JP2008002891A - Surface state inspection device and surface state inspection method - Google Patents

Surface state inspection device and surface state inspection method Download PDF

Info

Publication number
JP2008002891A
JP2008002891A JP2006171552A JP2006171552A JP2008002891A JP 2008002891 A JP2008002891 A JP 2008002891A JP 2006171552 A JP2006171552 A JP 2006171552A JP 2006171552 A JP2006171552 A JP 2006171552A JP 2008002891 A JP2008002891 A JP 2008002891A
Authority
JP
Japan
Prior art keywords
light
incident
optical system
cylindrical surface
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006171552A
Other languages
Japanese (ja)
Inventor
Kenichi Saito
賢一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006171552A priority Critical patent/JP2008002891A/en
Publication of JP2008002891A publication Critical patent/JP2008002891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a surface state inspection device capable of highly precisely and rapidly detecting local non-uniformity of about several millimeters with respect to a rough surface having roughness of about several ten μm sufficiently larger than the wavelength of incident light and a difinite or above area as the rough surface of matter, and to provide a surface state inspection method. <P>SOLUTION: The surface state inspection device has a laser beam source for irradiating the surface of an inspection target and an optical system for condensing a part of the optically diffracted image from the surface of the inspection target and is constituted so as to measure the uniformity of the surface roughness of the inspection target from a change in the optically diffracted image intensity distribution from the surface of the inspection target. The incident light is incident as S polarized light at a predetermined incident angle and the diffracted light to the vicinity of the direction of a predetermined angle θ<SB>S</SB>in the incident surface from a normal line is condensed by the optical system with the number NA of apertures and the angle θ<SB>S</SB>when the change of light quantity is measured by a light intensity detector is properly set through the light flux restricting means installed in the vicinity of the near axis image surface of the optical system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は表面状態検査装置及び表面状態検査方法に関し、例えば円筒面の表面の粗面(粗さ)の均一度を、高精度に測定する際に好適なものである。   The present invention relates to a surface state inspection apparatus and a surface state inspection method, and is suitable for measuring, for example, the uniformity of a rough surface (roughness) of a cylindrical surface with high accuracy.

従来、物体表面に存在する微小な欠損(キズや異物の付着)の有無を検出する方法として、レーザー光を微細なスポットに集光して、被検査面を照射し、そこから発生する散乱光(光回折光)を検出する方法が知られている。   Conventionally, as a method of detecting the presence or absence of minute defects (scratches or foreign matter) on the surface of an object, the laser beam is focused on a fine spot, irradiated onto the surface to be inspected, and the scattered light generated from that spot A method for detecting (light diffracted light) is known.

また、物体表面の粗面の粗さ状態を検出する方法として、入射光の波長や入射角を変化させたときの、物体表面からスペックル回折像分布の相互相関関数を求める方法や、干渉計によって位相差を検出する干渉計方法などが知られている(特許文献1)。   In addition, as a method for detecting the roughness state of the rough surface of the object surface, a method for obtaining a cross-correlation function of speckle diffraction image distribution from the object surface when the wavelength or angle of incident light is changed, or an interferometer There is known an interferometer method for detecting a phase difference by using (Patent Document 1).

また、測定対象物の表面物質の特性を利用して表面粗さを測定する検査装置が知られている(特許文献2、3)。   In addition, inspection apparatuses that measure the surface roughness using the characteristics of the surface material of the measurement object are known (Patent Documents 2 and 3).

一方、一定以上の面積を持つ面を光で走査して表面状態を検査する走査測定方法が知られている。この方法では偏向器と走査光学系の組合せで測定対象の面を走査して検査している。
特開平5−52540号公報 特開平11−295240号公報 特開2000−081325号公報
On the other hand, a scanning measurement method is known in which a surface state is inspected by scanning a surface having a certain area or more with light. In this method, a surface to be measured is scanned and inspected by a combination of a deflector and a scanning optical system.
Japanese Patent Laid-Open No. 5-52540 JP 11-295240 A JP 2000-081325 A

近年、物体表面に存在する欠損として、入射光の波長より十分に大きい数十ミクロン程度の粗さ(凹凸)をもち、一定以上の面積を持つ粗面について、ミリメートル前後の局所的な不均一性として高速に検出することができる装置が要請されている。   In recent years, as a defect present on the surface of an object, local unevenness of around millimeters has occurred on a rough surface having a roughness (irregularity) of about several tens of microns, sufficiently larger than the wavelength of incident light, and having a certain area or more. As a result, a device capable of detecting at high speed is demanded.

このとき、数〜数十ミクロンの微細なスポット光を物体表面に照射すると回折像は乱れてしまい、そこから微量を検出することが困難となる。   At this time, if the object surface is irradiated with a fine spot light of several to several tens of microns, the diffraction image is disturbed, and it is difficult to detect a minute amount therefrom.

前述したスペックルの相関関数を用いる方法は、表面の粗さが入射光の波長より短いことが前提である。このため、広い範囲において多数の点、各々において相関関数を求めることは、時間の制限から現実的でない。   The method using the speckle correlation function described above is premised on that the surface roughness is shorter than the wavelength of incident light. For this reason, it is not practical to obtain a correlation function at a large number of points in each of a wide range because of time limitations.

前述した、測定方法のうち干渉計方式では、複雑で精密な光学系が必要となる。基本的に粗い表面上から生ずる可視域のレーザー光線によって生成されるスペックルパターンは、2πより大きい標準偏差のランダム位相を有する。このため、通常は得られる位相差には粗い表面のプロファイルに関して有効な情報を含んでいない。   Of the measurement methods described above, the interferometer method requires a complicated and precise optical system. The speckle pattern generated by the visible laser beam originating from an essentially rough surface has a random phase with a standard deviation greater than 2π. For this reason, the phase difference that is usually obtained does not contain useful information regarding the rough surface profile.

これらの各測定方法では、各偏光成分を分岐する分岐手段、あるいは被検査面上の複数の位置で測定する測定手段が必要となり、光の検出、その結果を判定するための各部材より成る装置全体が複雑なものになる傾向があった。   Each of these measuring methods requires branching means for branching each polarization component, or measuring means for measuring at a plurality of positions on the surface to be inspected, and an apparatus comprising each member for detecting light and judging the result. The whole tends to be complicated.

また、走査測定方法は高速に精度良く走査することでは優れているが、装置全体が複雑であること、また走査画角によって照射点に対する入射角が異なるため、同じ条件で物体表面全面を照射することが困難となる。   Although the scanning measurement method is excellent at high-speed and high-precision scanning, the entire apparatus is complicated, and the incident angle with respect to the irradiation point differs depending on the scanning angle of view. It becomes difficult.

このため被走査面上の位置による相対的な変化量を精密に検出することが難しい。検出光学系としてテレセントリックな光学系を用いれば、入射角を一定にすることは可能となるが、測定対象と同程度の大きさの光学部品が必要となり、装置全体が大型化してくる。   For this reason, it is difficult to accurately detect the relative change amount depending on the position on the surface to be scanned. If a telecentric optical system is used as the detection optical system, it is possible to make the incident angle constant, but an optical component having the same size as that of the measurement object is required, and the entire apparatus becomes large.

本発明は、物体表面の粗面として、入射光の波長より十分に大きい数十ミクロン程度の粗さを持ち、一定以上の面積を持つ粗面について、高精度に、迅速に検出することができる表面状態検査装置及び表面状態検査方法の提供を目的とする。   The present invention has a roughness of several tens of microns that is sufficiently larger than the wavelength of incident light as a rough surface of the object surface, and can detect a rough surface having a certain area or more quickly with high accuracy. The object is to provide a surface condition inspection apparatus and a surface condition inspection method.

本発明の表面状態検査装置は、
光源手段と、
該光源手段から出射した光の光束径を制限する第1の光束制限手段と、
該第1の光束制限手段を通過し、被検査面にはS偏光が入射しており、該被検査面より生ずる光回折光を検出する検出光学系と、
該検出光学系の集光面に配置され、通過光束径を制限する第2の光束制限手段と、
該第2の光束制限手段を通過した光を検出する光検出器と、
該光検出器からの信号を用いて該被検査面の粗さを検査する表面状態検査装置であって、
該光源手段からの光の波長をλ、
該光源手段からの光が被検査面に入射するときの入射面内において、該被検査面への入射光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該第2の光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳までの距離をLとするとき
λ/(Dp/L)<W ‥‥‥(1)
なる条件を満足することを特徴としている。
The surface condition inspection apparatus of the present invention is
Light source means;
First light flux limiting means for limiting a light beam diameter of light emitted from the light source means;
A detection optical system that passes through the first light flux limiting means and has S-polarized light incident on the surface to be inspected, and detects light diffracted light generated from the surface to be inspected;
A second light beam limiting means disposed on the condensing surface of the detection optical system for limiting the diameter of the passing light beam;
A photodetector for detecting light that has passed through the second light flux limiting means;
A surface condition inspection apparatus for inspecting the roughness of the surface to be inspected using a signal from the photodetector,
The wavelength of light from the light source means is λ,
In the incident surface when the light from the light source means is incident on the surface to be inspected, the light beam diameter of the incident light beam on the surface to be inspected is Dp,
The effective diameter on the light incident side of the detection optical system is W,
When the distance from the conjugate point through the detection optical system to the second light beam limiting means to the entrance pupil of the detection optical system is L λ / (Dp / L) 2 <W (1)
It is characterized by satisfying the following conditions.

また、本発明の表面状態検査方法は、
平行でS偏光状態の波長λの光を円筒面の一部に、該円筒面の母線と、該円筒面の中心軸とを含む入射面内より入射させる照射工程と、
該円筒面から生ずる光回折像の一部を検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む物体表面検査方法であって、
該入射面において、該円筒面上の照射領域における表面凹凸部の寸法の入射面内における周波数の平均値をK
円筒面へ入射するときの光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳位置までの距離をL
異なる平均値kの複数の表面から予め測定された複数の回折光分布に関して、相対強度変化が最も大きくなるような、照射点における法線に対する回折角度をθ、相対強度変化が最も大きくなる回折角度θに対応する光の入射角をθ、光は照射点に入射角度θで入射しており、該検出光学系は照射点に対して角度θ方向の光回折光を集光しており、
このとき
λ/(Dp/L)<W ‥‥‥(1)
1/k < Dp ‥‥‥(2)
θ−tan−1{(W/2)/L}<θ <θ+ tan−1{(W/2)/L}
‥‥‥(3)
を満たすことを特徴としている。
In addition, the surface condition inspection method of the present invention,
An irradiation step in which light having a wavelength λ in parallel and S-polarized state is incident on a part of the cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
After a part of the light diffraction image generated from the cylindrical surface is condensed by the detection optical system, the light is detected by the light detector through the light beam limiting means for limiting the light beam disposed at the light collection point of the detection optical system. An object surface inspection method including an inspection step of determining a change in intensity distribution of a diffraction image and then inspecting a surface state of the cylindrical surface;
In the incident surface, the average value of the frequency in the incident surface of the size of the surface irregularities in the irradiation region on the cylindrical surface is represented by K j ,
Dp, the diameter of the light beam when entering the cylindrical surface
The effective diameter on the light incident side of the detection optical system is W,
L is the distance from the conjugate point through the detection optical system to the light beam limiting means to the entrance pupil position of the detection optical system.
With respect to a plurality of diffracted light distributions measured in advance from a plurality of surfaces having different average values k j, the diffraction angle with respect to the normal line at the irradiation point that maximizes the relative intensity change is θ m , and the relative intensity change is the largest. The incident angle of light corresponding to the diffraction angle θ m is θ i , the light is incident on the irradiation point at the incident angle θ i , and the detection optical system collects light diffracted light in the angle θ S direction with respect to the irradiation point. Light
At this time, λ / (Dp / L) 2 <W (1)
1 / k j <Dp (2)
θ S −tan −1 {(W / 2) / L} <θ mS + tan −1 {(W / 2) / L}
(3)
It is characterized by satisfying.

この他、本発明の表面状態検査方法は、
平行でS偏光状態の波長λの光を円筒面の一部に、該円筒面の母線と、該円筒面の中心軸とを含む入射面内より入射させる照射工程と、
該円筒面から生ずる光回折像の一部を開口数NAの検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該円筒面上の粗さが粗と密の異なる2点からの角度θ方向の回折光分布をI(θ)、I(θ)とするとき相対強度変化
|I(θ)/I(θ)−1|
が最も大きくなる回折角度をθ、回折光分布の相対強度変化が最も大きくなる回折角度θのときの光の入射角度をθとするとき、光は照射点に入射角度θで入射しており、該検出光学系は照射点に対して角度θ方向の光回折光を集光しており、
このとき
θ−sin−1(NA)<θ<θ+sin−1(NA) ‥‥‥(4)
を満たすことを特徴としている。
In addition, the surface condition inspection method of the present invention is:
An irradiation step in which light having a wavelength λ in parallel and S-polarized state is incident on a part of the cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
A part of the light diffraction image generated from the cylindrical surface is condensed by a detection optical system having a numerical aperture NA, and then a light detector through a light beam limiting means for limiting a light beam arranged at a condensing point of the detection optical system. A surface state inspection method including an inspection step of detecting and detecting a change in intensity distribution of the light diffraction image, and then inspecting the surface state of the cylindrical surface,
When the diffracted light distribution in the angle θ direction from two points with different roughness and density on the cylindrical surface is I A (θ), I B (θ), the relative intensity change | I B (θ) / I A (θ) -1 |
There becomes largest diffraction angle theta m, when the i the angle of incidence of light theta when the diffraction angle theta m relative change in intensity of the diffracted light distribution is maximized, the light is incident at an incident angle theta i the irradiation point The detection optical system collects light diffracted light in the direction of angle θ S with respect to the irradiation point,
At this time, θ m −sin −1 (NA) <θ sm + sin −1 (NA) (4)
It is characterized by satisfying.

本発明によれば、物体表面の粗面として、入射光の波長より十分に大きい数十ミクロン程度の粗さを持ち、一定以上の面積を持つ粗面について、ミリメートル前後の局所的な不均一性を、高精度に、迅速に検出することができる。   According to the present invention, the rough surface of the object surface has a roughness of several tens of microns that is sufficiently larger than the wavelength of incident light, and the rough surface having a certain area or more has a local nonuniformity of around millimeters. Can be detected quickly with high accuracy.

図1は、本発明の実施例1の表面状態検査装置の要部側面図である。図2は図1に示した各部材間の説明図である。図3は実施例1の表面状態検査装置の要部上面図である。   FIG. 1 is a side view of an essential part of a surface condition inspection apparatus according to a first embodiment of the present invention. FIG. 2 is an explanatory view between the members shown in FIG. FIG. 3 is a top view of an essential part of the surface condition inspection apparatus according to the first embodiment.

図1〜図3において、1は被検査物体であり、円筒形状より成っている。円筒形状の表面(円筒面)の一部が被検査面1aとなっている。   1 to 3, reference numeral 1 denotes an object to be inspected, which has a cylindrical shape. A part of the cylindrical surface (cylindrical surface) is the surface to be inspected 1a.

2は光源手段であり、He−Neレーザーより成っている。3は被検査物体1の被検面(照射点)1cから生ずる散乱光(光回折光)である。4は光源手段2からの光2aを制限する光束制限手段(第1の光束制限手段)(スリット)である。5は光源手段2からの光2aが被検面1aで正反射したときの正反射光である。   Reference numeral 2 denotes a light source means, which is composed of a He—Ne laser. Reference numeral 3 denotes scattered light (light diffracted light) generated from the test surface (irradiation point) 1 c of the test object 1. Reference numeral 4 denotes a light flux limiting means (first light flux limiting means) (slit) for limiting the light 2a from the light source means 2. Reference numeral 5 denotes specularly reflected light when the light 2a from the light source means 2 is specularly reflected by the test surface 1a.

8は開口数NAの検出光学系であり、被検面1aから生ずる散乱光(光回折光)の一部を光束制限手段(第2の光束制限手段)6上に集光している。   Reference numeral 8 denotes a detection optical system having a numerical aperture NA, which condenses a part of scattered light (light diffracted light) generated from the surface 1a to be measured on the light flux limiting means (second light flux limiting means) 6.

被検面1aと光束制限手段6とは共役関係又は略共役関係にある。   The test surface 1a and the light beam limiting means 6 are in a conjugate relationship or a substantially conjugate relationship.

光束制限手段6は検出光学系8を通過してきた光の通過光を制限している。7は光検出器であり、光束制限手段6を通過した光を検出している。   The light beam limiting means 6 limits the light passing through the detection optical system 8. Reference numeral 7 denotes a photodetector that detects light that has passed through the light beam limiting means 6.

本実施例における被検査物体1は直径30mm(φ30mm)、軸方向(X方向)の長さが400mmの円筒形状より成り、円筒円形の外側の表面の粗さの周波数の平均値kが1/(50μm)程度で分布している。 The object to be inspected 1 in this embodiment has a cylindrical shape with a diameter of 30 mm (φ30 mm) and a length in the axial direction (X direction) of 400 mm, and the average value k j of the roughness frequency of the outer surface of the cylindrical circle is 1. / (50 μm).

光源手段2からは、波長λが632.8nm、光量が5mW、被検査物体1上への入射ビーム径がφ1mm(相対強度13.5%)の光(レーザー)2aが出射している。光源手段2からの光2aはスリット4を介して被検査物体1の被検査面1aに入射角θ=70°で入射している。 The light source means 2 emits light (laser) 2a having a wavelength λ of 632.8 nm, a light amount of 5 mW, and an incident beam diameter of φ1 mm (relative intensity 13.5%) on the object 1 to be inspected. The light 2 a from the light source means 2 is incident on the surface 1 a to be inspected 1 a through the slit 4 at an incident angle θ i = 70 °.

このとき、光2aの広がり角は約0.02°であり、ほぼ平行なビームと見なせるものである。ここでは被検査物体1上の粗面の検出できる最小の異常部の大きさdを2mmと想定している。被検査物体1への照明光2aのX方向(軸方向)の照射領域(照射エリア)Dpは2mmである。   At this time, the spread angle of the light 2a is about 0.02 °, and can be regarded as a substantially parallel beam. Here, it is assumed that the size d of the smallest abnormal part that can detect the rough surface on the object 1 is 2 mm. The irradiation area (irradiation area) Dp in the X direction (axial direction) of the illumination light 2a to the inspection object 1 is 2 mm.

このとき、照射点1cからの回折光3の一部が、粗面の法線1bから正反射方向にθS=15°の角度で出射する。 At this time, a part of the diffracted light 3 from the irradiation point 1c is emitted at an angle of θ S = 15 ° in the regular reflection direction from the normal line 1b of the rough surface.

本実施例では、照射点1cから距離L=20mmの位置に瞳(入射瞳)が設置された焦点距離12mm、有効径W=10mm(NA0.384)の検出光学系8で取り込まれ、光束制限手段6を介して光検出器7に集められる。また集光光学系8の倍率βは1.5である。   In this embodiment, the light is limited by the detection optical system 8 having a focal length of 12 mm and an effective diameter W = 10 mm (NA 0.384) in which a pupil (incidence pupil) is installed at a distance L = 20 mm from the irradiation point 1c. It is collected in the photodetector 7 via the means 6. The magnification β of the condensing optical system 8 is 1.5.

光束制限手段8は、検出光学系8の像面に配置され、その開口幅Hは幅H=1.5mmである。尚、迷光を防ぐため、検出光学系8と光検出器7の間は遮光されていることが望ましい。   The light beam limiting means 8 is disposed on the image plane of the detection optical system 8 and its opening width H is H = 1.5 mm. In order to prevent stray light, it is desirable that light is shielded between the detection optical system 8 and the photodetector 7.

本実施例で測定した結果を2次元画像化したデータを図13に示す。肉眼で観察、あるいは撮像手段で撮影した場合に、非常に視認が難しい微妙な表面粗さの差異に対して、異常部が鮮明に得られていることがわかる。   FIG. 13 shows data obtained by converting the results measured in this example into a two-dimensional image. When observed with the naked eye or taken with an imaging means, it can be seen that abnormal portions are clearly obtained with respect to subtle differences in surface roughness that are very difficult to see.

本実施例では被検査物体1の円筒形状の表面(被検査面)1aを光源手段2からの光(ビーム)2aで照明している。円筒形状の表面1aからの光回折像の一部を所定のNAの検出光学系8で検出している。このとき光2aの波長よりも十分に大きい粗さを持つ円筒形状の表面1aの粗さの均一度を、該円筒形状の表面1aからの光回折像の強度分布(光量)の変化から測定している。   In this embodiment, the cylindrical surface (inspected surface) 1a of the inspection object 1 is illuminated with light (beam) 2a from the light source means 2. A part of a light diffraction image from the cylindrical surface 1a is detected by a detection optical system 8 having a predetermined NA. At this time, the uniformity of the roughness of the cylindrical surface 1a having a roughness sufficiently larger than the wavelength of the light 2a is measured from the change in the intensity distribution (light quantity) of the light diffraction image from the cylindrical surface 1a. ing.

光源手段2からの光は略平行ビームで円筒面の母線と中心軸を含む平面(XY平面)を入射面として、照射点1cにおける法線1bに対し、θの角度でS偏光状態で入射している。 The light from the light source means 2 is a substantially parallel beam and is incident in an S-polarized state at an angle θ i with respect to the normal 1b at the irradiation point 1c, with the plane (XY plane) including the generatrix of the cylindrical surface and the central axis as the entrance plane is doing.

S偏光で入射させるには、例えば偏光板を用いる方法がある。入射面内で法線1bから角度θの方向へ拡散する拡散反射光を検出光学系8で集光している。そして検出光学系8の近軸像面付近に配置した光束制限手段6を介して、光検出器7で光量変化を測定している。 In order to make it incident with S-polarized light, for example, there is a method using a polarizing plate. Diffuse reflected light that diffuses in the direction of the angle θ s from the normal line 1 b in the incident surface is collected by the detection optical system 8. Then, the light quantity change is measured by the photodetector 7 through the light beam limiting means 6 disposed in the vicinity of the paraxial image plane of the detection optical system 8.

このとき得られる光検出器7からの信号に基づいて表面1aの粗さの均一度を求めている。   The roughness uniformity of the surface 1a is obtained based on the signal from the photodetector 7 obtained at this time.

ここで
λを光源手段2からの光2aの波長とする。
を光2aの照射エリアDpでの表面の凹凸の面方向の周波数の平均値とする。
Dpを光2aの入射ビーム径(規格化強度13.5%となる径)の、表面1a上の円筒面母線方向への射影寸法とする。
Lを検出光学系8の瞳位置から被検査物体1の表面上の照射点1cまでの距離とする。
Wを検出光学系8の有効径とする。
θを入射面内での法線1bからの拡散反射光の角度とする。
θを異なる平均値kの複数の表面から予め測定された複数の回折光分布に関して、相対強度変化が最も大きくなるような、照射点1cにおける法線1bに対する回折角度とする。
Here, λ is the wavelength of the light 2a from the light source means 2.
k j is an average value of the frequency in the surface direction of the unevenness of the surface in the irradiation area Dp of the light 2a.
Let Dp be the projected dimension of the incident beam diameter of the light 2a (the diameter at which the normalized intensity is 13.5%) in the direction of the cylindrical surface on the surface 1a.
L is a distance from the pupil position of the detection optical system 8 to the irradiation point 1c on the surface of the object 1 to be inspected.
Let W be the effective diameter of the detection optical system 8.
Let θ s be the angle of diffusely reflected light from the normal 1b in the incident plane.
Let θ m be the diffraction angle with respect to the normal 1b at the irradiation point 1c, where the relative intensity change is greatest for a plurality of diffracted light distributions measured in advance from a plurality of surfaces having different average values k j .

ここで円筒面上の粗さが粗と密の異なる2点からの角度θ方向の回折光分布をI(θ)、I(θ)とするとき相対強度変化PLは
PL=|I(θ)/I(θ)−1| ‥‥‥(5)
である。回折角度θは相対強度変化PLの値が最も大きくなる角度である。
Here, when the diffracted light distribution in the angle θ direction from two points with different roughness and density on the cylindrical surface is I A (θ), I B (θ), the relative intensity change PL is PL = | I B (Θ) / I A (θ) -1 | (5)
It is. The diffraction angle θ m is an angle at which the value of the relative intensity change PL is the largest.

入射角θは相対強度変化PLが最も大きくなる回折角度θのときのビーム入射角度である。 The incident angle θ i is the beam incident angle at the diffraction angle θ m at which the relative intensity change PL is the largest.

このとき
λ/(Dp/L)<W ‥‥‥(1)
1/k < Dp ‥‥‥(2)
θ−tan−1{(W/2)/L}<θ <θ+ tan−1{(W/2)/L}
‥‥‥(3)
のうち1以上を満たしている。
At this time, λ / (Dp / L) 2 <W (1)
1 / k j <Dp (2)
θ S −tan −1 {(W / 2) / L} <θ mS + tan −1 {(W / 2) / L}
(3)
1 or more of these are satisfied.

又は光が照射点に入射角度θで入射しており、NAの検出光学系8は照射点に対して角度θ方向の光回折光を集光している。 Alternatively, light is incident on the irradiation point at an incident angle θ i , and the NA detection optical system 8 condenses the light diffracted light in the angle θ S direction with respect to the irradiation point.

このとき
θ−sin−1(NA)<θ<θ+sin−1(NA) ‥‥‥(4)
を満たしている。
At this time, θ m −sin −1 (NA) <θ sm + sin −1 (NA) (4)
Meet.

条件式(1)、(2)、(3)又は条件式(4)を満足するように各部材を設定すると、被検査面1aの粗面の中で局所的に粗さの異なる領域に可干渉性の高いレーザービームを入射したときの回折像パターンは、他の均一な部分からの回折像パターンに比べ変化が顕著に現れる。   If each member is set so as to satisfy the conditional expressions (1), (2), (3) or the conditional expression (4), it can be applied to regions of different roughness in the rough surface of the inspected surface 1a. The diffraction pattern when a highly coherent laser beam is incident changes significantly compared to the diffraction pattern from other uniform portions.

本実施例では、その中でも特に変化の大きい回折角度θが集光光学系8で取り込み角θに含まれるように測定することによって、被検査面1aの僅かな粗さの差も、より感度よく(高精度に)検出している。 In this embodiment, by a large diffraction angle theta m of particular change therein is measured to be included in the acceptance angle theta s in the condensing optical system 8, slight difference in the roughness of the inspected surface 1a even more It is detected with high sensitivity (high accuracy).

このとき、被検査面1aの表面の凹凸の大きさは、光2aの波長よりも十分に大きい。このため、照射する領域(光2aのビーム径の表面上の円筒面母線方向(X方向)への射影)Dpが凹凸の表面方向のオーダーを示す1/kと同等又はそれ以下であると、照射された少数の凹凸部が曲面ミラーのように働く。この結果、図4に示すように回折像(スペックル像)41の粒径が大きく乱れたパターンとなる。 At this time, the size of the irregularities on the surface to be inspected 1a is sufficiently larger than the wavelength of the light 2a. For this reason, the irradiated region (projection in the cylindrical surface generatrix direction (X direction) on the surface of the beam diameter of the light 2a) Dp is equal to or less than 1 / k j indicating the order of the surface direction of the unevenness. A small number of irradiated irregularities work like a curved mirror. As a result, as shown in FIG. 4, the pattern of the diffraction image (speckle image) 41 is greatly disturbed.

図5に示すような回折像が得られるのが良い。そこでスペックルの粒径を小さくして、全体の包絡線を滑らかで安定したものにするためには、被検査面1aのある程度の凹凸の数を含む領域を光照射する必要がある。すなわち、凹凸の寸法を示す1/kより十分に大きな領域Dp(1/k<Dp)を光2aで照射する必要がある。 It is preferable to obtain a diffraction image as shown in FIG. Therefore, in order to reduce the particle size of the speckle and make the entire envelope smooth and stable, it is necessary to irradiate a region including a certain number of irregularities on the surface to be inspected 1a. That is, it is necessary to irradiate the light 2a with a region Dp (1 / k j <Dp) sufficiently larger than 1 / k j indicating the size of the unevenness.

更に、スペックルの粒径は、図2に示す回折像の位置から照射点1cまでの距離をLとすると、λ/(Dp/L)で表されるが、検出光学系8の開口Wは少なくともこの粒径以上でなければならない。 Further, the speckle particle size is represented by λ / (Dp / L) 2 where L is the distance from the position of the diffraction image shown in FIG. Must be at least this particle size.

粒径が開口Wに比べて小さいほど、全体の回折像分布は滑らかなものになり、測定の安定性が増すことになる。   As the particle size is smaller than the opening W, the overall diffraction image distribution becomes smoother and the stability of measurement increases.

ビーム径をある程度太くする際、収束若しくは発散ビームを用い、その中で適当な照射スポットとなる位置に被検査面1aの粗面の位置を合わせるという方法もある。その場合、照射されるビームの波面はビームウエスト径が小さいほど曲率の大きい波面となる。このときは照射領域Dpの中で幾何学的入射角を一定にすることができない。   When the beam diameter is increased to some extent, there is a method in which a convergent or divergent beam is used, and the position of the rough surface of the surface to be inspected 1a is adjusted to a position where an appropriate irradiation spot is formed. In that case, the wavefront of the irradiated beam becomes a wavefront having a larger curvature as the beam waist diameter is smaller. At this time, the geometric incident angle cannot be made constant in the irradiation region Dp.

したがって、ビームウエスト径は光2aの照射径と同等、すなわち略平行ビームとなるような値に設定することが望ましい。   Therefore, it is desirable to set the beam waist diameter to a value that is equivalent to the irradiation diameter of the light 2a, that is, a value that provides a substantially parallel beam.

これにより入射ビーム2aが平面波となり、照射領域Dp内の全域で一定の入射角を確保することができ、異なる条件の回折光が発生するのを防ぐことができる。   As a result, the incident beam 2a becomes a plane wave, and a constant incident angle can be ensured throughout the irradiation region Dp, and diffracted light with different conditions can be prevented from being generated.

入射方向に関しては、被検査面としての対象となる粗面が平面でなく図6に示すような円筒面であるとする。このとき、入射面が円筒面91の軸に垂直な面となるように光2aを入射すると、円筒面91が凸面鏡の作用を持ち、回折パターンが入射面内で大きく広がってしまう。   Regarding the incident direction, it is assumed that the rough surface to be inspected as a surface to be inspected is not a flat surface but a cylindrical surface as shown in FIG. At this time, when the light 2a is incident so that the incident surface is a surface perpendicular to the axis of the cylindrical surface 91, the cylindrical surface 91 has a function of a convex mirror, and the diffraction pattern is greatly spread in the incident surface.

また、照射面1aの光2aの入射位置によって入射角θが異なり、異なる条件の回折光が混在した状態となって、検出感度を落とす。このため、図7に示すように入射面は円筒面の母線101と軸102を含む平面102に一致するように設定し、入射面102内では光2aの照射エリア全域Dpで入射角が一定となるようにする。 Further, the incident angle θ i varies depending on the incident position of the light 2a on the irradiation surface 1a, and the diffracted light under different conditions is mixed and the detection sensitivity is lowered. For this reason, as shown in FIG. 7, the incident surface is set to coincide with the plane 102 including the generating line 101 and the axis 102 of the cylindrical surface, and the incident angle is constant in the entire irradiation area Dp of the light 2a in the incident surface 102. To be.

更に、光検出器7での測定値のS/Nを確保するため、入射ビームの偏光状態については、反射率の絶対値が大きくなるS偏光としている。   Furthermore, in order to ensure the S / N of the measurement value in the photodetector 7, the polarization state of the incident beam is S-polarized light that increases the absolute value of the reflectance.

また検出方向については、同様の方法で回折像分布の変化から粗さの変化を調べる例として、回折分布の全域を光検出器でスキャンし、回折分布の空間低周波相当部と、空間高周波相当部の2点で光強度を測定し、その比から求める例がある(図8、第18回SICE学術講演会予稿集p157)。   For the detection direction, as an example of examining the change in roughness from the change in diffraction image distribution using the same method, the entire area of the diffraction distribution is scanned with a photodetector, and the spatial distribution corresponding to the spatial low frequency and the spatial high frequency are scanned. There is an example in which the light intensity is measured at two points of the section and obtained from the ratio (FIG. 8, 18th SICE Scientific Lecture Proceedings p157).

この方法では、回折光分布形状の変化の仕方によっては変化がないか、非常に小さい結果となる場合がある。これに対し、本実施例では、粗面の状態が変化したときの感度が最も大きくなる回折角度θが、集光光学系8の取り込み角θに含まれるような条件、すなわち条件式(3)又は条件式(4)を満たすような特定の1方向θで測定している。 In this method, there is a case where there is no change or a very small result depending on how the diffracted light distribution shape is changed. On the other hand, in the present embodiment, the condition that the diffraction angle θ m at which the sensitivity is maximized when the state of the rough surface changes is included in the capturing angle θ s of the condensing optical system 8, that is, the conditional expression ( 3) or a specific one-direction θ S that satisfies the conditional expression (4).

回折角度θは、図9に示すように予め複数の異なる平均値kの面に対してあるビーム入射角の条件で測定された複数の回折光分布に対して、相対強度変化(回折光強度)PLが最も大きくなる回折角度である。入射角θは、図11に示すように、その回折角度θにおける相対強度変化PLが最も大きくなるように決められる。 As shown in FIG. 9, the diffraction angle θ m is a relative intensity change (diffracted light) with respect to a plurality of diffracted light distributions measured in advance at a certain beam incident angle condition with respect to a plurality of surfaces having different average values k j. Intensity) is the diffraction angle at which PL is the largest. As shown in FIG. 11, the incident angle θ i is determined so that the relative intensity change PL at the diffraction angle θ m becomes the largest.

次に本発明の実施例2について説明する。   Next, a second embodiment of the present invention will be described.

本実施例は、拡散反射光の角度θsが該角度への拡散反射光強度E(k,θ)が、k < k のとき、
E(k,θ) < E(k,θ
であるような角度となるように各部材を設定している。
In this embodiment, when the angle θs of the diffuse reflected light is the diffuse reflected light intensity E (k j , θ S ) to the angle, k 1 <k 2 ,
E (k 1 , θ S ) <E (k 2 , θ S )
Each member is set to have such an angle.

本実施例のような条件下では、図9に示すように凹凸の周波数の平均値kが大きい方(凹凸の粗密が「密」の場合で異常部)I(θ)が、小さい場合(正常部)I(θ)に比べ、凹凸面のフーリエ変換で表される回折分布は、空間低周波成分(正反射方向に近い方向)の強度は弱くなり、空間高周波成分の強度が強くなる。 Under the conditions of this embodiment, as shown in FIG. 9, when the average value k j of the unevenness frequency is larger (when the unevenness density is “dense”, the abnormal part) I B (θ) is small. Compared to (normal part) I A (θ), the diffraction distribution represented by the Fourier transform of the concavo-convex surface has a lower spatial low-frequency component (a direction close to the regular reflection direction) and a stronger spatial high-frequency component. Become.

このとき相対的な変化量としては、絶対量の小さい高周波成分の方が大きくなり、粗面状態の僅かな変化に対しても、感度良く検出することができる。   At this time, as a relative change amount, a high-frequency component having a small absolute amount becomes larger, and even a slight change in the rough surface state can be detected with high sensitivity.

図9において、I(θ)は粗さが粗(正常部であり平均値Kが小さい)のときの回折光分布である。 In FIG. 9, I A (θ) is a diffracted light distribution when the roughness is rough (normal portion and the average value K j is small).

(θ)は粗さが密(異常部であり平均値Kが大きい)のときの回折光分布である。 I B (θ) is a diffracted light distribution when the roughness is dense (abnormal part and average value K j is large).

検出光学系8で検出するときの角度θ
(θ)/I(θ)<1
を満足する角度である。
The angle θ s when detected by the detection optical system 8 is I B (θ) / I A (θ) <1.
It is an angle that satisfies

前述の条件式(5)の相対強度変化PLは図10に示す如く
相対強度変化PL=|異常部の光量/正常部の光量−1|
=|I(θ)/I(θ)−1| ‥‥‥(5)
である。
The relative intensity change PL in the above-described conditional expression (5) is as shown in FIG. 10. Relative intensity change PL = | light quantity of abnormal part / light quantity of normal part−1 |
= | I B (θ) / I A (θ) -1 | (5)
It is.

次に本発明の実施例3について説明する。   Next, a third embodiment of the present invention will be described.

本実施例では、ビーム入射角度θが、ある平均値k、kの値(k<k)に対して、
E(k,θ)/ E(k,θ
が略最大になるような角度となるように設定している。
In this embodiment, the beam incident angle θ i is a certain average value k 1 , k 2 (k 1 <k 2 ).
E (k 2 , θ S ) / E (k 1 , θ S )
Is set so that the angle becomes substantially maximum.

入射角θについても、ある粗面の条件となる平均値kにおいて、適当なビーム入射角θを設定することによって、前項の相対強度変化PLを最も大きくすることができる。入射角度θを変えたときの、測定結果のコントラストの変化は図11に示すとおりである。 With respect to the incident angle θ i , the relative intensity change PL described in the previous section can be maximized by setting an appropriate beam incident angle θ i at an average value k j that is a condition of a certain rough surface. The change in contrast of the measurement result when the incident angle θ i is changed is as shown in FIG.

次に本発明の実施例4について説明する。   Next, a fourth embodiment of the present invention will be described.

実施例4では被検査面として円筒面を用い、円筒面上の粗さを測定している。   In Example 4, a cylindrical surface is used as the surface to be inspected, and the roughness on the cylindrical surface is measured.

実施例4では、図12に示すように円筒面1を一定の角速度で回転させながら、円筒面1の軸方向(X方向)に円筒面1もしくは光源と測定器の測定ユニットSBが一定の速度で平行移動している。そして一定の時間おきに円筒面1からの反射光を検出して光量測定を行うことで円筒面1の2次元の測定値を得ている。   In the fourth embodiment, as shown in FIG. 12, while rotating the cylindrical surface 1 at a constant angular velocity, the cylindrical surface 1 or the measurement unit SB of the light source and the measuring device is at a constant speed in the axial direction (X direction) of the cylindrical surface 1. Is moving in parallel. Then, two-dimensional measurement values of the cylindrical surface 1 are obtained by detecting the reflected light from the cylindrical surface 1 and measuring the light quantity at regular intervals.

このとき、円筒面1上の測定点間の距離をΔは、
Δ< Dp ‥‥‥(6)
としている。
At this time, Δ is the distance between the measurement points on the cylindrical surface 1.
Δ <Dp (6)
It is said.

これにより測定対象面の全域について、全く同じ入射角、照射領域寸法の条件で走査することが可能になり、位置による厳密な相対変化量を検出することができる。   As a result, it is possible to scan the entire area of the measurement target surface under exactly the same incident angle and irradiation area dimensions, and it is possible to detect a precise relative change amount depending on the position.

又、ビーム照射域よりも高い空間分解能でデータを得ることができる。   In addition, data can be obtained with higher spatial resolution than the beam irradiation area.

特に図12に示すように、円筒面1を回転させながら軸方向(X方向)に移動することで、入射面を円筒面1の母線と軸を含む平面に一致するように設定し、円筒面1全体に関して同じ条件で測定を行っている。   In particular, as shown in FIG. 12, by moving the cylindrical surface 1 in the axial direction (X direction), the incident surface is set to coincide with the plane including the generatrix and the axis of the cylindrical surface 1. Measurement is carried out under the same conditions for the whole.

次に本発明の実施例5について説明する。   Next, a fifth embodiment of the present invention will be described.

実施例5では、レーザー光源からの光を、1つもしくは2つ以上の半透鏡で複数の光に分岐し、1つの円筒面の複数の位置もしくは複数の円筒面に同時に照射して、各々に対応した複数の測定器で同時に光量測定を行っている。   In Example 5, the light from the laser light source is branched into a plurality of lights by one or two or more semi-transparent mirrors, and simultaneously irradiated to a plurality of positions or a plurality of cylindrical surfaces of one cylindrical surface. The light quantity is measured simultaneously with the corresponding measuring instruments.

本実施例では、走査光学系を用いて測定時間の短縮化を図り、より高速に測定するのに好適である。   In this embodiment, the scanning optical system is used to shorten the measurement time, which is suitable for measuring at a higher speed.

本実施例では円筒面を高速に回転させなくても高速な測定が容易となる。特に単一の測定対象の複数の場所、或いは複数の測定対象面に同時に光を照射して、そこからの拡散光を測定することで、単位面積あたりの測定時間を短縮している。   In this embodiment, high-speed measurement is facilitated without rotating the cylindrical surface at high speed. In particular, the measurement time per unit area is shortened by simultaneously irradiating light to a plurality of locations or a plurality of measurement target surfaces of a single measurement target and measuring diffused light therefrom.

その際、入射光は略平行であるため、光源を多数準備する必要はなく、単一(或いは必要最低限の少ない複数)の光源からの出射光を、半透鏡の機能を持つ光学素子で分岐することにより、おのおのの照射点に導いている。また円筒面の軸方向の移動も単一(或いは必要最低限の少ない複数)の手段で実現可能である。   At this time, since the incident light is substantially parallel, it is not necessary to prepare a large number of light sources, and the light emitted from a single (or a plurality of minimum required) light source is branched by an optical element having a semi-transparent function. By doing so, it leads to each irradiation point. Further, the axial movement of the cylindrical surface can be realized by a single (or a plurality of minimum necessary number) means.

次に本発明の実施例6について説明する。   Next, a sixth embodiment of the present invention will be described.

集光光学系8の近軸像面に設けた付近の光束制限手段6の、円筒面1の軸方向への開口幅をH、検出したい最も小さい粗さ不均一領域の幅をd、検出光学系の近軸横倍率をβとする。このとき、
H ≦ β・d ‥‥‥(7)
を満足している。
The aperture width in the axial direction of the cylindrical surface 1 of the light flux limiting means 6 provided on the paraxial image plane of the condensing optical system 8 is H, the width of the smallest nonuniform roughness region to be detected is d, and the detection optics Let β be the paraxial lateral magnification of the system. At this time,
H ≦ β · d (7)
Is satisfied.

照射点1cによる回折分布の相対変化を、より感度の高い条件で測定する際、光の入射角θを70°を超えるような非常に大きな角度にしなければならない場合も多い。このとき、照射対象面上に照射される光のスポット径の大きさは、円筒面の軸方向に長く伸びた状態となる。 The relative change of the diffraction distribution by irradiation point 1c, and more when measured by a sensitive condition, in many cases must be the incident angle theta i of the light to a very large angle in excess of 70 °. At this time, the size of the spot diameter of the light irradiated on the irradiation target surface is extended in the axial direction of the cylindrical surface.

たとえば、1mmのビーム径で入射角が70°の場合、照射領域Dpは2.9mmにも広がる。   For example, when the beam diameter is 1 mm and the incident angle is 70 °, the irradiation area Dp extends to 2.9 mm.

このとき、照射領域内でムラなど検出したい異常部の最小の大きさdが1mm程度であった場合、回折像は正常部と異常部の面からの成分が混合されたものとなり、異常部からの情報のみを感度よく得ることができない。   At this time, when the minimum size d of the abnormal part to be detected such as unevenness in the irradiation region is about 1 mm, the diffraction image is a mixture of components from the normal part and the abnormal part, and from the abnormal part. It is not possible to obtain only this information with high sensitivity.

これを解決するため、検出光学系8の像面に設置されるスリットやピンホールなどの光束制限手段6の開口部の幅Hを、必要な空間分解能に相当する値に設定している。   In order to solve this, the width H of the opening of the light beam limiting means 6 such as a slit or pinhole installed on the image plane of the detection optical system 8 is set to a value corresponding to the required spatial resolution.

たとえば、検出されなければならない最も小さい異常部の大きさのサイズがd[mm]であり、検出光学系8の近軸横倍率がβである場合、光束制限手段6の開口部の幅H[mm]はβ・dと同等又はそれ以下である必要がある。   For example, when the size of the smallest abnormal part that must be detected is d [mm] and the paraxial lateral magnification of the detection optical system 8 is β, the width H [ mm] needs to be equal to or less than β · d.

これにより、照射領域が必要分解能を超える場合でも、光束を制限することにより、諸条件を満たし必要な情報を持つ回折光のみを取り込んで、空間的にも感度の高い系が実現可能となる。   As a result, even when the irradiation area exceeds the necessary resolution, by limiting the luminous flux, only a diffracted light that satisfies various conditions and has necessary information can be captured, and a spatially sensitive system can be realized.

本実施例では条件式(7)を満足することによって円筒面上の表面の粗さを高精度に測定している。   In this embodiment, the surface roughness on the cylindrical surface is measured with high accuracy by satisfying conditional expression (7).

本発明の実施例1の要部側面図The principal part side view of Example 1 of this invention 本発明の実施例1の各部材間の説明図Explanatory drawing between each member of Example 1 of this invention 本発明の実施例1の要部上面図The principal part top view of Example 1 of this invention 照射ビーム径が0.1mmのときの被検査面から生ずる回折像の説明図Explanatory drawing of the diffraction image generated from the surface to be inspected when the irradiation beam diameter is 0.1 mm 照射ビーム径が0.5mmのときの被検査面から生ずる回折像の説明図Explanatory drawing of the diffraction image generated from the surface to be inspected when the irradiation beam diameter is 0.5 mm ビーム入射面が円筒面の軸に垂直となるように入射したときの説明図Explanatory drawing when the beam incident surface is incident so that it is perpendicular to the axis of the cylindrical surface 円筒面に光が入射するときの説明図Explanatory drawing when light enters the cylindrical surface 従来の測定位置に関する説明図Explanatory drawing about conventional measurement position 粗面の粗さによる回折像分布の説明図Illustration of diffraction image distribution due to roughness of rough surface 粗面状態の変化による回折像分布比の説明図Explanatory diagram of diffraction image distribution ratio due to changes in rough surface state 円筒面の軸方向にスキャンしたときの測定結果の説明図Explanatory drawing of measurement results when scanned in the axial direction of the cylindrical surface スキャン方式を用いた実施例の説明図Explanatory drawing of an embodiment using a scanning method 測定結果の2次元画像化データの説明図Illustration of 2D imaging data of measurement results

符号の説明Explanation of symbols

1・・・円筒粗面
2・・・レーザー光源
3・・・回折光
4・・・光束制限手段1
5・・・正反射方向
6・・・光束制限手段2
7・・・光検出器
8・・・検出光学系
DESCRIPTION OF SYMBOLS 1 ... Cylindrical rough surface 2 ... Laser light source 3 ... Diffracted light 4 ... Light beam limiting means 1
5 ... Regular reflection direction 6 ... Light flux limiting means 2
7 ... photodetector 8 ... detection optical system

Claims (8)

光源手段と、
該光源手段から出射した光の光束径を制限する第1の光束制限手段と、
該第1の光束制限手段を通過し、被検査面にはS偏光が入射しており、該被検査面より生ずる光回折光を検出する検出光学系と、
該検出光学系の集光面に配置され、通過光束径を制限する第2の光束制限手段と、
該第2の光束制限手段を通過した光を検出する光検出器と、
該光検出器からの信号を用いて該被検査面の粗さを検査する表面状態検査装置であって、
該光源手段からの光の波長をλ、
該光源手段からの光が被検査面に入射するときの入射面内において、該被検査面への入射光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該第2の光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳までの距離をLとするとき
λ/(Dp/L)<W
なる条件を満足することを特徴とする表面状態検査装置。
Light source means;
First light flux limiting means for limiting a light beam diameter of light emitted from the light source means;
A detection optical system that passes through the first light flux limiting means and has S-polarized light incident on the surface to be inspected, and detects light diffracted light generated from the surface to be inspected;
A second light beam limiting means disposed on the condensing surface of the detection optical system for limiting the diameter of the passing light beam;
A photodetector for detecting light that has passed through the second light flux limiting means;
A surface condition inspection apparatus for inspecting the roughness of the surface to be inspected using a signal from the photodetector,
The wavelength of light from the light source means is λ,
In the incident surface when the light from the light source means is incident on the surface to be inspected, the light beam diameter of the incident light beam on the surface to be inspected is Dp,
The effective diameter on the light incident side of the detection optical system is W,
When the distance from the conjugate point through the detection optical system to the second light beam limiting means to the entrance pupil of the detection optical system is L, λ / (Dp / L) 2 <W
The surface condition inspection apparatus characterized by satisfying the following conditions.
平行でS偏光状態の波長λの光を円筒面の一部に、該円筒面の母線と、該円筒面の中心軸とを含む入射面内より入射させる照射工程と、
該円筒面から生ずる光回折像の一部を検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該入射面において、該円筒面上の照射領域における表面凹凸部の寸法の入射面内における周波数の平均値をk
円筒面へ入射するときの光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳位置までの距離をL
異なる平均値kの複数の表面から予め測定された複数の回折光分布に関して、相対強度変化が最も大きくなるような、照射点における法線に対する回折角度をθ、相対強度変化が最も大きくなる回折角度θに対応する光の入射角をθ、光は照射点に入射角度θで入射しており、該検出光学系は照射点に対して角度θ方向の光回折光を集光しており、
このとき
λ/(Dp/L)<W
1/k < Dp
θ−tan−1{(W/2)/L}<θ <θ+ tan−1{(W/2)/L}
を満たすことを特徴とする表面状態検査方法。
An irradiation step in which light having a wavelength λ in parallel and S-polarized state is incident on a part of the cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
After a part of the light diffraction image generated from the cylindrical surface is condensed by the detection optical system, the light is detected by the light detector through the light beam limiting means for limiting the light beam disposed at the light collection point of the detection optical system. A surface state inspection method including an inspection step for determining a change in the intensity distribution of the diffraction image and then inspecting the surface state of the cylindrical surface,
In the incident surface, the average value of the frequency in the incident surface of the size of the surface irregularities in the irradiation region on the cylindrical surface is represented by k j ,
Dp, the diameter of the light beam when entering the cylindrical surface
The effective diameter on the light incident side of the detection optical system is W,
L is the distance from the conjugate point through the detection optical system to the light beam limiting means to the entrance pupil position of the detection optical system.
With respect to a plurality of diffracted light distributions measured in advance from a plurality of surfaces having different average values k j, the diffraction angle with respect to the normal line at the irradiation point that maximizes the relative intensity change is θ m , and the relative intensity change is the largest. The incident angle of light corresponding to the diffraction angle θ m is θ i , the light is incident on the irradiation point at the incident angle θ i , and the detection optical system collects light diffracted light in the angle θ S direction with respect to the irradiation point. Light
At this time, λ / (Dp / L) 2 <W
1 / k j <Dp
θ S −tan −1 {(W / 2) / L} <θ mS + tan −1 {(W / 2) / L}
The surface condition inspection method characterized by satisfy | filling.
平行でS偏光状態の波長λの光を円筒面の一部に、該円筒面の母線と、該円筒面の中心軸とを含む入射面内より入射させる照射工程と、
該円筒面から生ずる光回折像の一部を開口数NAの検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該円筒面上の粗さが粗と密の異なる2点からの角度θ方向の回折光分布をI(θ)、I(θ)とするとき相対強度変化
|I(θ)/I(θ)−1|
が最も大きくなる回折角度をθ、回折光分布の相対強度変化が最も大きくなる回折角度θのときの光の入射角度をθとするとき、光は照射点に入射角度θで入射しており、該検出光学系は照射点に対して角度θ方向の光回折光を集光しており、
このとき
θ−sin−1(NA)<θ<θ+sin−1(NA)
を満たすことを特徴とする表面状態検査方法。
An irradiation step in which light having a wavelength λ in a parallel and S-polarized state is incident on a part of a cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
A part of the light diffraction image generated from the cylindrical surface is condensed by a detection optical system having a numerical aperture NA, and then a light detector through a light beam limiting means for limiting a light beam arranged at a condensing point of the detection optical system. A surface state inspection method including an inspection step of detecting and detecting a change in intensity distribution of the light diffraction image, and then inspecting the surface state of the cylindrical surface,
When the diffracted light distribution in the angle θ direction from two points with different roughness and density on the cylindrical surface is I A (θ), I B (θ), the relative intensity change | I B (θ) / I A (θ) -1 |
There becomes largest diffraction angle theta m, when the i the angle of incidence of light theta when the diffraction angle theta m relative change in intensity of the diffracted light distribution is maximized, the light is incident at an incident angle theta i the irradiation point The detection optical system collects light diffracted light in the direction of angle θ S with respect to the irradiation point,
At this time, θ m −sin −1 (NA) <θ sm + sin −1 (NA)
The surface condition inspection method characterized by satisfy | filling.
前記検出光学系が光回折光を検出するときの角度θは、該角度θへの拡散反射光強度E(k,θ)が、ある平均値k、kの値(k<k)に対して、
E(k,θ) < E(k,θ
であることを特徴とする請求項2又は3の表面状態検査方法。
Angle theta s when said detecting optical system for detecting light diffracted light, diffuse reflection light intensity in the the angle θ s E (k j, θ S) is located average k 1, k 2 values (k 1 <k 2 )
E (k 1 , θ S ) <E (k 2 , θ S )
The surface condition inspection method according to claim 2 or 3, wherein
光の入射角度θは、平均値k、kの値(k< k)に対して、
E(k,θ)/ E(k,θ
が最大になる角度であることを特徴とする請求項4の表面状態検査方法。
The incident angle θ i of the light is an average value k 1 , k 2 (k 1 <k 2 ).
E (k 2 , θ s ) / E (k 1 , θ s )
The surface condition inspection method according to claim 4, wherein the angle is a maximum angle.
前記円筒面を一定の角速度で回転させながら、該円筒面の軸方向に該円筒面と入射光とが一定の速度で相対的に平行移動するようにし、一定の時間おきに前記光検出器で光量測定を行うことにより、該円筒面上の2次元での表面状態を検査しており、このとき該円筒面上の測定点間の距離Δが、
Δ< Dp
となるようにしていることを特徴とする請求項2から5のいずれか1項の表面状態検査方法。
While rotating the cylindrical surface at a constant angular velocity, the cylindrical surface and incident light are relatively translated at a constant speed in the axial direction of the cylindrical surface, and the photodetector is used at regular intervals. By measuring the amount of light, the two-dimensional surface state on the cylindrical surface is inspected. At this time, the distance Δ between the measurement points on the cylindrical surface is
Δ <Dp
The surface condition inspection method according to any one of claims 2 to 5, wherein
前記照射工程では前記円筒面上の異なった領域に各々光を照明しており、前記検査工程では、該円筒面上の異なった領域から生ずる光回折光を各々検出して、該円筒面上の複数の領域の表面状態を検査していることを特徴とする請求項2から6のいずれか1項の表面状態検査方法。   In the irradiation step, different areas on the cylindrical surface are illuminated with light, respectively, and in the inspection step, light diffracted light generated from different areas on the cylindrical surface is detected to detect the light on the cylindrical surface. The surface state inspection method according to claim 2, wherein the surface state of a plurality of regions is inspected. 前記入射面内において、前記光束制限手段の光束が通過する幅をH、前記集光光学系が前記円筒面の一部を該光束制限手段面上に結像するときの近軸横倍率をβ、該円筒面上の検出すべき凹凸部の最小の長さをdとするとき
H≦β・d
を満足することを特徴とする請求項2から7のいずれか1項の表面状態検査方法。
In the incident surface, the width through which the light beam of the light beam limiting means passes is H, and the paraxial lateral magnification when the condensing optical system forms an image of a part of the cylindrical surface on the light beam limiting device surface is β , Where d is the minimum length of the irregularities to be detected on the cylindrical surface, H ≦ β · d
The surface condition inspection method according to claim 2, wherein:
JP2006171552A 2006-06-21 2006-06-21 Surface state inspection device and surface state inspection method Pending JP2008002891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171552A JP2008002891A (en) 2006-06-21 2006-06-21 Surface state inspection device and surface state inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171552A JP2008002891A (en) 2006-06-21 2006-06-21 Surface state inspection device and surface state inspection method

Publications (1)

Publication Number Publication Date
JP2008002891A true JP2008002891A (en) 2008-01-10

Family

ID=39007409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171552A Pending JP2008002891A (en) 2006-06-21 2006-06-21 Surface state inspection device and surface state inspection method

Country Status (1)

Country Link
JP (1) JP2008002891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250949A (en) * 2008-04-11 2009-10-29 Canon Inc Surface inspection apparatus
JP2011117917A (en) * 2009-12-03 2011-06-16 Ministry Of National Defense Chung Shan Inst Of Science & Technology Localization method of speckle and localization system therefor
JP2014172154A (en) * 2013-03-12 2014-09-22 Ebara Corp Apparatus for measurement of surface characteristics of an abrasive pad
JP2014172153A (en) * 2013-03-12 2014-09-22 Ebara Corp Method of measuring surface characteristics of abrasive pad
CN107727012A (en) * 2017-10-07 2018-02-23 佛山智北汇科技有限公司 A kind of plastic part surface flatness detecting device based on optical diffraction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250949A (en) * 2008-04-11 2009-10-29 Canon Inc Surface inspection apparatus
JP2011117917A (en) * 2009-12-03 2011-06-16 Ministry Of National Defense Chung Shan Inst Of Science & Technology Localization method of speckle and localization system therefor
US8144339B2 (en) 2009-12-03 2012-03-27 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Method and system for positioning by using optical speckle
JP2014172154A (en) * 2013-03-12 2014-09-22 Ebara Corp Apparatus for measurement of surface characteristics of an abrasive pad
JP2014172153A (en) * 2013-03-12 2014-09-22 Ebara Corp Method of measuring surface characteristics of abrasive pad
KR101921763B1 (en) * 2013-03-12 2018-11-23 가부시키가이샤 에바라 세이사꾸쇼 Method for measuring surface properties of polishing pad
KR101930966B1 (en) * 2013-03-12 2018-12-19 가부시키가이샤 에바라 세이사꾸쇼 Apparatus for measuring surface properties of polishing pad
US10401285B2 (en) 2013-03-12 2019-09-03 Ebara Corporation Apparatus for measuring surface properties of polishing pad
CN107727012A (en) * 2017-10-07 2018-02-23 佛山智北汇科技有限公司 A kind of plastic part surface flatness detecting device based on optical diffraction

Similar Documents

Publication Publication Date Title
JP3323537B2 (en) Microstructure evaluation device and microstructure evaluation method
US9080991B2 (en) Illuminating a specimen for metrology or inspection
US7502101B2 (en) Apparatus and method for enhanced critical dimension scatterometry
JP5444334B2 (en) Interference defect detection and classification
JP3709431B2 (en) High-speed measuring device for angle-dependent diffraction effects on microstructured surfaces
JP7134096B2 (en) Substrate inspection method, device and system
JPH0915163A (en) Method and equipment for inspecting foreign substance
JP2014215300A (en) Apparatus for detecting 3d structure of object
JPH04273008A (en) Surface condition inspection device
JP6546172B2 (en) Reflective optical element, in particular a measuring arrangement for measuring the optical properties of microlithography
US20240183655A1 (en) Measuring apparatus and method for roughness and/or defect measurement on a surface
JP2001524215A (en) Surface analysis using Gaussian beam distribution
WO2010106758A1 (en) Shape measurement device and method
JP5322841B2 (en) Mask defect shape measurement method and mask quality determination method
JP2008002891A (en) Surface state inspection device and surface state inspection method
JP5279280B2 (en) Shape measuring device
Daneshpanah et al. Surface sensitivity reduction in laser triangulation sensors
JP2016205972A (en) Scan type glossy cylindrical-surface-shape inspection device
JP5294081B2 (en) Glossy cylindrical surface shape inspection device
JPH0291504A (en) Method for inspecting cross-sectional profile of fine pattern
JP5046054B2 (en) Defect inspection apparatus, defect inspection method, optical scanning apparatus, and semiconductor device manufacturing method
JP2004163129A (en) Defect inspection method
JP2008002892A (en) Surface condition inspection apparatus and surface condition inspection method
JP2000314707A (en) Device and method for inspecting surface
JP2008134128A (en) Apparatus and method for inspecting surface condition