JPH11136911A - 電磁コイルのモールド方法 - Google Patents

電磁コイルのモールド方法

Info

Publication number
JPH11136911A
JPH11136911A JP31461697A JP31461697A JPH11136911A JP H11136911 A JPH11136911 A JP H11136911A JP 31461697 A JP31461697 A JP 31461697A JP 31461697 A JP31461697 A JP 31461697A JP H11136911 A JPH11136911 A JP H11136911A
Authority
JP
Japan
Prior art keywords
electromagnetic coil
filler
electromagnetic
molding
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31461697A
Other languages
English (en)
Inventor
Seiya Matsumura
盛也 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP31461697A priority Critical patent/JPH11136911A/ja
Publication of JPH11136911A publication Critical patent/JPH11136911A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

(57)【要約】 【課題】 体積充填率と熱伝導率が大きく、取り扱い及
び温度管理が容易で、しかも製造コストを低減した電磁
コイルのモールド方法を提供する。 【解決手段】 粉末状の充填剤と揮発溶剤とを混合する
ことにより混合物を得、前記混合物を電磁コイル3に含
浸し、加熱することにより前記揮発溶剤を蒸発させ、そ
の後、前記電磁コイル3を熱硬化性樹脂に含浸し、加熱
することにより前記熱硬化性樹脂を硬化させる構成とし
た。具体的には、上記粉末状の充填剤として、シリカ、
アルミナ又はチタニア若しくは窒化珪素等のニューセラ
ミックス類を用い、上記揮発溶剤として、アルコール、
ケトン類、水又は芳香族溶剤を用いると良い。本発明の
電磁コイル3のモールド法を適用する機器として、電磁
クラッチ装置において電磁コイル3と電磁クラッチのシ
ェル1に、又は電動機において、電磁コイル3と電動機
コアに適用できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電動機又は電磁ク
ラッチ等に使用される電磁コイルのモールド方法に係
り、特に、電磁コイルの温度上昇を抑えるモールド方法
の改良に関する。
【0002】
【従来の技術】従来より、電磁コイルの固定のため、及
び電磁コイルに発生したジュール熱を速やかに外部に放
出するために、電磁コイルのモールド用にワニスや樹脂
等のモールド材が用いられている。電磁コイルの熱伝導
率は、電磁コイルと電磁コイルを挿入しているシェルの
隙間にモールド材が充填されている割合を示す体積充填
率や、モールド材の熱伝導率等の材質等に依存する。即
ち、電磁コイルの熱伝導を良好にして、ジュール熱を速
やかに放出することにより電磁コイルの温度上昇を低く
抑えると、電流密度を大きくすることができ、従って、
磁極に励磁される電磁力を大きくできるので、当該電磁
コイルを用いた電動機又は電磁クラッチ等の機器の大容
量化が図れる。一方、電磁コイルによって励磁される磁
極の電磁力を同一に保持したまま、電流密度を大きくで
きるので、当該電磁コイルを用いた機器の小型化を図る
ことができる。
【0003】この電磁コイルにモールド材を充填する方
法は、電磁コイルを取り付ける電動機等の機器や、モー
ルド材に対応して次のような先行技術が存在する。その
一例として、電磁石の励磁用コイルに関しては、特開昭
58−68911では、粒子径が約200オングストロ
ームの磁性体粒子を炭化水素系溶媒中に分散させて、励
磁用コイルの巻線間に充填し、熱伝導を良くする方法が
開示されている。また、特開昭55−63538では、
回転電機の界磁装置に用いる電磁コイルに関して、界磁
鉄心とコイルの隙間に薄板状の充填物を詰めた後に、ワ
ニスを含浸して電磁コイルの熱伝導性を良くする方法が
開示されている。
【0004】次に、電磁クラッチに用いられる電磁コイ
ルについて、熱伝導率を向上させる充填剤と、マトリッ
クスである樹脂成分とを混合した樹脂組成物で電磁コイ
ルをモールドし、固定する場合に採用されていた「流し
込み法」や「射出成形法」について図3乃至図5を用い
て説明する。 流し込み法:先ず、「流し込み法」の概要を図3を用い
て説明する。図3において、1は電磁クラッチの電磁コ
イルを挿入するためのシェルである。2は、熱伝導率を
向上させる充填剤と樹脂成分とを混合した樹脂組成物
で、樹脂組成物用容器4に入れられている。3は、当該
モールド法の対象物である電磁コイルである。なお、電
磁クラッチの概略構成、及び樹脂組成物2でモールドさ
れた電磁コイル3が挿入されている箇所を図5(B)に
示す。なお、図5(A)、(B)において、20は電磁
クラッチ、21は電磁コイルのリード線、22は絶縁部
である。「流し込み法」では、先ず、モールドの対象物
である電磁コイル3をシェル1内に挿入し、図3に示す
ように、電磁コイル3とシェル1内部にできた隙間に樹
脂組成物2を流し込み、その後、恒温槽(図示せず)内
に入れて、加熱硬化させる。
【0005】射出成形法:次に、「射出成形法」を図4
を用いて説明する。図4において、10は当該モールド
方法に用いる射出成形機で、射出成形機10は上金型1
1、成形機受け金型12、ピストン13、ヒータ14、
上金型11の射出口15、真空吸引口16と上金型11
内に形成したシリンダ17により構成される。「射出成
形法」では、先ず、電磁コイル3を挿入したシェル1を
射出成形機10の成形機受け金型12に置き、熱を加え
て軟化させた樹脂組成物2を上金型11内に形成したシ
リンダ17内に挿入し、この樹脂組成物2をピストン1
3で押さえ、上金型11の射出口15から射出して電磁
コイル3をモールドする。次に、電磁コイル3をモール
ドした後、受け金型12のヒータ14により樹脂組成物
2を加熱硬化させる。
【0006】
【発明が解決しようとする課題】ところで、上述した
「流し込み法」や「射出成形法」のように、充填剤と樹
脂成分とを電磁コイルをモールドする前に混合する方法
では、樹脂組成物の粘度が高くなるために、流動性が低
くなり、次に示すような欠陥がある。先ず、「流し込み
法」での問題は以下の通りである。 (1)電磁コイルをシェルに挿入した際の電磁コイルと
シェルの隙間を完全に充填するには、樹脂組成物を10
0℃程度に加熱し、粘度を下げる必要があるが、樹脂組
成物は加熱されると硬化反応が急速に進行して、粘度が
上昇するので、加熱工程の厳密な管理が必要である。 (2)流動性をある程度以上に保つ必要から、充填剤の
含有率を高くすることができない。例えば、従来の樹脂
成分では、後述する従来例1に示すように、充填剤の体
積充填率は、通常30乃至40%で、最高でも50%程
度で、電磁コイルの熱放散性が低いという問題がある。
【0007】上述した欠陥を具体的に示すために、「流
し込み法」により電磁コイルをモールドした従来例1に
ついて説明する。 従来例1(流し込み法):充填剤としてシリカを、また
樹脂材料としてエポキシ樹脂を用い、それらを混合した
組成物を、図3に示すように、電磁コイル3を挿入した
シェル1に流し込み、これを恒温槽で加熱することによ
り、電磁コイル3をシェル1にモールド固定する。この
ようにしてモールドされた電磁コイル3の体積充電率と
熱伝導率、また、電磁コイル3に定格電流を通電し、電
磁コイル3の飽和温度上昇値を夫々測定したが、その測
定結果を図1(A)及び(B)に表示された表1、表2
の従来例1の欄に示す。表1、表2に示すように、当該
従来例1で作られた電磁コイルの体積充填率は48%、
熱伝導率は0.7W/mKで、飽和温度上昇値は67℃
であった。なお、ここで使用した充填剤とマトリックス
である樹脂との混合物の樹脂組成物の構成を示す。 樹脂組成物の構成 シリカ充填剤の構成:平均粒子径 約20 ミクロン 最大粒子径 約200ミクロン 最小粒子径 約2 ミクロン エポキシ樹脂の構成: ビスフェノールAエポキシ(商品名:エピコート828) 混合比 100 可とう性エポキシ (商品名:エピコート871) 混合比 40 酸無水物硬化剤 (商品名:MHAc−P) 混合比 110 アミン硬化促進剤 (商品名:K−61B) 混合比 0.5 上記の構成において、エポキシ樹脂を100グラム、シ
リカ充填剤を200グラム混合することにより、樹脂組
成物が構成されている。
【0008】次に「射出成形法」の問題点について説明
する。射出成形法では、樹脂組成物を加圧して注入する
構成上、表1、2に示すように体積充填率と熱伝導率が
向上し、それに伴い電磁コイルの飽和温度上昇値も低く
抑えられている。しかし、射出成形法では射出成形機を
使用するため、以下のような問題がある。 (1)射出成形法では、上述の流し込み法よりも電磁コ
イルとシェルの隙間を充填する点では優れているが、加
熱・加圧の機構を有する高価な射出成形設備が必要であ
る。 (2)射出成形法で用いる金型材質の鉄よりも硬度の高
い粉末状の充填剤、例えば、シリカ、アルミナ、ニュー
セラミックス類等を混入した樹脂組成物を成形する場合
は、射出成形する際に上記金型が摩耗し、設備費や維持
費が嵩むという問題がある。なお、参考のために図2の
表3に金型に用いる鉄と、樹脂組成物に混入させる各充
填剤のモース硬度を比較した値を示す。
【0009】射出成形法を用いて、電磁コイルをモール
ドする従来例2について説明する。 従来例2(射出成形法):先ず、充填剤としてアルミナ
を、また樹脂材料としてエポキシ樹脂を用いる。次に、
従来例1で用いたものと同様の図4及び図5(A)、
(B)に示す電磁コイル3を挿入したシェル1を、射出
成形機10の成形機受け金型12に置き、熱を加えて軟
化させた樹脂組成物2を上金型11内に形成したシリン
ダ17内に挿入し、この樹脂組成物2をピストン13で
押さえ、上金型11の射出口15から射出して電磁コイ
ル3をモールドする。更に、電磁コイル3をモールドし
た後、受け金型12のヒータ14により樹脂組成物2を
加熱硬化させる。このようにしてモールドされた電磁コ
イル3の体積充填率と熱伝導率を、また、電磁コイル3
に定格電流を通電し、電磁コイル3の飽和温度上昇値を
夫々測定したが、その測定結果を図1(A)及び(B)
に表示された表1、表2の従来例2の欄に示す。表1、
表2に示すように、当該従来例2で作られた電磁コイル
3の体積充填率は66%、熱伝導率は1.2W/mK
で、飽和温度上昇値は59〜62℃であった。なお、こ
こで使用した充填剤とマトリックスである樹脂との混合
物の樹脂組成物2の構成を示す。 樹脂組成物の構成 アルミナ充填剤の構成:平均粒子径 約10 ミクロン 最大粒子径 約50ミクロン 従来例2で用いたエポキシ樹脂の構成は、上述した従来
例1で用いたエポキシ樹脂と同一の構成である。上記の
構成において、エポキシ樹脂を100グラム、アルミナ
充填剤を650グラム混合することにより、樹脂組成物
が構成されている。ここで、「流し込み法」に比べて
「射出成形法」では、エポキシ樹脂に対する充填剤の混
合重量比が大きくなっているが、上述したように、加圧
の機構を有する射出成形機を用いたために、樹脂組成物
の流動性が低くても良いからである。
【0010】上述の従来例1又は2により示されるよう
に、「流し込み法」では、加熱工程の厳密な管理が必要
で、流動性をある程度以上に保つ必要から、充填剤の含
有率を高くすることができず、充填剤の体積充填率及び
熱伝導度が小さく、電磁コイルの熱放散性が低いという
問題がある。一方、「射出成形法」では、樹脂組成物を
加圧して注入する構成上、体積充填率と熱伝導率が向上
し、「流し込み法」に比べて、電磁コイルの飽和温度上
昇値も低く抑えられている。しかし、「射出成形法」で
は射出成形機を使用するため、加熱・加圧の機構を有す
る高価な射出成形設備が必要で、金型が摩耗し、設備費
や維持費が嵩むという問題がある。本発明は、上記従来
のものの課題(問題点)を解決するために、体積充填率
と熱伝導率が大きく、取り扱い及び温度管理が容易で、
しかも製造コストを低減した電磁コイルのモールド方法
を提供することを目的とする。
【0011】
【課題を解決するための手段】本発明の電磁コイルのモ
ールド方法では、上記課題を解決するために、粉末状の
充填剤と揮発溶剤とを混合することにより混合物を得、
前記混合物を電磁コイルに含浸し、加熱することにより
前記揮発溶剤を蒸発させ、その後、前記電磁コイルを熱
硬化性樹脂にて含浸し、加熱することにより前記熱硬化
性樹脂を硬化させる構成とした。このように構成するこ
とにより、電磁コイルの樹脂組成物の充填率を大幅に向
上することができ、一方、高価な射出成形設備を用いな
いので、金型の耐摩耗対策が不要となる。具体的には請
求項2に示すように、上記粉末状の充填剤として、シリ
カ、アルミナ又はチタニア若しくは窒化珪素等のニュー
セラミックス類を用い、上記揮発溶剤として、アルコー
ル、ケトン類、水又は芳香族溶剤を用いるとよい。本発
明の電磁コイルのモールド法を適用する機器として、具
体的には請求項3に記載しているように、電磁クラッチ
装置において電磁コイルと電磁クラッチのシェルに、又
は電動機において、電磁コイルと電動機コアに適用する
とよい。
【0012】
【発明の実施の形態】以下に、本発明の電磁コイルのモ
ールド方法の実施例1乃至3について、図1(A)及び
(B)に示す表1及び表2を用いて説明する。 実施例1:実施例1では、充填剤としてシリカ充填剤を
用い、揮発溶剤としてアセトンを用いた構成とする。こ
の形態において、先ず、シリカ充填剤100グラムに対
して、アセトン20グラムの混合物を、モールドの対象
である電磁コイルを挿入したシェルに流し込む。次に、
これをシェルごと80℃に加熱し、アセトン分を蒸発さ
せる。なお、蒸発させたアセトンは、回収装置で回収し
冷却器で液化し、再使用するものとする。その後、マト
リックスのエポキシ樹脂を真空・加圧含浸し、加熱する
ことにより電磁コイルをモールドした。この方法で得ら
れたものについて、樹脂組成物の体積充填率と熱伝導率
を図1(A)の表1の実施例1の欄に示す。表1に示さ
れる通り、体積充填率は65%、熱伝導率は0.9W/
mKで、従来例1で示した「流し込み法」より向上して
いることが分かる。なお、ここで使用した充填剤とマト
リックスである樹脂との混合物の樹脂組成物の構成を示
す。樹脂組成物の構成:シリカ充填剤の構成は、従来例
1で用いたものと同一のものを使用した。一方、エポキ
シ樹脂の構成は、各混合比は従来例1で用いたものと同
一であるが、次に示す量を使用した。 ビスフェノールAエポキシ(商品名:エピコート828) 100グラム 可とう性エポキシ (商品名:エピコート871) 40グラム 酸無水物硬化剤 (商品名:MHAc−P) 110グラム アミン硬化促進剤 (商品名:K−61B) 0.5グラム また、実施例1で示した真空・加圧含浸の手順は以下の
通りである。 1.真空引き(1トール) 20分 2.エポキシ樹脂の注入 10分 3.加圧(6気圧) 30分
【0013】次に、本発明の電磁コイルのモールド方法
の実施例2について説明する。 実施例2:実施例2では、充填剤としてアルミナ充填剤
を用い、揮発溶剤としてメチルアルコールを用い、実施
例1と同一の手順で電磁コイルをモールドした。この方
法で得られたものについて、樹脂組成物の体積充填率と
熱伝導率を図1(A)の表1の実施例2の欄に示す。表
1に示される通り、体積充填率は65%で、熱伝導率は
1.2W/mKである。なお、アルミナ充填剤とエポキ
シ樹脂は、従来例2で用いたものと同一である。
【0014】実施例3:実施例3では、実施例2と同様
に、充填剤としてアルミナ充填剤を用い、揮発溶剤とし
てメチルアルコールを用いた構成とする。この形態にお
いて、先ず、アルミナ充填剤100グラムに対して、メ
チルアルコール20グラムの混合物を、モールドの対象
である電磁コイルを収納したシェルに流し込む。次に、
これをシェルごと80℃に加熱し、メチルアルコール分
を蒸発させる。その後、マトリックスのエポキシ樹脂を
真空・加圧含浸し、加熱することにより電磁コイルをモ
ールドした。この方法で得られたものについて、樹脂組
成物の体積充填率と熱伝導率を図1(A)と(B)の表
1と表2の実施例3の欄に示す。表1に示される通り、
体積充填率は65%で、熱伝導率は1.2W/mKで、
表2に示されるように飽和温度上昇値が61℃である。
従って、従来例1で示した「流し込み法」より向上して
いることが分かる。一方、従来例2で示した「射出成形
法」とほぼ同水準であるが、本発明の電磁コイルのモー
ルド方法は、図4に示す射出成形機10を用いないの
で、上金型11の耐摩耗対策が不要となる。なお、アル
ミナ充填剤とエポキシ樹脂は、従来例2で用いたものと
同一である。
【0015】本発明の電磁コイルのモールド方法は、上
述の実施例1乃至3に限定されず次のような改変が可能
である。 (1)例えば、実施例1乃至3では、充填剤をアセトン
やメチルアルコールに分散させた例を記載したが、揮発
溶剤はこれらの例に限定されず、ガソリンやトルエン、
水等の沸点が110℃以下の揮発性の液体であれば、加
熱操作によって容易に蒸発させることができるので、本
発明の電磁コイルのモールド方法に用いる揮発溶剤に適
用されうる。なお、これらの溶媒に充填剤を多量に混入
するとヘドロ状になるが、この混合物の粘度が低いの
で、電磁コイルとシェルの隙間への注入は可能である。 (2)上述の実施例1乃至3で用いた、エポキシ樹脂に
関しても、可とう性エポキシの配合比率を変えることに
よって、可とう性や耐熱性が変化するので、電磁コイル
を適用する機種の要求に対応することが可能である。従
って、本発明の電磁コイルのモールド方法に用いるエポ
キシ樹脂は、上記実施例で示した組成に限定されるもの
ではない。 (3)熱伝導率の大きな充填剤に関しても、上記実施例
で説明したシリカやアルミナのほかに、チタニア、窒化
珪素等のニューセラミックス類の、硬度が鉄の硬度を超
える充填剤の適用も可能である。また、充填剤の粒子径
についても種々の変更が可能である。 (4)上記実施例では、真空・加圧含浸の手順を具体的
に示したが、本発明の電磁コイルのモールド方法では、
上述の手順に限定されず、真空・加圧含浸の手順につい
ても、様々な改変が可能である。 (5)また、上記実施例では、電磁クラッチ装置におい
て、電磁コイルとシェルの隙間に、充填剤と揮発溶剤の
混合物を流し込み、加熱後、熱硬化性樹脂を真空・加圧
含浸する電磁コイルのモールド方法について説明した
が、これを電動機において、電磁コイルと電動機コアと
の隙間に同様の方法が適用できることは勿論のことであ
る。
【0016】
【発明の効果】本発明の電磁コイルのモールド方法で
は、上述のように構成したために、以下のような優れた
効果を有する。 (1)粉末状の熱伝導率の大きな充填剤を、揮発溶剤に
混合し分散させてから、電磁コイルとシェルの隙間に充
填し、加熱後、熱硬化性樹脂を真空・加圧含浸すると、
体積充填率と熱伝導率を従来の「流し込み法」と対比し
て大幅に向上することができ、従って、電磁コイルの飽
和温度上昇値を低く抑えることが可能となる。 (2)体積充填率と熱伝導率及び電磁コイルの飽和温度
上昇値については、「射出成形法」と対比して同程度で
あるが、本発明の電磁コイルのモールド方法では、簡易
な真空・加圧含浸装置を使用するだけで済むので、従来
例のように高価な射出成形設備が不要であり、従って金
型の耐摩耗対策が不要となり、製造コストの大幅なダウ
ンが可能である。
【図面の簡単な説明】
【図1】従来例1、2と本発明の電磁コイルのモールド
方法を用いた実施例1乃至3との特性を比較した図表
で、同図(A)は体積充填率と熱伝導率の比較を示す表
1、同図(B)は飽和温度上昇値の比較を示す表2であ
る。
【図2】鉄と、樹脂組成物に混入させる各充填剤のモー
ス硬度を表3として比較して示した図表である。
【図3】流し込み法の構成を示す縦断正面図である。
【図4】射出成形法の構成を示す縦断正面図である。
【図5】同図(A)は、電磁クラッチの概略構成を示す
要部側面図、同図(B)は、樹脂組成物でモールドされ
た電磁コイルが挿入される状態を示す半部縦断正面図で
ある。
【符号の説明】
1:シェル 2:樹脂組成物 3:電磁コイル

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 粉末状の充填剤と揮発溶剤とを混合する
    ことにより混合物を得、前記混合物を電磁コイルに含浸
    し、加熱することにより前記揮発溶剤を蒸発させ、その
    後、電磁コイルを熱硬化性樹脂にて含浸し、加熱するこ
    とにより前記熱硬化性樹脂を硬化させる電磁コイルのモ
    ールド方法。
  2. 【請求項2】 上記粉末状の充填剤として、シリカ、ア
    ルミナ又はチタニア若しくは窒化珪素等のニューセラミ
    ックス類を用い、上記揮発溶剤として、アルコール、ケ
    トン類、水又は芳香族溶剤を用いたことを特徴とする請
    求項1に記載の電磁コイルのモールド方法。
  3. 【請求項3】 上記電磁コイルのモールド方法を、電磁
    クラッチ装置において電磁コイルと電磁クラッチのシェ
    ルに、又は電動機において、電磁コイルと電動機コアに
    適用したことを特徴とする請求項1又は2に記載の電磁
    コイルのモールド方法。
JP31461697A 1997-10-31 1997-10-31 電磁コイルのモールド方法 Pending JPH11136911A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31461697A JPH11136911A (ja) 1997-10-31 1997-10-31 電磁コイルのモールド方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31461697A JPH11136911A (ja) 1997-10-31 1997-10-31 電磁コイルのモールド方法

Publications (1)

Publication Number Publication Date
JPH11136911A true JPH11136911A (ja) 1999-05-21

Family

ID=18055455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31461697A Pending JPH11136911A (ja) 1997-10-31 1997-10-31 電磁コイルのモールド方法

Country Status (1)

Country Link
JP (1) JPH11136911A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1079504A2 (en) * 1999-08-26 2001-02-28 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing rotating electric machine and method of impregnating coil with resin, having separate processes of incorporating particles and impregnating coil
JP2001238390A (ja) * 2000-02-25 2001-08-31 Togo Seisakusho Corp 回転機のコイル用接続金具およびこれによって連結されたコイルユニット
US6690260B1 (en) 1999-08-25 2004-02-10 Honda Giken Kabushiki Kaisha Driver authentication apparatus and method for identifying automatically-extracted driver's operation feature data with already-registered feature data
JP2008222748A (ja) * 2007-03-08 2008-09-25 Susumu Kiyokawa エポキシ樹脂の硬化促進方法
JP2010016365A (ja) * 2008-06-06 2010-01-21 Sinfonia Technology Co Ltd リフティングマグネット用含浸樹脂、リフティングマグネット、リフティングマグネットの製造方法
CN101924434A (zh) * 2010-08-04 2010-12-22 浙江山风汽车空调有限公司 线圈模塑装置及方法
JP2011067094A (ja) * 2010-12-27 2011-03-31 Mitsui High Tec Inc 回転子積層鉄心の製造方法
US7950133B2 (en) 2006-01-11 2011-05-31 Mitsui High-Tec, Inc. Method of resin sealing permanent magnets in laminated rotor core
JP2013002623A (ja) * 2011-06-22 2013-01-07 Sinfonia Technology Co Ltd 電磁連結装置
US8728375B2 (en) 2005-01-24 2014-05-20 Mitsui High-Tec, Inc. Method of resin sealing permanent magnets in laminated rotor core
US10183427B2 (en) 2015-03-12 2019-01-22 Toyota Jidosha Kabushiki Kaisha Resin molding method and resin molding apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690260B1 (en) 1999-08-25 2004-02-10 Honda Giken Kabushiki Kaisha Driver authentication apparatus and method for identifying automatically-extracted driver's operation feature data with already-registered feature data
EP1079504A3 (en) * 1999-08-26 2002-01-30 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing rotating electric machine and method of impregnating coil with resin, having separate processes of incorporating particles and impregnating coil
EP1079504A2 (en) * 1999-08-26 2001-02-28 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing rotating electric machine and method of impregnating coil with resin, having separate processes of incorporating particles and impregnating coil
JP2001238390A (ja) * 2000-02-25 2001-08-31 Togo Seisakusho Corp 回転機のコイル用接続金具およびこれによって連結されたコイルユニット
JP4557345B2 (ja) * 2000-02-25 2010-10-06 株式会社東郷製作所 回転機のコイル用接続金具およびこれによって連結されたコイルユニット
US10498203B2 (en) 2005-01-24 2019-12-03 Mitsui High-Tec, Inc. Method of resin sealing permanent magnets in laminated rotor core
US8728375B2 (en) 2005-01-24 2014-05-20 Mitsui High-Tec, Inc. Method of resin sealing permanent magnets in laminated rotor core
US7950133B2 (en) 2006-01-11 2011-05-31 Mitsui High-Tec, Inc. Method of resin sealing permanent magnets in laminated rotor core
US8127431B2 (en) 2006-01-11 2012-03-06 Mitsui High-Tec, Inc. Method of resin sealing permanent magnets in laminated rotor core
JP2008222748A (ja) * 2007-03-08 2008-09-25 Susumu Kiyokawa エポキシ樹脂の硬化促進方法
JP2010016365A (ja) * 2008-06-06 2010-01-21 Sinfonia Technology Co Ltd リフティングマグネット用含浸樹脂、リフティングマグネット、リフティングマグネットの製造方法
CN101924434A (zh) * 2010-08-04 2010-12-22 浙江山风汽车空调有限公司 线圈模塑装置及方法
JP2011067094A (ja) * 2010-12-27 2011-03-31 Mitsui High Tec Inc 回転子積層鉄心の製造方法
JP2013002623A (ja) * 2011-06-22 2013-01-07 Sinfonia Technology Co Ltd 電磁連結装置
US10183427B2 (en) 2015-03-12 2019-01-22 Toyota Jidosha Kabushiki Kaisha Resin molding method and resin molding apparatus
US10583592B2 (en) 2015-03-12 2020-03-10 Toyota Jidosha Kabushiki Kaisha Resin molding method and resin molding apparatus

Similar Documents

Publication Publication Date Title
JPH11136911A (ja) 電磁コイルのモールド方法
US2464568A (en) Electrical coil insulated with thermoplastic particles and thermoset polymer
JP2008061498A (ja) 回転電気装置と、その製造方法
US5948338A (en) Method for encapsulating field windings of rotary electric machines
KR850006642A (ko) 영구 자석
JPH0132342Y2 (ja)
JP2015083663A (ja) 電気絶縁用樹脂組成物及びその硬化物並びにこれを用いたコイル、固定子、回転機及び高電圧機器
KR102119173B1 (ko) 하이브리드 타입 인덕터
JPH03257807A (ja) 樹脂磁石構造体の製造方法
US4164619A (en) Porous encapsulating composition for electrical apparatus
JP2005281467A (ja) 高熱伝導性樹脂、および部材、ならびにそれらを用いた電気機器および半導体装置
JP4284590B2 (ja) エポキシ樹脂組成物の製造方法
JP2000023432A (ja) 高熱伝導性封止材の形成方法
JP2000297204A (ja) エポキシ樹脂組成物および回転電機コイルおよび注型樹脂組成物および回転電機
US4040971A (en) Magnetic wedge
JP3404304B2 (ja) エポキシ樹脂組成物及びモールドコイル
JP3283583B2 (ja) 高周波用巻線部品
US2714173A (en) Edgewound coil construction
CN220420398U (zh) 电感器
JP2002160231A (ja) 低周波振動を付加できる成形装置およびその成形方法
JP2010016365A (ja) リフティングマグネット用含浸樹脂、リフティングマグネット、リフティングマグネットの製造方法
JPS6251065B2 (ja)
JPH05220767A (ja) 電気又は電子部品の被覆方法
JP7433531B2 (ja) 真空バルブの製造方法
JP2757040B2 (ja) Nd―Fe―B系ボンド磁石の製造方法