JP4204656B2 - Method for producing composite - Google Patents

Method for producing composite Download PDF

Info

Publication number
JP4204656B2
JP4204656B2 JP31029297A JP31029297A JP4204656B2 JP 4204656 B2 JP4204656 B2 JP 4204656B2 JP 31029297 A JP31029297 A JP 31029297A JP 31029297 A JP31029297 A JP 31029297A JP 4204656 B2 JP4204656 B2 JP 4204656B2
Authority
JP
Japan
Prior art keywords
composite
metal
temperature
thermal conductivity
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31029297A
Other languages
Japanese (ja)
Other versions
JPH11140560A (en
Inventor
正明 小畑
秀樹 廣津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP31029297A priority Critical patent/JP4204656B2/en
Publication of JPH11140560A publication Critical patent/JPH11140560A/en
Application granted granted Critical
Publication of JP4204656B2 publication Critical patent/JP4204656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICパッケージや多層配線基板等の半導体装置のヒートシンクに好適な、金属或いは合金とセラミックスとからなる複合体(以下、「金属−セラミックス複合体」又は単に「複合体」という)の製造方法に関する。
【0002】
【従来の技術】
半導体分野において、LSIの集積化や高速化がすすむことに加え、近年GTOやIGBT等のパワーデバイスの用途が拡大するなど、シリコンチップの発熱量は増加の一途をたどっている。それとともにシリコンチップから発熱した熱を逃がす回路基板、更にヒートシンクについても、より一層の高性能化が求められている。
【0003】
具体的には、回路基板については熱伝導性の良いアルミナ、窒化アルミニウム、窒化珪素等のセラミックス回路基板が用いられているし、これに接合して用いられるヒートシンク自体の熱伝導率が高いものが用いられる。更に、両者が組み合わされモジュール化された場合においては、前記回路基板とヒートシンクとの熱膨張率が近いことが望まれる。これは、実使用時に半導体素子から発生する熱等に原因して、発生した熱応力が回路基板を破壊し、回路基板の電気絶縁性や熱伝導性を劣化させ、モジュールとしての信頼性を低下させる原因になってしまうからである。
【0004】
上記の事情により、電気、或いは自動車などの車両用途等の高信頼性が重要とされる分野において、金属−セラミックス複合体(以下、複合体という)のヒートシンクへの適用が熱膨張率がセラミックス回路基板に近いという理由で進められている(特開昭64−83634号公報、特開平9−209058号公報)。
【0005】
前記複合体は、一般に、セラミックス粉、セラミックス繊維などを成形、必要な場合においては焼成して、多孔質セラミックス構造体を作製し、次に溶融金属を含浸し、これを冷却することにより作製される。溶融金属を含浸する方法としては、粉末冶金法に基づく方法、例えばダイキャスト法(特開平5−508350号公報)や溶湯鍛造法(まてりあ、第36巻、第1号、1997、40−46ページ)などの高圧鋳造による方法、自発浸透による方法(特開平2−197368号公報)等の各種の方法が知られている。
【0006】
【発明が解決しようとする課題】
しかし、上記の従来公知の方法で得られた金属−セラミックス複合体においては、溶融金属とセラミックスとが濡れにくいこと、セラミックス構造体中の気孔形状が安定しないこと、溶融金属の冷却条件が安定しないこと等が原因してか、得られる金属−セラミックス複合体の微細組織が不安定であり、その結果特性の安定した複合体が容易に得難いという問題がある。
【0007】
本発明者らは、上記問題点を解決し、半導体素子を搭載するセラミックス回路基板に適用した際に、実使用下でセラミックス回路基板が熱衝撃で破損する等の問題を生じず、また十分に熱伝導性に優れ半導体素子が誤動作し難い、高信頼性のヒートシンクを提供するべく検討した結果、本発明に至ったものである。
【0008】
【課題を解決するための手段】
本発明は、多孔質セラミックス構造体に金属を含浸する複合体の製造方法であって、前記金属の凝固点温度と前記凝固点温度より50℃高い温度との範囲内について、加圧下、1〜20℃/Hrの降温速度で含浸することを特徴とする複合体の製造方法である。また、本発明は、多孔質セラミックス構造体に金属を含浸してなる複合体を、前記金属の凝固点温度と前記凝固点温度より50℃高い温度との範囲内について、加圧下、1〜20℃/Hrの降温速度で処理することを特徴とする複合体の製造方法である。
【0009】
本発明は、多孔質セラミックス構造体が炭化珪素、窒化アルミニウム、窒化珪素、アルミナ又はシリカからなる群より選ばれる1種以上からなることを特徴とする前記の複合体の製造方法であり、好ましくは、金属がアルミニウム、又はマグネシウムのいずれかを主成分とすることを特徴とする前記の複合体の製造方法であり、更に好ましくは、前記多孔質セラミックス構造体が空隙率20〜50%の炭化珪素からなり、前記金属がアルミニウムを主成分とすることを特徴とする前記の複合体の製造方法である。
【0010】
【発明の実施の形態】
本発明者らは、低熱膨張率で、しかも高熱伝導率の金属−セラミックス複合体を安定して得るために、その製造条件について検討した結果、多孔質セラミックス構造体中で溶融金属が凝固する時の特定温度範囲での冷却条件が重要であり、該特定温度範囲での冷却速度を十分に遅くすることで、再現性のある微構造が達成でき、その結果として特性の安定した金属−セラミックス複合体が得られるという知見に基づき、本発明を完成したものである。
【0011】
前記特定の温度範囲とは、発明者らの実験的検討結果に基づけば、多孔質セラミックス構造体中に含浸する金属(或いは合金)の凝固点温度を下限とし、上限は該凝固点温度より50℃までの温度範囲である。ここで、凝固点温度とは、液相状態の溶融金属が完全に固相となる温度であり、例えば、純アルミニウムの場合では融点の660℃、アルミニウム−シリコン系の合金の場合では共晶温度の577℃である。尚、凝固点温度より50℃を越える温度から温度制御を開始しても、また凝固点温度以下まで制御を続けてもよいが、更なる特性安定の効果は期待できず、むしろ生産性の低下になるので効果的でない。
【0012】
本発明では、前記特定範囲、即ち金属の凝固点温度と前記凝固点温度より50℃高い温度との範囲内の冷却速度を、1〜20℃/Hrの降温速度とすることを特徴とする。前記温度範囲内を特定の冷却速度で制御するとき、得られる複合体の微構造は安定し、再現性を有し、その結果として、物性値の安定した複合体を再現性良く、高い歩留まりで、従って生産性良く得ることができる。降温速度の制御条件については、20℃/Hrを越える降温速度では、特性安定の効果は得られないことがある。また、冷却速度の下限については、特に制限するものでは無いが、1℃/Hr未満の降温速度では、更なる特性安定の効果はでず、むしろ生産性の低下になるので効果的でない。
【0013】
前記特定温度範囲における圧力条件については、加圧されていれば良く、また本発明の目的を達成する上からは前記圧力に上限を設ける必要はない。しかし、200MPaを越えると、多孔質セラミックス複合体に割れ、ヒビ等が生じる場合があり、好ましくないし、0.5MPa未満でも特性の安定化が十分でない場合があり、0.5MPa〜200MPaが好ましい範囲として選択される。更に実用的には1〜100MPaが最も良好な範囲として選択される。
【0014】
上記特定温度範囲で、加圧下に特定の冷却速度で、多孔質セラミックス構造体中に溶融金属を冷却、凝固させ、低熱膨張率と高熱伝導率を安定的に発現させることは、必ずしも含浸操作に限定されず、一度含浸操作を経て得られた金属−セラミックス複合体について適用することもできる。しかし、本発明の特定の温度範囲内を加圧下で特定の冷却速度とする処理を、含浸操作に引き続いて適用することが生産性の面で好ましい。更に、含浸操作を加圧下で行うダイキャスト法や溶湯鍛造法等の高圧鋳造法の場合には、温度条件を制御するのみで良く、操作性に優れ、好ましい。又、一度含浸操作を経て得られた金属−セラミックス複合体について適用する場合、上記操作を雰囲気加圧装置等を用いて、アルゴン、ヘリウム等の希ガス、或いは窒素等の非反応性ガス相の存在下で上記処理を行うこともできる。
【0015】
本発明の多孔質セラミックス構造体は、金属或は合金を含浸させることが可能な開放気孔を有し、しかも含浸操作において破壊することのない機械的強度を有する構造体であれば、どのようなものでも構わない。しかし、金属−セラミックス複合体を半導体回路基板用ヒートシンクに適用する場合、金属−セラミックス複合体の熱伝導率が高く、また温度上昇に伴って低下し難いこと、また熱膨張係数をアルミナ、窒化アルミニウム、窒化珪素等のセラミック回路基板と同程度に小さいことが必要であるということから、高熱伝導でありかつ低熱膨張率の炭化珪素、窒化アルミニウム、窒化珪素並びにアルミナ等が好適である。
【0016】
又、シリカは、熱伝導率は前記セラミックスよりも小さいものの、熱膨張係数が小さいため、少ない添加量で金属−シリカ複合体の熱膨張係数をセラミック基板の熱膨張係数に近づけることができるという特徴がある。一般に、金属−セラミックス複合体に関して、その熱伝導率の温度依存性については、該複合体中のセラミックス含有量が大きいほど著しく低下するが、前記の特徴から、シリカを用いて得られる複合体は温度上昇時の熱伝導率の低下が少なく、前記セラミックスを使用したときと同様の効果をえることができるので、やはり好ましい。
【0017】
上述したセラミックスのうち、炭化珪素はそれ自体の熱伝導率が、高熱伝導率の金属であるアルミニウムのそれよりも高く、炭化珪素を使用する場合には、金属単味の熱伝導率よりも高い熱伝導率を有する金属−セラミックス複合体を得ることができるので、特に好ましく選択される。
【0018】
本発明に用いる金属については、本発明の目的を達成することができれば、どのようなものであっっても構わないが、高熱伝導性、軽量性を達成する目的から、アルミニウム、マグネシウム等の軽合金又はそれらの合金が好ましい。アルミニウム合金の場合には、鋳造のしやすさ、高熱伝導性の発現の点からSi含有量が4〜10%のAC2A、AC2B、AC4A、AC4B、AC4C、AC8B、AC4D、AC8C、ADC10、ADC12等の合金が特に好ましい。
【0019】
上記のセラミックスと金属の組合せに関して、金属としてアルミニウム或いはアルミニウム系合金、セラミックスとして炭化珪素を用いたアルミニウム−炭化珪素複合体は、軽量、高熱伝導、セラミック基板との熱膨張率の適合性の点で特に優れた組合せである。本発明者らは、このアルミニウム−炭化珪素複合体について、更にいろいろ検討した結果、炭化珪素含有量には本発明の目的を達するのに好適な範囲が存在することを見いだし、本発明に至ったものである。即ち、アルミニウム−炭化珪素複合体中の炭化珪素含有量が50体積%未満では熱膨張係数が高くなることがあり、この場合には、セラミック基板との熱膨張率差に起因する前記問題が生じ易くなる。また、セラミックスが高温で熱伝導率を低下させることに原因して、80体積%を越える炭化珪素含有量の場合では、半導体搭載用回路基板のヒートシンクとして用いた時に、実使用時の半導体素子等からの発熱による温度上昇によって、熱伝導率の低下が著しくなるという問題が顕著になってくる。以上の理由から、アルミニウム−炭化珪素複合体中の炭化珪素含有量は50〜80体積%が好ましく、そして、前記条件を達成するために、多孔質炭化珪素の構造体の気孔率は50〜20体積%が好適である。
【0020】
以下、実施例及び比較例に基づき、本発明を更に詳細に説明する。
【0021】
【実施例】
[実施例1]
平均粒径50μmの炭化珪素にバインダーとしてシリカゾルを固形分濃度で5wt%混合し、プレス成形した後空気中900℃で2時間焼成し、大きさ35mm×35mm×3mm、気孔率40%の多孔質炭化珪素構造体を作製した。
【0022】
次に、内径50mm、肉厚25mmの金型を用意し、該金型外表面から深さ20mmの孔を設け、該孔中に金型内表面温度測定用熱電対をセットした。この金型をバーナーで加熱し、金型の内面温度の接触温度計による実測値と、その際の金型内表面温度測定用熱電対の測定値に差がないことを確認した。
【0023】
前記の多孔質炭化珪素構造体を800℃で予熱した後、バーナ加熱により内面温度を710℃に保持した前記金型に入れ、900℃で溶融した純アルミニウムを金型に流し込み、押し棒をセットし、100MPaの圧力で加圧した。
【0024】
加圧状態のまま冷却し、金型内表面温度測定用熱電対の測定値を見ながらバーナーの強さを調整し、710℃から660℃までの降温速度を10℃/Hrに制御し、660℃でバーナーを切り100℃まで冷却したところで加圧を終了した。
【0025】
同一の方法でアルミニウム−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定した。この結果を表1に示す。
【0026】
【表1】

Figure 0004204656
【0027】
[実施例2]
溶融金属の流し込み時の金型の内面温度が627℃、降温速度を制御した温度範囲が627〜577℃、金属がアルミニウム−6wt%シリコン合金、該合金の溶融温度が800℃であること以外は実施例1と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、その結果を表2に示した。
【0028】
【表2】
Figure 0004204656
【0029】
[実施例3]
降温速度が20℃/Hrであること以外は実施例2と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、その結果を表3に示した。
【0030】
【表3】
Figure 0004204656
【0031】
[実施例4]
圧力が200MPaであること以外は実施例2と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表4に示す結果を得た。
【0032】
【表4】
Figure 0004204656
【0033】
[実施例5]
圧力が0.5MPaであること以外は実施例2と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表5に示す結果を得た。
【0034】
【表5】
Figure 0004204656
【0035】
[実施例6]
圧力が220MPaであること以外は実施例4と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表6に示す結果を得た。
【0036】
【表6】
Figure 0004204656
【0037】
[比較例1]
650℃〜600℃までの降温速度を10℃/Hr、600℃以下の降温速度を25℃/Hr以上としたこと以外は実施例2と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表7に示す結果を得た。実施例2と比較して、熱伝導率、熱膨張係数及び強度が安定しないことが明かとなった。
【0038】
【表7】
Figure 0004204656
【0039】
[比較例2]
600℃〜550℃までの降温速度を10℃/Hr、550℃以下の降温速度を25℃/Hr以上としたこと以外は実施例2と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表8に示す結果を得た。実施例2と比較して、熱伝導率、熱膨張係数及び強度が安定しないことが明かとなった。
【0040】
【表8】
Figure 0004204656
【0041】
[比較例3]
降温速度が25℃/Hrであること以外は実施例3と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表9に示す結果を得た。実施例3と比較して、熱伝導率、熱膨張係数及び強度が安定しないことが明かとなった。
【0042】
【表9】
Figure 0004204656
【0043】
[比較例4]
圧力が常圧(0.1MPa)であること以外は実施例5と同一の方法でアルミニウム合金−炭化珪素複合体を3サンプル作製し、得られた複合体の熱伝導率、熱膨張係数及び強度を測定し、表10に示す結果を得た。実施例5と比較して、熱伝導率、熱膨張係数及び強度が安定しないことが明かとなった。
【0044】
【表10】
Figure 0004204656
【0045】
【発明の効果】
本発明によれば、熱伝導率、熱膨張係数及び強度等の特性が安定した金属−セラミックス複合体を歩留まり高く製造することができ、信頼性の高い金属−セラミックス複合体を安定して安価に提供できるので、産業上極めて有用である。
【0046】
本発明の方法で製造された金属−セラミックス複合体は、その高熱伝導性、低熱膨張性及び軽量性の点から、特に電子部品の放熱部品として、セラミックス回路基板のヒートシンク材として好適である。
【0047】
本発明の金属−セラミックス複合体は、その軽量性と力学的特性から、ヒートシンク用途以外の、例えば運輸、航空分野での金属代替用材料用途にも有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention manufactures a composite made of metal or an alloy and ceramics (hereinafter referred to as “metal-ceramic composite” or simply “composite”) suitable for a heat sink of a semiconductor device such as an IC package or a multilayer wiring board. Regarding the method.
[0002]
[Prior art]
In the semiconductor field, the amount of heat generated by silicon chips has been increasing steadily, in addition to the progress of integration and speeding up of LSIs, and the expansion of applications of power devices such as GTO and IGBT. At the same time, circuit boards that release heat generated from silicon chips and heat sinks are also required to have higher performance.
[0003]
Specifically, ceramic circuit boards such as alumina, aluminum nitride, and silicon nitride with good thermal conductivity are used for circuit boards, and heat sinks that are used by joining them have high thermal conductivity. Used. Furthermore, when both are combined into a module, it is desirable that the thermal expansion coefficients of the circuit board and the heat sink are close. This is due to the heat generated from the semiconductor elements during actual use, etc., and the generated thermal stress destroys the circuit board, degrading the electrical insulation and thermal conductivity of the circuit board, and reducing the reliability of the module. It is because it becomes the cause to make it.
[0004]
In fields where high reliability is important, such as electricity or vehicle applications such as automobiles due to the above circumstances, the application of metal-ceramic composites (hereinafter referred to as composites) to heat sinks has a coefficient of thermal expansion of ceramic circuits. The reason is that it is close to the substrate (Japanese Patent Laid-Open No. 64-83634, Japanese Patent Laid-Open No. 9-209058).
[0005]
The composite is generally produced by forming ceramic powder, ceramic fiber, etc., and firing it if necessary to produce a porous ceramic structure, then impregnating with molten metal and cooling it. The As a method for impregnating the molten metal, a method based on a powder metallurgy method, for example, a die casting method (Japanese Patent Laid-Open No. 5-508350) or a molten metal forging method (Materia, Vol. 36, No. 1, 1997, 40- Various methods such as a method by high pressure casting such as page 46) and a method by spontaneous infiltration (Japanese Patent Laid-Open No. 2-197368) are known.
[0006]
[Problems to be solved by the invention]
However, in the metal-ceramic composite obtained by the above known method, the molten metal and the ceramic are difficult to wet, the pore shape in the ceramic structure is not stable, and the cooling condition of the molten metal is not stable. For this reason, there is a problem that the microstructure of the obtained metal-ceramic composite is unstable, and as a result, it is difficult to easily obtain a composite having stable characteristics.
[0007]
The inventors have solved the above-mentioned problems, and when applied to a ceramic circuit board on which a semiconductor element is mounted, the ceramic circuit board does not cause a problem such as damage due to thermal shock under actual use, and is sufficiently As a result of studies to provide a highly reliable heat sink that is excellent in thermal conductivity and in which a semiconductor element is unlikely to malfunction, the present invention has been achieved.
[0008]
[Means for Solving the Problems]
The present invention is a method for producing a composite in which a porous ceramic structure is impregnated with a metal, wherein the metal is within a range between a freezing point temperature of the metal and a temperature higher by 50 ° C. than the freezing point temperature. / Hr impregnation at a temperature lowering rate. Further, the present invention provides a composite formed by impregnating a porous ceramic structure with a metal at a pressure of 1 to 20 ° C./pressure under a range of a freezing point temperature of the metal and a temperature higher by 50 ° C. than the freezing point temperature. It is the manufacturing method of the composite_body | complex characterized by processing at the temperature fall rate of Hr.
[0009]
The present invention is the above-described method for producing a composite, wherein the porous ceramic structure is composed of one or more selected from the group consisting of silicon carbide, aluminum nitride, silicon nitride, alumina, or silica, preferably The method for producing a composite according to claim 1, wherein the metal is mainly composed of aluminum or magnesium, more preferably silicon carbide having a porosity of 20 to 50%. And the metal is mainly composed of aluminum.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to stably obtain a metal-ceramic composite having a low coefficient of thermal expansion and high thermal conductivity, the present inventors have studied the production conditions, and as a result, when the molten metal solidifies in the porous ceramic structure. The cooling conditions in the specific temperature range are important, and by sufficiently slowing the cooling rate in the specific temperature range, a reproducible microstructure can be achieved, and as a result, the metal-ceramic composite with stable characteristics The present invention has been completed based on the knowledge that a body can be obtained.
[0011]
The specific temperature range is based on the results of experimental studies by the inventors, with the lower limit of the freezing point temperature of the metal (or alloy) impregnated in the porous ceramic structure, and the upper limit is up to 50 ° C. from the freezing point temperature. Temperature range. Here, the freezing point temperature is a temperature at which a molten metal in a liquid phase is completely in a solid phase. For example, the melting point is 660 ° C. in the case of pure aluminum, and the eutectic temperature in the case of an aluminum-silicon alloy. 577 ° C. Although temperature control may be started from a temperature exceeding 50 ° C. above the freezing point temperature or the control may be continued to below the freezing point temperature, no further effect of stabilizing the characteristics can be expected, rather the productivity is lowered. So it is not effective.
[0012]
In the present invention, the cooling rate within the specific range, that is, the range between the freezing point temperature of the metal and the temperature higher by 50 ° C. than the freezing point temperature, is a temperature decreasing rate of 1 to 20 ° C./Hr. When the temperature range is controlled at a specific cooling rate, the microstructure of the resulting composite is stable and reproducible. As a result, a composite with stable physical properties can be obtained with good reproducibility and high yield. Therefore, it can be obtained with good productivity. With regard to the temperature-decreasing rate control condition, the effect of stabilizing the characteristics may not be obtained at a temperature-decreasing rate exceeding 20 ° C./Hr. Further, the lower limit of the cooling rate is not particularly limited. However, a temperature lowering rate of less than 1 ° C./Hr is not effective because it does not further stabilize the characteristics but rather decreases productivity.
[0013]
About the pressure conditions in the said specific temperature range, what is necessary is just to pressurize, and in order to achieve the objective of this invention, it is not necessary to provide an upper limit to the said pressure. However, if it exceeds 200 MPa, cracks and cracks may occur in the porous ceramic composite, which is not preferred, and even if it is less than 0.5 MPa, stabilization of the characteristics may not be sufficient, and 0.5 MPa to 200 MPa is a preferred range Selected as. Further, practically, 1 to 100 MPa is selected as the best range.
[0014]
Cooling and solidifying the molten metal in the porous ceramic structure at a specific cooling rate under pressure in the above specific temperature range, and stably exhibiting a low coefficient of thermal expansion and high thermal conductivity is not necessarily an impregnation operation. Without being limited, the present invention can also be applied to a metal-ceramic composite obtained once through an impregnation operation. However, in terms of productivity, it is preferable to apply the treatment for setting a specific cooling rate under pressure within a specific temperature range of the present invention following the impregnation operation. Further, in the case of a high pressure casting method such as a die casting method or a molten metal forging method in which the impregnation operation is performed under pressure, it is only necessary to control the temperature condition, and the operability is excellent and preferable. In addition, when applying to a metal-ceramic composite obtained once through impregnation operation, the above operation is performed using an atmosphere pressurizing device or the like, in a rare gas such as argon or helium, or a non-reactive gas phase such as nitrogen. The above processing can also be performed in the presence.
[0015]
The porous ceramic structure of the present invention may be any structure as long as it has open pores that can be impregnated with metal or alloy and has mechanical strength that does not break in the impregnation operation. It does n’t matter. However, when the metal-ceramic composite is applied to a heat sink for a semiconductor circuit board, the metal-ceramic composite has a high thermal conductivity and is unlikely to decrease as the temperature rises. Since it is necessary to be as small as a ceramic circuit board such as silicon nitride, silicon carbide, aluminum nitride, silicon nitride, alumina, etc. having high thermal conductivity and low thermal expansion are preferable.
[0016]
In addition, although silica has a thermal conductivity smaller than that of the ceramics, the thermal expansion coefficient is small, so that the thermal expansion coefficient of the metal-silica composite can be brought close to the thermal expansion coefficient of the ceramic substrate with a small addition amount. There is. In general, regarding the metal-ceramic composite, the temperature dependence of the thermal conductivity decreases significantly as the ceramic content in the composite increases. From the above characteristics, the composite obtained using silica is It is also preferable because there is little decrease in thermal conductivity when the temperature rises, and the same effect as when the ceramic is used can be obtained.
[0017]
Of the ceramics described above, silicon carbide has a higher thermal conductivity than that of aluminum, which is a metal having a high thermal conductivity. When silicon carbide is used, it is higher than the thermal conductivity of a single metal. Since a metal-ceramic composite having thermal conductivity can be obtained, it is particularly preferably selected.
[0018]
The metal used in the present invention may be any metal as long as the object of the present invention can be achieved, but light metals such as aluminum and magnesium can be used to achieve high thermal conductivity and light weight. Alloys or their alloys are preferred. In the case of an aluminum alloy, AC2A, AC2B, AC4A, AC4B, AC4C, AC8B, AC4D, AC8C, ADC10, ADC12, etc. with a Si content of 4 to 10% from the standpoint of easy casting and high thermal conductivity The alloy is particularly preferred.
[0019]
Regarding the combination of ceramics and metals described above, aluminum-silicon carbide composites using aluminum or an aluminum-based alloy as the metal and silicon carbide as the ceramic are light in weight, high in thermal conductivity, and compatible with the thermal expansion coefficient of the ceramic substrate. A particularly excellent combination. As a result of further investigations on this aluminum-silicon carbide composite, the present inventors have found that there is a range suitable for achieving the object of the present invention in the silicon carbide content, and have led to the present invention. Is. That is, if the silicon carbide content in the aluminum-silicon carbide composite is less than 50% by volume, the thermal expansion coefficient may be high. In this case, the above-mentioned problem due to the difference in thermal expansion coefficient from the ceramic substrate occurs. It becomes easy. In addition, when the ceramic has a silicon carbide content exceeding 80% by volume due to a decrease in thermal conductivity at high temperatures, when it is used as a heat sink for a circuit board for mounting a semiconductor, the semiconductor element in actual use, etc. As the temperature rises due to heat generated from the heat, the problem of a significant decrease in thermal conductivity becomes significant. For the above reasons, the silicon carbide content in the aluminum-silicon carbide composite is preferably 50 to 80% by volume, and in order to achieve the above conditions, the porosity of the porous silicon carbide structure is 50 to 20%. Volume% is preferred.
[0020]
Hereinafter, based on an Example and a comparative example, this invention is demonstrated still in detail.
[0021]
【Example】
[Example 1]
Silica sol as a binder is mixed with silicon carbide having an average particle diameter of 50 μm as a binder at a solid content concentration of 5 wt%, press-molded, and then fired in air at 900 ° C. for 2 hours. A silicon carbide structure was produced.
[0022]
Next, a mold having an inner diameter of 50 mm and a wall thickness of 25 mm was prepared, a hole having a depth of 20 mm was provided from the outer surface of the mold, and a thermocouple for measuring the inner surface temperature of the mold was set in the hole. This mold was heated with a burner, and it was confirmed that there was no difference between the measured value of the inner surface temperature of the mold with a contact thermometer and the measured value of the thermocouple for measuring the inner surface temperature of the mold.
[0023]
After preheating the porous silicon carbide structure at 800 ° C., it is put into the mold where the inner surface temperature is maintained at 710 ° C. by burner heating, and pure aluminum melted at 900 ° C. is poured into the mold, and a push rod is set. And pressurized at a pressure of 100 MPa.
[0024]
Cooling in a pressurized state, adjusting the strength of the burner while observing the measured value of the thermocouple for measuring the inner surface temperature of the mold, controlling the temperature drop rate from 710 ° C. to 660 ° C. to 10 ° C./Hr, 660 The pressurization was terminated when the burner was cut at 100 ° C. and cooled to 100 ° C.
[0025]
Three samples of an aluminum-silicon carbide composite were produced by the same method, and the thermal conductivity, thermal expansion coefficient, and strength of the obtained composite were measured. The results are shown in Table 1.
[0026]
[Table 1]
Figure 0004204656
[0027]
[Example 2]
The inner surface temperature of the mold at the time of pouring the molten metal is 627 ° C., the temperature range in which the temperature drop rate is controlled is 627-577 ° C., the metal is an aluminum-6 wt% silicon alloy, and the melting temperature of the alloy is 800 ° C. Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 1, and the thermal conductivity, thermal expansion coefficient, and strength of the resulting composite were measured. The results are shown in Table 2.
