JPH11140560A - Production of composite body - Google Patents

Production of composite body

Info

Publication number
JPH11140560A
JPH11140560A JP31029297A JP31029297A JPH11140560A JP H11140560 A JPH11140560 A JP H11140560A JP 31029297 A JP31029297 A JP 31029297A JP 31029297 A JP31029297 A JP 31029297A JP H11140560 A JPH11140560 A JP H11140560A
Authority
JP
Japan
Prior art keywords
metal
composite
temperature
thermal conductivity
ceramic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31029297A
Other languages
Japanese (ja)
Other versions
JP4204656B2 (en
Inventor
Masaaki Obata
正明 小畑
Hideki Hirotsuru
秀樹 廣津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP31029297A priority Critical patent/JP4204656B2/en
Publication of JPH11140560A publication Critical patent/JPH11140560A/en
Application granted granted Critical
Publication of JP4204656B2 publication Critical patent/JP4204656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To suitably use the composite body for a heat sink for a semiconductor device, such as a IC package and wiring board, by impregnating metal into a porous ceramic structure under pressure, at a temp. in a specific range, at a specific rate of temperature decrease. SOLUTION: Cooling velocity, within the region between the solidification point of the metal to be impregnated into the porous ceramic structure and a temp. higher by 50 deg.C than the solidification point, is regulated to a temp.-fall rate of (1 to 20) deg.C/hr. By this procedure, the microstructure of the resultant composite body can be stabilized and reproducibility can be provided, and as a result, the composite body having stable physical properties can be obtained with superior reproducibility in high yield. When silicon carbide, aluminum nitride, silicon nitride, alumina, etc., having high thermal conductivity and low coefficient of thermal expansion, are used for the above ceramic structure, the composite body suitable for a heat sink for semiconductor circuit board can be obtained. Further, it is preferable to use, as the metal to be impregnated, light metal, such as Al and Mg, or alloys thereof for the purpose of attaining high thermal conductivity and lightweight characteristic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ICパッケージや
多層配線基板等の半導体装置のヒートシンクに好適な、
金属或いは合金とセラミックスとからなる複合体(以
下、「金属−セラミックス複合体」又は単に「複合体」
という)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink for a semiconductor device such as an IC package or a multilayer wiring board.
A composite composed of a metal or alloy and ceramic (hereinafter, “metal-ceramic composite” or simply “composite”
).

【0002】[0002]

【従来の技術】半導体分野において、LSIの集積化や
高速化がすすむことに加え、近年GTOやIGBT等の
パワーデバイスの用途が拡大するなど、シリコンチップ
の発熱量は増加の一途をたどっている。それとともにシ
リコンチップから発熱した熱を逃がす回路基板、更にヒ
ートシンクについても、より一層の高性能化が求められ
ている。
2. Description of the Related Art In the field of semiconductors, the amount of heat generated by silicon chips is increasing steadily, as LSIs are being integrated and operated at higher speeds, and in recent years, the use of power devices such as GTOs and IGBTs is expanding. . At the same time, circuit boards for dissipating heat generated from silicon chips and heat sinks are required to have higher performance.

【0003】具体的には、回路基板については熱伝導性
の良いアルミナ、窒化アルミニウム、窒化珪素等のセラ
ミックス回路基板が用いられているし、これに接合して
用いられるヒートシンク自体の熱伝導率が高いものが用
いられる。更に、両者が組み合わされモジュール化され
た場合においては、前記回路基板とヒートシンクとの熱
膨張率が近いことが望まれる。これは、実使用時に半導
体素子から発生する熱等に原因して、発生した熱応力が
回路基板を破壊し、回路基板の電気絶縁性や熱伝導性を
劣化させ、モジュールとしての信頼性を低下させる原因
になってしまうからである。
More specifically, ceramic circuit boards such as alumina, aluminum nitride, and silicon nitride having good heat conductivity are used for the circuit boards, and the heat conductivity of the heat sink itself that is used by joining the ceramic circuit boards is high. Higher ones are used. Furthermore, when both are combined to form a module, it is desired that the circuit board and the heat sink have similar thermal expansion coefficients. This is due to the heat generated from the semiconductor element during actual use, the generated thermal stress destroys the circuit board, deteriorating the electrical insulation and thermal conductivity of the circuit board, and lowering the reliability as a module This is because it may cause them to do so.

【0004】上記の事情により、電気、或いは自動車な
どの車両用途等の高信頼性が重要とされる分野におい
て、金属−セラミックス複合体(以下、複合体という)
のヒートシンクへの適用が熱膨張率がセラミックス回路
基板に近いという理由で進められている(特開昭64−
83634号公報、特開平9−209058号公報)。
[0004] Under the circumstances described above, in fields where high reliability is important such as electric or vehicle applications such as automobiles, a metal-ceramic composite (hereinafter, referred to as a composite).
Has been applied to heat sinks because the coefficient of thermal expansion is close to that of ceramic circuit boards.
No. 83634, JP-A-9-209058).

