JP2016205972A - Scan type glossy cylindrical-surface-shape inspection device - Google Patents

Scan type glossy cylindrical-surface-shape inspection device Download PDF

Info

Publication number
JP2016205972A
JP2016205972A JP2015087024A JP2015087024A JP2016205972A JP 2016205972 A JP2016205972 A JP 2016205972A JP 2015087024 A JP2015087024 A JP 2015087024A JP 2015087024 A JP2015087024 A JP 2015087024A JP 2016205972 A JP2016205972 A JP 2016205972A
Authority
JP
Japan
Prior art keywords
mirror
cylindrical surface
lens
light
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015087024A
Other languages
Japanese (ja)
Inventor
田代克
Katsumi Tashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTOUEA KK
Original Assignee
OPUTOUEA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTOUEA KK filed Critical OPUTOUEA KK
Priority to JP2015087024A priority Critical patent/JP2016205972A/en
Publication of JP2016205972A publication Critical patent/JP2016205972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glossy cylindrical-surface-shape inspection device capable of inspecting not only the surface shape but also a scratch and dirt even when a cylindrical part cannot rotate, the cylindrical part is extremely long or continuous, or the surface is glossy or a mirror plane.SOLUTION: The inspection device includes: a circular-arc-shaped scan light source having a semiconductor laser 1, a collimation lens 2, a wedge-shaped rotary prism 3, or an oblique rotary mirror; an illumination system having a condensing lens 6 and a gate-type mirror 7; and a detection system having a gate-type mirror 9, an image formation lens 10, and a two-dimensional PSD 13. The gate-type mirrors 7 and 9 are arranged so that the optical axis of the condensing lens 6 and image formation lens 10 is the same as the central axis of a cylindrical surface 8 to be measured via the gate-type mirrors 7 and 9.SELECTED DRAWING: Figure 1

Description

本発明は、外側に光沢面あるいは鏡面をもつ円筒状物体の形状を検査する光沢円筒面形状検査装置に関するものである。 The present invention relates to a glossy cylindrical surface shape inspection apparatus for inspecting the shape of a cylindrical object having a glossy surface or mirror surface on the outside.

今日では、金属、プラスチック、ガラス等から構成される表面が光沢性の円筒状の物体、例えば紙やフィルムを搬送するロール、あるいはコピー等に使われる感光ロール等が存在し、これらの表面形状は、円筒面の軸方向に走査あるいは線像を作って切断面を測定する方法、たとえば特許文献1、あるいは円筒面の軸方向に円錐状ミラー等を動かして測定する方法、たとえば特許文献2等の方法、あるいは円筒面に円弧上の光線をあて測定する方法、たとえば特許文献3の方法で表面形状検査がされている。   Today, there are cylindrical objects with glossy surfaces composed of metal, plastic, glass, etc., such as rolls for transporting paper and film, or photosensitive rolls used for copying, etc. A method of measuring the cut surface by scanning or making a line image in the axial direction of the cylindrical surface, for example, Patent Document 1, or a method of measuring by moving a conical mirror or the like in the axial direction of the cylindrical surface, for example, Patent Document 2 The surface shape is inspected by a method, or a method in which a light beam on an arc is applied to a cylindrical surface, for example, the method of Patent Document 3.