[0028]
[Table 2]
Figure 0004204656
[0029]
[Example 3]
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the temperature drop rate was 20 ° C./Hr, and the thermal conductivity, thermal expansion coefficient, and strength of the obtained composite were measured. The results are shown in Table 3.
[0030]
[Table 3]
Figure 0004204656
[0031]
[Example 4]
Three samples of an aluminum alloy-silicon carbide composite were produced in the same manner as in Example 2 except that the pressure was 200 MPa, and the thermal conductivity, thermal expansion coefficient, and strength of the resulting composite were measured. The result shown in was obtained.
[0032]
[Table 4]
Figure 0004204656
[0033]
[Example 5]
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 2 except that the pressure was 0.5 MPa, and the thermal conductivity, thermal expansion coefficient and strength of the resulting composite were measured, The results shown in Table 5 were obtained.
[0034]
[Table 5]
Figure 0004204656
[0035]
[Example 6]
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 4 except that the pressure was 220 MPa, and the thermal conductivity, thermal expansion coefficient, and strength of the resulting composite were measured. The result shown in was obtained.
[0036]
[Table 6]
Figure 0004204656
[0037]
[Comparative Example 1]
Three samples of an aluminum alloy-silicon carbide composite by the same method as in Example 2 except that the temperature decrease rate from 650 ° C. to 600 ° C. was 10 ° C./Hr and the temperature decrease rate of 600 ° C. or less was 25 ° C./Hr or more. The thermal conductivity, thermal expansion coefficient and strength of the composite obtained and measured were measured, and the results shown in Table 7 were obtained. Compared with Example 2, it became clear that thermal conductivity, a thermal expansion coefficient, and intensity | strength were not stabilized.
[0038]
[Table 7]
Figure 0004204656
[0039]
[Comparative Example 2]
Three samples of the aluminum alloy-silicon carbide composite by the same method as in Example 2 except that the temperature decrease rate from 600 ° C. to 550 ° C. was 10 ° C./Hr, and the temperature decrease rate of 550 ° C. or less was 25 ° C./Hr or more. The thermal conductivity, thermal expansion coefficient and strength of the composite obtained and measured were measured, and the results shown in Table 8 were obtained. Compared with Example 2, it became clear that thermal conductivity, a thermal expansion coefficient, and intensity | strength were not stabilized.
[0040]
[Table 8]
Figure 0004204656
[0041]
[Comparative Example 3]
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 3 except that the temperature drop rate was 25 ° C./Hr, and the thermal conductivity, thermal expansion coefficient, and strength of the obtained composite were measured. The results shown in Table 9 were obtained. As compared with Example 3, it was revealed that the thermal conductivity, the thermal expansion coefficient and the strength were not stable.
[0042]
[Table 9]
Figure 0004204656
[0043]
[Comparative Example 4]
Three samples of an aluminum alloy-silicon carbide composite were prepared in the same manner as in Example 5 except that the pressure was normal pressure (0.1 MPa), and the thermal conductivity, thermal expansion coefficient and strength of the resulting composite were obtained. And the results shown in Table 10 were obtained. Compared with Example 5, it became clear that thermal conductivity, a thermal expansion coefficient, and intensity | strength were not stabilized.
[0044]
[Table 10]
Figure 0004204656
[0045]
【The invention's effect】
According to the present invention, a metal-ceramic composite having stable characteristics such as thermal conductivity, thermal expansion coefficient, and strength can be produced with a high yield, and a highly reliable metal-ceramic composite can be stably and inexpensively produced. Since it can provide, it is very useful industrially.
[0046]
The metal-ceramic composite produced by the method of the present invention is suitable as a heat sink material for a ceramic circuit board, particularly as a heat radiating component for an electronic component, because of its high thermal conductivity, low thermal expansion and light weight.
[0047]
The metal-ceramic composite of the present invention is useful for metal substitute materials other than heat sink applications such as transportation and aviation due to its light weight and mechanical properties.

Claims (5)

多孔質セラミックス構造体に金属を含浸する複合体の製造方法であって、前記金属の凝固点温度と前記凝固点温度より50℃高い温度との範囲内を、加圧下、1〜20℃/Hrの降温速度で含浸することを特徴とする複合体の製造方法。 A method for producing a composite in which a porous ceramic structure is impregnated with a metal, wherein the temperature falls within a range between a freezing point temperature of the metal and a temperature higher by 50 ° C. than the freezing point temperature under a pressure of 1 to 20 ° C./Hr. A method for producing a composite comprising impregnating at a rate. 多孔質セラミックス構造体に金属を含浸してなる複合体を、前記金属の凝固点温度と前記凝固点温度より50℃高い温度との範囲内を、0.5MPa以上の加圧下、1〜20℃/Hrの降温速度で処理することを特徴とする複合体の製造方法。A composite formed by impregnating a porous ceramic structure with a metal is applied within a range between the freezing point temperature of the metal and a temperature higher than the freezing point temperature by 50 ° C. under a pressure of 0.5 MPa or more and 1-20 ° C./Hr. A method for producing a composite, characterized in that the composite is processed at a temperature lowering rate. 多孔質セラミックス構造体が炭化珪素、窒化アルミニウム、窒化珪素、アルミナ又はシリカからなる群より選ばれる1種以上からなることを特徴とする請求項1又は請求項2記載の複合体の製造方法。 The method for producing a composite according to claim 1 or 2, wherein the porous ceramic structure comprises at least one selected from the group consisting of silicon carbide, aluminum nitride, silicon nitride, alumina, or silica. 金属がアルミニウム又はマグネシウムのいずれかを78.7質量%以上含有することを特徴とする請求項1、請求項2又は請求項3記載の複合体の製造方法。4. The method for producing a composite according to claim 1, wherein the metal contains 78.7% by mass or more of either aluminum or magnesium. 前記多孔質セラミックス構造体が空隙率20〜50%の炭化珪素からなり、前記金属がアルミニウムを78.7質量%以上含有することを特徴とする請求項1、請求項2、請求項3又は請求項4記載の複合体の製造方法。The porous ceramic structure is made of silicon carbide having a porosity of 20 to 50%, and the metal contains 78.7% by mass or more of aluminum. Item 5. A method for producing the composite according to Item 4.
JP31029297A 1997-11-12 1997-11-12 Method for producing composite Expired - Fee Related JP4204656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31029297A JP4204656B2 (en) 1997-11-12 1997-11-12 Method for producing composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31029297A JP4204656B2 (en) 1997-11-12 1997-11-12 Method for producing composite

Publications (2)

Publication Number Publication Date
JPH11140560A JPH11140560A (en) 1999-05-25
JP4204656B2 true JP4204656B2 (en) 2009-01-07

Family

ID=18003472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31029297A Expired - Fee Related JP4204656B2 (en) 1997-11-12 1997-11-12 Method for producing composite

Country Status (1)

Country Link
JP (1) JP4204656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405261B (en) * 2009-06-10 2014-10-15 富士胶片株式会社 Colored curable composition, color resist, ink-jet ink, color filter and method for producing the same, solid-state image pickup device, image display device, liquid crystal display, organic EL display, and colorant compound and tautomer thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160860B1 (en) 1999-12-24 2010-10-27 NGK Insulators, Ltd. Heat sink material and manufacturing method thereof
AU2002218493A1 (en) 2000-11-29 2002-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
JP2003201528A (en) * 2001-10-26 2003-07-18 Ngk Insulators Ltd Heat sink material
GB2395360B (en) * 2001-10-26 2005-03-16 Ngk Insulators Ltd Heat sink material
JP5061018B2 (en) * 2008-04-09 2012-10-31 電気化学工業株式会社 Aluminum-graphite-silicon carbide composite and method for producing the same
WO2010038483A1 (en) 2008-10-03 2010-04-08 住友電気工業株式会社 Composite member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405261B (en) * 2009-06-10 2014-10-15 富士胶片株式会社 Colored curable composition, color resist, ink-jet ink, color filter and method for producing the same, solid-state image pickup device, image display device, liquid crystal display, organic EL display, and colorant compound and tautomer thereof

Also Published As

Publication number Publication date
JPH11140560A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP4880447B2 (en) High thermal conductivity heat sink
EP0987231B1 (en) Silicon carbide based composite material and manufacturing method thereof
US20120063071A1 (en) Machinable metal/diamond metal matrix composite compound structure and method of making same
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JP2000336438A (en) Metal-ceramics composite material and its manufacture
JP4204656B2 (en) Method for producing composite
CN107848902A (en) Aluminium silicon carbide matter complex and its manufacture method
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JP3698571B2 (en) Silicon carbide based composite and method for producing the same
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP4067165B2 (en) Composite and heat sink using the same
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
KR20100126539A (en) Process for production of massive mixture of aluminium nitride and aluminium
JP3813007B2 (en) Composite, heat sink using the same, and method of manufacturing composite
JP4080053B2 (en) Method for producing composite
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP3871421B2 (en) Complex and heat sink using it
JP3847009B2 (en) Method for producing silicon carbide composite
JP4407858B2 (en) Module structure
WO2017056202A1 (en) Method for producing aluminum alloy-silicon carbide composite body
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP2001058254A (en) Production of metal-ceramics composite body
JP4850357B2 (en) Method for producing high thermal conductivity material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees