JP2008002892A - Surface condition inspection apparatus and surface condition inspection method - Google Patents
Surface condition inspection apparatus and surface condition inspection method Download PDFInfo
- Publication number
- JP2008002892A JP2008002892A JP2006171553A JP2006171553A JP2008002892A JP 2008002892 A JP2008002892 A JP 2008002892A JP 2006171553 A JP2006171553 A JP 2006171553A JP 2006171553 A JP2006171553 A JP 2006171553A JP 2008002892 A JP2008002892 A JP 2008002892A
- Authority
- JP
- Japan
- Prior art keywords
- light
- cylindrical surface
- incident
- optical system
- detection optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は表面状態検査装置及び表面状態検査方法に関し、例えば円筒面の表面の粗面(粗さ)の均一度を、高精度に測定する際に好適なものである。 The present invention relates to a surface state inspection apparatus and a surface state inspection method, and is suitable for measuring, for example, the uniformity of a rough surface (roughness) of a cylindrical surface with high accuracy.
従来、物体表面に存在する微小な欠損(キズや異物の付着)の有無を検出する方法として、レーザー光を微細なスポットに集光して、被検査面を照射し、そこから発生する散乱光(光回折光)を検出する方法が知られている。 Conventionally, as a method of detecting the presence or absence of minute defects (scratches or foreign matter) on the surface of an object, the laser beam is focused on a fine spot, irradiated onto the surface to be inspected, and the scattered light generated from that spot A method for detecting (light diffracted light) is known.
また、物体表面の粗面の粗さ状態を検出する方法として、入射光の波長や入射角を変化させたときの、物体表面から生ずるスペックル回折像分布の相互相関関数を求める方法や、干渉計によって位相差を検出する干渉計方法などが知られている(特許文献1)。 In addition, as a method for detecting the roughness state of the rough surface of the object surface, a method for obtaining a cross-correlation function of the speckle diffraction image distribution generated from the object surface when the wavelength or incident angle of incident light is changed, An interferometer method for detecting a phase difference by a meter is known (Patent Document 1).
また、測定対象物の表面物質の特性を利用して表面粗さを測定する検査装置が知られている(特許文献2、3)。特許文献2は線状光源からP偏光の照明光を被検査面に入射して、ブリュースター角方向で正反射光を検出している。そして被検査面からの光を、P成分とS成分を分岐して別々に検出し、その成分比から被検査面の異常部の検出を行っている。 In addition, inspection apparatuses that measure the surface roughness using the characteristics of the surface material of the measurement object are known (Patent Documents 2 and 3). In Patent Document 2, P-polarized illumination light is incident on a surface to be inspected from a linear light source, and specularly reflected light is detected in the Brewster angle direction. The light from the surface to be inspected is detected separately by branching the P component and the S component, and the abnormal portion of the surface to be inspected is detected from the component ratio.
特許文献3はS成分及びP成分を持つレーザー光を、ある入射角から被検査面に入射してブリュースター角方向への散乱光のS、P成分を、特許文献1と同様に別々に検出して、その強度比から表面粗さを評価している。 Patent Document 3 separately detects S and P components of scattered light in a Brewster angle direction by entering a laser beam having an S component and a P component from a certain incident angle into a surface to be inspected. Thus, the surface roughness is evaluated from the strength ratio.
また、特許文献3では、P偏光の光を入射し、ブリュースター角方向と、それとは異なる方向の二方向において散乱光強度を検出し、その比から表面粗さを求める方法も提案している。 Patent Document 3 also proposes a method in which P-polarized light is incident, the scattered light intensity is detected in two directions, the Brewster angle direction and a different direction, and the surface roughness is obtained from the ratio. .
一方、一定以上の面積を持つ面を光で走査して表面状態を検査する走査測定方法が知られている。この方法では偏向器と走査光学系の組合せで測定対象の面を走査して検査している。
近年、物体表面に存在する欠損として、入射光の波長より十分に大きい数十ミクロン程度の粗さ(凹凸)をもち、一定以上の面積を持つ粗面について、ミリメートル前後の局所的な不均一性として高速に検出することができる装置が要請されている。 In recent years, as a defect present on the surface of an object, local unevenness of around millimeters has occurred on a rough surface having a roughness (irregularity) of about several tens of microns, sufficiently larger than the wavelength of incident light, and having a certain area or more. As a result, a device capable of detecting at high speed is demanded.
このとき、数〜数十ミクロンの微細なスポット光を物体表面に照射すると回折像は乱れてしまい、そこから微量を検出することが困難となる。 At this time, if the object surface is irradiated with a fine spot light of several to several tens of microns, the diffraction image is disturbed, and it is difficult to detect a minute amount therefrom.
前述したスペックルの相関関数を用いる方法は、表面の粗さが入射光の波長より短いことが前提である。このため、広い範囲において多数の点、各々において相関関数を求めることは、時間の制限から現実的でない。 The method using the speckle correlation function described above is premised on that the surface roughness is shorter than the wavelength of incident light. For this reason, it is not practical to obtain a correlation function at a large number of points in each of a wide range because of time limitations.
前述した、測定方法のうち干渉計方式では、複雑で精密な光学系が必要となる。基本的に粗い表面上から生ずる可視域のレーザー光線によって生成されるスペックルパターンは、2πより大きい標準偏差のランダム位相を有する。このため、通常は得られる位相差には粗い表面のプロファイルに関して有効な情報を含んでいない。 Of the measurement methods described above, the interferometer method requires a complicated and precise optical system. The speckle pattern generated by the visible laser beam originating from an essentially rough surface has a random phase with a standard deviation greater than 2π. For this reason, the phase difference that is usually obtained does not contain useful information regarding the rough surface profile.
これらの各測定方法では、各偏光成分を分岐する分岐手段、あるいは被検査面上の複数の位置で測定する測定手段が必要となり、検出、判定するための各部材より成る装置全体が複雑なものになる傾向があった。 Each of these measurement methods requires branching means for branching each polarization component, or measurement means for measuring at a plurality of positions on the surface to be inspected, and the entire apparatus composed of each member for detection and judgment is complicated. There was a tendency to become.
また、走査測定方法は高速に精度良く走査することでは優れているが、装置全体が複雑であること、また走査画角によって照射点に対する入射角が異なるため、同じ条件で物体表面全面を照射することが困難となる。 Although the scanning measurement method is excellent at high-speed and high-precision scanning, the entire apparatus is complicated, and the incident angle with respect to the irradiation point differs depending on the scanning angle of view. It becomes difficult.
このため被走査面上の位置による相対的な変化量を精密に検出することが難しい。検出光学系としてテレセントリックな光学系を用いれば、入射角を一定にすることは可能となるが、測定対象と同程度の大きさの光学部品が必要となり、装置全体が大型化してくる。 For this reason, it is difficult to accurately detect the relative change amount depending on the position on the surface to be scanned. If a telecentric optical system is used as the detection optical system, it is possible to make the incident angle constant, but an optical component having the same size as that of the measurement object is required, and the entire apparatus becomes large.
本発明は、物体表面の粗面として、入射光の波長より十分に大きい数十ミクロン程度の粗さを持ち、一定以上の面積を持つ粗面について、高精度に、迅速に検出することができる表面状態検査装置及び表面状態検査方法の提供を目的とする。 The present invention has a roughness of several tens of microns that is sufficiently larger than the wavelength of incident light as a rough surface of the object surface, and can detect a rough surface having a certain area or more quickly with high accuracy. The object is to provide a surface condition inspection apparatus and a surface condition inspection method.
本発明の表面状態検査装置は、
光源手段と、
該光源手段から出射した光の光束径を制限する第1の光束制限手段と、
該第1の光束制限手段を通過し、被検査面にはP偏光が入射しており、該被検査面より生ずる光回折光を検出する検出光学系と、
該検出光学系の集光面に配置され、通過光束径を制限する第2の光束制限手段と、
該第2の光束制限手段を通過した光を検出する光検出器と、
該検出光学系の光入射側又は該検出光学系から該光検出器との間の光路中にP偏光成分を選択して透過させるP偏光成分選択手段と、
を有し、該光検出器からの信号を用いて該被検査面の粗さを検査する表面状態検査装置であって、
該光源手段からの光の波長をλ、
該光源手段からの光が被検査面に入射するときの入射面内において、該被検査面への入射光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該第2の光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳までの距離をLとするとき
λ/(Dp/L)2<W ‥‥‥(1)
なる条件を満足することを特徴としている。
The surface condition inspection apparatus of the present invention is
Light source means;
First light flux limiting means for limiting a light beam diameter of light emitted from the light source means;
A detection optical system that passes through the first light flux limiting means and has P-polarized light incident on the surface to be inspected, and detects light diffracted light generated from the surface to be inspected;
A second light beam limiting means disposed on the condensing surface of the detection optical system for limiting the diameter of the passing light beam;
A photodetector for detecting light that has passed through the second light flux limiting means;
P-polarized component selection means for selecting and transmitting the P-polarized component in the light incident side of the detection optical system or in the optical path between the detection optical system and the photodetector;
A surface condition inspection apparatus that inspects the roughness of the surface to be inspected using a signal from the photodetector,
The wavelength of light from the light source means is λ,
In the incident surface when the light from the light source means is incident on the surface to be inspected, the light beam diameter of the incident light beam on the surface to be inspected is Dp,
The effective diameter on the light incident side of the detection optical system is W,
When the distance from the conjugate point through the detection optical system to the second light beam limiting means to the entrance pupil of the detection optical system is L λ / (Dp / L) 2 <W (1)
It is characterized by satisfying the following conditions.
また、本発明の表面状態検査方法は、
平行でP偏光状態の波長λの光を円筒面の一部に、該円筒面の母線と、該円筒面の中心軸とを含む入射面内より入射させる照射工程と、
該円筒面から生ずる光回折像の一部を検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該入射面において、該円筒面を照射するときの光の入射角をθi、
該円筒面の表面物質のブリュースター角をθBとするとき、該光検出器は、該円筒面から角度2θB−θi方向に生ずる光回折光をP偏光成分のみを選択するP偏光成分選択手段を介して検出しており、
該円筒面上の照射領域における表面凹凸部の寸法の入射面内における周波数の平均値をKj、
該円筒面へ入射するときの光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳位置までの距離をLとするとき
θi ≠ θB、 θi ≧ 2θB−90[°] 、 ‥‥‥(2)
1/kj < Dp 、 ‥‥‥(3)
λ/(Dp/L)2< W ‥‥‥(1)
を満たすことを特徴としている。
In addition, the surface condition inspection method of the present invention,
An irradiation step in which light having a wavelength λ in parallel and P-polarized state is incident on a part of a cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
After a part of the light diffraction image generated from the cylindrical surface is condensed by the detection optical system, the light is detected by the light detector through the light beam limiting means for limiting the light beam disposed at the light collection point of the detection optical system. A surface state inspection method including an inspection step for determining a change in the intensity distribution of the diffraction image and then inspecting the surface state of the cylindrical surface,
The incident angle of light when irradiating the cylindrical surface is θ i ,
When the Brewster angle of the surface material of the cylindrical surface is θ B , the photodetector selects only the P-polarized component from the light diffracted light generated in the angle 2θ B −θ i direction from the cylindrical surface. Detecting via the selection means,
The average value of the frequency in the incident surface of the size of the surface irregularities in the irradiation region on the cylindrical surface is represented by K j
Dp, the diameter of the luminous flux when entering the cylindrical surface,
The effective diameter on the light incident side of the detection optical system is W,
When the distance from the conjugate point through the detection optical system to the light beam limiting means to the entrance pupil position of the detection optical system is L, θ i ≠ θ B , θ i ≧ 2θ B −90 [°],. (2)
1 / k j <Dp, (3)
λ / (Dp / L) 2 <W (1)
It is characterized by satisfying.
又、本発明の表面状態検査方法は、
平行でP偏光状態の波長λの光を円筒面の一部に、該円筒面の母線と、該円筒面の中心軸とを含む入射面内より入射させる照射工程と、
該円筒面から生ずる光回折像の一部を開口数NAの検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該入射面において、該円筒面を照射するときの光の入射角をθi、
該円筒面の表面物質のブリュースター角をθBとするとき、該光検出器は、該円筒面から角度θS方向に生ずる光回折光をP偏光成分のみを選択するP偏光成分選択手段を介して検出しているとき、
θi ≠ θB、 θi ≧ 2θB−90[°] 、 ‥‥‥(2)
2θB−θ1−sin−1(NA)<θS<2θB−θ1+sin−1(NA)
‥‥‥(4)
を満たすことを特徴としている。
The surface condition inspection method of the present invention is
An irradiation step in which light having a wavelength λ in parallel and P-polarized state is incident on a part of a cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
A part of the light diffraction image generated from the cylindrical surface is condensed by a detection optical system having a numerical aperture NA, and then a light detector through a light beam limiting means for limiting a light beam arranged at a condensing point of the detection optical system. A surface state inspection method including an inspection step of detecting and detecting a change in intensity distribution of the light diffraction image, and then inspecting the surface state of the cylindrical surface,
The incident angle of light when irradiating the cylindrical surface is θ i ,
When the Brewster angle of the surface material of the cylindrical surface is θ B , the photodetector has a P-polarized component selection unit that selects only the P-polarized component from the light diffracted light generated in the angle θ S direction from the cylindrical surface. When detecting through
θ i ≠ θ B , θ i ≧ 2θ B −90 [°], (2)
2θ B −θ 1 −sin −1 (NA) <θ S <2θ B −θ 1 + sin −1 (NA)
(4)
It is characterized by satisfying.
本発明によれば、物体表面の粗面として、入射光の波長より十分に大きい数十ミクロン程度の粗さを持ち、一定以上の面積を持つ粗面について、ミリメートル前後の局所的な不均一性を、高精度に、迅速に検出することができる。 According to the present invention, the rough surface of the object surface has a roughness of several tens of microns that is sufficiently larger than the wavelength of incident light, and the rough surface having a certain area or more has a local nonuniformity of around millimeters. Can be detected quickly with high accuracy.
図1は、本発明の実施例1の表面状態検査装置の要部側面図である。図2は図1に示した各部材間の説明図である。図3は実施例1の表面状態検査装置の要部上面図である。 FIG. 1 is a side view of an essential part of a surface condition inspection apparatus according to a first embodiment of the present invention. FIG. 2 is an explanatory view between the members shown in FIG. FIG. 3 is a top view of an essential part of the surface condition inspection apparatus according to the first embodiment.
図1〜図3において、1は被検査物体であり、円筒形状より成っている。円筒形状の表面(円筒面)の一部が被検査面1aとなっている。 1 to 3, reference numeral 1 denotes an object to be inspected, which has a cylindrical shape. A part of the cylindrical surface (cylindrical surface) is the surface to be inspected 1a.
2は光源手段であり、He−Neレーザーより成っている。3は被検査物体1の被検面(照射点)1cから生ずる散乱光(光回折光)である。4は光源手段2からの光2aを制限する光束制限手段(第1の光束制限手段)(スリット)である。5は光源手段2からの光2aが被検面1aで正反射したときの正反射光である。 Reference numeral 2 denotes a light source means, which is composed of a He—Ne laser. Reference numeral 3 denotes scattered light (light diffracted light) generated from the test surface (irradiation point) 1 c of the test object 1. Reference numeral 4 denotes a light flux limiting means (first light flux limiting means) (slit) for limiting the light 2a from the light source means 2. Reference numeral 5 denotes specularly reflected light when the light 2a from the light source means 2 is specularly reflected by the test surface 1a.
8は開口数NAの検出光学系であり、被検面1aから生ずる散乱光(光回折光)の一部を光束制限手段(第2の光束制限手段)6上に集光している。 Reference numeral 8 denotes a detection optical system having a numerical aperture NA, which condenses a part of scattered light (light diffracted light) generated from the surface 1a to be measured on the light flux limiting means (second light flux limiting means) 6.
被検面1aと光束制限手段6とは共役関係又は略共役関係にある。9はP偏光成分選択手段であり、偏光板より成り、検出光学系8から入射してくる光のうちP偏光のみを通過させている。 The test surface 1a and the light beam limiting means 6 are in a conjugate relationship or a substantially conjugate relationship. Reference numeral 9 denotes a P-polarized component selection means, which is composed of a polarizing plate, and allows only P-polarized light to pass through the light incident from the detection optical system 8.
光束制限手段6はP偏光成分選択手段9を通過してきた光の通過光を制限している。7は光検出器であり、光束制限手段6を通過した光を検出している。 The light beam restricting means 6 restricts the light passing through the P polarization component selecting means 9. Reference numeral 7 denotes a photodetector that detects light that has passed through the light beam limiting means 6.
本実施例は散乱ブリュースター角への散乱強度のP偏光成分が誘電体表面の粗さに応じて変化するのを検出して物体表面(被検査表面)の粗さを測定している。 In this embodiment, the roughness of the object surface (surface to be inspected) is measured by detecting that the P-polarized component of the scattering intensity at the scattering Brewster angle changes according to the roughness of the dielectric surface.
一般に光が物体表面に入射するとき、P偏光の反射率が0となる入射角度(ブリュースター角)が存在する。 In general, when light enters an object surface, there is an incident angle (Brewster angle) at which the reflectance of P-polarized light becomes zero.
ここで入射媒質の屈折率をN0、物体表面における物質の屈折率をN1とするときブリュースター角θBは
tanθB=N1/N0
となる。
Here, when the refractive index of the incident medium is N 0 and the refractive index of the substance on the object surface is N 1 , the Brewster angle θ B is tan θ B = N 1 / N 0.
It becomes.
ここでは、散乱ブリュースター角方向(入射光線から2θBの方向)には、表面の粗さが大きい(凹凸密度が低い)とP偏光成分が多くなり、表面の粗さが小さい(凹凸密度が高い)とP偏光成分が小さくなる。 本実施例における被検査物体1は直径30mm(φ30mm)、軸方向(X方向)の長さが400mmの円筒形状より成り、円筒円形の外側の表面の粗さの周波数の平均値kjが1/(50μm)程度で分布している。 Here, in the scattering Brewster angle direction (the direction of 2θ B from the incident light beam), if the surface roughness is large (the unevenness density is low), the P-polarized component increases, and the surface roughness is small (the unevenness density is low). High), the P-polarized component becomes small. The object to be inspected 1 in this embodiment has a cylindrical shape with a diameter of 30 mm (φ30 mm) and a length in the axial direction (X direction) of 400 mm, and the average value k j of the roughness frequency of the outer surface of the cylindrical circle is 1. / (50 μm).
光源手段2からは、波長λが632.8nm、光量が5mW、被検査物体1上への入射ビーム径がφ1mm(相対強度13.5%)の光(レーザー)2aが出射している。光源手段2からの光2aはスリット4を介して被検査物体1の被検査面1aに入射角θi=70°で入射している。 The light source means 2 emits light (laser) 2a having a wavelength λ of 632.8 nm, a light amount of 5 mW, and an incident beam diameter of φ1 mm (relative intensity 13.5%) on the object 1 to be inspected. The light 2 a from the light source means 2 is incident on the surface 1 a to be inspected 1 a through the slit 4 at an incident angle θ i = 70 °.
このとき、光2aの広がり角は約0.02°であり、ほぼ平行なビームと見なせるものである。ここでは被検査物体1上の粗面の検出できる最小の異常部の大きさdを2mmと想定している。被検査物体1への照明光2aのX方向(軸方向)の照射領域(照射エリア)Dpは2mmである。 At this time, the spread angle of the light 2a is about 0.02 °, and can be regarded as a substantially parallel beam. Here, it is assumed that the size d of the smallest abnormal part that can detect the rough surface on the object 1 is 2 mm. The irradiation area (irradiation area) Dp in the X direction (axial direction) of the illumination light 2a to the inspection object 1 is 2 mm.
このとき、被検査物体1の表面材質のブリュースター角θBが60°であるので、照射点1cからの回折光3の一部が、粗面の法線1bから正反射方向に2θB−θi=50°の角度で観測される。 At this time, since the Brewster angle θ B of the surface material of the object to be inspected 1 is 60 °, a part of the diffracted light 3 from the irradiation point 1c is 2θ B − in the regular reflection direction from the normal line 1b of the rough surface. Observed at an angle of θ i = 50 °.
この方向への光は、照射点1cから距離L=20mmの位置に瞳(入射瞳)が設置された焦点距離12mm、有効径W=10mm(NA0.384)の検出光学系8で取り込まれ、P偏光成分選択手段9と光束制限手段6を介して光検出器7に集められる。 The light in this direction is captured by the detection optical system 8 with a focal length of 12 mm and an effective diameter W = 10 mm (NA 0.384) in which a pupil (incidence pupil) is installed at a distance L = 20 mm from the irradiation point 1c. The light is collected by the photodetector 7 through the P-polarized component selection means 9 and the light flux limiting means 6.
P偏光成分選択手段9は検出光学系8から光検出器7に至る光路中のいずれの位置であってもよい。また検出光学系8の倍率βは1.5であり、被検査面1aの像面に配置した光束制限手段6の幅HはH=1.5mmである。光検出器7への迷光を防ぐため、検出光学系8と光検出器7の間は遮光されている。 The P polarization component selection means 9 may be at any position in the optical path from the detection optical system 8 to the photodetector 7. The magnification β of the detection optical system 8 is 1.5, and the width H of the light beam limiting means 6 arranged on the image surface of the surface to be inspected 1a is H = 1.5 mm. In order to prevent stray light from entering the photodetector 7, the space between the detection optical system 8 and the photodetector 7 is shielded.
図13は本実施例で得られる2次元画像化したデータを示している。表面粗さの差異に対して異常部が鮮明になっている。 FIG. 13 shows two-dimensional image data obtained in this embodiment. The abnormal part is clear against the difference in surface roughness.
本実施例では被検査物体1の円筒形状の表面(被検査面)1aを光源手段2からの光(ビーム)2aで照明している。円筒形状の表面1aからの光回折像の一部を所定のNAの検出光学系8で検出している。このとき光2aの波長よりも十分に大きい粗さを持つ円筒形状の表面1aの粗さの均一度を、該円筒形状の表面1aからの光回折像の強度分布(光量)の変化から測定している。 In this embodiment, the cylindrical surface (inspected surface) 1a of the inspection object 1 is illuminated with light (beam) 2a from the light source means 2. A part of a light diffraction image from the cylindrical surface 1a is detected by a detection optical system 8 having a predetermined NA. At this time, the uniformity of the roughness of the cylindrical surface 1a having a roughness sufficiently larger than the wavelength of the light 2a is measured from the change in the intensity distribution (light quantity) of the light diffraction image from the cylindrical surface 1a. ing.
光源手段2からの光は略平行ビームで円筒面の母線と中心軸を含む平面(XY平面)を入射面として、照射点1cにおける法線1bに対し、θiの角度でP偏光状態で入射している。表面物質のブリュースター角をθBとするとき、該入射面内で該法線1bから、所定の角度2θB−θiの方向への拡散反射光を検出光学系8で集光しP偏光成分のみをP偏光成分選択手段9で選択している。そしてP偏光成分の光を検出光学系8の近軸像面付近に配置した光束制限手段6を介して、光検出器7で光量変化を測定している。 The light from the light source means 2 is a substantially parallel beam and is incident in a P-polarized state at an angle θ i with respect to the normal line 1b at the irradiation point 1c with the plane (XY plane) including the generatrix and the central axis of the cylindrical surface as the incident plane. is doing. When the Brewster angle of the surface material is θ B , diffuse reflected light in the direction of the predetermined angle 2θ B −θ i from the normal line 1b within the incident surface is collected by the detection optical system 8 and is P-polarized light Only the components are selected by the P-polarized component selection means 9. Then, the change in the amount of light is measured by the photodetector 7 through the light beam limiting means 6 in which the light of the P-polarized component is arranged in the vicinity of the paraxial image plane of the detection optical system 8.
このとき得られる光検出器7からの信号に基づいて表面1aの粗さの均一度を求めている。 The roughness uniformity of the surface 1a is obtained based on the signal from the photodetector 7 obtained at this time.
ここで
λを光源手段2からの光2aの波長とする。
kjを光2aの照射エリアDpでの表面の凹凸の面方向の周波数の平均値とする。
Dpを光2aの入射ビーム径(規格化強度13.5%となる径)の、表面1a上の円筒面母線方向への射影寸法とする。
Lを検出光学系8の瞳位置から被検査物体1の表面上の照射点1cまでの距離とする。
Wを検出光学系8の有効径とする。
θBを被検査物体1の表面物質のブリュースター角とする。
Here, λ is the wavelength of the light 2a from the light source means 2.
k j is an average value of the frequency in the surface direction of the unevenness of the surface in the irradiation area Dp of the light 2a.
Let Dp be the projected dimension of the incident beam diameter of the light 2a (the diameter at which the normalized intensity is 13.5%) in the direction of the cylindrical surface on the surface 1a.
L is a distance from the pupil position of the detection optical system 8 to the irradiation point 1c on the surface of the object 1 to be inspected.
Let W be the effective diameter of the detection optical system 8.
Let θ B be the Brewster angle of the surface material of the object 1 to be inspected.
このとき
λ/(Dp/L)2< W ‥‥‥(1)
θi ≠ θB、 θi ≧ 2θB−90[°] 、 ‥‥‥(2)
1/kj < Dp ‥‥‥(3)
なる条件の1以上を満たしている。
At this time, λ / (Dp / L) 2 <W (1)
θ i ≠ θ B , θ i ≧ 2θ B −90 [°], (2)
1 / k j <Dp (3)
One or more of the following conditions are satisfied.
条件式(1)、(2)、(3)のうち1以上を満足するように各部材を設定すると、被検査面1aの粗面の中で局所的に粗さの異なる領域に可干渉性の高いレーザービームを入射したときの回折像パターンは、他の均一な部分からの回折像パターンに比べ変化が顕著に現れる。 When each member is set so as to satisfy one or more of conditional expressions (1), (2), and (3), it is possible to coherence in a region having a different roughness in the rough surface of the surface to be inspected 1a. The diffraction pattern when a high laser beam is incident changes significantly compared to the diffraction pattern from other uniform portions.
本実施例では、その中でもブリュースター散乱方向へのP偏光成分の光強度の変化を測定することによって、被検査面1aの僅かな粗さの差も、より感度よく(高精度に)検出している。 In this embodiment, by measuring the change in the light intensity of the P-polarized component in the Brewster scattering direction, a slight difference in roughness of the surface to be inspected 1a can be detected with higher sensitivity (high accuracy). ing.
この他、本実施例では、光検出器7は、円筒面1から角度θS方向に生ずる光回折光をP偏光成分のみを選択するP偏光成分選択手段9を介して検出しても良い。 In addition, in the present embodiment, the optical detector 7, the light diffracted lights generated from the cylindrical surface 1 at an angle theta S direction may be detected through the P-polarized component selection unit 9 to select only the P polarized light component.
このとき
θi ≠ θB、 θi ≧ 2θB−90[°] 、 ‥‥‥(2)
2θB−θ1−sin−1(NA)<θS<2θB−θ1+sin−1(NA)
‥‥‥(4)
を満たすようにしても良い。
At this time, θ i ≠ θ B , θ i ≧ 2θ B −90 [°], (2)
2θ B −θ 1 −sin −1 (NA) <θ S <2θ B −θ 1 + sin −1 (NA)
(4)
You may make it satisfy | fill.
これによっても前述したのと同様の効果が得られる。 This also provides the same effect as described above.
本実施例が対象とする被検査面1aの表面の凹凸の大きさは、光2aの波長よりも十分に大きい。このため、照射する領域(光2aのビーム径の表面上の円筒面母線方向(X方向)への射影)Dpが凹凸の表面方向のオーダーを示す1/kjと同等であると、照射された少数の凹凸部が曲面ミラーのように働く。この結果、図4に示すように回折像(スペックル像)41の粒径が大きく乱れたパターンとなる。 The size of the unevenness on the surface of the surface 1a to be inspected in this embodiment is sufficiently larger than the wavelength of the light 2a. For this reason, the irradiation region (projection in the cylindrical surface generatrix direction (X direction) on the surface of the beam diameter of the light 2a) Dp is equivalent to 1 / k j indicating the order of the surface direction of the unevenness. A small number of irregularities work like a curved mirror. As a result, as shown in FIG. 4, the pattern of the diffraction image (speckle image) 41 is greatly disturbed.
図5に示すような回折像が得られるのが良い。そこでスペックルの粒径を小さくして、全体の包絡線を滑らかで安定したものにするためには、被検査面1aのある程度の凹凸の数を含む領域を光照射する必要がある。すなわち、凹凸の寸法を示す1/kjより十分に大きな領域Dpを光2aで照射する必要がある。 It is preferable to obtain a diffraction image as shown in FIG. Therefore, in order to reduce the particle size of the speckle and make the entire envelope smooth and stable, it is necessary to irradiate a region including a certain number of irregularities on the surface to be inspected 1a. In other words, it is necessary to irradiate the light 2a with a region Dp sufficiently larger than 1 / k j indicating the size of the unevenness.
本実施例では前述の条件式(3)を満足するようにしている。 In the present embodiment, the above-described conditional expression (3) is satisfied.
更に、スペックルの粒径は、図2に示す回折像の位置から照射点1cまでの距離をLとすると、λ/(Dp/L)2で表されるが、検出光学系8の開口Wは少なくともこの粒径以上でなければならない。 Further, the speckle particle size is represented by λ / (Dp / L) 2 where L is the distance from the position of the diffraction image shown in FIG. Must be at least this particle size.
粒径が開口Wに比べて小さいほど、全体の回折像分布は滑らかなものになり、測定の安定性が増すことになる。 As the particle size is smaller than the opening W, the overall diffraction image distribution becomes smoother and the stability of measurement increases.
ビーム径をある程度太くする際、収束若しくは発散ビームを用い、その中で適当な照射スポットとなる位置に被検査面1aの粗面の位置を合わせるという方法もある。その場合、照射されるビームの波面はビームウエスト径が小さいほど曲率の大きい波面となる。このときは照射領域Dpの中で幾何学的入射角を一定にすることができない。 When the beam diameter is increased to some extent, there is a method in which a convergent or divergent beam is used, and the position of the rough surface of the surface to be inspected 1a is adjusted to a position where an appropriate irradiation spot is formed. In that case, the wavefront of the irradiated beam becomes a wavefront having a larger curvature as the beam waist diameter is smaller. At this time, the geometric incident angle cannot be made constant in the irradiation region Dp.
したがって、ビームウエスト径は光2aの照射径と同等、すなわち略平行ビームとなるような値に設定することが望ましい。 Therefore, it is desirable to set the beam waist diameter to a value that is equivalent to the irradiation diameter of the light 2a, that is, a value that provides a substantially parallel beam.
これにより入射ビーム2aが平面波となり、照射領域Dp内の全域で一定の入射角を確保することができ、異なる条件の回折光が発生するのを防ぐことができる。 As a result, the incident beam 2a becomes a plane wave, and a constant incident angle can be ensured throughout the irradiation region Dp, and diffracted light with different conditions can be prevented from being generated.
いま、図6に示すように入射光2aが主にP偏光成分からなるとき、凹凸部のある微小な部分の面の法線2dに対し、入射光2aの中心軸がブリュースター角を満足したとする。この場合、この入射光2aに対する反射光強度は非常に小さいものとなる。 Now, as shown in FIG. 6, when the incident light 2a is mainly composed of a P-polarized component, the central axis of the incident light 2a satisfies the Brewster angle with respect to the normal 2d of the surface of the minute portion with the uneven portion. And In this case, the reflected light intensity with respect to the incident light 2a is very small.
これにより、図7に示すようにブロードな拡散反射(回折)分布の中に、周囲に比べて明るさが暗い部分が発生する。図8は、ある被検査面の表面のP偏光とS偏光成分に対する反射率の角度依存性の図である。 As a result, as shown in FIG. 7, in the broad diffuse reflection (diffraction) distribution, a portion having a darker brightness than the surroundings is generated. FIG. 8 is a graph showing the angle dependence of the reflectance with respect to the P-polarized light and S-polarized light components on the surface of a certain inspection surface.
被検査面として、凹凸密度が低い(Kの値が小さい)、即ちビーム照射領域Dp内での凹凸の数が少ない場合(滑らかな場合)、ブリュースター角を満たす光線の比率が減るため、暗い部分の明るさは明るくなる。 When the surface to be inspected has a low unevenness density (the value of K is small), that is, when the number of unevennesses in the beam irradiation region Dp is small (smooth), the ratio of the light beam that satisfies the Brewster angle is reduced, which is dark. The brightness of the part becomes brighter.
逆に凹凸密度が高い(kの値が大きい)、即ちビーム照射領域Dp内での凹凸の数が多い場合、ブリュースター角を満たす光線の比率が増えるため、暗い部分の明るさはより暗くなる。 Conversely, when the unevenness density is high (the value of k is large), that is, when the number of unevennesses in the beam irradiation region Dp is large, the ratio of the light beam that satisfies the Brewster angle increases, so the brightness of the dark part becomes darker. .
本実施例はこの変化を測定することにより、周囲の正常な部分に対して凹凸密度の変化した部分を検出している。 In this embodiment, by measuring this change, a portion where the unevenness density has changed with respect to the surrounding normal portion is detected.
ビーム入射方向に関しては、被検査面としての対象となる粗面が平面でなく図9に示すような円筒面91であるとする。このとき入射面が円筒面91の断面と一致する面内となるように光2aを入射すると、円筒面91が凸面鏡の作用を持ち、回折パターンが入射面内で大きく広がってしまう。 Regarding the beam incident direction, it is assumed that the rough surface to be inspected as a surface to be inspected is not a flat surface but a cylindrical surface 91 as shown in FIG. At this time, when the light 2a is incident so that the incident surface is in a plane coinciding with the cross section of the cylindrical surface 91, the cylindrical surface 91 has a function of a convex mirror, and the diffraction pattern greatly spreads in the incident surface.
これにより、回折像におけるブリュースター角を満たす光線の割合が少なくなり、検出感度を落とすことになる。 As a result, the proportion of light rays that satisfy the Brewster angle in the diffraction image is reduced, and the detection sensitivity is lowered.
このため、図10に示すように光2aの入射面は円筒面の母線101と軸102を含む平面102に一致するように設定し、入射面102内では光2aの照射エリア全域Dpで一定の入射角条件を満足するようにしている。 For this reason, as shown in FIG. 10, the incident surface of the light 2a is set to coincide with the plane 102 including the generatrix 101 and the axis 102 of the cylindrical surface, and within the incident surface 102, the entire irradiation area Dp of the light 2a is constant. The incident angle condition is satisfied.
本実施例では、入射角に対してブリュースター角を満たす特定の1箇所で測定することにより、よりシンプルな構成を実現している。 In the present embodiment, a simpler configuration is realized by measuring at one specific location that satisfies the Brewster angle with respect to the incident angle.
図11は被検査面上に欠損等の異常部を含む領域を、円筒面91の軸102方向に光でスキャンしたときの、検出光量の相対変化量(回折光強度比)PLの結果の説明図である。 FIG. 11 illustrates the result of the relative change amount (diffracted light intensity ratio) PL of the detected light amount when an area including an abnormal part such as a defect on the inspection surface is scanned with light in the direction of the axis 102 of the cylindrical surface 91. FIG.
ここで相対変化量PLは
相対変化量PL=|異常部の光量/正常部の光量−1|
である。
Here, the relative change amount PL is the relative change amount PL = | the light amount of the abnormal portion / the light amount of the normal portion−1 |
It is.
ここでは異常部の粗さが周囲に比べて「粗」になっているため、ブリュースター角を満たす光線の割合が減ったため、検出光量としては周囲よりも増加することになる。これにより僅かな粗さの変化でも、数十%の変化量として検出できる。 Here, since the roughness of the abnormal portion is “rough” compared to the surrounding area, the ratio of the light beam that satisfies the Brewster angle is reduced, and the detected light amount is increased from the surrounding area. Thereby, even a slight change in roughness can be detected as a change amount of several tens of percent.
次に本発明の実施例2について説明する。 Next, a second embodiment of the present invention will be described.
実施例2では被検査面として円筒面を用い、円筒面上の粗さを測定している。 In Example 2, a cylindrical surface is used as the surface to be inspected, and the roughness on the cylindrical surface is measured.
実施例2では、図12に示すように円筒面1を一定の角速度で回転させながら、円筒面1の軸方向(X方向)に円筒面1もしくは光源と測定器の測定ユニットSBが一定の速度で平行移動している。そして一定の時間おきに円筒面1からの反射光を検出して光量測定を行うことで円筒面1の2次元の測定値を得ている。 In the second embodiment, as shown in FIG. 12, while rotating the cylindrical surface 1 at a constant angular velocity, the cylindrical surface 1 or the measuring unit SB of the light source and the measuring device SB has a constant velocity in the axial direction (X direction) of the cylindrical surface 1. Is moving in parallel. Then, two-dimensional measurement values of the cylindrical surface 1 are obtained by detecting the reflected light from the cylindrical surface 1 and measuring the light quantity at regular intervals.
このとき、円筒面1上の測定点間の距離をΔは、
Δ< Dp ‥‥‥(5)
としている。
At this time, Δ is the distance between the measurement points on the cylindrical surface 1.
Δ <Dp (5)
It is said.
これにより測定対象面の全域について、全く同じ入射角、照射領域寸法の条件で走査することが可能になり、位置による厳密な相対変化量を検出することができる。 As a result, it is possible to scan the entire area of the measurement target surface under exactly the same incident angle and irradiation area dimensions, and it is possible to detect a precise relative change amount depending on the position.
特に図12に示すように、円筒面1を回転させながら軸方向(X方向)に移動することで、入射面を円筒面1の母線と軸を含む平面に一致するように設定し、円筒面1全体に関して同じ条件で測定を行っている。 In particular, as shown in FIG. 12, by moving the cylindrical surface 1 in the axial direction (X direction), the incident surface is set to coincide with the plane including the generatrix and the axis of the cylindrical surface 1. Measurement is carried out under the same conditions for the whole.
次に本発明の実施例3について説明する。 Next, a third embodiment of the present invention will be described.
実施例3では、レーザー光源からの光を、1つもしくは2つ以上の半透鏡で複数の光に分岐し、1つの円筒面の複数の位置もしくは複数の円筒面に同時に照射して、各々に対応した複数の測定器で同時に光量測定を行っている。 In Example 3, the light from the laser light source is branched into a plurality of lights by one or two or more semi-transparent mirrors, and irradiated to a plurality of positions on one cylindrical surface or a plurality of cylindrical surfaces at the same time. The light quantity is measured simultaneously with the corresponding measuring instruments.
本実施例では、走査光学系を用いて測定時間の短縮化を図り、より高速に測定するのに好適である。 In this embodiment, the scanning optical system is used to shorten the measurement time, which is suitable for measuring at a higher speed.
本実施例では円筒面を高速に回転させなくても高速な測定が容易となる。特に単一の測定対象の複数の場所、或いは複数の測定対象面に同時に光を照射して、そこからの拡散光を測定することで、単位面積あたりの測定時間を短縮している。 In this embodiment, high-speed measurement is facilitated without rotating the cylindrical surface at high speed. In particular, the measurement time per unit area is shortened by simultaneously irradiating light to a plurality of locations or a plurality of measurement target surfaces of a single measurement target and measuring diffused light therefrom.
その際、入射光は略平行であるため、光源を多数準備する必要はなく、単一(或いは必要最低限の少ない複数)の光源からの出射光を、半透鏡の機能を持つ光学素子で分岐することにより、おのおのの照射点に導いている。また円筒面の軸方向の移動も単一(或いは必要最低限の少ない複数)の手段で実現可能である。 At this time, since the incident light is substantially parallel, it is not necessary to prepare a large number of light sources, and the light emitted from a single (or a plurality of minimum required) light source is branched by an optical element having a semi-transparent function. By doing so, it leads to each irradiation point. Further, the axial movement of the cylindrical surface can be realized by a single (or a plurality of minimum necessary number) means.
次に本発明の実施例4について説明する。 Next, a fourth embodiment of the present invention will be described.
本実施例では、被検査物体上の表面の照射する光の位置を変化させたときの、表面からの光回折像の強度分布の変化から、円筒形状で光の波長よりも十分に大きい表面の粗さの均一度を測定している。このとき入射光は略平行ビームで円筒面の母線と中心軸を含む平面を入射面とする。 In this example, the change in the intensity distribution of the light diffraction image from the surface when the position of the light irradiated on the surface on the object to be inspected is changed, so that the surface of the surface sufficiently larger than the wavelength of the light is cylindrical. Roughness uniformity is measured. At this time, the incident light is a substantially parallel beam, and the plane including the generatrix and the central axis of the cylindrical surface is the incident surface.
円筒面上の照射点における法線に対し、光をθiの角度でP偏光で入射する。入射面内で法線から、所定の角度2θB−θiの方向への拡散反射光をP偏光成分のみをP偏光成分選択手段で選択する。P偏光成分選択手段からの光を検出光学系で集光し、検出光学系の近軸像面付近に設けた光束制限手段を介して、光検出器で光量変化を測定している。 Light is incident as P-polarized light at an angle θ i with respect to the normal line at the irradiation point on the cylindrical surface. Only the P-polarized light component is selected by the P-polarized light component selecting means for the diffuse reflected light in the direction of the predetermined angle 2θ B −θ i from the normal line within the incident surface. The light from the P-polarized component selection means is collected by the detection optical system, and the change in the amount of light is measured by the photodetector through the light beam limiting means provided near the paraxial image plane of the detection optical system.
これにより表面の粗さの均一度を求めている。 Thereby, the uniformity of the surface roughness is obtained.
ここで
dを検出される最も小さい異常領域の幅(mm)とする。
Hを光束制限手段の開口部の幅(mm)とする。
βを検出光学系が円筒面の一部を光束制限手段6に結像するときの近軸横倍率とする。
Here, d is the width (mm) of the smallest abnormal region to be detected.
Let H be the width (mm) of the opening of the light beam limiting means.
Let β be the paraxial lateral magnification when the detection optical system forms an image of a part of the cylindrical surface on the light beam limiting means 6.
このとき
λ/(Dp/L)2< W ‥‥‥(1)
θi ≠ θB、 θi ≧ 2θB−90[°] 、 ‥‥‥(2)
1/kj < Dp ‥‥‥(3)
H ≦ β・d、 ‥‥‥(6)
を満たしている。
At this time, λ / (Dp / L) 2 <W (1)
θ i ≠ θ B , θ i ≧ 2θ B −90 [°], (2)
1 / k j <Dp (3)
H ≤ β · d, (6)
Meet.
照射点による回折分布の相対変化を、より感度の高い条件で測定する際、光の入射角を70°を超えるような非常に大きな角度にしなければならない場合も多い。 When the relative change in the diffraction distribution due to the irradiation point is measured under a more sensitive condition, it is often necessary to make the incident angle of light very large such that it exceeds 70 °.
このとき、照射対象面上に照射される光のスポット径の大きさは、円筒面の軸方向に長く伸びた状態となる。たとえば、1mmのビーム径で入射角が70°の場合、照射領域は2.9mmにも広がる。 At this time, the size of the spot diameter of the light irradiated on the irradiation target surface is extended in the axial direction of the cylindrical surface. For example, when the beam diameter is 1 mm and the incident angle is 70 °, the irradiation area extends to 2.9 mm.
このとき、照射領域内でムラなど異常部の大きさが1mm程度であった場合、回折像は正常部と異常部の面からの成分が混合されたものとなり、異常部からの情報のみを感度よく得ることができない。 At this time, if the size of the abnormal part such as unevenness in the irradiation area is about 1 mm, the diffraction image is a mixture of components from the normal part and the abnormal part, and only the information from the abnormal part is sensitive. I can't get well.
本実施例ではこれを解決するため、検出光学系8の像面付近に設置されるスリットやピンホールなどの光束制限手段の開口部の幅Hを、必要な空間分解能に相当する値に設定している。 In this embodiment, in order to solve this problem, the width H of the opening of the light beam limiting means such as a slit or pinhole installed near the image plane of the detection optical system 8 is set to a value corresponding to the required spatial resolution. ing.
たとえば、検出されなければならない最も小さい異常部の大きさのサイズがd[mm]であり、検出光学系8の近軸横倍率がβである場合、光束制限手段6の開口部の幅H[mm]はβ・dと同等又はそれ以下である必要がある。 For example, when the size of the smallest abnormal part that must be detected is d [mm] and the paraxial lateral magnification of the detection optical system 8 is β, the width H [ mm] needs to be equal to or less than β · d.
これにより、照射領域が必要分解能を超える場合でも、光束を制限することにより、諸条件を満たし必要な情報を持つ回折光のみを取り込んで、空間的にも感度の高い系が実現可能となる。 As a result, even when the irradiation area exceeds the necessary resolution, by limiting the luminous flux, only a diffracted light that satisfies various conditions and has necessary information can be captured, and a spatially sensitive system can be realized.
条件式(1)、(2)、(3)、(6)は以上の理由により特定されたものであり、条件式(1)、(2)、(3)、(6)を満足するように各部材を特定することにより、円筒面上の表面の粗さを高精度に測定している。 Conditional expressions (1), (2), (3), and (6) are specified for the above reasons, and satisfy conditional expressions (1), (2), (3), and (6). By specifying each member, the surface roughness on the cylindrical surface is measured with high accuracy.
1・・・円筒面
2・・・レーザー光源
3・・・回折光
4・・・第1の光束制限手段
5・・・正反射方向
6・・・第2の光束制限手段
7・・・光検出器
8・・・検出光学系
9・・・P偏光成分選択手段
DESCRIPTION OF SYMBOLS 1 ... Cylindrical surface 2 ... Laser light source 3 ... Diffracted light 4 ... 1st light beam limiting means 5 ... Regular reflection direction 6 ... 2nd light beam limiting means 7 ... Light Detector 8... Detection optical system 9... P polarization component selection means
Claims (6)
該光源手段から出射した光の光束径を制限する第1の光束制限手段と、
該第1の光束制限手段を通過し、被検査面にはP偏光が入射しており、該被検査面より生ずる光回折光を検出する検出光学系と、
該検出光学系の集光面に配置され、通過光束径を制限する第2の光束制限手段と、
該第2の光束制限手段を通過した光を検出する光検出器と、
該検出光学系の光入射側又は該検出光学系から該光検出器との間の光路中にP偏光成分を選択して透過させるP偏光成分選択手段と、
を有し、該光検出器からの信号を用いて該被検査面の粗さを検査する表面状態検査装置であって、
該光源手段からの光の波長をλ、
該光源手段からの光が被検査面に入射するときの入射面内において、該被検査面への入射光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該第2の光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳までの距離をLとするとき
λ/(Dp/L)2<W
なる条件を満足することを特徴とする表面状態検査装置。 Light source means;
First light flux limiting means for limiting a light beam diameter of light emitted from the light source means;
A detection optical system that passes through the first light flux limiting means and has P-polarized light incident on the surface to be inspected, and detects light diffracted light generated from the surface to be inspected;
A second light beam limiting means disposed on the condensing surface of the detection optical system for limiting the diameter of the passing light beam;
A photodetector for detecting light that has passed through the second light flux limiting means;
P-polarized component selection means for selecting and transmitting the P-polarized component in the light incident side of the detection optical system or in the optical path between the detection optical system and the photodetector;
A surface condition inspection apparatus that inspects the roughness of the surface to be inspected using a signal from the photodetector,
The wavelength of light from the light source means is λ,
In the incident surface when the light from the light source means is incident on the surface to be inspected, the light beam diameter of the incident light beam on the surface to be inspected is Dp,
The effective diameter on the light incident side of the detection optical system is W,
When the distance from the conjugate point through the detection optical system to the second light beam limiting means to the entrance pupil of the detection optical system is L, λ / (Dp / L) 2 <W
The surface condition inspection apparatus characterized by satisfying the following conditions.
該円筒面から生ずる光回折像の一部を検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該入射面において、該円筒面を照射するときの光の入射角をθi、
該円筒面の表面物質のブリュースター角をθBとするとき、該光検出器は、該円筒面から角度2θB−θi方向に生ずる光回折光をP偏光成分のみを選択するP偏光成分選択手段を介して検出しており、
該円筒面上の照射領域における表面凹凸部の寸法の入射面内における周波数の平均値をKj、
該円筒面へ入射するときの光束の光束径をDp、
該検出光学系の光入射側の有効径をW、
該光束制限手段に対する該検出光学系を介した共役点から該検出光学系の入射瞳位置までの距離をLとするとき
θi ≠ θB、 θi ≧ 2θB−90[°] 、
1/kj < Dp 、
λ/(Dp/L)2<W
を満たすことを特徴とする表面状態検査方法。 An irradiation step in which light having a wavelength λ in parallel and P-polarized state is incident on a part of a cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
After a part of the light diffraction image generated from the cylindrical surface is condensed by the detection optical system, the light is detected by the light detector through the light beam limiting means for limiting the light beam disposed at the light collection point of the detection optical system. A surface state inspection method including an inspection step for determining a change in the intensity distribution of the diffraction image and then inspecting the surface state of the cylindrical surface,
The incident angle of light when irradiating the cylindrical surface is θ i ,
When the Brewster angle of the surface material of the cylindrical surface is θ B , the photodetector selects only the P-polarized component from the light diffracted light generated in the angle 2θ B −θ i direction from the cylindrical surface. Detecting via the selection means,
The average value of the frequency in the incident surface of the size of the surface irregularities in the irradiation region on the cylindrical surface is represented by K j
Dp, the diameter of the luminous flux when entering the cylindrical surface,
The effective diameter on the light incident side of the detection optical system is W,
Θ i ≠ θ B , θ i ≧ 2θ B −90 [°], where L is the distance from the conjugate point through the detection optical system to the light beam limiting means to the entrance pupil position of the detection optical system.
1 / k j <Dp,
λ / (Dp / L) 2 <W
The surface condition inspection method characterized by satisfy | filling.
該円筒面から生ずる光回折像の一部を開口数NAの検出光学系で集光した後、該検出光学系の集光点に配置した光束を制限する光束制限手段を介して光検出器で検出して光回折像の強度分布の変化を求め、それより該円筒面の表面状態を検査する検査工程とを含む表面状態検査方法であって、
該入射面において、該円筒面を照射するときの光の入射角をθi、
該円筒面の表面物質のブリュースター角をθBとするとき、該光検出器は、該円筒面から角度θS方向に生ずる光回折光をP偏光成分のみを選択するP偏光成分選択手段を介して検出しているとき、
θi ≠ θB、 θi ≧ 2θB−90[°] 、
2θB−θ1−sin−1(NA)<θS<2θB−θ1+sin−1(NA)
を満たすことを特徴とする表面状態検査方法。 An irradiation step in which light having a wavelength λ in parallel and P-polarized state is incident on a part of a cylindrical surface from an incident surface including a generatrix of the cylindrical surface and a central axis of the cylindrical surface;
A part of the light diffraction image generated from the cylindrical surface is condensed by a detection optical system having a numerical aperture NA, and then a light detector through a light beam limiting means for limiting a light beam arranged at a condensing point of the detection optical system. A surface state inspection method including an inspection step of detecting and detecting a change in intensity distribution of the light diffraction image, and then inspecting the surface state of the cylindrical surface,
The incident angle of light when irradiating the cylindrical surface is θ i ,
When the Brewster angle of the surface material of the cylindrical surface is θ B , the photodetector has a P-polarized component selection unit that selects only the P-polarized component from the light diffracted light generated in the angle θ S direction from the cylindrical surface. When detecting through
θ i ≠ θ B , θ i ≧ 2θ B −90 [°],
2θ B −θ 1 −sin −1 (NA) <θ S <2θ B −θ 1 + sin −1 (NA)
The surface condition inspection method characterized by satisfy | filling.
Δ< Dp
となるようにしていることを特徴とする請求項2又は3の表面状態検査方法。 While rotating the cylindrical surface at a constant angular velocity, the cylindrical surface and the incident light are relatively translated at a constant speed in the axial direction of the cylindrical surface, and the light quantity is measured with the photodetector at regular intervals. The two-dimensional surface condition on the cylindrical surface is inspected by performing the above, and the distance Δ between the measurement points on the cylindrical surface is
Δ <Dp
The surface condition inspection method according to claim 2 or 3, wherein
H≦β・d
を満足することを特徴とする請求項2から5のいずれか1項の表面状態検査方法。
In the incident surface, H is a width through which the light beam of the light beam limiting unit passes, and β is a paraxial lateral magnification when the detection optical system forms an image of a part of the cylindrical surface on the light beam limiting unit surface. When d is the minimum length of the irregularities to be detected on the cylindrical surface, H ≦ β · d
The surface condition inspection method according to any one of claims 2 to 5, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171553A JP2008002892A (en) | 2006-06-21 | 2006-06-21 | Surface condition inspection apparatus and surface condition inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171553A JP2008002892A (en) | 2006-06-21 | 2006-06-21 | Surface condition inspection apparatus and surface condition inspection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008002892A true JP2008002892A (en) | 2008-01-10 |
Family
ID=39007410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006171553A Pending JP2008002892A (en) | 2006-06-21 | 2006-06-21 | Surface condition inspection apparatus and surface condition inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008002892A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113310439A (en) * | 2021-05-08 | 2021-08-27 | 中国工程物理研究院材料研究所 | Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor |
-
2006
- 2006-06-21 JP JP2006171553A patent/JP2008002892A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113310439A (en) * | 2021-05-08 | 2021-08-27 | 中国工程物理研究院材料研究所 | Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor |
CN113310439B (en) * | 2021-05-08 | 2022-11-04 | 中国工程物理研究院材料研究所 | Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4988223B2 (en) | Defect inspection apparatus and method | |
TWI677679B (en) | Methods and apparatus for speckle suppression in laser dark-field systems | |
US9080991B2 (en) | Illuminating a specimen for metrology or inspection | |
CN102818528B (en) | Apparatus and method for inspecting an object with increased depth of field | |
JP7134096B2 (en) | Substrate inspection method, device and system | |
US20130010286A1 (en) | Method and device of differential confocal and interference measurement for multiple parameters of an element | |
JPH0915163A (en) | Method and equipment for inspecting foreign substance | |
US11512948B2 (en) | Imaging system for buried metrology targets | |
US20240183655A1 (en) | Measuring apparatus and method for roughness and/or defect measurement on a surface | |
JP2002071513A (en) | Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective | |
JP5322841B2 (en) | Mask defect shape measurement method and mask quality determination method | |
WO2010106758A1 (en) | Shape measurement device and method | |
JP2008002891A (en) | Surface state inspection device and surface state inspection method | |
JP2008196872A (en) | Inspection device, inspection method, and manufacturing method of pattern substrate | |
CN110658196B (en) | Defect detection device and defect detection method | |
Daneshpanah et al. | Surface sensitivity reduction in laser triangulation sensors | |
CN205352958U (en) | High -speed high resolution imaging system on a large scale | |
JP2008002892A (en) | Surface condition inspection apparatus and surface condition inspection method | |
JP2004163129A (en) | Defect inspection method | |
JPH0291504A (en) | Method for inspecting cross-sectional profile of fine pattern | |
JP2000314707A (en) | Device and method for inspecting surface | |
JP2007171145A (en) | Inspection device and method | |
JP7570434B2 (en) | Imaging system for buried metrology targets | |
Quintanilha et al. | Sub-50-nm measurements using a 193-nm angle-resolved scatterfield microscope | |
JPH10293103A (en) | Method and equipment for optical measurement and optical measuring equipment for patterned substrate |