JPH11121010A - Hydride secondary battery - Google Patents

Hydride secondary battery

Info

Publication number
JPH11121010A
JPH11121010A JP9284090A JP28409097A JPH11121010A JP H11121010 A JPH11121010 A JP H11121010A JP 9284090 A JP9284090 A JP 9284090A JP 28409097 A JP28409097 A JP 28409097A JP H11121010 A JPH11121010 A JP H11121010A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
secondary battery
powder
hydride secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9284090A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukunaga
浩 福永
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP9284090A priority Critical patent/JPH11121010A/en
Publication of JPH11121010A publication Critical patent/JPH11121010A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydride secondary battery having an increased paste nickel positive electrode capacity, and excellent in a cycle characteristic and an overdischarging characteristic. SOLUTION: This secondary battery is equipped with a positive electrode having a nickel hydroxide active material, a negative electrode comprising a hydrogen storage alloy, electrolyte comprising alkaline aqueous solution, and a separator. In the nickel powder contained in the positive electrode, primary particles are spherical, the aggregation of the primary particles has a three dimensional chain structure, the diameter of a chain column is 0.5 μm or less, a crystal size measured by powder X-ray diffraction measurement is 300 Å or less, and nickel powder of an oxygen content of 0.5 to 1.5 wt.% is contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極の活物質とし
てペ―スト式水酸化ニツケルを用いた水素化物二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride secondary battery using paste-type nickel hydroxide as an active material for a positive electrode.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いた水素化物二次電池
は、多量の水素を吸蔵、放出する能力を有し、アルカリ
水溶液中でも電気化学的に水素の吸蔵、放出を行うこと
が可能であり、ニツケル極を正極に用いた場合、次式の
ように電池反応が起こる。負極の反応式中、MはLaN
5 系やTi−Ni系などの水素吸蔵合金である。
2. Description of the Related Art A hydride secondary battery using a hydrogen storage alloy has a capability of storing and releasing a large amount of hydrogen, and is capable of electrochemically storing and releasing hydrogen even in an alkaline aqueous solution. When the nickel electrode is used as the positive electrode, a battery reaction occurs as in the following equation. In the reaction formula of the negative electrode, M is LaN
i 5 based or Ti-Ni-based hydrogen storage alloy and the like.

【0003】 [0003]

【0004】正極および負極の反応式において、充電で
は、反応は右に進み、アルカリ水溶液中の水を電気分解
して、水素を吸蔵し、水酸基を生じ、この水酸基と正極
であるNi(OH)2 とが反応して、NiOOHとな
り、水を生じる。また、放電の場合は、反応は左に進
み、上記と逆の反応となる。つまり、負極では充電で水
素の吸蔵が起こり、放電で水素の放出となる。
[0004] In the reaction formula of the positive electrode and the negative electrode, in charging, the reaction proceeds to the right, electrolyzes water in the alkaline aqueous solution, absorbs hydrogen, and generates a hydroxyl group. Reacts with 2 to form NiOOH, producing water. In the case of discharge, the reaction proceeds to the left, and the reaction is the reverse of the above. That is, in the negative electrode, hydrogen is absorbed by charging, and hydrogen is released by discharging.

【0005】ニツケル極としては、特開平1−2273
63号公報などに開示のように、高容量化や低価格化の
ために、空孔率が95%以上、孔径が数μm〜100μ
mの導電性多孔基材を集電体に用い、これに水酸化ニツ
ケルを主体とする活物質スラリ―を担持させる、いわゆ
るペ―スト式が知られている。
[0005] The nickel pole is disclosed in JP-A-1-2273.
As disclosed in, for example, Japanese Patent Application Laid-Open No. 63-63, the porosity is 95% or more and the pore diameter is several μm to 100 μm for high capacity and low cost.
A so-called paste method is known in which a conductive porous base material of m is used as a current collector and an active material slurry mainly composed of nickel hydroxide is supported on the current collector.

【0006】[0006]

【発明が解決しようとする課題】ペ―スト式電極は、焼
結式電極に比べて孔径が大きいため、活物質の集電体ま
での距離が長く、利用率や負荷特性に劣る。「湯浅時
報」No.65,第28頁(1988年)には、正極中
にコバルト系などの導電助剤を加えて利用率を向上する
方法が提案されている。しかし、コバルトは一般に表面
が酸化されやすく、アルカリ水溶液に不溶解なCo3
4 に変化しやすい。
Since the paste type electrode has a larger hole diameter than the sintered type electrode, the distance between the active material and the current collector is long, and the utilization factor and load characteristics are inferior. "Yuasa Higashi" No. 65, page 28 (1988) proposes a method of improving the utilization factor by adding a conductive additive such as a cobalt-based material to the positive electrode. However, cobalt is generally the surface is easily oxidized, a insoluble in an alkaline aqueous solution Co 3 O
Easy to change to 4 .

【0007】このように、コバルトの表面にCo3 4
が形成されると、電池内で充電時に水酸化ニツケルの粒
子をつなぎとめる作用をするコバルトのネツトワ―クに
必要なCoO→Co(OH)2 →CoOOHの変化が起
こらず、導電助剤としての役割を果たさなくなる。この
ため、通常は、酸化されにくい高コバルト含量の酸化コ
バルトまたはこれと金属コバルトを用いるようにしてい
る。
Thus, Co 3 O 4 is deposited on the surface of cobalt.
Is formed, there is no change in CoO → Co (OH) 2 → CoOOH required for a network of cobalt, which acts to hold the nickel hydroxide particles during charging in the battery, and serves as a conductive additive. Will not play. For this reason, usually, a cobalt oxide having a high cobalt content, which is difficult to be oxidized, or a cobalt oxide and a metal cobalt are used.

