JP3925963B2 - Alkaline secondary battery - Google Patents

Alkaline secondary battery Download PDF

Info

Publication number
JP3925963B2
JP3925963B2 JP24355996A JP24355996A JP3925963B2 JP 3925963 B2 JP3925963 B2 JP 3925963B2 JP 24355996 A JP24355996 A JP 24355996A JP 24355996 A JP24355996 A JP 24355996A JP 3925963 B2 JP3925963 B2 JP 3925963B2
Authority
JP
Japan
Prior art keywords
naoh
normality
lioh
koh
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24355996A
Other languages
Japanese (ja)
Other versions
JPH09139230A (en
Inventor
哲哉 山根
邦彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP24355996A priority Critical patent/JP3925963B2/en
Publication of JPH09139230A publication Critical patent/JPH09139230A/en
Priority to US08/874,406 priority patent/US5965295A/en
Application granted granted Critical
Publication of JP3925963B2 publication Critical patent/JP3925963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ二次電池に関し、特にアルカリ電解液を改良したアルカリ二次電池に係わる。
【0002】
【従来の技術】
アルカリ二次電池は、ニッケル正極と負極との間に合成樹脂繊維製セパレータを介装して作製された電極群を例えば水酸化カリウムからなるアルカリ電解液と共に容器内に収納した構造を有する。前記ニッケル正極は、水酸化ニッケル粉末と、例えばコバルト酸化物のようコバルト化合物や金属コバルトなどの導電剤と、結着剤と、水を混練してペーストを調製した後、前記ペーストを例えば三次元スポンジ状金属多孔体や金属繊維マット等の耐アルカリ性金属多孔体に充填することにより製造される。
【0003】
しかしながら、前述した構成の二次電池を高温で充電すると、下記(1)式に示す前記正極の水酸化ニッケル粉末の充電反応および下記(2)式に示す酸素ガス発生反応に関与する電位の差が小さくなる。その結果、充電時の充電電圧が前記(2)式の酸素ガス発生反応に食われるため、前記正極の充電効率が低下するという問題点があった。
【0004】

Figure 0003925963
このようなことから、前記水酸化ニッケル粉末に数%のカドミウム又は亜鉛を含有させたり、前記アルカリ電解液に水酸化リチウムを添加したりすることが行われている。しかしながら、これらの方法では高温状態における正極の充電効率を十分に向上させることは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、実用的なサイクル時の容量維持率(サイクル寿命)を保持しつつ、高温状態での充電効率が向上され、十分な実容量(放電容量)を有するアルカリ二次電池を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明によれば、水酸化ニッケル粉末を含む正極と、負極と、前記正極と前記負極との間に介装されるセパレータと、アルカリ電解液とを具備し、
前記水酸化ニッケルは、X線粉末回折法による(101)面のピーク半価幅が0.8°/2θ(Cu−Kα)以上であり、かつ
前記アルカリ電解液は、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)及び水酸化リチウム(LiOH)のトータル規定度が7.5〜9.5Nの範囲で、NaOHの規定度が4.0〜5.0Nの範囲で、LiOHの規定度が0.5〜1.2Nの範囲で、KOHの規定度が2.5〜3.5Nであり、かつNaOHが主成分である組成を有することを特徴とするアルカリ二次電池が提供される。
【0008】
【発明の実施の形態】
以下、本発明のアルカリ二次電池を図1を参照して説明する。
有底円筒状の容器1内には、正極2とセパレータ3と負極4とを積層してスパイラル状に捲回することにより作製された電極群5が収納されている。前記負極4は、前記電極群5の最外周に配置されて前記容器1と電気的に接触している。アルカリ電解液は、前記容器1内に収容されている。中央に孔6を有する円形の第1の封口板7は、前記容器1の上部開口部に配置されている。リング状の絶縁性ガスケット8は、前記封口板7の周縁と前記容器1の上部開口部内面の間に配置され、前記上部開口部を内側に縮径するカシメ加工により前記容器1に前記封口板7を前記ガスケット8を介して気密に固定している。正極リード9は、一端が前記正極2に接続、他端が前記封口板7の下面に接続されている。帽子形状をなす正極端子10は、前記封口板7上に前記孔6を覆うように取り付けられている。ゴム製の安全弁11は、前記封口板7と前記正極端子10で囲まれた空間内に前記孔6を塞ぐように配置されている。中央に穴を有する絶縁材料からなる円形の押え板12は、前記正極端子10上に前記正極端子10の突起部がその押え板12の前記穴から突出されるように配置されている。外装チューブ13は、前記押え板12の周縁、前記容器1の側面及び前記容器1の底部周縁を被覆している。
【0009】
次に、前記正極2、負極4、セパレータ3および電解液について説明する。
1)正極2
この正極2は、X線粉末回折法による(101)面のピーク半価幅が0.8゜/2θ(Cu−Kα)以上の水酸化ニッケル粉末、導電剤、結着剤および水を含むペーストを調製し、前記ペーストを耐アルカリ性金属多孔体に充填し、これを乾燥、加圧成形した後、所望のサイズに切断することにより作製される。
【0010】
前記水酸化ニッケル粉末としては、例えば単一の水酸化ニッケル粉末、または亜鉛および/またはコバルトが金属ニッケルと共沈された水酸化ニッケル粉末を用いることができる。後者の水酸化ニッケル粉末を含む正極は、高温状態における充電効率を更に向上することが可能になる。
【0011】
前記水酸化ニッケル粉末の粉末X線回折法による(101)面のピークの半価幅を規定したのは、次のような理由によるものである。前記半価幅を0.8°/2θ(Cu−Kα)未満にすると、この水酸化ニッケル粉末を含む正極を備えたアルカリ二次電池は、後述するアルカリ電解液との関係で充放電効率が低下する。この充放電効率の低下は、高温域のみならず、低温域においても生じる。より好ましい水酸化ニッケル粉末の粉末X線回折法による(101)面のピークの半価幅は、0.9〜1.0゜/2θ(Cu−Kα)である。
【0012】
前記導電剤としては、例えば一酸化コバルト、三酸化二コバルト、水酸化コバルト等のコバルト化合物を挙げることができる。
前記結着剤としては、例えばポリテトラフルオロエチレン、カルボキシメチルセルロース、メチルセルロース、ポリアクリル酸ナトリウム、ポリビニルアルコールを挙げることができる。
【0013】
前記耐アルカリ性金属多孔体としては、例えばニッケル、ステンレス等の金属や、ニッケルメッキが施された樹脂などからなるスポンジ状、繊維状、フェルト状の多孔質構造を有するものを挙げることができる。
【0014】
2)負極4
この負極4は、負極活物質、導電材、結着剤および水と共に混練してペーストを調製し、前記ペーストを導電性基板に充填し、乾燥した後、成形することにより製造される。
【0015】
前記負極活物質としては、例えば金属カドミウム、水酸化カドミウムなどのカドミウム化合物、水素等を挙げることができる。水素のホスト・マトリックスとしては、例えば、水素吸蔵合金を挙げることができる。
【0016】
中でも、前記水素吸蔵合金は、前記カドミウム化合物を用いた場合よりも二次電池の容量を向上できるため、好ましい。前記水素吸蔵合金は、格別制限されるものではなく、電解液中で電気化学的に発生させた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出できるものであればよい。例えば、LaNi5 、MmNi5 (Mmはミッシュメタル)、LmNi5 (LmはLaを含む希土類元素から選ばれる少なくとも一種)、これら合金のNiの一部をAl、Mn、Co、Ti、Cu、Zn、Zr、Cr、Bのような元素で置換した多元素系のもの、またはTiNi系、TiFe系のものを挙げることができる。特に、一般式LmNiw Cox Mny Alz (原子比w,x,y,zの合計値は5.00≦w+x+y+z≦5.50である)で表される組成の水素吸蔵合金は充放電サイクルの進行に伴う微粉化を抑制して充放電サイクル寿命を向上できるための好適である。
【0017】
前記導電材としては、例えばカーボンブラック、黒鉛等を挙げることができる。
前記結着剤としては、例えばポリアクリル酸ソーダ、ポリアクリル酸カリウムなどのポリアクリル酸塩、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂、またはカルボキシメチルセルロース(CMC)等を挙げることができる。
【0018】
前記導電性基板としては、例えばパンチドメタル、エキスパンデッドメタル、穿孔剛板、ニッケルネットなどの二次元基板や、フェルト状金属多孔体や、スポンジ状金属多孔体などの三次元基板を挙げることができる。
【0019】
3)セパレータ3
このセパレータ3としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを挙げることができる。
【0020】
4)アルカリ電解液
このアルカリ電解液は、2.0〜6.0Nの水酸化カリウム(KOH)、2.0〜5.0Nの水酸化ナトリウム(NaOH)および0.5〜1.5Nの水酸化リチウム(LiOH)からなる組成を有する。
【0021】
前記KOH、NaOHおよびLiOHからなるアルカリ電解液において、前記電解液中のNaOH、LiOHの規定度(N)、特にLiOHの規定度が高いほど、前述した(2)式の酸素発生電位が高くなって高温充電効率を向上できる。一方、前記電解液中のKOHの規定度(N)が高いほど、前記電解液を含むアルカリ二次電池のサイクル時の容量維持率が向上される。以下にKOH、NaOHおよびLiOHの規定度を限定した理由について述べる。
【0022】
[KOH]
このKOHは、電解液の導電性を高めるために用いられる。KOHを2.0N未満にすると、電解液の導電性が低下してこの電解液を備える二次電池のサイクル時の容量維持率が低下する。一方、KOHが6.0Nを越えると前記KOHに対する添加成分であるNaOH、LiOHの電解液中への溶解量が低下する、つまりそれらアルカリ成分の規定度が相対的に低下して高温充電効率が低下する。より好ましいKOHの規定度(N)は2.5〜5.5である。
【0023】
[NaOH]
このNaOHは、高温充電時における前述した(2)式に示す酸素発生電圧を高める作用をなす。NaOHを2.0N未満にすると高温充電効率の向上化を発揮できなくなる。一方、NaOHが5.0Nを越えると電解液中のKOHの規定度が相対的に低下して電解液の導電性が下がる。より好ましいNaOHの規定度(N)は3.0〜5.0である。
【0024】
[LiOH]
このLiOHは、高温充電時における前述した(2)式に示す酸素発生電圧をNaOHよりさらに高める作用をなす。LiOHを0.5N未満にすると高温充電効率を向上化が困難になる。一方、LiOHが1.5Nを越えると電解液中のKOHの規定が相対的に低下して電解液の導電性が下がる。さらに、LiOHは比較的溶解度が低いため、1.5Nを越える溶解は困難であり、また低温域で析出する可能性がある。より好ましいLiOHの規定度(N)は0.5〜1.2である。
【0025】
前記KOH、NaOHおよびLiOHのトータル規定度は、7.5〜9.5Nにすることが好ましい。トータル規定度を7.5N未満にすると、充放電効率が低下する恐れがある。一方、トータル規定度が9.5Nを越えるとサイクル特性が低下する恐れがある。
【0026】
また、とくに高温環境下で使用される電池においては、充電効率及び自己放電特性が特に重要視されるため、前記アルカリ電解液の中でもNaOHを主体とするものを用いることが好ましい。ここで、NaOHが主成分である組成の電解液とは、NaOH、KOH及びLiOHのうちNaOHの規定度が最も高い電解液のことを意味する。
【0027】
この電解液としては、NaOH、KOH及びLiOHのトータル規定度が7.5〜9.5Nの範囲で、かつNaOHの規定度が4.0〜5.0Nの範囲で、LiOHの規定度が0.5〜1.2Nの範囲である組成を有するものが好ましい。
【0028】
特に高温環境下で使用される電池においては前記電解液のNaOHの規定度を4.0N未満にすると、充電効率及び自己放電特性の向上化をより効果的に発揮できなくなる恐れがある。一方、NaOHの規定度が5.0Nを越えると、電解液の導電性が低下する。
【0029】
特に高温環境下で使用される電池においては前記電解液のLiOHの規定度を0.5N未満にすると、充電効率及び自己放電特性の向上化を発揮できなくなる恐れがある。一方、LiOHの規定度が1.2Nを越えると、電解液の導電性が著しく低下してサイクル時の容量維持率が低下する恐れがある。より好ましいLiOHの規定度(N)は、0.7〜1.1である。
【0030】
以上説明した本発明に係わるアルカリ二次電池によれば、X線粉末回折法による(101)面のピーク半価幅が0.8゜/2θ(Cu−Kα)以上である水酸化ニッケル粉末を含む正極と、2.0〜6.0Nの水酸化カリウム、2.0〜5.0Nの水酸化ナトリウムおよび0.5〜1.5Nの水酸化リチウムからなる組成を有するアルカリ電解液を備えることによって、実用的なサイクル時の容量維持率を保持しつつ、高温充電効率を向上することができる。
【0031】
すなわち、X線粉末回折法による(101)面のピーク半価幅が特定の値を有する水酸化ニッケル粉末を含む正極と、KOH、NaOHおよびLiOHからなり、それらアルカリ成分の規定度を特定したアルカリ電解液を備えることによって、高温状態の充電時における前記正極の酸素過電圧を高くすることができる。その結果、高温状態において前述した(1)式に示す前記水酸化ニッケル粉末の充電反応を優先的に進行させることができるため、NiOOHの生成量が増加して前記正極の充電効率を向上させることができる。したがって、実用的なサイクル時の容量維持率を保持し、かつ実容量(放電容量)の高いアルカリ二次電池を提供できる。
【0032】
また、前記電解液のうちNaOHが主成分である組成の電解液は、とくに高温環境下で使用されるアルカリ二次電池の充電効率及び自己放電特性の双方をより効果的に改善することができる。
【0033】
すなわち、NaOHを主成分にすることによって、高温状態の充電時における前記正極の酸素過電圧をさらに高くすることができるため、前記正極の充電効率を大幅に向上させることができる。また、(1)NaOHが主成分であるために前記電解液は導電率が低いこと、及び(2)前記電解液と前記正極を備えた二次電池における前記正極に存在するコバルト形態との関係等に起因して前記二次電池の自己放電が抑制されるものと推測される。なお、前記電解液中の水酸化リチウムの規定度を高くすると、前記電解液の導電率がさらに低くくなるため、さらなる自己放電特性の改善を期待できる。
【0034】
従って、2.0〜6.0Nの水酸化カリウム、2.0〜5.0Nの水酸化ナトリウムおよび0.5〜1.5Nの水酸化リチウムからなり、かつ前記水酸化ナトリウムが主成分であるアルカリ電解液を備えたアルカリ二次電池は、実用的なサイクル時の容量維持率を確保しつつ、高温環境下における充電効率並びに自己放電特性をより効果的に改善することができる。
【0035】
【実施例】
以下、本発明の実施例を図面を参照して詳細に説明する。
実施例1
まず、X線粉末回折法による(101)面のピーク半価幅が0.95゜/2θ(Cu−Kα)である水酸化ニッケル粉末90重量部および一酸化コバルト粉末10重量部からなる混合粉末にカルボキシメチルセルロース0.3重量%およびポリテトラフルオロエチレン2.0重量%を添加し、さらにこの混合物に水35重量%を添加、混練してペーストを調製した。このペーストを耐アルカリ性金属多孔体としての多孔度95%のニッケルメッキ繊維基板に充填し、乾燥した後、ローラプレスして圧延成形することにより正極を作製した。
【0036】
また、LaNi4.0 Co0.4 Mn0.3 Al0.3 の組成からなる水素吸蔵合金粉末95重量部にポリテトラフルオロエチレン粉末3重量部と、カーボン粉末1重量部と、結着剤としてカルボキシメチルセルロースを1重量部添加し、水50重量部と共に混合することによって、ペーストを調製した。このペーストをニッケル製ネットに塗布、乾燥した後、加圧成形することによって水素吸蔵合金負極を作製した。
【0037】
次いで、前記正極と前記負極との間にポリプロピレン製不織布からなるセパレータを介装して渦巻状に捲回して電極群を作製した。これらの電極群と下記表1〜表5に示す組成のアルカリ電解液を有底円筒状容器に収納して前述した図1に示す構造を有する4/3Aサイズ(理論容量;2800mAh)の22種の円筒形ニッケル水素二次電池を組み立てた。
【0038】
【表1】
Figure 0003925963
【0039】
【表2】
Figure 0003925963
【0040】
【表3】
Figure 0003925963
【0041】
【表4】
Figure 0003925963
【0042】
【表5】
Figure 0003925963
【0043】
得られた各二次電池について、まず25℃で1C、−ΔV制御(10mVのカットオフ電圧)充電、25℃、1C、1カット放電を行ない、常温(25℃)充電における基準容量の確認を行ない、しかる後に60℃で、1C、−ΔV制御(10mVのカットオフ電圧)充電、25℃、1C、1カット放電を行ない、60℃における容量の確認を行ない、前述の常温(25℃)基準容量との比率を算出することによって充電効率(%)を測定した。その結果を図2に示す。なお、図2中の電解液はトータル規定度が8.5Nであり、KOH濃度は図2中の任意の点におけるNaOH濃度とLiOH濃度の和を8.5Nから差し引いた値で示される。
【0044】
また、得られた各二次電池について25℃、1C、−ΔV充電、1C、1Vカット放電で400サイクルの充放電を行い、このサイクル数での初期容量に対する容量維持率(%)を求めた。その結果を図3に示す。なお、図3中の電解液はトータル規定度が8.5Nであり、KOH濃度は図3中の任意の点におけるNaOH濃度とLiOH濃度の和を8.5Nから差し引いた値で示される。
【0045】
図2から明らかなように、KOH、NaOHおよびLiOHの系で、アルカリ成分のトータル規定度を一定(この場合、8.5N)としたアルカリ電解液を備えた二次電池のうち、LiOHおよびNaOHの規定度が大きいアルカリ電解液を有する二次電池ほど、高温充電効率が向上されることがわかる。
【0046】
また、図3から明らかなようにKOH、NaOHおよびLiOHの系で、アルカリ成分のトータル規定度を一定(この場合、8.5N)としたアルカリ電解液を備えた二次電池のうち、LiOHおよびNaOHの規定度が小さい、つまりKOHの規定度が大きいアルカリ電解液を有する二次電池ほど、サイクル時の容量維持率が高いことがわかる。
【0047】
したがって、図2の高温充電効率および図3のサイクル時の容量維持率の関係からKOH、NaOHおよびLiOHの系で、アルカリ成分のトータル規定度が例えば8.5Nと一定で、LiOHが0.5〜1.5N、NaOHが2.0〜5.0N(好ましくは3〜5.0N)、KOHがトータル規定度からLiOHおよびNaOHを引いた規定度であるアルカリ電解液を備えた二次電池は、実用的なサイクル時の容量維持率を保持しつつ、高温充電効率が向上されることがわかる。
【0048】
(参照例)
正極の活物質である水酸化ニッケル粉末として、X線粉末回折法による(101)面のピーク半価幅が0.7゜/2θ(Cu−Kα)であるものを用い、アルカリ電解液としてLiOH1.0N、NaOH3.0N、KOH4.5Nの組成のものを用いた以外、前述した実施例1と同様で図1に示す構造を有する4/3Aサイズ(理論容量;2800mAh)の円筒形ニッケル水素二次電池を組み立てた。
【0049】
得られた二次電池について、実施例1と同様な条件で高温充電効率およびサイクル時の容量維持率を調べた。その結果、充電効率は53%、サイクル時の容量維持率は60%であった。したがって、電解液組成が本発明と同じであるものの、X線粉末回折法による(101)面のピーク半価幅が0.7゜/2θである活物質を含む正極を参照例の二次電池は、同半価幅が0.8゜/2θ(Cu−Kα)以上の水酸化ニッケル粉末を含む正極を備えた本発明の二次電池に比べて充放電効率、サイクル時の容量維持率が共に劣ることがわかる。
【0050】
(実施例2)
前述した表4に示すNo.12〜15のアルカリ電解液を備えるアルカリ二次電池について、高温環境下における自己放電特性を測定した。
【0051】
<比較例の二次電池の組み立て>