【0005】前記複合体は、一般に、セラミックス粉、
セラミックス繊維などを成形、必要な場合においては焼
成して、多孔質セラミックス構造体を作製し、次に溶融
金属を含浸し、これを冷却することにより作製される。
溶融金属を含浸する方法としては、粉末冶金法に基づく
方法、例えばダイキャスト法(特開平5−508350
号公報)や溶湯鍛造法(まてりあ、第36巻、第1号、
1997、40−46ページ)などの高圧鋳造による方
法、自発浸透による方法(特開平2−197368号公
報)等の各種の方法が知られている。
[0005] The composite is generally composed of ceramic powder,
A ceramic fiber or the like is formed and, if necessary, fired to produce a porous ceramic structure, which is then impregnated with a molten metal and then cooled.
As a method for impregnating a molten metal, a method based on a powder metallurgy method, for example, a die casting method (Japanese Patent Laid-Open No.
No. Gazette) and molten metal forging (Materia, Vol. 36, No. 1,
1997, pp. 40-46) and various methods such as a method by spontaneous infiltration (JP-A-2-197368).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の従来公
知の方法で得られた金属−セラミックス複合体において
は、溶融金属とセラミックスとが濡れにくいこと、セラ
ミックス構造体中の気孔形状が安定しないこと、溶融金
属の冷却条件が安定しないこと等が原因してか、得られ
る金属−セラミックス複合体の微細組織が不安定であ
り、その結果特性の安定した複合体が容易に得難いとい
う問題がある。
However, in the metal-ceramic composite obtained by the above-mentioned conventionally known method, the molten metal and the ceramic are hardly wet and the pore shape in the ceramic structure is not stable. In addition, the microstructure of the resulting metal-ceramic composite is unstable, possibly due to unstable cooling conditions of the molten metal, and as a result, there is a problem that it is difficult to obtain a composite having stable characteristics.

【0007】本発明者らは、上記問題点を解決し、半導
体素子を搭載するセラミックス回路基板に適用した際
に、実使用下でセラミックス回路基板が熱衝撃で破損す
る等の問題を生じず、また十分に熱伝導性に優れ半導体
素子が誤動作し難い、高信頼性のヒートシンクを提供す
るべく検討した結果、本発明に至ったものである。
The present inventors have solved the above problems, and when applied to a ceramic circuit board on which a semiconductor element is mounted, there is no problem that the ceramic circuit board is damaged by a thermal shock in actual use. Further, the present inventors have studied to provide a highly reliable heat sink which has sufficiently high thermal conductivity and hardly malfunctions a semiconductor element, and as a result, the present invention has been accomplished.

【0008】[0008]

【課題を解決するための手段】本発明は、多孔質セラミ
ックス構造体に金属を含浸する複合体の製造方法であっ
て、前記金属の凝固点温度と前記凝固点温度より50℃
高い温度との範囲内について、加圧下、1〜20℃/H
rの降温速度で含浸することを特徴とする複合体の製造
方法である。また、本発明は、多孔質セラミックス構造
体に金属を含浸してなる複合体を、前記金属の凝固点温
度と前記凝固点温度より50℃高い温度との範囲内につ
いて、加圧下、1〜20℃/Hrの降温速度で処理する
ことを特徴とする複合体の製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a composite in which a porous ceramic structure is impregnated with a metal, the method comprising the steps of:
Within the range of high temperature, 1-20 ° C / H under pressure
A method for producing a composite, characterized by impregnating at a temperature decreasing rate of r. In addition, the present invention provides a composite obtained by impregnating a porous ceramic structure with a metal, in a range of a freezing point temperature of the metal and a temperature 50 ° C. higher than the freezing point temperature, from 1 to 20 ° C. This is a method for producing a composite, wherein the treatment is performed at a temperature lowering rate of Hr.

【0009】本発明は、多孔質セラミックス構造体が炭
化珪素、窒化アルミニウム、窒化珪素、アルミナ又はシ
リカからなる群より選ばれる1種以上からなることを特
徴とする前記の複合体の製造方法であり、好ましくは、
金属がアルミニウム、又はマグネシウムのいずれかを主
成分とすることを特徴とする前記の複合体の製造方法で
あり、更に好ましくは、前記多孔質セラミックス構造体
が空隙率20〜50%の炭化珪素からなり、前記金属が
アルミニウムを主成分とすることを特徴とする前記の複
合体の製造方法である。
The present invention is the above-mentioned method for producing a composite, wherein the porous ceramic structure comprises at least one selected from the group consisting of silicon carbide, aluminum nitride, silicon nitride, alumina and silica. ,Preferably,
The above-described method for producing a composite, wherein the metal contains aluminum or magnesium as a main component. More preferably, the porous ceramic structure is made of silicon carbide having a porosity of 20 to 50%. Wherein the metal is mainly composed of aluminum.