特許3429966Patent 3429966 特許3099462Patent 3099462 特許5294081Patent 5294081

円筒面の軸方向に走査あるいは線像を作って切断面を測定する方法では円筒面を回転することが前提となっているので、回転できない物体、たとえば連続成型品の表面等は検査できなかった。同様に回転対称でない物体、たとえば板上のものの端部が円筒状になっているようなものの円筒面部は測ることができなかった。また、円筒面の軸方向に円錐状ミラー等を動かして測定する方法では、円筒面の軸方向に非常に長いかあるいは連続した物体、たとえば連続成型樹脂パイプなどを測定することができなかった。また、円弧上の光線を当てる方法では細かい傷等が測定できなかった。そこで、本発明は円筒部が回転できなくても、また、円筒部が非常に長いか連続体であっても、なおかつ表面が光沢性あるいは鏡面であっても表面形状だけでなく傷や汚れの検査が可能な光沢円筒面形状検査装置を提供することを目的とする。   The method of measuring the cut surface by scanning or making a line image in the axial direction of the cylindrical surface is based on the premise that the cylindrical surface is rotated, so it was not possible to inspect non-rotatable objects, such as the surface of a continuous molded product . Similarly, an object that is not rotationally symmetric, for example, a cylindrical surface portion of an object having a cylindrical shape on the plate, could not be measured. Further, in the method of measuring by moving a conical mirror or the like in the axial direction of the cylindrical surface, it is not possible to measure an object that is very long or continuous in the axial direction of the cylindrical surface, such as a continuously molded resin pipe. In addition, fine scratches and the like could not be measured by the method of applying a light beam on an arc. Therefore, even if the cylindrical portion cannot be rotated, the cylindrical portion is very long or continuous, and even if the surface is glossy or mirror surface, not only the surface shape but also scratches and dirt An object is to provide a glossy cylindrical surface shape inspection device capable of inspection.

上記課題を解決するため、光源、コリメータレンズ、回転光走査機、集光レンズ、門型ミラーを備えた走査系と、門型ミラー、結像レンズ、回転光走査機、集光レンズ、2次元PSDを備えた検出系を設け、集光レンズ及び結像レンズの光軸と測定対象円筒面の中心軸が門型ミラーを介してほぼ同一となるよう門型ミラーを配置することを特徴とする走査型光沢円筒面形状検査装置とした。 In order to solve the above problems, a scanning system including a light source, a collimator lens, a rotating light scanner, a condensing lens, and a portal mirror, a portal mirror, an imaging lens, a rotating light scanner, a condensing lens, and a two-dimensional lens A detection system having a PSD is provided, and the portal mirror is arranged so that the optical axis of the condenser lens and the imaging lens and the central axis of the measurement target cylindrical surface are substantially the same through the portal mirror. A scanning glossy cylindrical surface shape inspection apparatus was obtained.

また、2次元PSDの信号について光走査機の回転方向に数値化する信号処理を行い、その数値に基づき良不良判定を行うことを特徴とする走査型光沢円筒面形状検査装置とした。   In addition, the scanning glossy cylindrical surface shape inspection apparatus is characterized in that a signal processing for converting a two-dimensional PSD signal into a numerical value in the direction of rotation of the optical scanner is performed, and good / bad determination is performed based on the numerical value.

また、回転光走査機は楔形回転プリズムとすることを特徴とする走査型光沢円筒面形状検査装置とした。   In addition, a scanning type glossy cylindrical surface shape inspection apparatus is characterized in that the rotating light scanner is a wedge-shaped rotating prism.

上記のように構成することにより、回転が不可能でも、またどんなに長い円筒物体であっても、また表面が完全な光沢面や鏡面であっても、表面の形状計測および傷、汚れの検査が可能な走査型光沢円筒面形状検査装置を提供できる。   By configuring as described above, surface shape measurement and inspection of scratches and dirt can be performed even if it is impossible to rotate, no matter how long a cylindrical object is, and even if the surface is a perfect glossy surface or mirror surface. A possible scanning type glossy cylindrical surface shape inspection apparatus can be provided.

本発明の実施例1における走査型光沢円筒面形状検査装置の構成図である。It is a block diagram of the scanning glossy cylindrical surface shape inspection apparatus in Example 1 of this invention. 本発明の実施例1における走査型光沢円筒面形状検査装置のミラー折り返しを省略した光学系の断面図である。It is sectional drawing of the optical system which abbreviate | omitted mirror folding | turning of the scanning glossy cylindrical surface shape inspection apparatus in Example 1 of this invention. 本発明の実施例1における結像画像および処理を説明した図である。It is a figure explaining the image formation image and process in Example 1 of this invention. 本発明の実施例2における走査型光沢円筒面形状検査装置の構成図である。It is a block diagram of the scanning type glossy cylindrical surface shape inspection apparatus in Example 2 of this invention.

図1に、本発明の実施例1における走査型光沢円筒面形状検査装置の構成図を示す。1は半導体レーザ、2はコリメータレンズ、3は楔形状の回転プリズム、5は遮光板、6は集光レンズ、7は門型ミラー、8は測定対象円筒面、9は門型ミラー、10は結像レンズ1、11は楔形状の回転プリズム、12は結像レンズ2、13は2次元PSDである。
FIG. 1 shows a configuration diagram of a scanning glossy cylindrical surface shape inspection apparatus in Embodiment 1 of the present invention. 1 is a semiconductor laser, 2 is a collimator lens, 3 is a wedge-shaped rotating prism, 5 is a light-shielding plate, 6 is a condenser lens, 7 is a portal mirror, 8 is a cylindrical surface to be measured, 9 is a portal mirror, The imaging lenses 1 and 11 are wedge-shaped rotating prisms, the imaging lenses 2 and 13 are two-dimensional PSDs.

半導体レーザ1からでた光はコリメータレンズ2でほぼ平行な光に変換され、楔形回転プリズム3に入射する。楔形回転プリズム3から出射した光は楔の厚い方に曲げられる。楔形回転プリズム3は回転しているので出射した光は円弧状に走査される。 The light emitted from the semiconductor laser 1 is converted into substantially parallel light by the collimator lens 2 and enters the wedge-shaped rotating prism 3. The light emitted from the wedge-shaped rotating prism 3 is bent toward the thicker wedge. Since the wedge-shaped rotating prism 3 is rotating, the emitted light is scanned in an arc shape.

円弧状に走査された光は集光レンズ6で集光される。ここで遮光板5により、門型ミラー7で反射できない部分の光を遮光する。集光途中で門型ミラー7により折り返され、測定対象円筒面8の表面上に円弧状に集光される。門型ミラーは通常のミラーであるが、測定対象物と機械的に干渉する部分を切り欠いたものである。 The light scanned in the arc shape is collected by the condenser lens 6. Here, the light that is not reflected by the gate mirror 7 is shielded by the light shielding plate 5. In the middle of the light collection, it is folded back by the gate-shaped mirror 7 and is collected in a circular arc shape on the surface of the measurement target cylindrical surface 8. The gate-type mirror is a normal mirror, but a part that mechanically interferes with the measurement object is cut out.

ここで集光レンズの光軸は門型ミラー7で折り返されたとき、測定対象円筒面8の円筒軸と一致するよう構成される。光軸に垂直な面で切った断面上で考えると、集光レンズを出た光は光軸方向に集光するため同じ軸をもつ円筒面に対しては軸を含む面内で入射および反射をすることになる。 Here, the optical axis of the condenser lens is configured to coincide with the cylindrical axis of the cylindrical surface 8 to be measured when it is folded back by the portal mirror 7. Considering a cross-section cut by a plane perpendicular to the optical axis, the light exiting the condenser lens is collected in the direction of the optical axis, so that the cylindrical surface having the same axis is incident and reflected within the plane including the axis. Will do.

測定対象円筒面を反射した光は門型ミラー9で折り返され、結像レンズ10により楔形回転プリズム11に入射する。ここで楔型回転プリズム11は楔形回転プリズム3と同期し、逆回転に回転している。その結果楔型回転プリズム11を出射した光は光軸と概略並行方向に変換され、集光レンズ12により2次元PSD13に入射する。ここでも門型ミラー9で折り返されたとき、結像レンズ10、集光レンズ12の光軸が測定対象円筒面8の円筒軸と一致するよう構成される。2次元PSD13は測定対象円筒面8の反射点と結像レンズ10、集光レンズ12に対し共役な位置に置かれるので2次元PSD上には測定対象円筒面8上の反射点と共役な点像があらわれることになる。 The light reflected from the cylindrical surface to be measured is folded back by the portal mirror 9 and is incident on the wedge-shaped rotating prism 11 by the imaging lens 10. Here, the wedge-shaped rotating prism 11 is synchronized with the wedge-shaped rotating prism 3 and rotates in the reverse direction. As a result, the light emitted from the wedge-shaped rotating prism 11 is converted into a direction substantially parallel to the optical axis, and is incident on the two-dimensional PSD 13 by the condenser lens 12. Also here, the optical axis of the imaging lens 10 and the condensing lens 12 is configured to coincide with the cylindrical axis of the measurement target cylindrical surface 8 when folded by the portal mirror 9. Since the two-dimensional PSD 13 is placed at a position conjugate to the reflection point of the measurement target cylindrical surface 8 and the imaging lens 10 and the condenser lens 12, a point conjugate to the reflection point on the measurement target cylindrical surface 8 is present on the two-dimensional PSD. An image will appear.

図2に本発明の実施例における光沢円筒面形状検査装置のミラー折り返しを省略した光学系の図を示す。ここでは折り返しミラーを省き、光学系の光軸と測定対象円筒面の軸を実際に一致させて図示している。各部品の機能は図1で説明したとおりであり、門型ミラーで反射できない部分以外は光軸を含むどの断面でも本図のとおり光が進むことになる。 FIG. 2 shows a diagram of an optical system in which mirror folding of the glossy cylindrical surface shape inspection apparatus in the embodiment of the present invention is omitted. Here, the folding mirror is omitted, and the optical axis of the optical system and the axis of the cylindrical surface to be measured are actually matched. The function of each component is as described in FIG. 1, and light travels as shown in this figure in any cross section including the optical axis except for the portion that cannot be reflected by the portal mirror.

ここで測定対象円筒面が8aのように変動した場合、その反射光は破線のように進み、2次元PSD上で13aの部分に到達することになり、変動を検知することができる。光軸を含むどの断面の変動でもこのように検知できるので光沢円筒面の形状を測定することができる。 When the measurement target cylindrical surface fluctuates as indicated by 8a, the reflected light travels as indicated by a broken line and reaches the portion 13a on the two-dimensional PSD, and the fluctuation can be detected. Since any change in the cross section including the optical axis can be detected in this way, the shape of the glossy cylindrical surface can be measured.

図3は本発明の実施例における結像画像および処理を説明する図である。13は2次元PSDであり、その面に測定対象円筒面8の反射点と共役な結像光Iが投影されている。図2で説明したように、本光学系は光軸に対して回転対称であるので、円筒面が完全であれば2次元PSD13上では中心座標Oに結像点が形成される。 FIG. 3 is a diagram for explaining a formed image and processing in the embodiment of the present invention. Reference numeral 13 denotes a two-dimensional PSD on which imaging light I conjugate with the reflection point of the measurement target cylindrical surface 8 is projected. As described with reference to FIG. 2, since the present optical system is rotationally symmetric with respect to the optical axis, an imaging point is formed at the center coordinate O on the two-dimensional PSD 13 if the cylindrical surface is perfect.

もし測定対象円筒面に変動があれば、その変動は図2で説明したように結像光の変動13aに変換される。その変動は2次元PSD13上では中心座標Oを含む直線上で変動することになるが、その方向は楔形回転プリズム11の回転により回転している。よって本PSDの信号から測定対象円筒面8の凹凸を読み取る場合には中心座標Oから楔形回転プリズム11の回転角θ方向の結像光13aまでの中心座標Oからの距離Rを求めることになる。そして算出された、Rが予定した範囲Sに入らない場合は形状不良と判定することになる。なお、PSDは光量も測定できるので反射光量が一定以下であれば不良と判定することもできる。 If there is a variation in the measurement target cylindrical surface, the variation is converted into the imaging light variation 13a as described with reference to FIG. The fluctuation varies on a straight line including the center coordinate O on the two-dimensional PSD 13, but the direction is rotated by the rotation of the wedge-shaped rotating prism 11. Therefore, when the unevenness of the measurement target cylindrical surface 8 is read from the PSD signal, the distance R from the center coordinate O from the center coordinate O to the imaging light 13a in the rotation angle θ direction of the wedge-shaped rotating prism 11 is obtained. . When the calculated R does not fall within the planned range S, it is determined that the shape is defective. Since PSD can also measure the amount of light, it can be determined as defective if the amount of reflected light is below a certain level.

図4に、本発明の実施例2における光沢円筒面形状検査装置の構成図を示す。3bは斜め回転ミラー、4は折り返しミラー、他は実施例1と同様である。 FIG. 4 shows a configuration diagram of a glossy cylindrical surface shape inspection apparatus in Embodiment 2 of the present invention. 3b is an oblique rotation mirror, 4 is a folding mirror, and the others are the same as in the first embodiment.

半導体レーザ1からでた光はコリメータレンズ2でほぼ平行な光に変換され、折り返しミラー4に入射する。折り返しミラー4から出射した光は集光レンズ6の光軸と同じ光軸上を上方に進み、斜め回転ミラー3bに入射する。斜め回転ミラー3bは光を光軸から傾けて反射し、また、回転しているので反射した光は円弧状に走査される。 The light emitted from the semiconductor laser 1 is converted into substantially parallel light by the collimator lens 2 and enters the folding mirror 4. The light emitted from the folding mirror 4 travels upward on the same optical axis as the optical axis of the condenser lens 6 and enters the obliquely rotating mirror 3b. The oblique rotation mirror 3b reflects light inclined from the optical axis, and since it rotates, the reflected light is scanned in an arc shape.

円弧状の光は集光レンズ6で集光される。その後遮光板5により、門型ミラー7で反射できない部分の光を遮光する。遮光する側は光が通らないので上記折り返しミラー4を支える機構も遮光版5と同じ向きに設置するのが望ましい。遮光されなかった光は門型ミラー7により折り返され、測定対象円筒面8の表面上に集光される。以降結像レンズ10までの機能は実施例1と同様である。 The arc-shaped light is collected by the condenser lens 6. Thereafter, the light that is not reflected by the portal mirror 7 is shielded by the light shielding plate 5. Since light does not pass through the light shielding side, it is desirable that the mechanism for supporting the folding mirror 4 is also installed in the same direction as the light shielding plate 5. The light that has not been shielded is folded back by the portal mirror 7 and collected on the surface of the cylindrical surface 8 to be measured. The functions up to the imaging lens 10 are the same as those in the first embodiment.

結像レンズ10を出射した光は実施例1とは違ってそのまま集光レンズ12に入射し、2次元PSD13に入射する。実施例1では異常のない光は2次元PSD13の中央に入射したが、本実施例では異常のない光は2次元PSD13上で弧を描く。そのため、微小な凹凸を測定するには向かないが、測定すべき凹凸が比較的大きいか、反射光量の測定がメインであったりする場合にはこの方法でも使用可能である。また、そのような場合には1次元PSDでも使用可能である。なお、集光レンズ12は省略し、結像レンズ10のみで当該機能を実現することもできる。もちろん実施例1と同様に走査側と同期しながら逆回転する斜め回転ミラーを設ければ微小な凹凸を測定することも可能である。 Unlike the first embodiment, the light emitted from the imaging lens 10 enters the condenser lens 12 as it is and enters the two-dimensional PSD 13. In the first embodiment, light having no abnormality is incident on the center of the two-dimensional PSD 13, but in this embodiment, light having no abnormality draws an arc on the two-dimensional PSD 13. Therefore, although it is not suitable for measuring minute unevenness, this method can also be used when the unevenness to be measured is relatively large or the measurement of the amount of reflected light is main. In such a case, one-dimensional PSD can also be used. Note that the condensing lens 12 is omitted, and the function can be realized only by the imaging lens 10. Of course, it is also possible to measure minute irregularities by providing an obliquely rotating mirror that rotates in reverse in synchronization with the scanning side as in the first embodiment.

以上説明したようにいずれの実施例においても、円筒面が完全な鏡面反射面であっても、また、円筒面を回転することができなくても、また、円筒面が連続物体であってもその表面形状を測定することができる。また、単一ビームの走査による測定なので部分的な反射率の違いを高感度で検知することができる。いずれの実施例においてもこれを2セット用いれば、360度範囲の円筒物体の検査も可能になる。また、対象物は円筒面が最適であるがこれに限らず、球体や多角柱状の鏡面反射体の検査も本方法で可能である。なお遮光板5、5Bは省略して同様な機能を門型ミラーに持たすことも可能である。また、集光レンズ6、結像レンズ10は同様な機能を持つ放物面鏡などに置き換えることも可能である。 As described above, in any of the embodiments, even if the cylindrical surface is a perfect specular reflection surface, the cylindrical surface cannot be rotated, or the cylindrical surface is a continuous object. The surface shape can be measured. Further, since measurement is performed by scanning with a single beam, a difference in partial reflectance can be detected with high sensitivity. In any embodiment, if two sets are used, it is possible to inspect cylindrical objects in a 360 degree range. In addition, the cylindrical surface of the object is optimal, but the present invention is not limited to this, and inspection of a spherical body or a polygonal mirror reflector can be performed by this method. It is also possible to omit the light shielding plates 5 and 5B and to have a similar function in the portal mirror. The condensing lens 6 and the imaging lens 10 can be replaced with a parabolic mirror having the same function.

以上説明したように本実施例によれば円筒面が完全な鏡面反射面であっても、また、円筒面を回転することができなくても、また、円筒面が連続物体であってもその表面形状を測定することができ、さらには部分的な反射率の違いを高感度で検知することができるるため、これまで検査が難しかった表面が鏡面反射性の連続円筒体の凹凸および傷、クラック、汚れ等の検査が可能となり、ライン上での測定に利用できる。また、平面の端部等回転検査が不可能な物体にも適用できる。このようにこれまで困難であった光沢面の円筒体の検査が可能となるので産業上非常に有用である。 As described above, according to the present embodiment, even if the cylindrical surface is a perfect specular reflection surface, the cylindrical surface cannot be rotated, or the cylindrical surface is a continuous object, Since the surface shape can be measured, and the difference in partial reflectance can be detected with high sensitivity, the irregularities and scratches of the continuous cylindrical body whose surface has been difficult to inspect until now, Inspection of cracks, dirt, etc. is possible and can be used for measurement on the line. Further, the present invention can be applied to an object that cannot be rotated such as a flat end. As described above, since it is possible to inspect a glossy cylindrical body, which has been difficult until now, it is very useful in industry.

1 半導体レーザ
2 コリメータレンズ
3 楔形回転プリズム
3b 斜め回転ミラー
4 折り返しミラー
5 遮光板
6 集光レンズ
7 門型ミラー
8 測定対象円筒面
9 門型ミラー
10 結像レンズ
11 楔形回転プリズム
12 集光レンズ
13 2次元PSD
23 コリメーションレンズ
O 2次元PSD中心座標
13a 結像光像
S 許容範囲
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Collimator lens 3 Wedge-shaped rotating prism 3b Oblique rotating mirror 4 Folding mirror 5 Light-shielding plate 6 Condensing lens 7 Portal mirror 8 Measuring object cylindrical surface 9 Gate-shaped mirror 10 Imaging lens 11 Wedge-shaped rotating prism 12 Condensing lens 13 2D PSD
23 Collimation lens O Two-dimensional PSD center coordinate 13a Imaging light image S Tolerable range

Claims (2)

半導体レーザ、コリメーションレンズ、楔形回転プリズムまたは斜め回転ミラーを備える円弧状走査光源、集光レンズ、門型ミラーを備えた照明系と、門型ミラー、結像レンズ、2次元PSDを備えた検出系を設け、集光レンズ及び結像レンズの光軸と測定対象円筒面の中心軸が門型ミラーを介して同一となるよう門型ミラーを配置することを特徴とする走査型光沢円筒面形状検査装置。 Semiconductor laser, collimation lens, arcuate scanning light source with wedge-shaped rotating prism or obliquely rotating mirror, condenser system, illumination system with portal mirror, and detection system with portal mirror, imaging lens, and two-dimensional PSD A scanning-type glossy cylindrical surface shape inspection, characterized in that the gate-type mirror is arranged so that the optical axis of the condenser lens and the imaging lens and the central axis of the measurement target cylindrical surface are the same via the gate-type mirror apparatus. 受光側結像レンズの後ろ側に走査側と同期して回転する楔形回転プリズムまたは斜め回転ミラーを備えることを特徴とする請求項1の光沢円筒面形状検査装置。 2. The glossy cylindrical surface shape inspection apparatus according to claim 1, further comprising a wedge-shaped rotating prism or an oblique rotating mirror that rotates in synchronization with the scanning side behind the light-receiving-side imaging lens.
JP2015087024A 2015-04-21 2015-04-21 Scan type glossy cylindrical-surface-shape inspection device Pending JP2016205972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087024A JP2016205972A (en) 2015-04-21 2015-04-21 Scan type glossy cylindrical-surface-shape inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087024A JP2016205972A (en) 2015-04-21 2015-04-21 Scan type glossy cylindrical-surface-shape inspection device

Publications (1)

Publication Number Publication Date
JP2016205972A true JP2016205972A (en) 2016-12-08

Family

ID=57486963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087024A Pending JP2016205972A (en) 2015-04-21 2015-04-21 Scan type glossy cylindrical-surface-shape inspection device

Country Status (1)

Country Link
JP (1) JP2016205972A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800026A (en) * 2017-10-27 2018-03-13 大族激光科技产业集团股份有限公司 A kind of adjustment method of the outer beam path alignment of laser
CN108106573A (en) * 2017-12-21 2018-06-01 苏州临点三维科技有限公司 Cylinder outboard sidewalls planeness measuring apparatus
CN108106574A (en) * 2017-12-21 2018-06-01 苏州临点三维科技有限公司 Column side wall planeness measuring apparatus
CN110779473A (en) * 2019-10-11 2020-02-11 深圳市乐业科技有限公司 Safe and reliable's multi-functional laser check out test set

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800026A (en) * 2017-10-27 2018-03-13 大族激光科技产业集团股份有限公司 A kind of adjustment method of the outer beam path alignment of laser
CN108106573A (en) * 2017-12-21 2018-06-01 苏州临点三维科技有限公司 Cylinder outboard sidewalls planeness measuring apparatus
CN108106574A (en) * 2017-12-21 2018-06-01 苏州临点三维科技有限公司 Column side wall planeness measuring apparatus
CN110779473A (en) * 2019-10-11 2020-02-11 深圳市乐业科技有限公司 Safe and reliable's multi-functional laser check out test set

Similar Documents

Publication Publication Date Title
US7385710B1 (en) Measuring device
AU2014202103B2 (en) Apparatus For Detecting A 3D Structure Of An Object
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
EP0856728B1 (en) Optical method and apparatus for detecting defects
EP1795862B1 (en) Method for measuring thickness of transparent objects
JP2016205972A (en) Scan type glossy cylindrical-surface-shape inspection device
JP2021509722A (en) Method, device and inspection line to identify the three-dimensional shape of the ring surface of the container
AU2007265639B2 (en) Apparatus and method for measuring sidewall thickness of non-round transparent containers
CN105675615A (en) High-speed large-range high-resolution imaging system
CN103791844A (en) Optical displacement measuring system
Daneshpanah et al. Surface sensitivity reduction in laser triangulation sensors
JP5294081B2 (en) Glossy cylindrical surface shape inspection device
JP2010271133A (en) Optical scanning type plane inspection device
JP2011220816A (en) Method for measuring shape of cylindrical surface
JP2009008643A (en) Optical scanning type plane inspecting apparatus
CN205352958U (en) High -speed high resolution imaging system on a large scale
JP2008002891A (en) Surface state inspection device and surface state inspection method
KR100878425B1 (en) Surface measurement apparatus
JP2004163129A (en) Defect inspection method
TWI388817B (en) Method and device for measuring the defect of the CCD object by the critical angle method
GB2243458A (en) Optical measuring systems
US8913254B1 (en) Measuring device
JPH09105724A (en) Surface inspection device
JP2016114602A (en) Surface shape measurement device, and defect determination device
US4595288A (en) Method and apparatus for measuring deep mirrors