アルカリ電解液としてLiOH1.0N、KOH7.0Nの組成のものを用いた以外、前述した実施例1と同様で図1に示す構造を有する4/3Aサイズ(理論容量;2800mAh)の円筒形ニッケル水素二次電池を組み立てた。
【0052】
<高温環境下における自己放電率の測定>
No.12〜15及び比較例の二次電池について、25℃、1C、−ΔV制御(10mVのカットオフ電圧)充電、25℃、1C、1Vカット放電を行ない、常温(25℃)充電における基準容量の確認を行ない、しかる後に25℃で、1C、−ΔV制御(10mVのカットオフ電圧)充電、45℃で2週間貯蔵後、25℃、1C、1Vカット放電を行ない、高温環境下での貯蔵後における保持容量の確認を行なった。前述の常温(25℃)基準容量と得られた保持容量との差を前記基準容量で除することにより自己放電率(%)を算出し、その結果を下記表6に示す。
【0053】
【表6】
Figure 0003925963
【0054】
表6から明らかなように、No.12〜15の二次電池は、比較例に比べて自己放電率が低いことがわかる。中でも、NaOHを主体とする組成のアルカリ電解液を備えたNo.13〜15の二次電池は、KOHを主体とする電解液を備えたNo.12の二次電池に比べて高温環境下で貯蔵した際の自己放電を抑制できることがわかる。
【0055】
従って、表6の自己放電率、図2の高温充電効率及び図3のサイクル時の容量維持率の関係から、KOH、NaOHおよびLiOHの系で、アルカリ成分のトータル規定度が例えば8.5Nと一定で、LiOHが0.5〜1.5N、NaOHが2.0〜5.0N、KOHがトータル規定度からLiOHおよびNaOHを引いた規定度であるアルカリ電解液のうち、NaOHが主成分であるアルカリ電解液を備えたアルカリ二次電池は、実用的なサイクル時の容量維持率を保持しつつ、高温環境下で使用される場合の充電効率と自己放電特性をより効果的に改善できることがわかる。
【0056】
【発明の効果】
以上詳述したように本発明によれば、実用的なサイクル時の容量維持率を保持しつつ、高温充電効率が向上される実容量(放電容量)の高いアルカリ二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るアルカリ二次電池を示す斜視図。
【図2】本発明の実施例におけるアルカリ電解液の組成と充電効率との関係を示す特性図。
【図3】本発明の実施例におけるアルカリ電解液の組成とサイクル時の容量維持率との関係を示す特性図。
【符号の説明】
1…容器、2…正極、3…セパレータ、4…負極、7…封口板、8…絶縁ガスケット。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline secondary battery, and more particularly to an alkaline secondary battery with an improved alkaline electrolyte.
[0002]
[Prior art]
An alkaline secondary battery has a structure in which an electrode group produced by interposing a synthetic resin fiber separator between a nickel positive electrode and a negative electrode is housed in a container together with an alkaline electrolyte made of, for example, potassium hydroxide. The nickel positive electrode is prepared by mixing nickel hydroxide powder, a conductive agent such as a cobalt compound such as cobalt oxide or metallic cobalt, a binder, and water to prepare a paste. It is manufactured by filling an alkali-resistant metal porous material such as a sponge-like metal porous material or a metal fiber mat.
[0003]
However, when the secondary battery having the above-described configuration is charged at a high temperature, the potential difference involved in the charge reaction of the nickel hydroxide powder of the positive electrode shown in the following formula (1) and the oxygen gas generation reaction shown in the following formula (2) Becomes smaller. As a result, there is a problem that the charging efficiency of the positive electrode is lowered because the charging voltage at the time of charging is affected by the oxygen gas generation reaction of the formula (2).
[0004]
Figure 0003925963
For this reason, the nickel hydroxide powder contains several percent of cadmium or zinc, or lithium hydroxide is added to the alkaline electrolyte. However, it has been difficult for these methods to sufficiently improve the charging efficiency of the positive electrode in a high temperature state.
[0005]
[Problems to be solved by the invention]
The present invention seeks to provide an alkaline secondary battery that has a sufficient capacity (discharge capacity) with improved charging efficiency at high temperatures while maintaining a practical capacity retention rate (cycle life) during cycling. To do.
[0006]
[Means for Solving the Problems]
According to the present invention, comprising a positive electrode containing nickel hydroxide powder, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte,
The nickel hydroxide has a (101) plane peak half width of 0.8 ° / 2θ (Cu—Kα) or more by X-ray powder diffraction method, and the alkaline electrolyte is sodium hydroxide (NaOH). The total normality of potassium hydroxide (KOH) and lithium hydroxide (LiOH) is in the range of 7.5 to 9.5N, the normality of NaOH is in the range of 4.0 to 5.0N, and the normality of LiOH range but the 0.5~1.2N, normality of the KOH Ri 2.5~3.5N der, and NaOH is provided an alkaline secondary battery characterized by having a composition Ru principal component der Is done.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the alkaline secondary battery of this invention is demonstrated with reference to FIG.
In the bottomed cylindrical container 1, an electrode group 5 produced by stacking the positive electrode 2, the separator 3, and the negative electrode 4 and winding them in a spiral shape is housed. The negative electrode 4 is disposed on the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is accommodated in the container 1. A circular first sealing plate 7 having a hole 6 in the center is disposed in the upper opening of the container 1. A ring-shaped insulating gasket 8 is disposed between the periphery of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate is attached to the container 1 by caulking to reduce the diameter of the upper opening to the inside. 7 is hermetically fixed through the gasket 8. The positive electrode lead 9 has one end connected to the positive electrode 2 and the other end connected to the lower surface of the sealing plate 7. A positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6. The rubber safety valve 11 is disposed so as to close the hole 6 in a space surrounded by the sealing plate 7 and the positive electrode terminal 10. A circular presser plate 12 made of an insulating material having a hole in the center is arranged on the positive electrode terminal 10 so that the protruding portion of the positive electrode terminal 10 protrudes from the hole of the presser plate 12. The outer tube 13 covers the periphery of the pressing plate 12, the side surface of the container 1, and the bottom periphery of the container 1.
[0009]
Next, the positive electrode 2, the negative electrode 4, the separator 3 and the electrolytic solution will be described.
1) Positive electrode 2
This positive electrode 2 is a paste containing nickel hydroxide powder having a peak half-value width of (101) plane of 0.8 ° / 2θ (Cu-Kα) or more by X-ray powder diffraction method, a conductive agent, a binder and water. This is prepared by filling the paste with an alkali-resistant metal porous body, drying and pressing the paste, and then cutting to a desired size.
[0010]
As the nickel hydroxide powder, for example, a single nickel hydroxide powder or a nickel hydroxide powder in which zinc and / or cobalt is coprecipitated with metallic nickel can be used. The latter positive electrode containing nickel hydroxide powder can further improve charging efficiency in a high temperature state.
[0011]
The reason why the half width of the peak of the (101) plane by the powder X-ray diffraction method of the nickel hydroxide powder is defined is as follows. When the half width is less than 0.8 ° / 2θ (Cu−Kα), the alkaline secondary battery including the positive electrode including the nickel hydroxide powder has a charge / discharge efficiency in relation to the alkaline electrolyte described later. descend. This decrease in charge / discharge efficiency occurs not only in the high temperature range but also in the low temperature range. The half width of the peak of the (101) plane by a powder X-ray diffraction method of nickel hydroxide powder is 0.9 to 1.0 ° / 2θ (Cu—Kα).
[0012]
Examples of the conductive agent include cobalt compounds such as cobalt monoxide, dicobalt trioxide, and cobalt hydroxide.
Examples of the binder include polytetrafluoroethylene, carboxymethylcellulose, methylcellulose, sodium polyacrylate, and polyvinyl alcohol.
[0013]
Examples of the alkali-resistant porous metal include those having a sponge-like, fibrous, or felt-like porous structure made of a metal such as nickel or stainless steel or a resin plated with nickel.
[0014]
2) Negative electrode 4
The negative electrode 4 is manufactured by preparing a paste by kneading together with a negative electrode active material, a conductive material, a binder, and water, filling the paste in a conductive substrate, drying, and then molding.
[0015]
Examples of the negative electrode active material include cadmium compounds such as metal cadmium and cadmium hydroxide, and hydrogen. Examples of the hydrogen host matrix include a hydrogen storage alloy.
[0016]
Especially, since the said hydrogen storage alloy can improve the capacity | capacitance of a secondary battery rather than the case where the said cadmium compound is used, it is preferable. The hydrogen storage alloy is not particularly limited as long as it can store hydrogen generated electrochemically in the electrolyte and can easily release the stored hydrogen during discharge. For example, LaNi 5 , MmNi 5 (Mm is a misch metal), LmNi 5 (Lm is at least one selected from rare earth elements including La), and part of Ni in these alloys is Al, Mn, Co, Ti, Cu, Zn , Zr, Cr, B elements substituted with elements such as TiNi-based and TiFe-based ones. In particular, the general formula LmNi w Co x Mn y Al z the hydrogen storage alloy of composition expressed by (atomic ratio w, x, y, the total value of z is 5.00 ≦ w + x + y + z ≦ 5.50) is charged and discharged It is suitable for suppressing the pulverization accompanying the progress of the cycle and improving the charge / discharge cycle life.
[0017]
Examples of the conductive material include carbon black and graphite.
Examples of the binder include polyacrylic acid salts such as sodium polyacrylate and potassium polyacrylate, fluorine resins such as polytetrafluoroethylene (PTFE), and carboxymethylcellulose (CMC).
[0018]
Examples of the conductive substrate include two-dimensional substrates such as punched metal, expanded metal, perforated rigid plate, nickel net, and three-dimensional substrates such as felt-like metal porous bodies and sponge-like metal porous bodies. Can do.
[0019]
3) Separator 3
Examples of the separator 3 include polyamide fiber nonwoven fabrics and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene provided with a hydrophilic functional group.
[0020]
4) Alkaline electrolyte This alkaline electrolyte is composed of 2.0-6.0N potassium hydroxide (KOH), 2.0-5.0N sodium hydroxide (NaOH) and 0.5-1.5N water. It has a composition made of lithium oxide (LiOH).
[0021]
In the alkaline electrolyte composed of KOH, NaOH and LiOH, the higher the normality (N) of NaOH and LiOH in the electrolytic solution, especially the higher the normality of LiOH, the higher the oxygen generation potential of the above-mentioned formula (2). High temperature charging efficiency. On the other hand, the higher the normality (N) of KOH in the electrolytic solution, the higher the capacity retention rate during the cycle of the alkaline secondary battery containing the electrolytic solution. The reason why the normalities of KOH, NaOH and LiOH are limited will be described below.
[0022]
[KOH]
This KOH is used to increase the conductivity of the electrolytic solution. When KOH is less than 2.0 N, the conductivity of the electrolytic solution is lowered, and the capacity retention rate during the cycle of the secondary battery including this electrolytic solution is lowered. On the other hand, when KOH exceeds 6.0 N, the amount of NaOH and LiOH added to the KOH is reduced in the electrolyte solution. descend. The normality (N) of KOH is more preferably 2.5 to 5.5.
[0023]
[NaOH]
This NaOH serves to increase the oxygen generation voltage shown in the above-described equation (2) during high-temperature charging. If NaOH is less than 2.0N, improvement in high-temperature charging efficiency cannot be exhibited. On the other hand, when NaOH exceeds 5.0 N, the normality of KOH in the electrolytic solution is relatively lowered, and the conductivity of the electrolytic solution is lowered. A more preferable normality (N) of NaOH is 3.0 to 5.0.
[0024]
[LiOH]
This LiOH has an effect of further increasing the oxygen generation voltage shown in the above-described equation (2) during high-temperature charging as compared with NaOH. When LiOH is less than 0.5N, it is difficult to improve high-temperature charging efficiency. On the other hand, when LiOH exceeds 1.5N, the regulation of KOH in the electrolytic solution is relatively lowered and the conductivity of the electrolytic solution is lowered. Furthermore, since LiOH has a relatively low solubility, dissolution exceeding 1.5 N is difficult, and there is a possibility of precipitation in a low temperature range. The normality (N) of LiOH is more preferably 0.5 to 1.2.
[0025]
The total normality of the KOH, NaOH and LiOH is preferably 7.5 to 9.5N. If the total normality is less than 7.5N, the charge / discharge efficiency may be reduced. On the other hand, if the total normality exceeds 9.5N, the cycle characteristics may be degraded.
[0026]
In particular, in a battery used in a high temperature environment, charging efficiency and self-discharge characteristics are particularly important. Therefore, among the alkaline electrolytes, it is preferable to use a battery mainly composed of NaOH. Here, the electrolytic solution having a composition mainly composed of NaOH means an electrolytic solution having the highest normality of NaOH among NaOH, KOH and LiOH.
[0027]
As this electrolytic solution, the total normality of NaOH, KOH and LiOH is in the range of 7.5 to 9.5N, the normality of NaOH is in the range of 4.0 to 5.0N, and the normality of LiOH is 0. Those having a composition in the range of 0.5 to 1.2 N are preferred.
[0028]
In particular, in a battery used in a high temperature environment, when the normality of NaOH in the electrolytic solution is less than 4.0 N, there is a possibility that the improvement of charging efficiency and self-discharge characteristics cannot be exhibited more effectively. On the other hand, when the normality of NaOH exceeds 5.0 N, the conductivity of the electrolytic solution decreases.
[0029]
Particularly in a battery used in a high temperature environment, when the LiOH normality of the electrolytic solution is less than 0.5 N, there is a possibility that the improvement of charging efficiency and self-discharge characteristics cannot be exhibited. On the other hand, if the normality of LiOH exceeds 1.2 N, the conductivity of the electrolyte solution is significantly reduced, and the capacity retention rate during cycling may be reduced. The normality (N) of LiOH is more preferably 0.7 to 1.1.
[0030]
According to the alkaline secondary battery according to the present invention described above, nickel hydroxide powder having a peak half-value width of (101) plane of 0.8 ° / 2θ (Cu-Kα) or more by X-ray powder diffraction method is obtained. And an alkaline electrolyte having a composition comprising 2.0 to 6.0 N potassium hydroxide, 2.0 to 5.0 N sodium hydroxide, and 0.5 to 1.5 N lithium hydroxide. As a result, it is possible to improve the high-temperature charging efficiency while maintaining a practical capacity retention rate during the cycle.
[0031]
That is, a positive electrode containing nickel hydroxide powder having a specific value of peak half-width of (101) plane by X-ray powder diffractometry, and an alkali having specified normality of these alkali components comprising KOH, NaOH and LiOH By providing the electrolytic solution, the oxygen overvoltage of the positive electrode during charging in a high temperature state can be increased. As a result, the charge reaction of the nickel hydroxide powder represented by the above-described formula (1) can be preferentially advanced in a high temperature state, so that the amount of NiOOH generated increases and the charge efficiency of the positive electrode is improved. Can do. Therefore, it is possible to provide an alkaline secondary battery that retains a practical capacity retention rate during a cycle and has a high actual capacity (discharge capacity).
[0032]
In addition, among the electrolytes, an electrolyte having a composition mainly composed of NaOH can more effectively improve both charging efficiency and self-discharge characteristics of an alkaline secondary battery used in a high temperature environment. .
[0033]
That is, by using NaOH as a main component, the oxygen overvoltage of the positive electrode during charging in a high temperature state can be further increased, so that the charging efficiency of the positive electrode can be greatly improved. Also, (1) the conductivity of the electrolyte is low because NaOH is the main component, and (2) the relationship between the electrolyte and the cobalt form present in the positive electrode in a secondary battery comprising the positive electrode. It is presumed that the self-discharge of the secondary battery is suppressed due to the above. In addition, when the normality of lithium hydroxide in the electrolyte solution is increased, the conductivity of the electrolyte solution is further decreased, so that further improvement in self-discharge characteristics can be expected.
[0034]
Accordingly, it is composed of 2.0 to 6.0 N potassium hydroxide, 2.0 to 5.0 N sodium hydroxide and 0.5 to 1.5 N lithium hydroxide, and the sodium hydroxide is the main component. An alkaline secondary battery including an alkaline electrolyte can more effectively improve charge efficiency and self-discharge characteristics in a high-temperature environment while ensuring a practical capacity retention rate during cycling.
[0035]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Example 1
First, a mixed powder comprising 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide powder having a peak half-value width of (101) plane of 0.95 ° / 2θ (Cu—Kα) by X-ray powder diffraction method. To this mixture, 0.3% by weight of carboxymethyl cellulose and 2.0% by weight of polytetrafluoroethylene were added, and 35% by weight of water was further added to this mixture and kneaded to prepare a paste. The paste was filled in a nickel-plated fiber substrate having a porosity of 95% as an alkali-resistant metal porous body, dried, and then subjected to roller pressing and rolling to produce a positive electrode.
[0036]
In addition, 95 parts by weight of a hydrogen storage alloy powder composed of LaNi 4.0 Co 0.4 Mn 0.3 Al 0.3 , 3 parts by weight of polytetrafluoroethylene powder, 1 part by weight of carbon powder, and 1 part by weight of carboxymethyl cellulose as a binder are added. The paste was prepared by mixing with 50 parts by weight of water. The paste was applied to a nickel net, dried, and then subjected to pressure molding to produce a hydrogen storage alloy negative electrode.
[0037]
Subsequently, a separator made of a polypropylene non-woven fabric was interposed between the positive electrode and the negative electrode, and wound into a spiral shape to produce an electrode group. 22 types of 4 / 3A size (theoretical capacity: 2800 mAh) having the structure shown in FIG. 1 described above are accommodated in these electrode groups and alkaline electrolytes having the compositions shown in Tables 1 to 5 in a bottomed cylindrical container. A cylindrical nickel-metal hydride secondary battery was assembled.
[0038]
[Table 1]
Figure 0003925963
[0039]
[Table 2]
Figure 0003925963
[0040]
[Table 3]
Figure 0003925963
[0041]
[Table 4]
Figure 0003925963
[0042]
[Table 5]
Figure 0003925963
[0043]
For each obtained secondary battery, first, 1C, -ΔV control (10 mV cut-off voltage) charge, 25 ° C, 1C, 1 cut discharge was performed at 25 ° C, and the reference capacity at normal temperature (25 ° C) charge was confirmed. After that, at 60 ° C., 1C, -ΔV control (10 mV cut-off voltage) charge, 25 ° C., 1C, 1 cut discharge are performed, the capacity at 60 ° C. is confirmed, and the aforementioned normal temperature (25 ° C.) standard The charging efficiency (%) was measured by calculating the ratio with the capacity. The result is shown in FIG. 2 has a total normality of 8.5N, and the KOH concentration is represented by a value obtained by subtracting the sum of NaOH concentration and LiOH concentration at an arbitrary point in FIG. 2 from 8.5N.
[0044]
Moreover, about each obtained secondary battery, charge / discharge of 400 cycles was performed by 25 degreeC, 1C,-(DELTA) V charge, 1C, 1V cut discharge, and the capacity | capacitance maintenance factor (%) with respect to the initial capacity in this cycle number was calculated | required. . The result is shown in FIG. 3 has a total normality of 8.5N, and the KOH concentration is represented by a value obtained by subtracting the sum of NaOH concentration and LiOH concentration at an arbitrary point in FIG. 3 from 8.5N.
[0045]
As is clear from FIG. 2, among the secondary batteries having an alkaline electrolyte in which the total normality of the alkaline components is constant (8.5 N in this case) in the system of KOH, NaOH and LiOH, LiOH and NaOH It can be seen that the secondary battery having an alkaline electrolyte with a higher degree of normality improves the high-temperature charging efficiency.
[0046]
Further, as is clear from FIG. 3, among the secondary batteries provided with the alkaline electrolyte in which the total normality of the alkaline component is constant (8.5N in this case) in the system of KOH, NaOH and LiOH, LiOH and It can be seen that a secondary battery having an alkaline electrolyte having a lower NaOH normality, that is, a higher KOH normality, has a higher capacity retention rate during cycling.
[0047]
Therefore, from the relationship between the high-temperature charging efficiency in FIG. 2 and the capacity retention rate during the cycle in FIG. 3, the total normality of the alkaline component is constant at 8.5 N, for example, and the LiOH is 0.5 in the KOH, NaOH and LiOH system. A secondary battery equipped with an alkaline electrolyte having an electrolyte solution of ~ 1.5N, NaOH of 2.0 to 5.0N (preferably 3 to 5.0N), and KOH having a normality obtained by subtracting LiOH and NaOH from the total normality It can be seen that the high-temperature charging efficiency is improved while maintaining a practical capacity retention rate during the cycle.
[0048]
(Reference example)
The nickel hydroxide powder that is the active material of the positive electrode is one having a peak half-value width of (101) plane of 0.7 ° / 2θ (Cu—Kα) by X-ray powder diffraction method, and LiOH1 as the alkaline electrolyte. A cylindrical nickel-metal hydride of 4 / 3A size (theoretical capacity: 2800 mAh) having the structure shown in FIG. 1 is the same as that of the above-described Example 1 except that the compositions of 0.0 N, NaOH 3.0 N, and KOH 4.5 N are used. The next battery was assembled.
[0049]
With respect to the obtained secondary battery, the high-temperature charging efficiency and the capacity retention rate during cycling were examined under the same conditions as in Example 1. As a result, the charging efficiency was 53%, and the capacity retention rate during cycling was 60%. Therefore, although the electrolyte composition is the same as that of the present invention, a positive electrode containing an active material having a peak half-value width of (101) plane of 0.7 ° / 2θ by the X-ray powder diffraction method is a secondary battery of a reference example. Compared to the secondary battery of the present invention having a positive electrode containing nickel hydroxide powder having a half width of 0.8 ° / 2θ (Cu-Kα) or more, the charge / discharge efficiency and the capacity retention rate during cycling are Both are inferior.
[0050]
(Example 2)
No. shown in Table 4 above. About the alkaline secondary battery provided with 12-15 alkaline electrolyte, the self-discharge characteristic in a high temperature environment was measured.
[0051]
<Assembly of the secondary battery of the comparative example>
4 / 3A size (theoretical capacity: 2800 mAh) cylindrical nickel hydride having the structure shown in FIG. 1 in the same manner as in Example 1 described above, except that an alkaline electrolyte having a composition of LiOH 1.0N and KOH 7.0N was used. A secondary battery was assembled.
[0052]
<Measurement of self-discharge rate in high temperature environment>
No. For the secondary batteries of 12 to 15 and the comparative example, 25 ° C., 1 C, −ΔV control (10 mV cut-off voltage) charge, 25 ° C., 1 C, 1 V cut discharge were performed, and the standard capacity at normal temperature (25 ° C.) charge After confirmation, after charging at 25 ° C, 1C, -ΔV control (10mV cutoff voltage), storage at 45 ° C for 2 weeks, 25 ° C, 1C, 1V cut discharge, after storage in high temperature environment The storage capacity at was confirmed. The self-discharge rate (%) was calculated by dividing the difference between the above-mentioned normal temperature (25 ° C.) reference capacity and the obtained retention capacity by the reference capacity, and the results are shown in Table 6 below.
[0053]
[Table 6]
Figure 0003925963
[0054]
As can be seen from Table 6, no. It turns out that the secondary batteries of 12-15 have a low self-discharge rate compared with a comparative example. Among them, No. 1 provided with an alkaline electrolyte having a composition mainly composed of NaOH. The secondary batteries Nos. 13 to 15 are No.s provided with an electrolyte mainly composed of KOH. It can be seen that self-discharge when stored in a high temperature environment can be suppressed as compared with the 12 secondary batteries.
[0055]
Therefore, from the relationship between the self-discharge rate in Table 6, the high-temperature charging efficiency in FIG. 2, and the capacity retention rate in the cycle in FIG. 3, the total normality of the alkali component is 8.5 N in the system of KOH, NaOH and LiOH, for example. Among alkaline electrolytes that are constant, LiOH is 0.5 to 1.5 N, NaOH is 2.0 to 5.0 N, and KOH is a normality obtained by subtracting LiOH and NaOH from the total normality, NaOH is the main component. Alkaline secondary batteries with certain alkaline electrolytes can more effectively improve charging efficiency and self-discharge characteristics when used in high-temperature environments while maintaining a practical capacity retention rate during cycling. Recognize.
[0056]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide an alkaline secondary battery having a high actual capacity (discharge capacity) capable of improving high-temperature charging efficiency while maintaining a practical capacity retention rate during a cycle. it can.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an alkaline secondary battery according to the present invention.
FIG. 2 is a characteristic diagram showing the relationship between the composition of the alkaline electrolyte and the charging efficiency in the examples of the present invention.
FIG. 3 is a characteristic diagram showing the relationship between the composition of the alkaline electrolyte and the capacity retention rate during cycling in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 7 ... Sealing plate, 8 ... Insulating gasket.

Claims (1)

水酸化ニッケル粉末を含む正極と、負極と、前記正極と前記負極との間に介装されるセパレータと、アルカリ電解液とを具備し、
前記水酸化ニッケルは、X線粉末回折法による(101)面のピーク半価幅が0.8°/2θ(Cu−Kα)以上であり、かつ
前記アルカリ電解液は、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)及び水酸化リチウム(LiOH)のトータル規定度が7.5〜9.5Nの範囲で、NaOHの規定度が4.0〜5.0Nの範囲で、LiOHの規定度が0.5〜1.2Nの範囲で、KOHの規定度が2.5〜3.5Nであり、かつNaOHが主成分である組成を有することを特徴とするアルカリ二次電池。
Comprising a positive electrode containing nickel hydroxide powder, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte;
The nickel hydroxide has a (101) plane peak half width of 0.8 ° / 2θ (Cu—Kα) or more by X-ray powder diffraction method, and the alkaline electrolyte is sodium hydroxide (NaOH). The total normality of potassium hydroxide (KOH) and lithium hydroxide (LiOH) is in the range of 7.5 to 9.5N, the normality of NaOH is in the range of 4.0 to 5.0N, and the normality of LiOH There range of 0.5~1.2N, alkaline secondary batteries normality of KOH is Ri 2.5~3.5N der, and is NaOH and having a composition Ru principal component der.
JP24355996A 1995-09-14 1996-09-13 Alkaline secondary battery Expired - Lifetime JP3925963B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24355996A JP3925963B2 (en) 1995-09-14 1996-09-13 Alkaline secondary battery
US08/874,406 US5965295A (en) 1996-06-14 1997-06-13 Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23682495 1995-09-14
JP7-236824 1995-09-14
JP24355996A JP3925963B2 (en) 1995-09-14 1996-09-13 Alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH09139230A JPH09139230A (en) 1997-05-27
JP3925963B2 true JP3925963B2 (en) 2007-06-06

Family

ID=26532882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24355996A Expired - Lifetime JP3925963B2 (en) 1995-09-14 1996-09-13 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3925963B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149647A (en) * 2005-10-28 2007-06-14 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2007149646A (en) * 2005-10-28 2007-06-14 Sanyo Electric Co Ltd Nickel metal hydride storage battery
JP2007250250A (en) * 2006-03-14 2007-09-27 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP5481803B2 (en) * 2008-05-02 2014-04-23 株式会社Gsユアサ Nickel metal hydride storage battery
JP5700282B2 (en) * 2011-01-11 2015-04-15 株式会社Gsユアサ Alkaline storage battery
JP5716969B2 (en) 2012-09-27 2015-05-13 株式会社Gsユアサ Nickel metal hydride storage battery

Also Published As

Publication number Publication date
JPH09139230A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP2001316744A (en) Hydrogen storage alloy and alkali secondary battery
JP4309494B2 (en) Nickel metal hydride secondary battery
JP3925963B2 (en) Alkaline secondary battery
JP2001325957A (en) Alkaline secondary cell
JPH11162468A (en) Alkaline secondary battery
JPH09274932A (en) Manufacture of alkaline secondary battery
JP2001118597A (en) Alkaline secondary cell
JP3352338B2 (en) Manufacturing method of alkaline storage battery
JP2001223000A (en) Alkaline secondary battery
JPH11288735A (en) Alkaline secondary battery
JPH11260360A (en) Positive electrode for alkaline storage battery and alkaline storage battery
JP3392700B2 (en) Alkaline secondary battery
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery
JP2000021398A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JPH10177858A (en) Paste type positive electrode for alkali secondary battery and manufacture of alkali secondary battery
JPH10255789A (en) Nickel hydrogen secondary battery
JP2000188106A (en) Alkaline secondary battery
JPH08315850A (en) Alkaline secondary battery and its manufacture
JP3384938B2 (en) Alkaline storage battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH10255786A (en) Nickel hydrogen secondary battery
JP2000200599A (en) Alkaline secondary battery
JPH11273673A (en) Alkaline secondary battery
JPH10302792A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

EXPY Cancellation because of completion of term