【0010】[0010]

【発明の実施の形態】本発明者らは、低熱膨張率で、し
かも高熱伝導率の金属−セラミックス複合体を安定して
得るために、その製造条件について検討した結果、多孔
質セラミックス構造体中で溶融金属が凝固する時の特定
温度範囲での冷却条件が重要であり、該特定温度範囲で
の冷却速度を十分に遅くすることで、再現性のある微構
造が達成でき、その結果として特性の安定した金属−セ
ラミックス複合体が得られるという知見に基づき、本発
明を完成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the manufacturing conditions for obtaining a metal-ceramic composite having a low coefficient of thermal expansion and a high thermal conductivity in a stable manner. The cooling conditions in a specific temperature range when the molten metal solidifies are important, and by sufficiently slowing the cooling rate in the specific temperature range, a reproducible microstructure can be achieved, and as a result, the characteristic The present invention has been completed based on the finding that a stable metal-ceramic composite can be obtained.

【0011】前記特定の温度範囲とは、発明者らの実験
的検討結果に基づけば、多孔質セラミックス構造体中に
含浸する金属(或いは合金)の凝固点温度を下限とし、
上限は該凝固点温度より50℃までの温度範囲である。
ここで、凝固点温度とは、液相状態の溶融金属が完全に
固相となる温度であり、例えば、純アルミニウムの場合
では融点の660℃、アルミニウム−シリコン系の合金
の場合では共晶温度の577℃である。尚、凝固点温度
より50℃を越える温度から温度制御を開始しても、ま
た凝固点温度以下まで制御を続けてもよいが、更なる特
性安定の効果は期待できず、むしろ生産性の低下になる
ので効果的でない。
The above-mentioned specific temperature range is based on the results of experimental studies by the present inventors, with the lower limit being the freezing point temperature of the metal (or alloy) impregnated in the porous ceramic structure,
The upper limit is a temperature range from the freezing point temperature to 50 ° C.
Here, the freezing point temperature is a temperature at which a molten metal in a liquid phase completely becomes a solid phase. For example, in the case of pure aluminum, the melting point is 660 ° C., and in the case of an aluminum-silicon alloy, the eutectic temperature is 577 ° C. The temperature control may be started at a temperature exceeding 50 ° C. from the freezing point temperature, or the control may be continued at a temperature lower than the freezing point temperature, but the effect of further stabilizing the characteristics cannot be expected, and the productivity is rather lowered. Not so effective.

【0012】本発明では、前記特定範囲、即ち金属の凝
固点温度と前記凝固点温度より50℃高い温度との範囲
内の冷却速度を、1〜20℃/Hrの降温速度とするこ
とを特徴とする。前記温度範囲内を特定の冷却速度で制
御するとき、得られる複合体の微構造は安定し、再現性
を有し、その結果として、物性値の安定した複合体を再
現性良く、高い歩留まりで、従って生産性良く得ること
ができる。降温速度の制御条件については、20℃/H
rを越える降温速度では、特性安定の効果は得られない
ことがある。また、冷却速度の下限については、特に制
限するものでは無いが、1℃/Hr未満の降温速度で
は、更なる特性安定の効果はでず、むしろ生産性の低下
になるので効果的でない。
In the present invention, the cooling rate in the specific range, that is, in the range between the freezing point temperature of the metal and the temperature 50 ° C. higher than the freezing point temperature, is set to a cooling rate of 1 to 20 ° C./Hr. . When controlling the temperature within the temperature range at a specific cooling rate, the microstructure of the obtained composite is stable and has reproducibility, and as a result, the composite having a stable physical property value has good reproducibility and high yield. Therefore, it can be obtained with high productivity. As for the control condition of the temperature decreasing rate, 20 ° C./H
At a temperature lowering rate exceeding r, the effect of characteristic stabilization may not be obtained. The lower limit of the cooling rate is not particularly limited. However, if the cooling rate is lower than 1 ° C./Hr, the effect of further stabilizing the characteristics will not be obtained, but rather the productivity will be reduced, which is not effective.

【0013】前記特定温度範囲における圧力条件につい
ては、加圧されていれば良く、また本発明の目的を達成
する上からは前記圧力に上限を設ける必要はない。しか
し、200MPaを越えると、多孔質セラミックス複合
体に割れ、ヒビ等が生じる場合があり、好ましくない
し、0.5MPa未満でも特性の安定化が十分でない場
合があり、0.5MPa〜200MPaが好ましい範囲
として選択される。更に実用的には1〜100MPaが
最も良好な範囲として選択される。
With respect to the pressure conditions in the above-mentioned specific temperature range, it is sufficient that the pressure is increased, and it is not necessary to set an upper limit on the pressure in order to achieve the object of the present invention. However, if it exceeds 200 MPa, cracks and cracks may occur in the porous ceramic composite, which is not preferable. Even if it is less than 0.5 MPa, the stability of the properties may not be sufficient, and 0.5 MPa to 200 MPa is a preferable range. Is selected as More practically, 1 to 100 MPa is selected as the best range.

【0014】上記特定温度範囲で、加圧下に特定の冷却
速度で、多孔質セラミックス構造体中に溶融金属を冷
却、凝固させ、低熱膨張率と高熱伝導率を安定的に発現
させることは、必ずしも含浸操作に限定されず、一度含
浸操作を経て得られた金属−セラミックス複合体につい
て適用することもできる。しかし、本発明の特定の温度
範囲内を加圧下で特定の冷却速度とする処理を、含浸操
作に引き続いて適用することが生産性の面で好ましい。
更に、含浸操作を加圧下で行うダイキャスト法や溶湯鍛
造法等の高圧鋳造法の場合には、温度条件を制御するの
みで良く、操作性に優れ、好ましい。又、一度含浸操作
を経て得られた金属−セラミックス複合体について適用
する場合、上記操作を雰囲気加圧装置等を用いて、アル
ゴン、ヘリウム等の希ガス、或いは窒素等の非反応性ガ
ス相の存在下で上記処理を行うこともできる。
It is not always necessary to cool and solidify the molten metal in the porous ceramic structure at a specific cooling rate under pressure and at a specific cooling rate in the above-mentioned specific temperature range to stably exhibit a low coefficient of thermal expansion and a high coefficient of thermal conductivity. The present invention is not limited to the impregnation operation, and may be applied to a metal-ceramic composite obtained through the impregnation operation once. However, from the viewpoint of productivity, it is preferable to apply the treatment of setting a specific cooling rate under a specific temperature range under pressure in the present invention to a specific cooling rate subsequent to the impregnation operation.
Furthermore, in the case of a high-pressure casting method such as a die casting method or a molten metal forging method in which the impregnation operation is performed under pressure, it is only necessary to control the temperature conditions, and the operability is excellent, which is preferable. In addition, when the above operation is applied to the metal-ceramic composite obtained through the impregnation operation, the above operation is performed by using an atmosphere pressurizing device or the like to remove a rare gas such as argon or helium or a non-reactive gas phase such as nitrogen. The above processing can also be performed in the presence.

【0015】本発明の多孔質セラミックス構造体は、金
属或は合金を含浸させることが可能な開放気孔を有し、
しかも含浸操作において破壊することのない機械的強度
を有する構造体であれば、どのようなものでも構わな
い。しかし、金属−セラミックス複合体を半導体回路基
板用ヒートシンクに適用する場合、金属−セラミックス
複合体の熱伝導率が高く、また温度上昇に伴って低下し
難いこと、また熱膨張係数をアルミナ、窒化アルミニウ
ム、窒化珪素等のセラミック回路基板と同程度に小さい
ことが必要であるということから、高熱伝導でありかつ
低熱膨張率の炭化珪素、窒化アルミニウム、窒化珪素並
びにアルミナ等が好適である。
The porous ceramic structure of the present invention has open pores that can be impregnated with a metal or an alloy,
Moreover, any structure may be used as long as it has mechanical strength that does not break during the impregnation operation. However, when the metal-ceramic composite is applied to a heat sink for a semiconductor circuit board, the thermal conductivity of the metal-ceramic composite is high, and it is difficult to decrease with increasing temperature, and the thermal expansion coefficient is alumina, aluminum nitride. Since it is necessary to be as small as a ceramic circuit board such as silicon nitride or the like, silicon carbide, aluminum nitride, silicon nitride, alumina and the like, which have high thermal conductivity and a low coefficient of thermal expansion, are preferable.

【0016】又、シリカは、熱伝導率は前記セラミック
スよりも小さいものの、熱膨張係数が小さいため、少な
い添加量で金属−シリカ複合体の熱膨張係数をセラミッ
ク基板の熱膨張係数に近づけることができるという特徴
がある。一般に、金属−セラミックス複合体に関して、
その熱伝導率の温度依存性については、該複合体中のセ
ラミックス含有量が大きいほど著しく低下するが、前記
の特徴から、シリカを用いて得られる複合体は温度上昇
時の熱伝導率の低下が少なく、前記セラミックスを使用
したときと同様の効果をえることができるので、やはり
好ましい。
Although silica has a lower thermal conductivity than the ceramics described above, it has a small coefficient of thermal expansion. Therefore, it is possible to bring the coefficient of thermal expansion of the metal-silica composite closer to that of the ceramic substrate with a small amount of addition. There is a feature that can be. Generally, for a metal-ceramic composite,
Regarding the temperature dependence of the thermal conductivity, as the ceramic content in the composite increases, the temperature significantly decreases. However, from the above-described characteristics, the composite obtained using silica exhibits a decrease in the thermal conductivity when the temperature increases. This is also preferable because the same effect as when using the ceramics can be obtained.

【0017】上述したセラミックスのうち、炭化珪素は
それ自体の熱伝導率が、高熱伝導率の金属であるアルミ
ニウムのそれよりも高く、炭化珪素を使用する場合に
は、金属単味の熱伝導率よりも高い熱伝導率を有する金
属−セラミックス複合体を得ることができるので、特に
好ましく選択される。
Among the above-mentioned ceramics, silicon carbide has a higher thermal conductivity than that of aluminum, which is a metal having a high thermal conductivity, and when silicon carbide is used, the thermal conductivity of a single metal is high. It is particularly preferably selected because a metal-ceramic composite having higher thermal conductivity can be obtained.

【0018】本発明に用いる金属については、本発明の
目的を達成することができれば、どのようなものであっ
っても構わないが、高熱伝導性、軽量性を達成する目的
から、アルミニウム、マグネシウム等の軽合金又はそれ
らの合金が好ましい。アルミニウム合金の場合には、鋳
造のしやすさ、高熱伝導性の発現の点からSi含有量が
4〜10%のAC2A、AC2B、AC4A、AC4
B、AC4C、AC8B、AC4D、AC8C、ADC
10、ADC12等の合金が特に好ましい。
The metal used in the present invention may be any metal as long as the object of the present invention can be achieved. However, in order to achieve high thermal conductivity and light weight, aluminum and magnesium are used. And their alloys or alloys thereof are preferred. In the case of an aluminum alloy, AC2A, AC2B, AC4A, AC4 having a Si content of 4 to 10% from the viewpoint of ease of casting and development of high thermal conductivity.
B, AC4C, AC8B, AC4D, AC8C, ADC
Alloys such as 10, ADC12 are particularly preferred.

【0019】上記のセラミックスと金属の組合せに関し
て、金属としてアルミニウム或いはアルミニウム系合
金、セラミックスとして炭化珪素を用いたアルミニウム
−炭化珪素複合体は、軽量、高熱伝導、セラミック基板
との熱膨張率の適合性の点で特に優れた組合せである。
本発明者らは、このアルミニウム−炭化珪素複合体につ
いて、更にいろいろ検討した結果、炭化珪素含有量には
本発明の目的を達するのに好適な範囲が存在することを
見いだし、本発明に至ったものである。即ち、アルミニ
ウム−炭化珪素複合体中の炭化珪素含有量が50体積%
未満では熱膨張係数が高くなることがあり、この場合に
は、セラミック基板との熱膨張率差に起因する前記問題
が生じ易くなる。また、セラミックスが高温で熱伝導率
を低下させることに原因して、80体積%を越える炭化
珪素含有量の場合では、半導体搭載用回路基板のヒート
シンクとして用いた時に、実使用時の半導体素子等から
の発熱による温度上昇によって、熱伝導率の低下が著し
くなるという問題が顕著になってくる。以上の理由か
ら、アルミニウム−炭化珪素複合体中の炭化珪素含有量
は50〜80体積%が好ましく、そして、前記条件を達
成するために、多孔質炭化珪素の構造体の気孔率は50
〜20体積%が好適である。
Regarding the above-mentioned combination of ceramic and metal, an aluminum-silicon carbide composite using aluminum or an aluminum-based alloy as the metal and silicon carbide as the ceramic is lightweight, has a high thermal conductivity, and is compatible with the coefficient of thermal expansion with the ceramic substrate. This is a particularly excellent combination in terms of the above.
The present inventors have conducted various studies on this aluminum-silicon carbide composite, and as a result, have found that the silicon carbide content has a range suitable for achieving the object of the present invention, which has led to the present invention. Things. That is, the silicon carbide content in the aluminum-silicon carbide composite is 50% by volume.
If it is less than 7, the coefficient of thermal expansion may be high, and in this case, the above-described problem due to the difference in the coefficient of thermal expansion from the ceramic substrate tends to occur. Further, when the ceramic has a silicon carbide content of more than 80% by volume due to a decrease in thermal conductivity at a high temperature, when used as a heat sink of a circuit board for mounting a semiconductor, a semiconductor element or the like in actual use is used. The problem that the decrease in thermal conductivity becomes remarkable due to a rise in temperature due to heat generated from the substrate becomes significant. For the above reasons, the silicon carbide content in the aluminum-silicon carbide composite is preferably 50 to 80% by volume, and in order to achieve the above conditions, the porosity of the porous silicon carbide structure is 50%.
-20% by volume is preferred.

【0020】以下、実施例及び比較例に基づき、本発明
を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0021】[0021]

【実施例】[実施例1]平均粒径50μmの炭化珪素に
バインダーとしてシリカゾルを固形分濃度で5wt%混
合し、プレス成形した後空気中900℃で2時間焼成
し、大きさ35mm×35mm×3mm、気孔率40%
の多孔質炭化珪素構造体を作製した。
[Example 1] Silica sol as a binder was mixed at 5 wt% as a binder with silicon carbide having an average particle diameter of 50 µm at a solid content of 5 wt%. 3mm, porosity 40%
Was produced.

【0022】次に、内径50mm、肉厚25mmの金型
を用意し、該金型外表面から深さ20mmの孔を設け、
該孔中に金型内表面温度測定用熱電対をセットした。こ
の金型をバーナーで加熱し、金型の内面温度の接触温度
計による実測値と、その際の金型内表面温度測定用熱電
対の測定値に差がないことを確認した。
Next, a mold having an inner diameter of 50 mm and a thickness of 25 mm is prepared, and a hole having a depth of 20 mm is provided from the outer surface of the mold.
A thermocouple for measuring the inner surface temperature of the mold was set in the hole. The mold was heated with a burner, and it was confirmed that there was no difference between the measured value of the inner surface temperature of the mold with a contact thermometer and the measured value of the thermocouple for measuring the inner surface temperature of the mold at that time.

【0023】前記の多孔質炭化珪素構造体を800℃で
予熱した後、バーナ加熱により内面温度を710℃に保
持した前記金型に入れ、900℃で溶融した純アルミニ
ウムを金型に流し込み、押し棒をセットし、100MP
aの圧力で加圧した。
After the porous silicon carbide structure is preheated at 800 ° C., it is put into the mold having an inner surface temperature maintained at 710 ° C. by a burner heating, and pure aluminum melted at 900 ° C. is poured into the mold and pressed. Set the stick and 100MP
Pressurized at the pressure of a.

【0024】加圧状態のまま冷却し、金型内表面温度測
定用熱電対の測定値を見ながらバーナーの強さを調整
し、710℃から660℃までの降温速度を10℃/H
rに制御し、660℃でバーナーを切り100℃まで冷
却したところで加圧を終了した。
Cooling is performed while maintaining the pressurized state, the strength of the burner is adjusted while observing the measured value of the thermocouple for measuring the inner surface temperature of the mold, and the rate of temperature decrease from 710 ° C. to 660 ° C. is 10 ° C./H.
The pressure was stopped when the burner was turned off at 660 ° C. and cooled to 100 ° C.

【0025】同一の方法でアルミニウム−炭化珪素複合
体を3サンプル作製し、得られた複合体の熱伝導率、熱
膨張係数及び強度を測定した。この結果を表1に示す。
Three samples of an aluminum-silicon carbide composite were prepared by the same method, and the thermal conductivity, thermal expansion coefficient and strength of the obtained composite were measured. Table 1 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[実施例2]溶融金属の流し込み時の金型
の内面温度が627℃、降温速度を制御した温度範囲が
627〜577℃、金属がアルミニウム−6wt%シリ
コン合金、該合金の溶融温度が800℃であること以外
は実施例1と同一の方法でアルミニウム合金−炭化珪素
複合体を3サンプル作製し、得られた複合体の熱伝導
率、熱膨張係数及び強度を測定し、その結果を表2に示
した。
Example 2 The inner surface temperature of the mold at the time of pouring the molten metal was 627 ° C., the temperature range in which the cooling rate was controlled was 627 to 577 ° C., the metal was aluminum-6 wt% silicon alloy, and the melting temperature of the alloy In the same manner as in Example 1, three samples of an aluminum alloy-silicon carbide composite were prepared, and the thermal conductivity, the coefficient of thermal expansion, and the strength of the obtained composite were measured. Are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】[実施例3]降温速度が20℃/Hrであ
ること以外は実施例2と同一の方法でアルミニウム合金
−炭化珪素複合体を3サンプル作製し、得られた複合体
の熱伝導率、熱膨張係数及び強度を測定し、その結果を
表3に示した。
Example 3 Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the cooling rate was 20 ° C./Hr, and the thermal conductivity of the obtained composite was , Thermal expansion coefficient and strength were measured, and the results are shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】[実施例4]圧力が200MPaであるこ
と以外は実施例2と同一の方法でアルミニウム合金−炭
化珪素複合体を3サンプル作製し、得られた複合体の熱
伝導率、熱膨張係数及び強度を測定し、表4に示す結果
を得た。
Example 4 Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the pressure was 200 MPa, and the thermal conductivity and thermal expansion coefficient of the obtained composite were And the strength were measured, and the results shown in Table 4 were obtained.

【0032】[0032]

【表4】 [Table 4]

【0033】[実施例5]圧力が0.5MPaであるこ
と以外は実施例2と同一の方法でアルミニウム合金−炭
化珪素複合体を3サンプル作製し、得られた複合体の熱
伝導率、熱膨張係数及び強度を測定し、表5に示す結果
を得た。
Example 5 Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the pressure was 0.5 MPa, and the thermal conductivity and heat of the obtained composite were measured. The expansion coefficient and strength were measured, and the results shown in Table 5 were obtained.

【0034】[0034]

【表5】 [Table 5]

【0035】[実施例6]圧力が220MPaであるこ
と以外は実施例4と同一の方法でアルミニウム合金−炭
化珪素複合体を3サンプル作製し、得られた複合体の熱
伝導率、熱膨張係数及び強度を測定し、表6に示す結果
を得た。
Example 6 Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 4 except that the pressure was 220 MPa, and the thermal conductivity and thermal expansion coefficient of the obtained composite were measured. And the strength were measured, and the results shown in Table 6 were obtained.

【0036】[0036]

【表6】 [Table 6]

【0037】[比較例1]650℃〜600℃までの降
温速度を10℃/Hr、600℃以下の降温速度を25
℃/Hr以上としたこと以外は実施例2と同一の方法で
アルミニウム合金−炭化珪素複合体を3サンプル作製
し、得られた複合体の熱伝導率、熱膨張係数及び強度を
測定し、表7に示す結果を得た。実施例2と比較して、
熱伝導率、熱膨張係数及び強度が安定しないことが明か
となった。
[Comparative Example 1] The cooling rate from 650 ° C to 600 ° C was 10 ° C / Hr, and the cooling rate below 600 ° C was 25.
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the temperature was not less than ° C / Hr, and the thermal conductivity, thermal expansion coefficient, and strength of the obtained composite were measured. 7 were obtained. As compared with Example 2,
It became clear that the thermal conductivity, coefficient of thermal expansion and strength were not stable.

【0038】[0038]

【表7】 [Table 7]

【0039】[比較例2]600℃〜550℃までの降
温速度を10℃/Hr、550℃以下の降温速度を25
℃/Hr以上としたこと以外は実施例2と同一の方法で
アルミニウム合金−炭化珪素複合体を3サンプル作製
し、得られた複合体の熱伝導率、熱膨張係数及び強度を
測定し、表8に示す結果を得た。実施例2と比較して、
熱伝導率、熱膨張係数及び強度が安定しないことが明か
となった。
[Comparative Example 2] The cooling rate from 600 ° C to 550 ° C was 10 ° C / Hr, and the cooling rate at 550 ° C or less was 25.
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the temperature was not less than ° C / Hr, and the thermal conductivity, thermal expansion coefficient, and strength of the obtained composite were measured. 8 were obtained. As compared with Example 2,
It became clear that the thermal conductivity, coefficient of thermal expansion and strength were not stable.

【0040】[0040]

【表8】 [Table 8]

【0041】[比較例3]降温速度が25℃/Hrであ
ること以外は実施例3と同一の方法でアルミニウム合金
−炭化珪素複合体を3サンプル作製し、得られた複合体
の熱伝導率、熱膨張係数及び強度を測定し、表9に示す
結果を得た。実施例3と比較して、熱伝導率、熱膨張係
数及び強度が安定しないことが明かとなった。
Comparative Example 3 Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 3 except that the temperature drop rate was 25 ° C./Hr, and the thermal conductivity of the obtained composite was , Thermal expansion coefficient and strength were measured, and the results shown in Table 9 were obtained. Compared with Example 3, it became clear that the thermal conductivity, the coefficient of thermal expansion, and the strength were not stable.

【0042】[0042]

【表9】 [Table 9]

【0043】[比較例4]圧力が常圧(0.1MPa)
であること以外は実施例5と同一の方法でアルミニウム
合金−炭化珪素複合体を3サンプル作製し、得られた複
合体の熱伝導率、熱膨張係数及び強度を測定し、表10
に示す結果を得た。実施例5と比較して、熱伝導率、熱
膨張係数及び強度が安定しないことが明かとなった。
[Comparative Example 4] Normal pressure (0.1 MPa)
In the same manner as in Example 5, three samples of an aluminum alloy-silicon carbide composite were prepared, and the thermal conductivity, the coefficient of thermal expansion, and the strength of the obtained composite were measured.
Were obtained. It became clear that the thermal conductivity, the coefficient of thermal expansion and the strength were not stable as compared with Example 5.

【0044】[0044]

【表10】 [Table 10]

【0045】[0045]

【発明の効果】本発明によれば、熱伝導率、熱膨張係数
及び強度等の特性が安定した金属−セラミックス複合体
を歩留まり高く製造することができ、信頼性の高い金属
−セラミックス複合体を安定して安価に提供できるの
で、産業上極めて有用である。
According to the present invention, a metal-ceramic composite having stable characteristics such as thermal conductivity, thermal expansion coefficient and strength can be manufactured with a high yield, and a highly reliable metal-ceramic composite can be obtained. Since it can be provided stably at low cost, it is extremely useful in industry.

【0046】本発明の方法で製造された金属−セラミッ
クス複合体は、その高熱伝導性、低熱膨張性及び軽量性
の点から、特に電子部品の放熱部品として、セラミック
ス回路基板のヒートシンク材として好適である。
The metal-ceramic composite produced by the method of the present invention is particularly suitable as a heat-radiating component for electronic components and a heat-sink material for ceramic circuit boards because of its high thermal conductivity, low thermal expansion and light weight. is there.

