherent light via said rotary diffuser. Degree measuring device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334611A JP2574175B2 (en) | 1988-12-29 | 1988-12-29 | Flatness measurement device |
KR1019890020256A KR960015053B1 (en) | 1988-12-29 | 1989-12-29 | Device for monitoring plane degree |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334611A JP2574175B2 (en) | 1988-12-29 | 1988-12-29 | Flatness measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02179407A JPH02179407A (en) | 1990-07-12 |
JP2574175B2 true JP2574175B2 (en) | 1997-01-22 |
Family
ID=18279316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63334611A Expired - Lifetime JP2574175B2 (en) | 1988-12-29 | 1988-12-29 | Flatness measurement device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2574175B2 (en) |
KR (1) | KR960015053B1 (en) |
-
1988
- 1988-12-29 JP JP63334611A patent/JP2574175B2/en not_active Expired - Lifetime
-
1989
- 1989-12-29 KR KR1019890020256A patent/KR960015053B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR960015053B1 (en) | 1996-10-24 |
JPH02179407A (en) | 1990-07-12 |
KR900010847A (en) | 1990-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6283562B2 (en) | Device for detecting the three-dimensional structure of an object | |
JP2752003B2 (en) | Inspection interferometer with scanning function | |
US7130056B2 (en) | System and method of using a side-mounted interferometer to acquire position information | |
KR20060084852A (en) | Surface triangulation and profiling through a thin film coating | |
JP4427632B2 (en) | High-precision 3D shape measuring device | |
JP2574175B2 (en) | Flatness measurement device | |
JP2008002891A (en) | Surface state inspection device and surface state inspection method | |
JP3230983B2 (en) | Subject position adjustment method for lightwave interference device | |
JP4505090B2 (en) | Method and apparatus for directly measuring the phase angle of radiation | |
JP2814538B2 (en) | Alignment device and alignment method | |
JPH07280535A (en) | Three-dimensional shape measuring apparatus | |
TW202129222A (en) | Hybrid 3d inspection system | |
JP2002206914A (en) | Grazing incidence interferometer device | |
JPH0650243B2 (en) | Light wave interferometer | |
JP3232340B2 (en) | Interferometry for large diameter planes | |
JP3354698B2 (en) | Flatness measuring device | |
JP2005049317A (en) | Interferometer | |
JP3212353B2 (en) | Positioning method and positioning screen for test sample during cylindrical surface measurement | |
JP2891715B2 (en) | Fringe scanning interferometer | |
JP2778231B2 (en) | Position detection device | |
JP2006090950A (en) | Measuring system of inclination of surface to be tested | |
JPH08219733A (en) | Three-dimensional scanner | |
JPH01191006A (en) | Depth measuring method | |
JP2001194106A (en) | Alignment optical system for interferometer and device using it | |
JP2874284B2 (en) | Interval measuring device |