【0008】しかし、コバルトは、他の導電助剤である
ニツケルに比べ高価なため、添加量が多くなると、電池
の材料コストを上げる結果となる。また、パツク電池で
は、ひとつの電池が劣化すると、過放電状態になり、強
制的に電池電圧が0Vになるため、正極内で上記の逆反
応が生じ、CoOOHが強制的に還元され、ネツトワ―
クが破壊される。一部のネツトワ―クはつぎの充電反応
で元に戻るが、完全には復帰しないため、初期の容量よ
り低下し、容量損失を招く結果となる。
[0008] However, cobalt is more expensive than nickel, which is another conductive assistant, so that an increased amount of cobalt results in an increase in the material cost of the battery. Further, in the case of a battery pack, when one battery cell is deteriorated, the battery becomes overdischarged and the battery voltage is forcibly reduced to 0 V, so that the above-mentioned reverse reaction occurs in the positive electrode, the CoOOH is forcibly reduced, and
Is destroyed. Some networks return to the original state in the next charging reaction, but do not completely recover, so that the capacity is lower than the initial capacity, resulting in capacity loss.

【0009】これらの問題に対し、ペ―スト式ニツケル
正極の導電助剤として、コバルトとともに、アルカリ中
で電気化学的に安全なニツケル粉を加えることが有効で
あることも知られている。しかし、ニツケル粉を添加す
ると、過放電後の容量劣化は少なくなるが、添加量を多
くすると、充電時のガス発生が多くなり、正極の膨潤を
多くする。その結果、サイクル劣化を早期に引き起こし
たり、初期の放電容量の低下を招き、とくに過放電特性
に問題が生じやすい。
[0009] In order to solve these problems, it is also known that it is effective to add nickel powder which is electrochemically safe in an alkali together with cobalt as a conductive aid for a paste-type nickel positive electrode. However, when nickel powder is added, the capacity degradation after overdischarge is reduced, but when the addition amount is increased, gas generation during charging is increased, and the swelling of the positive electrode is increased. As a result, cycle deterioration is caused at an early stage, and the initial discharge capacity is reduced, and in particular, a problem easily occurs in the overdischarge characteristics.

【0010】本発明は、このような従来技術の問題点を
克服すること、とくに、ペ―スト式ニツケル正極の容量
を向上させ、サイクル特性および過放電特性にすぐれる
水素化物二次電池を提供することを目的としている。
The present invention overcomes the above-mentioned problems of the prior art, and in particular, provides a hydride secondary battery which improves the capacity of a paste-type nickel positive electrode and has excellent cycle characteristics and overdischarge characteristics. It is intended to be.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、鋭意検討した結果、ペ―スト式ニ
ツケル正極の導電助剤として、一次粒子が球状で、一次
粒子の集合体が三次元的な鎖状構造を持つニツケル粉で
あつて、その鎖状柱の直径、結晶子サイズおよび酸素含
有量を特定範囲に設定したニツケル粉を使用することに
より、上記正極の容量を向上でき、サイクル特性および
過放電特性にすぐれる水素化物二次電池が得られること
を知り、本発明を完成するに至つた。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above-mentioned object. As a result, the primary particles of the paste type nickel positive electrode have a spherical shape, and the primary particles have a spherical shape. By using the nickel powder in which the aggregate is a three-dimensional chain-shaped nickel powder and the diameter, crystallite size and oxygen content of the chain-shaped columns are set to specific ranges, the capacity of the positive electrode is increased. It has been found that a hydride secondary battery having excellent cycle characteristics and overdischarge characteristics can be obtained, and the present invention has been completed.

【0012】すなわち、本発明は、水酸化ニツケルを活
物質とする正極と水素吸蔵合金よりなる負極とアルカリ
水溶液よりなる電解液とセパレ―タを有する水素化物二
次電池において、上記の正極中に、一次粒子が球状で、
一次粒子の集合体が三次元的な鎖状構造を持ち、その鎖
状柱の直径が0.5μm以下で粉末X線回析測定による
結晶サイズが300Å以下であり、かつ酸素含有量が
0.5〜1.5重量%であるニツケル粉を含有すること
を特徴とする水素化物二次電池(請求項1)に係るもの
であり、とくに、上記の正極中に、ニツケル粉ととも
に、コバルト粉またはコバルト酸化物粉のいずれか少な
くともひとつを含有する上記構成の水素化物二次電池
(請求項5)に係るものである。
That is, the present invention relates to a hydride secondary battery having a positive electrode using nickel hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, an electrolytic solution made of an alkaline aqueous solution, and a separator. , The primary particles are spherical,
The aggregate of the primary particles has a three-dimensional chain structure, the diameter of the chain pillar is 0.5 μm or less, the crystal size measured by powder X-ray diffraction measurement is 300 ° or less, and the oxygen content is 0. The present invention relates to a hydride secondary battery (claim 1) containing nickel powder in an amount of 5 to 1.5% by weight. In particular, in the positive electrode, together with the nickel powder, cobalt powder or The present invention relates to a hydride secondary battery (claim 5) containing at least one of cobalt oxide powders.

【0013】また、本発明は、このような水素化物二次
電池において、ニツケル粉のタツプ密度が0.2〜0.
8g/ccである構成(請求項2)、ニツケル粉のBE
T吸着法による比表面積が4〜8m2 /gである構成
(請求項3)、ニツケル粉の含有量が水酸化ニツケル1
00重量部に対して2〜10重量部である構成(請求項
4)を、とくに好ましい態様としたものである。
Further, according to the present invention, in such a hydride secondary battery, the tap density of the nickel powder is 0.2 to 0.1.
8 g / cc (claim 2), nickel powder BE
The specific surface area measured by the T adsorption method is 4 to 8 m 2 / g (Claim 3).
A configuration in which the amount is 2 to 10 parts by weight relative to 00 parts by weight (claim 4) is a particularly preferable embodiment.

【0014】[0014]

【発明の実施の形態】本発明の正極において、導電助剤
としては、一次粒子が球状で、一次粒子の集合体が三次
元的な鎖状構造を持つニツケル粉が用いられる。このニ
ツケル粉は、導電性のチエ―ンストラクチヤが水酸化ニ
ツケル間で形成されることにより、少量の添加でも効率
的な導電性を発揮させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the positive electrode of the present invention, nickel powder having a spherical primary particle and an aggregate of primary particles having a three-dimensional chain structure is used as a conductive additive. In this nickel powder, a conductive chain structure is formed between the nickel hydroxides, so that even a small amount of the nickel powder can exhibit efficient conductivity.

【0015】このニツケル粉の鎖状柱の直径は0.5μ
m以下、好適には0.05〜0.4μmで、粉末X線回
析測定による結晶子サイズは300Å以下、好適には1
00〜250Åである。このような直径および結晶子サ
イズに設定することにより、導電性と膨潤抑制効果に好
結果が得られる。上記直径が0.5μmを超えたり、結
晶子サイズが300Åを超えると、ニツケル粉が正極中
に不均一に存在して導電性が低下し、また正極の膨潤抑
制効果が小さくなる。
The diameter of the chain pillar of the nickel powder is 0.5 μm.
m, preferably 0.05 to 0.4 μm, and the crystallite size measured by powder X-ray diffraction measurement is 300 ° or less, preferably 1
00 to 250 °. By setting such a diameter and a crystallite size, good results can be obtained in the conductivity and the swelling suppressing effect. If the diameter exceeds 0.5 μm or the crystallite size exceeds 300 °, the nickel powder is non-uniformly present in the positive electrode to lower the conductivity, and the effect of suppressing swelling of the positive electrode is reduced.

【0016】なお、本発明にいう結晶子サイズとは、粉
末X線回折法により測定されるサイズを意味し、具体的
には、まず2度/分で回析スペクトルを測定して金属ニ
ツケルを同定し、つぎに回析ピ―クを0.2度/分(ス
リツト:0.15)で測定し、Kα1線とKα2線の分
離を行い、回折線プロフアイルの結晶子の大きさの広が
りをCauchy型、歪による拡がりをGauss 型と仮定して、
積分幅法により決定したときのサイズを意味する。ま
た、本発明にいう鎖状柱の直径とは、ニツケル粉を軽く
圧縮して圧粉体とし、この圧粉体を通過するガスの流速
をフイツシヤ―サブシ―ブサイザ(MPIF32)で測
定したときの値を意味する。
The crystallite size in the present invention means a size measured by a powder X-ray diffraction method. Specifically, first, a diffraction spectrum is measured at 2 degrees / minute to determine a metal nickel. The diffraction peak was measured at a rate of 0.2 ° / min (slit: 0.15), Kα1 and Kα2 rays were separated, and the spread of the crystallite size of the diffraction line profile was identified. Is assumed to be Cauchy type, and the spread due to distortion is assumed to be Gauss type.
It means the size as determined by the integral width method. Further, the diameter of the chain-shaped column referred to in the present invention is defined as a value obtained by lightly compressing nickel powder into a green compact, and measuring the flow rate of gas passing through the green compact with a fish-subsieved sizer (MPIF32) Mean value.

【0017】また、上記のニツケル粉は、酸素含有量が
0.5〜1.5重量%、好ましくは0.8〜1.5重量
%、より好ましくは0.8〜1.2重量%である。酸素
含有量をこのように多く設定すると、正極中での結着剤
の吸着形態が改質され、少量の結着剤でもニツケル粉の
分散性が良くなり、正極中で均一に分散できる結果、導
電性の向上に好結果が得られる。これに対し、酸素含有
量が0.5重量%より少ないと、ニツケル粉中の酸素が
少なくて結着剤中での分散性が低下し、凝集物が発生す
る。また1.5重量%より多いと、ニツケル量が減少
し、活物質である水酸化ニツケルとの導電性に悪影響を
及ぼしやすい。
The above-mentioned nickel powder has an oxygen content of 0.5 to 1.5% by weight, preferably 0.8 to 1.5% by weight, more preferably 0.8 to 1.2% by weight. is there. When the oxygen content is set to such a large value, the adsorption form of the binder in the positive electrode is reformed, the dispersibility of the nickel powder is improved even with a small amount of the binder, and the nickel powder can be uniformly dispersed in the positive electrode. Good results are obtained in improving the conductivity. On the other hand, if the oxygen content is less than 0.5% by weight, the amount of oxygen in the nickel powder is small, the dispersibility in the binder is reduced, and aggregates are generated. If the content is more than 1.5% by weight, the amount of nickel decreases, and the conductivity with nickel hydroxide as an active material is likely to be adversely affected.

【0018】すなわち、本発明の上記ニツケル粉は、極
めて微粒子で三次元的な鎖状構造を持つため、通常で
は、ニツケル粉同志が凝集しやすく、水酸化ニツケルや
結着剤などと混合させたときに、ニツケル粉の固まりが
十分にときほどかれず、ペ―スト中に凝集物の粒が残
り、これを導電性多孔基材からなる集電体に塗布する
と、塗布面に上記粒が付着した状態となる。これはその
後の圧延処理により偏平に圧延されて、導電性低下の原
因となり、またこの正極を用いた水素化物二次電池は、
放電特性とくに過放電特性が低下することになる。
That is, the nickel powder of the present invention is extremely fine and has a three-dimensional chain structure. Therefore, the nickel powder is usually easily aggregated and mixed with nickel hydroxide or a binder. Sometimes, the agglomeration of the nickel powder is not sufficiently unraveled, leaving particles of agglomerates in the paste. When this is applied to a current collector made of a conductive porous substrate, the particles adhere to the application surface. It will be in the state of having done. This is flattened by the subsequent rolling process, causing a decrease in conductivity, and a hydride secondary battery using this positive electrode is:
The discharge characteristics, especially the overdischarge characteristics, are degraded.

【0019】また、ペ―スト中の凝集物の粒をなくすた
めに、結着剤や増粘剤などを多量に添加したり、ペ―ス
トをメツシユにかけて除粒することも考えられる。しか
し、前者ではペ―ストが増粘し、基材上に所定厚さに塗
布させることが困難となり、また単位体積中の水酸化ニ
ツケル量が減少し、高容量の正極が得られなくなり、後
者では正極の製造工程が煩雑化し、生産効率が低下す
る。これらの問題と、前記導電性や過放電特性などの問
題とが、本発明の前記特定酸素含有量のニツケル粉を用
いることにより、すべて解消されるのである。
In order to eliminate the aggregated particles in the paste, a large amount of a binder, a thickener, or the like may be added, or the paste may be meshed to remove particles. However, in the former case, the paste thickens, making it difficult to apply the paste to a predetermined thickness on the base material, and reducing the amount of nickel hydroxide in a unit volume, making it impossible to obtain a high-capacity positive electrode. In such a case, the manufacturing process of the positive electrode becomes complicated, and the production efficiency decreases. All of these problems and the problems of the conductivity and the overdischarge characteristics are solved by using the nickel powder having the specific oxygen content according to the present invention.

【0020】さらに、本発明の上記ニツケル粉は、正極
中での占有体積を減少させるため、タツプ密度が0.2
〜0.8g/ccであるのが好ましい。また、結着剤中
の分散性および導電性により好ましい結果を得るため、
BET吸着法による比表面積が4〜8m2 /gであるの
がよい。上記の比表面積が4m2 /g未満となると、結
着剤中の分散性が低下しやすく、また8m2 /gを超え
ると、ニツケル粉の微細化を防ぎ、表面が酸化されやす
くなつて、導電効果が低下する。
The nickel powder of the present invention has a tap density of 0.2 to reduce the volume occupied in the positive electrode.
It is preferably 0.8 g / cc. Further, in order to obtain a favorable result due to the dispersibility and conductivity in the binder,
The specific surface area by the BET adsorption method is preferably 4 to 8 m 2 / g. When the specific surface area is less than 4 m 2 / g, the dispersibility in the binder tends to decrease, and when the specific surface area exceeds 8 m 2 / g, the nickel powder is prevented from being miniaturized and the surface is easily oxidized. The conductivity effect decreases.

【0021】なお、本発明にいう酸素含有量とは、不活
性ガス融解─赤外線吸収法(LECO社製TC436)
により、2,500℃まで昇温速度10℃/分で測定し
た値を意味する。また、本発明にいうBET吸着法によ
る比表面積とは、窒素吸着法(ユアサアイオニクス、オ
―トソ―ブ1)で1〜100Å、試料1g、測定時間1
27分、吸着側の測定値を意味するものである。
The oxygen content referred to in the present invention is defined as inert gas melting / infrared ray absorption method (TC436 manufactured by LECO).
Means a value measured at a heating rate of 10 ° C./min up to 2,500 ° C. Further, the specific surface area by the BET adsorption method referred to in the present invention is 1 to 100 ° by a nitrogen adsorption method (Yuasa Ionics, Autosorb 1), 1 g of a sample, 1 measurement time.
27 minutes means the measured value on the adsorption side.

【0022】本発明の上記ニツケル粉は、カルボニルニ
ツケル法、つまり、つぎの式; Ni(CO)4 → Ni+4CO で示されるようなテトラカルボニルニツケルの熱分解法
により得ることができ、その際、反応容器中でのテトラ
カルボニルニツケルと酸素の分圧、合成温度などを適宜
調整することにより、一次粒子が球状で、一次粒子の集
合体が三次元的な鎖状構造を持つとともに、その鎖状柱
の直径、結晶子サイズおよび酸素含有量が前記の範囲に
入り、また好ましくはタツプ密度およびBET吸着法に
よる比表面積が前記の範囲にあるものを容易に合成する
ことができる。
The nickel powder of the present invention can be obtained by a carbonyl nickel method, that is, a thermal decomposition method of tetracarbonyl nickel represented by the following formula: Ni (CO) 4 → Ni + 4CO, By appropriately adjusting the partial pressure of tetracarbonyl nickel and oxygen in the vessel, the synthesis temperature, and the like, the primary particles are spherical, the aggregate of the primary particles has a three-dimensional chain structure, and the chain columns are formed. Having a diameter, crystallite size and oxygen content within the above ranges, and preferably having a tap density and a specific surface area by the BET adsorption method within the above ranges can be easily synthesized.

【0023】本発明の正極において、導電助剤として使
用する上記ニツケル粉は、活物質である水酸化ニツケル
100重量部に対して、2〜10重量部、好ましくは3
〜8重量部の割合で用いられる。上記ニツケル粉の使用
量が少なすぎると、水酸化ニツケルとの導電性が十分に
得られず、また多すぎると、水酸化ニツケルの絶対量が
それだけ減少するため、好ましくない。
In the positive electrode of the present invention, the nickel powder used as a conductive additive is used in an amount of 2 to 10 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of nickel hydroxide as an active material.
It is used in a proportion of up to 8 parts by weight. If the amount of the nickel powder used is too small, sufficient conductivity with the nickel hydroxide is not obtained, and if it is too large, the absolute amount of the nickel hydroxide is undesirably reduced.

【0024】本発明では、正極の導電助剤として、上記
ニツケル粉をこれ単独で使用してもよいが、この場合、
使用量を多くしたとき、正極の膨潤を抑制できず、サイ
クル特性や過放電特性などに問題を生じるおそれがあ
る。これを回避するため、通常は、コバルト系の導電助
剤を併用するのが望ましい。コバルト系の導電助剤とし
ては、コバルト粉またはコバルト酸化物粉が好ましい。
コバルト酸化物粉としては、酸化されにくい高コバルト
含量の酸化コバルトを使用するのがよい。これらコバル
ト系の導電助剤の使用量は、活物質である水酸化ニツケ
ル100重量部に対して、通常、2〜10重量部とする
のがよい。
In the present invention, the above-mentioned nickel powder may be used alone as a conductive auxiliary for the positive electrode.
When the amount of use is increased, swelling of the positive electrode cannot be suppressed, and there is a possibility that problems may occur in the cycle characteristics, overdischarge characteristics and the like. In order to avoid this, it is usually desirable to use a cobalt-based conductive additive together. As the cobalt-based conductive additive, cobalt powder or cobalt oxide powder is preferable.
As the cobalt oxide powder, it is preferable to use cobalt oxide having a high cobalt content which is hardly oxidized. The amount of the cobalt-based conductive additive to be used is generally preferably 2 to 10 parts by weight based on 100 parts by weight of nickel hydroxide as an active material.

【0025】本発明の正極は、水酸化ニツケルを活物質
とし、これと上記のニツケル粉からなる導電助剤、さら
には上記のコバルト系の導電助剤とを、水の存在下、結
着剤と混練してペ―スト化し、このペ―スト状物をパン
チングメタル、発泡メタルなどの耐アルカリ性の導電性
多孔基材からなる集電体に充填し、これを乾燥、圧延し
たのち、所定サイズに裁断することにより、製造され
る。
The positive electrode of the present invention comprises nickel hydroxide as an active material, and a conductive aid comprising the above-mentioned nickel powder and the above-mentioned cobalt-based conductive aid in the presence of water as a binder. The paste-like material is kneaded with a paste, and the paste-like material is filled into a collector made of an alkali-resistant conductive porous base material such as punching metal or foamed metal. It is manufactured by cutting.

【0026】結着剤には、ポリテトラフルオロエチレ
ン、ポリアクリル酸ナトリウム、ポリビニルアルコ―
ル、スチレンと2−エチルヘキシルアクリレ―トを主成
分とする単量体混合物の共重合体などがあり、水酸化ニ
ツケル100重量部に対して、通常0.5〜5重量部の
割合で用いられる。また、このような結着剤とともに、
カルボキシメチルセルロ―ス、メチルセルロ―ス、ヒド
ロキシプロピルセルロ―スなどの増粘剤を、水酸化ニツ
ケル100重量部に対して、通常1〜5重量部の割合で
併用してもよい。
The binder includes polytetrafluoroethylene, sodium polyacrylate, polyvinyl alcohol
And a copolymer of a monomer mixture containing styrene and 2-ethylhexyl acrylate as main components. Usually used in an amount of 0.5 to 5 parts by weight based on 100 parts by weight of nickel hydroxide. Can be Also, with such a binder,
Thickeners such as carboxymethyl cellulose, methyl cellulose and hydroxypropyl cellulose may be used in combination usually in an amount of 1 to 5 parts by weight based on 100 parts by weight of nickel hydroxide.

【0027】本発明の水素化物二次電池は、上記構成の
正極に対し、水素吸蔵合金よりなる負極を使用し、この
正負両極とさらにこれらを分離するナイロン不織布など
のセパレ―タを電池缶内に装填するとともに、電解液と
して水酸化ナトリウムや水酸化カリウムなどの水溶液に
LiOHなどの電解質を溶解させたアルカリ水溶液を注
入することにより、作製することができる。
In the hydride secondary battery of the present invention, a negative electrode made of a hydrogen storage alloy is used for the positive electrode having the above-described structure, and the positive and negative electrodes and a separator such as a non-woven fabric of nylon for separating these are further placed in the battery can. And an alkaline aqueous solution in which an electrolyte such as LiOH is dissolved in an aqueous solution such as sodium hydroxide or potassium hydroxide as an electrolytic solution.

【0028】ここで、上記の負極は、水素吸蔵合金と必
要により導電性充填剤や結着剤などを水の存在下で混練
してペ―スト状とし、これを耐アルカリ性の導電性多孔
基材からなる集電体に充填し、これを乾燥、圧延したの
ち、所定サイズに裁断することにより、得られる。水素
吸蔵合金としては、Mm(La、Ce、Nd、Pr)−
Ni系、Ti−Ni系、Ti−NiZr(Ti2-X Zr
X 4-y Niy 1-ZCr2 系(x=0〜1.5、y=
0.6〜3.5、z=0.2以下)、Ti−Mn系、Z
r−Mn系などの各種合金が挙げられる。
Here, the above-mentioned negative electrode is kneaded with a hydrogen storage alloy and, if necessary, a conductive filler or a binder in the presence of water to form a paste, which is then subjected to an alkali-resistant conductive porous substrate. It is obtained by filling a current collector made of a material, drying and rolling it, and then cutting it into a predetermined size. Mm (La, Ce, Nd, Pr)-
Ni-based, Ti-Ni-based, Ti-NiZr (Ti 2- X Zr
X V 4-y Ni y) 1-Z Cr 2 system (x = 0~1.5, y =
0.6-3.5, z = 0.2 or less), Ti-Mn system, Z
Various alloys such as an r-Mn-based alloy may be used.

【0029】[0029]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、部とあるのは重量部を
意味するものとする。
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”.

【0030】なお、実施例1〜7において正極の導電助
剤として用いたニツケル粉A〜C、比較例1,2におい
て正極の導電助剤として用いたニツケル粉D,Eは、い
ずれも、カルボニルニツケル法により、反応容器中での
テトラカルボニルニツケルと酸素の分圧、合成温度など
を適宜調整して合成した、一次粒子が球状で、一次粒子
の集合体が三次元的な鎖状構造を持つニツケル粉であつ
て、鎖状柱の直径、粉末X線回析測定による結晶サイ
ズ、酸素含有量、タツプ密度およびBET吸着法による
比表面積が、下記の表1に示される構成とされたもので
ある。
The nickel powders A to C used as conductive assistants for the positive electrodes in Examples 1 to 7 and the nickel powders D and E used as conductive assistants for the positive electrodes in Comparative Examples 1 and 2 were all carbonyl. Primary particles are spherical, and the aggregate of the primary particles has a three-dimensional chain structure, synthesized by the Nickel method by appropriately adjusting the partial pressure of tetracarbonyl nickel and oxygen in the reaction vessel, the synthesis temperature, etc. Nickel powder having a diameter of a chain pillar, a crystal size measured by powder X-ray diffraction, an oxygen content, a tap density, and a specific surface area measured by a BET adsorption method as shown in Table 1 below. is there.

【0031】 [0031]

【0032】実施例1 水酸化ニツケル粉100部に、ニツケル粉A2部を乾式
混合し、これにコバルト粉10部、2重量%のカルボキ
シメチルセルロ―ス水溶液5部、60重量%のポリテト
ラフルオロエチレン(PTFE)水分散液5部を混合
し、ペ―スト状物とした。これをニツケル発泡体に充填
担持させたのち、80℃で2時間乾燥後、1トン/cm2
で圧縮形成して、シ―ト状とした。これを80℃のアル
カリ水溶液に2時間浸漬したのち、80℃の温水で2時
間水洗し、さらに80℃で1時間乾燥後、圧縮成形し、
所定サイズに裁断して、正極シ―トとした。
EXAMPLE 1 100 parts of nickel hydroxide powder and 100 parts of nickel powder A were dry-blended and mixed with 10 parts of cobalt powder, 5 parts of a 2% by weight aqueous carboxymethyl cellulose solution, and 60% by weight of polytetrafluoroethylene. Five parts of an aqueous ethylene (PTFE) dispersion were mixed to give a paste. This was filled and supported on a nickel foam, dried at 80 ° C. for 2 hours, and then 1 ton / cm 2
To form a sheet. This was immersed in an alkaline aqueous solution at 80 ° C. for 2 hours, washed with warm water at 80 ° C. for 2 hours, dried at 80 ° C. for 1 hour, and compression-molded.
The sheet was cut into a predetermined size to obtain a positive electrode sheet.

【0033】市販のMm(La、Ce、Nd、Pr)、
Ni、Co、Mn、AlおよびMo(いずれも純度9
9.9重量%以上)の各試料を、Mm(La:0.32
原子比、Ce:0.48原子比、Nd:0.15原子
比、Pr:0.04原子比)、Ni:3.55原子比、
Co:0.75原子比、Mn:0.4原子比、Al:
0.3原子比、Mo:0.04原子比の組成になるよう
に、高周波溶解炉によつて加熱溶解し、水素吸蔵合金を
合成した。
Commercial Mm (La, Ce, Nd, Pr),
Ni, Co, Mn, Al and Mo (all with a purity of 9
9.9% by weight or more) of each sample as Mm (La: 0.32
Atomic ratio, Ce: 0.48 atomic ratio, Nd: 0.15 atomic ratio, Pr: 0.04 atomic ratio), Ni: 3.55 atomic ratio,
Co: 0.75 atomic ratio, Mn: 0.4 atomic ratio, Al:
The mixture was heated and melted in a high-frequency melting furnace so as to have a composition of 0.3 atomic ratio and Mo: 0.04 atomic ratio to synthesize a hydrogen storage alloy.

【0034】この水素吸蔵合金を耐圧容器中で10-3
orrまで真空引きを行い、アルゴンガスで3回パ―ジ
を行つたのち、水素圧力14Kg/cm2 で24時間保持
し、水素を排気し、さらに400℃で加熱し、水素を完
全に放出することにより、20〜100μmの合金粉末
を得た。この合金粉末100部に、結着剤として、スチ
レンと2−エチルヘキシルアクリレ―トを主成分とする
単量体混合物の共重合体(乳化重合物)1.7部を加
え、また増粘剤として、ポリオキシエチレン水溶液20
部を加えて、よく混合し、ペ―スト状物とした。このペ
―スト状物を、導電性多孔基材であるパンチングメタル
に塗着し、乾燥後、圧縮成形したのち、所定サイズに裁
断して、負極シ―トとした。
This hydrogen-absorbing alloy is placed in a pressure vessel at 10 −3 T.
After evacuating to orr and purging three times with argon gas, the system is maintained at a hydrogen pressure of 14 kg / cm 2 for 24 hours, evacuated and heated at 400 ° C. to completely release hydrogen. Thereby, an alloy powder of 20 to 100 μm was obtained. To 100 parts of the alloy powder, 1.7 parts of a copolymer (emulsion polymer) of a monomer mixture containing styrene and 2-ethylhexyl acrylate as main components was added as a binder, and a thickener was added. As a polyoxyethylene aqueous solution 20
Then, the mixture was mixed well to obtain a paste. The paste was applied to a punching metal serving as a conductive porous substrate, dried, compression molded, and then cut into a predetermined size to obtain a negative electrode sheet.

【0035】上記の負極シ―トと、前記の正極シ―トと
を、ナイロン不織布製のセパレ―タを介して捲回して、
単4サイズの電極缶に入れ、これに電解液(30重量%
水酸化カリウム水溶液1リツトルにLiOHを17g溶
解させたアルカリ水溶液)を注入した。しかるのち、樹
脂製封口体に正極タブをスポツト溶接し、負極の最外周
部分は缶の側面に接触させたのち、密封した。この密封
後、60℃で17時間保存し、0.2C(110mA)
で7.5時間充電し、0.2C(110mA)で1.0
Vまで放電した。この充放電サイクルを放電容量が一定
になるまで繰り返して、水素化物二次電池を作製した。
The above-mentioned negative electrode sheet and the above-mentioned positive electrode sheet are wound through a nylon nonwoven fabric separator.
Put it in a AAA size electrode can and add electrolyte (30% by weight)
An alkaline aqueous solution in which 17 g of LiOH was dissolved in 1 liter of an aqueous potassium hydroxide solution) was injected. Thereafter, the positive electrode tab was spot-welded to the resin sealing body, and the outermost peripheral portion of the negative electrode was brought into contact with the side surface of the can and then sealed. After sealing, store at 60 ° C. for 17 hours, and 0.2 C (110 mA)
7.5 hours at 0.2C (110mA)
Discharged to V. This charge / discharge cycle was repeated until the discharge capacity became constant, to produce a hydride secondary battery.

【0036】実施例2 正極の導電助剤であるニツケル粉Aの使用量を4部に変
更した以外は、実施例1と同様にして、水素化物二次電
池を作製した。
Example 2 A hydride secondary battery was manufactured in the same manner as in Example 1 except that the amount of nickel powder A, which was a conductive auxiliary for the positive electrode, was changed to 4 parts.

【0037】実施例3 正極の導電助剤であるニツケル粉Aの使用量を6部に変
更した以外は、実施例1と同様にして、水素化物二次電
池を作製した。
Example 3 A hydride secondary battery was manufactured in the same manner as in Example 1 except that the amount of nickel powder A, which was a conductive auxiliary for the positive electrode, was changed to 6 parts.

【0038】実施例4 正極の導電助剤であるニツケル粉Aの使用量を8部に変
更した以外は、実施例1と同様にして、水素化物二次電
池を作製した。
Example 4 A hydride secondary battery was produced in the same manner as in Example 1 except that the amount of nickel powder A, which was a conductive auxiliary for the positive electrode, was changed to 8 parts.

【0039】実施例5 正極の導電助剤であるニツケル粉Aの使用量を10部に
変更した以外は、実施例1と同様にして、水素化物二次
電池を作製した。
Example 5 A hydride secondary battery was manufactured in the same manner as in Example 1 except that the amount of nickel powder A, which was a conductive auxiliary for the positive electrode, was changed to 10 parts.

【0040】実施例6 正極の導電助剤として、ニツケル粉A2部に代えて、ニ
ツケル粉B6部を使用した以外は、実施例1と同様にし
て、水素化物二次電池を作製した。
Example 6 A hydride secondary battery was manufactured in the same manner as in Example 1, except that 6 parts of nickel powder B was used instead of 2 parts of nickel powder A as a conductive assistant for the positive electrode.

【0041】実施例7 正極の導電助剤として、ニツケル粉A2部に代えて、ニ
ツケル粉C6部を使用した以外は、実施例1と同様にし
て、水素化物二次電池を作製した。
Example 7 A hydride secondary battery was manufactured in the same manner as in Example 1, except that 6 parts of nickel powder C was used instead of 2 parts of nickel powder A as a conductive auxiliary for the positive electrode.

【0042】比較例1 正極の導電助剤として、ニツケル粉A2部に代えて、ニ
ツケル粉D2部を使用した以外は、実施例1と同様にし
て、水素化物二次電池を作製した。
Comparative Example 1 A hydride secondary battery was produced in the same manner as in Example 1, except that 2 parts of nickel powder A was used instead of 2 parts of nickel powder as a conductive assistant for the positive electrode.

【0043】比較例2 正極の導電助剤として、ニツケル粉A2部に代えて、ニ
ツケル粉E2部を使用した以外は、実施例1と同様にし
て、水素化物二次電池を作製した。
Comparative Example 2 A hydride secondary battery was produced in the same manner as in Example 1 except that nickel powder E2 part was used instead of nickel powder A2 part as a conductive assistant for the positive electrode.

【0044】上記の実施例1〜7、比較例1,2の各水
素化物二次電池について、初期の放電容量、サイクル特
性および過放電特性を調べた。これらの結果は、下記の
表2に示されるとおりであつた。なお、サイクル特性
は、0.58A(−ΔV=5mV)充電、0.58A
(1.0Vカツト)で放電するサイクルを繰り返し、初
期容量に対して60%放電容量が得られるサイクル数を
求めた。過放電特性は、20Ωの抵抗を取り付け、70
℃で3日間保存(電池電圧0V)し、0.2Cの充放電
を行い、つぎの式により、容量回復率を求めた。 容量回復率(%)=(保存後の容量/保存前の容量)×
100
With respect to each of the hydride secondary batteries of Examples 1 to 7 and Comparative Examples 1 and 2, the initial discharge capacity, cycle characteristics and overdischarge characteristics were examined. These results were as shown in Table 2 below. The cycle characteristics were 0.58 A (−ΔV = 5 mV) charge, 0.58 A
(1.0 V cut), the cycle of discharging was repeated, and the number of cycles at which a 60% discharge capacity with respect to the initial capacity was obtained. The over-discharge characteristics are as follows.
C. for 3 days (battery voltage: 0 V), charging and discharging at 0.2 C, and the capacity recovery rate was determined by the following equation. Capacity recovery rate (%) = (capacity after storage / capacity before storage) x
100

【0045】 [0045]

【0046】上記表2の結果から明らかなように、実施
例1〜7の各水素化物二次電池は、高い放電容量を有し
ているとともに、比較例1,2の水素化物二次電池に比
べ、サイクル回数が多く、かつ容量回復率も高いことが
わかる。
As is evident from the results in Table 2, each of the hydride secondary batteries of Examples 1 to 7 has a high discharge capacity and the hydride secondary batteries of Comparative Examples 1 and 2. In comparison, it can be seen that the number of cycles is large and the capacity recovery rate is also high.

【0047】[0047]

【発明の効果】以上のように、本発明では、ペ―スト式
ニツケル正極の導電助剤として、特定のニツケル粉を使
用したことにより、正極の容量が高く、かつサイクル特
性および過放電特性にすぐれる水素化物二次電池を提供
することができる。
As described above, according to the present invention, the specific nickel powder is used as the conductive aid of the paste-type nickel positive electrode, so that the positive electrode has a high capacity and has excellent cycle characteristics and over-discharge characteristics. An excellent hydride secondary battery can be provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極とアルカリ水溶液よりなる電解
液とセパレ―タを有する水素化物二次電池において、上
記の正極中に、一次粒子が球状で、一次粒子の集合体が
三次元的な鎖状構造を持ち、その鎖状柱の直径が0.5
μm以下で粉末X線回析測定による結晶サイズが300
Å以下であり、かつ酸素含有量が0.5〜1.5重量%
であるニツケル粉を含有することを特徴とする水素化物
二次電池。
1. A hydride secondary battery having a positive electrode using nickel hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, an electrolyte solution made of an alkaline aqueous solution, and a separator, wherein primary particles are contained in the positive electrode. Spherical, an aggregate of primary particles has a three-dimensional chain structure, and the diameter of the chain pillar is 0.5
When the crystal size is 300 μm or less, the crystal size measured by powder X-ray diffraction
Å or less, and the oxygen content is 0.5 to 1.5% by weight
A hydride secondary battery comprising the nickel powder as described above.
【請求項2】 ニツケル粉のタツプ密度が0.2〜0.
8g/ccである請求項1に記載の水素化物二次電池。
2. The nickel powder having a tap density of 0.2 to 0.1.
The hydride secondary battery according to claim 1, which is 8 g / cc.
【請求項3】 ニツケル粉のBET吸着法による比表面
積が4〜8m2 /gである請求項1に記載の水素化物二
次電池。
3. The hydride secondary battery according to claim 1, wherein the specific surface area of the nickel powder measured by a BET adsorption method is 4 to 8 m 2 / g.
【請求項4】 ニツケル粉の含有量は、水酸化ニツケル
100重量部に対して2〜10重量部である請求項1〜
3のいずれかに記載の水素化物二次電池。
4. The content of the nickel powder is 2 to 10 parts by weight based on 100 parts by weight of the nickel hydroxide.
4. The hydride secondary battery according to any one of 3.
【請求項5】 水酸化ニツケルを活物質とする正極中
に、ニツケル粉とともに、コバルト粉またはコバルト酸
化物粉のいずれか少なくともひとつを含有する請求項1
〜4のいずれかに記載の水素化物二次電池。
5. A positive electrode comprising nickel hydroxide as an active material, wherein the positive electrode contains at least one of a cobalt powder and a cobalt oxide powder together with the nickel powder.
5. The hydride secondary battery according to any one of claims 4 to 4.
JP9284090A 1997-10-16 1997-10-16 Hydride secondary battery Withdrawn JPH11121010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284090A JPH11121010A (en) 1997-10-16 1997-10-16 Hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284090A JPH11121010A (en) 1997-10-16 1997-10-16 Hydride secondary battery

Publications (1)

Publication Number Publication Date
JPH11121010A true JPH11121010A (en) 1999-04-30

Family

ID=17674109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284090A Withdrawn JPH11121010A (en) 1997-10-16 1997-10-16 Hydride secondary battery

Country Status (1)

Country Link
JP (1) JPH11121010A (en)

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US20040209166A1 (en) Nickel hydrogen secondary battery
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP2802482B2 (en) Nickel electrode for alkaline secondary batteries
US20100081053A1 (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing alkaline storage battery
JP3925963B2 (en) Alkaline secondary battery
JPH10172558A (en) Hydride secondary battery
JPH11121010A (en) Hydride secondary battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP4059357B2 (en) Hydride secondary battery and manufacturing method thereof
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2001223000A (en) Alkaline secondary battery
JPH0675398B2 (en) Sealed alkaline storage battery
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JPH11121009A (en) Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP3727360B2 (en) Method for producing metal oxide / hydrogen secondary battery
JP3362400B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104