【0047】本発明の金属−セラミックス複合体は、そ
の軽量性と力学的特性から、ヒートシンク用途以外の、
例えば運輸、航空分野での金属代替用材料用途にも有用
である。
The metal-ceramic composite of the present invention has a light weight and a mechanical property, and therefore is not intended for heat sink use.
For example, it is also useful for metal replacement materials in the transportation and aviation fields.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質セラミックス構造体に金属を含浸
する複合体の製造方法であって、前記金属の凝固点温度
と前記凝固点温度より50℃高い温度との範囲内を、加
圧下、1〜20℃/Hrの降温速度で含浸することを特
徴とする複合体の製造方法。
1. A method for producing a composite in which a porous ceramic structure is impregnated with a metal, wherein a temperature within a range between a freezing point temperature of the metal and a temperature 50 ° C. higher than the freezing point temperature is 1 to 20 under pressure. A method for producing a composite, comprising impregnating at a temperature lowering rate of ° C./Hr.
【請求項2】 多孔質セラミックス構造体に金属を含浸
してなる複合体を、前記金属の凝固点温度と前記凝固点
温度より50℃高い温度との範囲内を、加圧下、1〜2
0℃/Hrの降温速度で処理することを特徴とする複合
体の製造方法。
2. A method comprising impregnating a composite obtained by impregnating a porous ceramic structure with a metal in a range between a freezing point temperature of the metal and a temperature 50 ° C. higher than the freezing point temperature by 1 to 2 under pressure.
A method for producing a composite, comprising treating at a temperature lowering rate of 0 ° C./Hr.
【請求項3】 多孔質セラミックス構造体が炭化珪素、
窒化アルミニウム、窒化珪素、アルミナ又はシリカから
なる群より選ばれる1種以上からなることを特徴とする
請求項1又は請求項2記載の複合体の製造方法。
3. The porous ceramic structure is silicon carbide,
The method for producing a composite according to claim 1, wherein the composite comprises at least one selected from the group consisting of aluminum nitride, silicon nitride, alumina, and silica.
【請求項4】 金属がアルミニウム又はマグネシウムの
いずれかを主成分とすることを特徴とする請求項1、請
求項2又は請求項3記載の複合体の製造方法。
4. The method for producing a composite according to claim 1, wherein the metal contains aluminum or magnesium as a main component.
【請求項5】 前記多孔質セラミックス構造体が空隙率
20〜50%の炭化珪素からなり、前記金属がアルミニ
ウムを主成分とすることを特徴とする請求項1、請求項
2、請求項3又は請求項4記載の複合体の製造方法。
5. The porous ceramic structure according to claim 1, wherein the porous ceramic structure is made of silicon carbide having a porosity of 20 to 50%, and the metal is mainly aluminum. A method for producing the composite according to claim 4.
JP31029297A 1997-11-12 1997-11-12 Method for producing composite Expired - Fee Related JP4204656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31029297A JP4204656B2 (en) 1997-11-12 1997-11-12 Method for producing composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31029297A JP4204656B2 (en) 1997-11-12 1997-11-12 Method for producing composite

Publications (2)

Publication Number Publication Date
JPH11140560A true JPH11140560A (en) 1999-05-25
JP4204656B2 JP4204656B2 (en) 2009-01-07

Family

ID=18003472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31029297A Expired - Fee Related JP4204656B2 (en) 1997-11-12 1997-11-12 Method for producing composite

Country Status (1)

Country Link
JP (1) JP4204656B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045161A1 (en) * 2000-11-29 2002-06-06 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
GB2385464B (en) * 2001-10-26 2004-04-21 Ngk Insulators Ltd Heat sink material
GB2395360A (en) * 2001-10-26 2004-05-19 Ngk Insulators Ltd Heat sink material
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof
US9028959B2 (en) 2008-10-03 2015-05-12 Sumitomo Electric Industries, Ltd. Composite member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481954B (en) * 2009-06-10 2015-04-21 Fujifilm Corp Colored curable composition, color resist, ink-jet ink, color filter and method for producing the same, solid-state image pickup device, image display device, liquid crystal display, organic el display, and colorant compound and tautomer thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
WO2002045161A1 (en) * 2000-11-29 2002-06-06 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
US7130174B2 (en) 2000-11-29 2006-10-31 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
US7207105B2 (en) 2000-11-29 2007-04-24 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing an integral ceramic circuit board
GB2385464B (en) * 2001-10-26 2004-04-21 Ngk Insulators Ltd Heat sink material
GB2395360A (en) * 2001-10-26 2004-05-19 Ngk Insulators Ltd Heat sink material
GB2395360B (en) * 2001-10-26 2005-03-16 Ngk Insulators Ltd Heat sink material
US6927421B2 (en) 2001-10-26 2005-08-09 Ngk Insulators, Ltd. Heat sink material
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof
US9028959B2 (en) 2008-10-03 2015-05-12 Sumitomo Electric Industries, Ltd. Composite member

Also Published As

Publication number Publication date
JP4204656B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP4880447B2 (en) High thermal conductivity heat sink
US20120063071A1 (en) Machinable metal/diamond metal matrix composite compound structure and method of making same
JP2000336438A (en) Metal-ceramics composite material and its manufacture
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JP4204656B2 (en) Method for producing composite
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JPH11130568A (en) Composite material and heat sink using the same
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP3698571B2 (en) Silicon carbide based composite and method for producing the same
JP4067165B2 (en) Composite and heat sink using the same
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP3813007B2 (en) Composite, heat sink using the same, and method of manufacturing composite
JP4080053B2 (en) Method for producing composite
KR20040084315A (en) Method for fabrication of high silicon Al-Si alloy for electronic packaging material by vacuum arc melting method
JP4407858B2 (en) Module structure
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP2001058254A (en) Production of metal-ceramics composite body
JP3847009B2 (en) Method for producing silicon carbide composite
JP2000256081A (en) Reforming of insulating substrate for mounting semiconductor
WO2017056202A1 (en) Method for producing aluminum alloy-silicon carbide composite body
JP3871421B2 (en) Complex and heat sink using it
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP2003073756A (en) Composite material and manufacturing method therefor
JP2001217364A (en) Al-SiC COMPOSITE
JP2003306730A (en) Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees