JPH11121009A - Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode - Google Patents

Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode

Info

Publication number
JPH11121009A
JPH11121009A JP9283471A JP28347197A JPH11121009A JP H11121009 A JPH11121009 A JP H11121009A JP 9283471 A JP9283471 A JP 9283471A JP 28347197 A JP28347197 A JP 28347197A JP H11121009 A JPH11121009 A JP H11121009A
Authority
JP
Japan
Prior art keywords
hydrogen storage
powder
electrode
nickel
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9283471A
Other languages
Japanese (ja)
Inventor
Hideki Tsubata
英樹 津幡
Kiyomi Yoshimura
喜代美 吉村
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP9283471A priority Critical patent/JPH11121009A/en
Publication of JPH11121009A publication Critical patent/JPH11121009A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode having no aggregation substance of nickel powder to be seen in the hydrogen storage alloy electrode with nickel added as conductive power. SOLUTION: This electrode is formed by having an electrode mixture containing hydrogen storage alloy powder, conductive powder, and a binding agent on a conductive base material. In the conductive powder, primary particles are spherical, the aggregation of the primary particles has a three dimensional chain structure, the diameter of the chain column is 0.5 μm or less, a crystal size measured by powder X-ray diffraction measurement is 300 Å or less, and nickel powder of an oxygen content of 0.5 to 1.5 wt.% is contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を可逆的に吸
蔵・放出できる水素吸蔵合金粉末を用いた水素吸蔵合金
電極と、それを用いたニツケル水素蓄電池に関する。
The present invention relates to a hydrogen storage alloy electrode using a hydrogen storage alloy powder capable of reversibly storing and releasing hydrogen, and a nickel hydrogen storage battery using the same.

【0002】[0002]

【従来の技術】ニツケル水素蓄電池は、水素を負極活物
質として動作するものであり、可逆的に水素を吸蔵・放
出できる水素吸蔵合金粉末を導電性基材に担持させてな
る水素吸蔵合金電極を負極とし、通常、正極活物質とし
て動作するニツケル水酸化物を導電性基材に担持させて
なるニツケル極を正極とし、この正負両極をセパレ―タ
を介してアルカリ電解液中に配置して構成される。
2. Description of the Related Art A nickel hydrogen storage battery operates using hydrogen as a negative electrode active material, and comprises a hydrogen storage alloy electrode formed by supporting a hydrogen storage alloy powder capable of reversibly storing and releasing hydrogen on a conductive base material. A negative electrode is used, and a nickel electrode formed by supporting a nickel hydroxide, which normally operates as a positive electrode active material, on a conductive base material is used as a positive electrode, and both positive and negative electrodes are arranged in an alkaline electrolyte via a separator. Is done.

【0003】負極として用いる水素吸蔵合金電極は、水
素吸蔵合金粉末と導電性粉末とポリテトラフルオロエチ
レン粉末を含有する電極合剤をシ―ト成形し、これを導
電性基材である多孔性金属板に圧着させる方法や、水素
吸蔵合金粉末と導電性粉末とカルボキシメチルセルロ―
ス、ポリアクリル酸ソ―ダなどの結着剤と水とを混練し
てペ―スト状の電極合剤を調製し、これを導電性基材で
あるパンチドメタルなどの集電体に塗布する方法などに
より、製造される。
[0003] A hydrogen storage alloy electrode used as a negative electrode is formed by sheet molding an electrode mixture containing a hydrogen storage alloy powder, a conductive powder and a polytetrafluoroethylene powder, and forming the mixture using a porous metal as a conductive base material. Press-bonding to a plate, hydrogen storage alloy powder, conductive powder, carboxymethyl cellulose
A paste-shaped electrode mixture is prepared by kneading a binder such as sodium polyacrylate and water with water, and applying it to a current collector such as punched metal, which is a conductive base material. It is manufactured by a method such as

【0004】ここで、上記の導電性粉末は、水素吸蔵合
金の導電性を高めて負極としての集電能を向上させるた
めのものであり、たとえば、ニツケル粉、コバルト粉、
銅粉、カ―ボン粉などが用いられ、とくにニツケル粉の
使用が多く検討されている。特開平3−179664
号、同7−114922号などの公報には、直径1μm
以下のニツケル粉を用いて内圧上昇を防止し、サイクル
特性を改善することや、平均粒径が2〜8μm、嵩密度
が0.4〜1.0g/cm3 のニツケル粉を用いて、急
放電特性を改善することが提案されている。また、特開
平7−65826号、同7−37583号などの公報に
は、ニツケル粉に異種元素、たとえば炭素を含有させて
内圧上昇を防止することや、ニツケルとコバルトからな
る合金粉を用いて、高率放電特性を改善することが提案
されている。
[0004] Here, the above-mentioned conductive powder is used to enhance the conductivity of the hydrogen storage alloy to improve the current collecting ability as a negative electrode. For example, nickel powder, cobalt powder,
Copper powder, carbon powder and the like are used, and the use of nickel powder is being studied in particular. JP-A-3-179664
No. 7-114922, the diameter of 1 μm
The following nickel powder is used to prevent an increase in internal pressure and to improve cycle characteristics, and to use a nickel powder having an average particle size of 2 to 8 μm and a bulk density of 0.4 to 1.0 g / cm 3 , It has been proposed to improve the discharge characteristics. In Japanese Patent Application Laid-Open Nos. 7-65826 and 7-37583, nickel powder contains a different element, for example, carbon to prevent an increase in internal pressure, or uses an alloy powder composed of nickel and cobalt. It has been proposed to improve high rate discharge characteristics.

【0005】[0005]

【発明が解決しようとする課題】しかるに、ニツケル粉
は、導電性カ―ボンブラツクのように三次元方向に分枝
する鎖状構造を有し、粒子同士が凝集しやすく、この状
態で水素吸蔵合金や結着剤などと混合すると、ニツケル
粉の固まりが十分にときほどかれず、ペ―スト中に凝集
物の粒が残り、このペ―スト物を導電性基材に塗布する
と、塗布面に上記粒が付着した状態となり、これはその
後の圧延処理により偏平に圧延される。このような状態
の水素吸蔵合金電極を負極として用いたニツケル水素蓄
電池は、内部抵抗が上昇し、低温での放電容量が低下し
やすい。また、初期容量、とくに初期立ち上がり特性に
劣り、安定した初期特性を得るには、その後の活性化工
程で長時間の処理を必要とし、生産効率が低下する問題
があつた。
However, the nickel powder has a chain structure branched in a three-dimensional direction like a conductive carbon black, and particles are easily aggregated. If the mixture is mixed with a binder or the like, the agglomeration of the nickel powder will not be sufficiently loosened, and the agglomerates will remain in the paste. The above-mentioned grains are attached, and this is flatly rolled by a subsequent rolling process. In a nickel hydrogen storage battery using the hydrogen storage alloy electrode in such a state as a negative electrode, the internal resistance increases and the discharge capacity at low temperatures tends to decrease. In addition, in order to obtain a stable initial characteristic, which is inferior in the initial capacity, particularly the initial rise characteristic, a long-time treatment is required in the subsequent activation step, and there is a problem that the production efficiency is reduced.

【0006】これに対し、上記凝集物をなくすため、結
着剤や増粘剤を多量に添加したり、ペ―ストをメツシユ
にかけて除粒することも考えられている。しかるに、前
者ではペ―ストが増粘し、導電性基材に所定厚みに担持
させることが困難になり、また単位体積中の水素吸蔵合
金量が減少し、高容量の電極が得られなくなり、後者で
は電極の製造工程が煩雑化し、生産効率が低下する。
On the other hand, in order to eliminate the above-mentioned aggregates, it has been considered to add a large amount of a binder or a thickener, or to apply a paste to a mesh to remove particles. However, in the former, the paste thickens, making it difficult to support the conductive base material at a predetermined thickness, and reducing the amount of hydrogen storage alloy per unit volume, making it impossible to obtain a high capacity electrode. In the latter case, the manufacturing process of the electrode becomes complicated, and the production efficiency decreases.

【0007】本発明は、このような事情に照らして、導
電性粉末としてニツケル粉を添加した水素吸蔵合金電極
において、ニツケル粉の凝集物がみられない上記電極を
得、これにより低温特性および初期特性にすぐれ、また
生産効率の低下という問題のないニツケル水素蓄電池を
得ることを目的としている。
In view of such circumstances, the present invention provides a hydrogen storage alloy electrode to which nickel powder is added as a conductive powder, wherein the electrode has no nickel powder agglomerates. It is an object of the present invention to obtain a nickel hydrogen storage battery which has excellent characteristics and does not cause a problem of reduction in production efficiency.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、鋭意検討した結果、導電性粉末と
して、一次粒子が球状で、一次粒子の集合体が三次元的
な鎖状構造を持つニツケル粉であつて、その鎖状柱の直
径、結晶子サイズおよび酸素含有量を特定範囲に設定し
たニツケル粉を使用することにより、前記従来のような
凝集物がみられない水素吸蔵合金電極を得ることがで
き、これを負極とすることにより、低温特性と初期特性
にすぐれ、しかも生産効率の低下という問題のないニツ
ケル水素蓄電池が得られることを知り、本発明を完成す
るに至つた。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, as a conductive powder, primary particles are spherical and an aggregate of primary particles is three-dimensional. By using nickel powder having a chain structure and having the diameter of chain columns, crystallite size, and oxygen content set in specific ranges, the agglomerates unlike the conventional case are not observed. A hydrogen storage alloy electrode can be obtained, and by using this as a negative electrode, it is known that a nickel hydrogen storage battery having excellent low-temperature characteristics and initial characteristics and having no problem of lowering the production efficiency can be obtained, and the present invention is completed. Led to.

【0009】すなわち、本発明は、水素吸蔵合金粉末と
導電性粉末と結着剤を含有する電極合剤を導電性基材に
担持させてなる水素吸蔵合金電極において、上記の導電
性粉末として、一次粒子が球状で、一次粒子の集合体が
三次元的な鎖状構造を持ち、その鎖状柱の直径が0.5
μm以下で粉末X線回析測定による結晶サイズが300
Å以下であり、かつ酸素含有量が0.5〜1.5重量%
であるニツケル粉を含有することを特徴とする水素吸蔵
合金電極(請求項1)と、ニツケル極からなる負極に対
し、上記構成の水素吸蔵合金電極を負極としたことを特
徴とするニツケル水素蓄電池(請求項5)とに係るもの
である。
More specifically, the present invention provides a hydrogen storage alloy electrode comprising an electrode mixture containing a hydrogen storage alloy powder, a conductive powder, and a binder supported on a conductive substrate, wherein the conductive powder is The primary particles are spherical, the aggregate of the primary particles has a three-dimensional chain structure, and the diameter of the chain pillar is 0.5
When the crystal size is 300 μm or less, the crystal size measured by powder X-ray diffraction
Å or less, and the oxygen content is 0.5 to 1.5% by weight
A hydrogen storage alloy electrode containing nickel powder (claim 1) and a negative electrode comprising a nickel electrode, wherein the hydrogen storage alloy electrode having the above-described configuration is used as a negative electrode. (Claim 5).

【0010】また、本発明は、上記水素吸蔵合金電極に
おいて、ニツケル粉のタツプ密度が0.2〜0.8g/
ccである構成(請求項2)、ニツケル粉のBET比表
面積が4〜8m2 /gである構成(請求項3)、結着剤
がスチレンと2−エチルヘキシルアクリレ―トを主成分
とする単量体混合物の共重合体である構成(請求項4)
を、それぞれ好ましい態様としている。
Further, according to the present invention, in the above hydrogen storage alloy electrode, the nickel powder has a tap density of 0.2 to 0.8 g / g.
cc (claim 2), nickel powder having a BET specific surface area of 4 to 8 m 2 / g (claim 3), and a binder containing styrene and 2-ethylhexyl acrylate as main components. Constitution which is a copolymer of a monomer mixture (Claim 4)
Are preferred embodiments.

【0011】[0011]

【発明の実施の形態】本発明の水素吸蔵合金電極におい
て、水素吸蔵合金粉末としては、Mm(La,Ce,N
d,Pr)−Ni系、Ti−Ni系、Ti−NiZr
(Ti2-x Zr x 4-y Niy 1-z Crz 系(x=0
〜1.5、y=0.6〜3.5、z=0.2以下)、T
i−Mn系、Zr−Mn系などの各種合金が用いられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy electrode of the present invention
As the hydrogen storage alloy powder, Mm (La, Ce, N
d, Pr) -Ni, Ti-Ni, Ti-NiZr
(Ti2-xZr xV4-yNiy)1-zCrzSystem (x = 0
1.51.5, y = 0.6-3.5, z = 0.2 or less), T
Various alloys such as i-Mn system and Zr-Mn system are used.
You.

【0012】本発明の水素吸蔵合金電極において、導電
性粉末には、一次粒子が球状で、一次粒子の集合体が三
次元的な鎖状構造を持つニツケル粉が用いられる。この
ニツケル粉は、導電性のストラクチヤ構造が水素吸蔵合
金間で発達することにより、少量の添加でも効率的な導
電性を発揮させることができる。
In the hydrogen storage alloy electrode of the present invention, nickel powder having spherical primary particles and an aggregate of primary particles having a three-dimensional chain structure is used as the conductive powder. This nickel powder can exhibit efficient conductivity even with a small amount of addition, because the conductive structure develops between the hydrogen storage alloys.

【0013】このニツケル粉の鎖状柱の直径は0.5μ
m以下、好適には0.05〜0.4μmで、粉末X線回
析測定による結晶子サイズは300Å以下、好適には1
00〜250Åであるのがよい。このような直径および
結晶子サイズに設定することにより、ペ―スト調製時な
どでの凝集物の低減に好結果を得ることができる。これ
に対して、上記直径が0.5μmを超えたり、結晶子サ
イズが300Åを超えると、ニツケル粉の凝集物が大き
くなり、導電性基材への担持に際して、上記凝集物の粒
が大きくなるという不都合を生じやすい。
The diameter of the chain pillar of the nickel powder is 0.5 μm.
m, preferably 0.05 to 0.4 μm, and the crystallite size measured by powder X-ray diffraction measurement is 300 ° or less, preferably 1
It is preferably between 00 and 250 °. By setting such diameters and crystallite sizes, good results can be obtained in reducing aggregates during paste preparation and the like. On the other hand, if the diameter exceeds 0.5 μm or the crystallite size exceeds 300 °, the aggregates of the nickel powder increase, and the particles of the aggregates increase when the nickel powder is supported on the conductive substrate. This is likely to cause the inconvenience.

【0014】なお、本発明にいう結晶子サイズとは、粉
末X線回折法により測定されるサイズを意味し、具体的
には、まず2度/分で回析スペクトルを測定して金属ニ
ツケルを同定し、つぎに回析ピ―クを0.2度/分(ス
リツト:0.15)で測定し、Kα1線とKα2線の分
離を行い、回折線プロフアイルの結晶子の大きさの広が
りをCauchy型、歪による拡がりをGauss 型と仮定して、
積分幅法により決定したときのサイズを意味する。ま
た、本発明にいう鎖状柱の直径とは、ニツケル粉を軽く
圧縮して圧粉体とし、この圧粉体を通過するガスの流速
をフイツシヤ―サブシ―ブサイザ(MPIF32)で測
定したときの値を意味する。
The crystallite size in the present invention means a size measured by a powder X-ray diffraction method. Specifically, first, a diffraction spectrum is measured at 2 degrees / minute to determine a metal nickel. The diffraction peak was measured at a rate of 0.2 ° / min (slit: 0.15), Kα1 and Kα2 rays were separated, and the spread of the crystallite size of the diffraction line profile was identified. Is assumed to be Cauchy type, and the spread due to distortion is assumed to be Gauss type.
It means the size as determined by the integral width method. Further, the diameter of the chain-shaped column referred to in the present invention is defined as a value obtained by lightly compressing nickel powder into a green compact, and measuring the flow rate of gas passing through the green compact with a fish-subsieved sizer (MPIF32) Mean value.

【0015】また、上記のニツケル粉は、酸素含有量が
0.5〜1.5重量%、好ましくは0.8〜1.5重量
%、より好ましくは0.8〜1.2重量%であるのがよ
い。このような酸素含有量に設定することにより、結着
剤中での分散性に好結果が得られ、また水素吸蔵合金と
の導電性にも好ましい結果が得られる。これに対し、酸
素含有量が0.5重量%より少なくなると、ニツケル粉
中の酸素が少なすぎるため、結着剤中での分散性が低下
して、凝集物が発生しやすくなる。また、酸素含有量が
1.5重量%より大きくなると、ニツケル量が減少する
ため、水素吸蔵合金との導電性に悪影響を及ぼしやすく
なる。
The above-mentioned nickel powder has an oxygen content of 0.5 to 1.5% by weight, preferably 0.8 to 1.5% by weight, more preferably 0.8 to 1.2% by weight. There should be. By setting such an oxygen content, a favorable result is obtained in the dispersibility in the binder, and a favorable result is also obtained in the conductivity with the hydrogen storage alloy. On the other hand, when the oxygen content is less than 0.5% by weight, the amount of oxygen in the nickel powder is too small, so that the dispersibility in the binder is reduced and aggregates are easily generated. On the other hand, when the oxygen content is more than 1.5% by weight, the nickel content is reduced, so that the conductivity with the hydrogen storage alloy is likely to be adversely affected.

【0016】すなわち、ニツケル粉の凝集は、三次元の
ストラクチヤ構造を有するため、粉体の分散性が悪くな
り、電極上に粒が発生しやすくなることが原因と思われ
る。本発明において、前記のような微粒子状のものを用
いると、粒子の凝集力が大きくなるものと思われるが、
酸素含有量を上記のように増やすことにより、結着剤の
吸着形態が改質され、少量の結着剤でもニツケル粉の分
散性が良くなり、電極中で均一に分散させることがで
き、導電性の向上も図れるようになる。
That is, it is considered that the agglomeration of the nickel powder has a three-dimensional structure, so that the dispersibility of the powder is deteriorated and particles are easily generated on the electrode. In the present invention, the use of the fine particles as described above is considered to increase the cohesive force of the particles,
By increasing the oxygen content as described above, the adsorption form of the binder is modified, the dispersibility of the nickel powder is improved even with a small amount of the binder, the nickel powder can be uniformly dispersed in the electrode, and the conductive property can be improved. The performance can be improved.

【0017】さらに、本発明の上記ニツケル粉は、電極
中での占有体積を減少させるため、タツプ密度が0.2
〜0.8g/ccであるのが好ましい。また、結着剤中
の分散性および導電性により好ましい結果を得るため、
BET比表面積が4〜8m2/gであるのがよい。BE
T比表面積が4m2 /g未満となると、結着剤中の分散
性が低下しやすく、また8m2 /gを超えると、ニツケ
ル粉の微細化を防ぎ、表面が酸化されやすくなつて、導
電効果が低下する。
Further, the nickel powder of the present invention has a tap density of 0.2 to reduce the volume occupied in the electrode.
It is preferably 0.8 g / cc. Further, in order to obtain a favorable result due to the dispersibility and conductivity in the binder,
The BET specific surface area is preferably from 4 to 8 m 2 / g. BE
When T specific surface area is less than 4m 2 / g, dispersibility tends to decrease in the binder, and when it exceeds 8m 2 / g, prevents miniaturization of the nickel powder, the surface is easily oxidized Natsute, conductive The effect decreases.

【0018】なお、本発明にいう酸素含有量とは、不活
性ガス融解─赤外線吸収法(LECO社製TC436)
により、2,500℃まで昇温速度10℃/分で測定し
た値を意味する。また、本発明にいうBET比表面積と
は、窒素吸着法(ユアサアイオニクス、オ―トソ―ブ
1)で1〜100Å、試料1g、測定時間127分、吸
着側の測定値を意味するものである。
The oxygen content referred to in the present invention is defined as inert gas melting / infrared ray absorption method (TC436 manufactured by LECO).
Means a value measured at a heating rate of 10 ° C./min up to 2,500 ° C. The BET specific surface area referred to in the present invention means a value measured at 1 to 100 ° by a nitrogen adsorption method (Yuasa Ionics, Autosorb 1), a sample 1 g, a measurement time 127 minutes, and a value measured on the adsorption side. is there.

【0019】本発明の上記ニツケル粉は、カルボニルニ
ツケル法、つまり、つぎの式; Ni(CO)4 → Ni+4CO で示されるようなテトラカルボニルニツケルの熱分解法
により得ることができ、その際、反応容器中でのテトラ
カルボニルニツケルと酸素の分圧、合成温度などを適宜
調整することにより、一次粒子が球状で、一次粒子の集
合体が三次元的な鎖状構造を持つとともに、その鎖状柱
の直径、結晶子サイズおよび酸素含有量が前記の範囲に
入り、また好ましくはタツプ密度およびBET比表面積
が前記の範囲にあるものを容易に合成することができ
る。
The nickel powder of the present invention can be obtained by a carbonyl nickel method, that is, a thermal decomposition method of tetracarbonyl nickel as shown by the following formula: Ni (CO) 4 → Ni + 4CO. By appropriately adjusting the partial pressure of tetracarbonyl nickel and oxygen in the vessel, the synthesis temperature, and the like, the primary particles are spherical, the aggregate of the primary particles has a three-dimensional chain structure, and the chain columns are formed. Having a diameter, crystallite size and oxygen content within the above ranges, and preferably having a tap density and a BET specific surface area within the above ranges, can be easily synthesized.

【0020】本発明において、導電性粉末として使用す
る上記ニツケル粉は、水素吸蔵合金粉末100重量部に
対して、1〜20重量部、好ましくは3〜10重量部の
割合で用いられる。上記ニツケル粉の使用量が少なすぎ
ると、水素吸蔵合金粉末との導電性が十分に得られず、
また上記ニツケル粉の使用量が多すぎると、水素吸蔵合
金粉末の絶対量がそれだけ減少するため、好ましくな
い。
In the present invention, the nickel powder used as the conductive powder is used in an amount of 1 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the hydrogen storage alloy powder. If the amount of the nickel powder is too small, sufficient conductivity with the hydrogen storage alloy powder cannot be obtained,
On the other hand, if the amount of the nickel powder is too large, the absolute amount of the hydrogen storage alloy powder decreases accordingly, which is not preferable.

【0021】本発明の水素吸蔵合金電極において、結着
剤としては、たとえば、ポリテトラフルオロエチレン、
ポリアクリル酸ナトリウム、ポリビニルアルコ―ル、ス
チレンとアクリル系化合物との共重合体などが挙げられ
る。これらの中でも、スチレンと2−エチルヘキシルア
クリレ―トを主成分とする単量体混合物の共重合体は、
導電性粉末として使用する前記ニツケル粉との親和性が
高く、少量でも良好な分散性が得られるため、とくに好
ましく用いられる。これら結着剤の使用量としては、水
素吸蔵合金粉末100重量部に対して、通常0.5〜5
重量部とするのが好ましい。
In the hydrogen storage alloy electrode of the present invention, as the binder, for example, polytetrafluoroethylene,
Examples include sodium polyacrylate, polyvinyl alcohol, and a copolymer of styrene and an acrylic compound. Among these, copolymers of a monomer mixture containing styrene and 2-ethylhexyl acrylate as main components are:
It is particularly preferably used because it has a high affinity for the nickel powder used as the conductive powder and good dispersibility can be obtained even in a small amount. The amount of the binder used is usually 0.5 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder.
It is preferred to use parts by weight.

【0022】本発明においては、通常、上記の水素吸蔵
合金粉末、導電性粉末としての上記ニツケル粉および結
着剤を水の存在下で混合分散させて、ペ―スト状の電極
合剤を調製する。この電極合剤を導電性基材に担持さ
せ、これを所定サイズに裁断することにより、本発明の
水素吸蔵合金電極が得られる。ここで、上記ニツケル粉
が前記特定の構成を有していることにより、ペ―スト状
の電極合剤の調製時、さらにはこの電極合剤の導電性基
材への担持時に、従来問題とされていたようなニツケル
粉の凝集物の生成という心配はとくに起こらない。
In the present invention, usually, the above-mentioned hydrogen storage alloy powder, the above-mentioned nickel powder as a conductive powder and a binder are mixed and dispersed in the presence of water to prepare a paste-like electrode mixture. I do. The electrode mixture is supported on a conductive base material and cut into a predetermined size to obtain the hydrogen storage alloy electrode of the present invention. Here, since the above-mentioned nickel powder has the above-mentioned specific configuration, there is a conventional problem at the time of preparing a paste-like electrode mixture and further at the time of carrying this electrode mixture on a conductive base material. There is no particular concern about the formation of agglomerates of nickel powder as has been done.

【0023】ペ―スト状電極合剤の調製に際し、カルボ
キシメチルセルロ―ス、メチルセルロ―ス、ヒドロキシ
プロピルセルロ―ス、ポリオキシエチレンなどの増粘剤
を配合してもよい。ポリオキシエチレンは、ペ―スト化
した場合の粘度増加が少ないため、とくに好ましく用い
られる。増粘剤の配合量は、水素吸蔵合金粉末100重
量部に対して、通常1〜5重量部とするのがよい。
In preparing the paste-like electrode mixture, a thickening agent such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, or polyoxyethylene may be blended. Polyoxyethylene is particularly preferably used because of little increase in viscosity when pasted. The compounding amount of the thickener is usually preferably 1 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder.

【0024】また、ペ―スト状電極合剤の導電性基材へ
の担持は、通常、上記の電極合剤を導電性基材に塗布乾
燥したのち、圧延処理する方法にて、行われる。導電性
基材としては、たとえば、パンチングメタル、発泡メタ
ルなどの耐アルカリ性金属多孔体などが用いられる。と
くに、パンチングメタルは、三次元構造を有する発泡メ
タルと比べて、集電性能に劣るため、導電性粉末である
前記ニツケル粉を用いた場合の効果がより良く発揮され
るので、好ましい。
The paste-like electrode mixture is supported on the conductive substrate by a method in which the above-mentioned electrode mixture is applied to the conductive substrate, dried and then rolled. As the conductive substrate, for example, an alkali-resistant metal porous body such as a punched metal or a foamed metal is used. In particular, punching metal is preferable because it has inferior current collection performance as compared with foamed metal having a three-dimensional structure, so that the effect when nickel powder, which is a conductive powder, is used is better exhibited.

【0025】本発明のニツケル水素蓄電池は、ニツケル
極からなる正極に対し、上記構成の水素吸蔵合金電極を
負極としたことを特徴とするものである。上記のニツケ
ル極は、通常、水酸化ニツケル粉、導電助剤および結着
剤を水の存在下で混合分散させてペ―スト状物とし、こ
れを耐アルカリ性金属多孔体に充填し、これを乾燥、圧
延したのち、所定サイズに裁断することにより、製造さ
れる。
A nickel hydrogen storage battery according to the present invention is characterized in that a hydrogen storage alloy electrode having the above structure is used as a negative electrode with respect to a positive electrode comprising a nickel electrode. The nickel electrode is usually prepared by mixing and dispersing nickel hydroxide powder, a conductive additive and a binder in the presence of water to form a paste, filling the paste into an alkali-resistant porous metal body, After drying and rolling, it is manufactured by cutting to a predetermined size.

【0026】本発明のニツケル水素蓄電池は、たとえ
ば、上記ニツケル極からなる正極と、前記の水素吸蔵合
金電極からなる負極とを、セパレ―タを介して積層し、
これを電池缶に挿入したのち、アルカリ電解液を注入す
ることにより、作製することができる。ここで、上記の
セパレ―タとしては、ポリオレフイン繊維からなる不織
布に親水基を付与したものなどが用いられる。また、上
記のアルカリ電解液としては、水酸化カリウム水溶液な
どが用いられる。
The nickel hydrogen storage battery of the present invention comprises, for example, a positive electrode comprising the above-mentioned nickel electrode and a negative electrode comprising the above-mentioned hydrogen-absorbing alloy electrode laminated via a separator.
It can be manufactured by inserting this into a battery can and then injecting an alkaline electrolyte. Here, as the above separator, a non-woven fabric made of polyolefin fibers having a hydrophilic group is used. In addition, as the alkaline electrolyte, an aqueous solution of potassium hydroxide or the like is used.

【0027】このように作製されるニツケル水素蓄電池
は、60〜70℃での活性化処理を施すことにより、安
定した初期特性を発揮できる。しかも、上記活性化処理
は、従来に比べて、非常に短時間でよく、低温特性およ
び初期特性にすぐれるニツケル水素蓄電池を、生産性良
好に製造することができる。
The nickel hydrogen storage battery thus manufactured can exhibit stable initial characteristics by performing the activation treatment at 60 to 70 ° C. In addition, the activation process can be performed in a very short time as compared with the conventional method, and a nickel hydrogen storage battery having excellent low-temperature characteristics and initial characteristics can be manufactured with good productivity.

【0028】[0028]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、部とあるのは重量部を
意味するものとする。
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”.

【0029】なお、実施例1〜3において導電性粉末と
して用いたニツケル粉A〜Cと、比較例1,2において
導電性粉末として用いたニツケル粉D,Eは、いずれ
も、カルボニルニツケル法により、反応容器中でのテト
ラカルボニルニツケルと酸素の分圧、合成温度などを適
宜調整して合成した、一次粒子が球状で、一次粒子の集
合体が三次元的な鎖状構造を持つニツケル粉であつて、
鎖状柱の直径、粉末X線回析測定による結晶サイズ、酸
素含有量、タツプ密度およびBET比表面積が、下記の
表1に示される構成とされたものである。
The nickel powders A to C used as conductive powders in Examples 1 to 3 and the nickel powders D and E used as conductive powders in Comparative Examples 1 and 2 were all prepared by the carbonyl nickel method. The primary particles are spherical, and the aggregate of primary particles is a nickel powder having a three-dimensional chain structure, which is synthesized by appropriately adjusting the partial pressure of tetracarbonyl nickel and oxygen in the reaction vessel, the synthesis temperature, and the like. Hot,
The diameter of the chain pillar, the crystal size, the oxygen content, the tap density, and the BET specific surface area as determined by powder X-ray diffraction measurement were configured as shown in Table 1 below.

【0030】 [0030]

【0031】実施例1 水素吸蔵合金粉末(MmNi3.48Co0.75Mn0.4 Al
0.3 )100部に対して、導電性粉末として、ニツケル
粉A2部を、乾式混合した。この混合物に、増粘剤とし
て、ポリオキシエチレン水溶液(固形分濃度6重量%)
20部を加え、さらに結着剤として、スチレンと2−エ
チルヘキシルアクリレ―トを主成分とする単量体混合物
の共重合体(スチレン単位35モル%、2−エチルヘキ
シルアクリレ―ト単位65モル%)の水分散液(固形分
濃度42.5重量%)1.7部を加えて、混合分散させ
た。
Example 1 Hydrogen storage alloy powder (MmNi 3.48 Co 0.75 Mn 0.4 Al
0.3 ) 2 parts of nickel powder A as a conductive powder was dry-blended with 100 parts. In this mixture, a polyoxyethylene aqueous solution (solid concentration: 6% by weight) was used as a thickener.
20 parts of a copolymer of a monomer mixture containing styrene and 2-ethylhexyl acrylate as the main components (35 mol% of styrene unit, 65 mol of 2-ethylhexyl acrylate unit) %) (Solid content concentration: 42.5% by weight), and mixed and dispersed.

【0032】このように調製したペ―スト状の電極合剤
を、導電性基材であるパンチングメタルに塗着し、圧延
したのち、所定サイズに裁断して、水素吸蔵合金電極を
製造した。上記ペ―スト状の電極合剤中には、ニツケル
粉の粒は観察されず、分散性が良好であることが確認さ
れた。また、この電極合剤を上記導電性基材に塗着、圧
延し、所定サイズに裁断したのち、電極表面(塗着面)
を目視にて観察したところ、ニツケル粉の凝集物はやは
り観察されなかつた。
The paste-like electrode mixture prepared as described above was applied to a punching metal as a conductive base material, rolled, and then cut into a predetermined size to produce a hydrogen storage alloy electrode. No nickel powder particles were observed in the paste-like electrode mixture, confirming that the dispersibility was good. The electrode mixture is applied to the conductive substrate, rolled, cut into a predetermined size, and then placed on the electrode surface (coated surface).
Was visually observed, and no agglomerate of nickel powder was observed.

【0033】実施例2 導電性粉末として、ニツケル粉A2部に代えて、ニツケ
ル粉B2部を用いた以外は、実施例1と同様にして、水
素吸蔵合金電極を製造した。調製したペ―スト状の電極
合剤中には、ニツケル粉の粒は観察されず、分散性が良
好であることが確認された。また、この電極合剤を導電
性基材に塗着、圧延し、所定サイズに裁断したのち、電
極表面(塗着面)を目視により観察したところ、ニツケ
ル粉の凝集物はやはり観察されなかつた。
Example 2 A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that nickel powder B2 was used instead of nickel powder A2 as the conductive powder. No nickel powder particles were observed in the prepared paste-like electrode mixture, confirming that the dispersibility was good. The electrode mixture was coated on a conductive substrate, rolled, cut into a predetermined size, and then visually observed on the electrode surface (coated surface). As a result, no aggregate of nickel powder was observed. .

【0034】実施例3 導電性粉末として、ニツケル粉A2部に代えて、ニツケ
ル粉C2部を用いた以外は、実施例1と同様にして、水
素吸蔵合金電極を製造した。調製したペ―スト状の電極
合剤中には、ニツケル粉の粒は観察されず、分散性が良
好であることが確認された。また、この電極合剤を導電
性基材に塗着、圧延し、所定サイズに裁断したのち、電
極表面(塗着面)を目視により観察したところ、ニツケ
ル粉の凝集物はやはり観察されなかつた。
Example 3 A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that nickel powder C2 was used instead of nickel powder A2 as the conductive powder. No nickel powder particles were observed in the prepared paste-like electrode mixture, confirming that the dispersibility was good. The electrode mixture was coated on a conductive substrate, rolled, cut into a predetermined size, and then visually observed on the electrode surface (coated surface). As a result, no aggregate of nickel powder was observed. .

【0035】比較例1 導電性粉末として、ニツケル粉A2部に代えて、ニツケ
ル粉D2部を用いた以外は、実施例1と同様にして、水
素吸蔵合金電極を製造した。調製したペ―スト状の電極
合剤中には、直径3mm程度のニツケル粉の粒が観察され
た。また、この電極合剤を導電性基材に塗着、圧延し、
所定サイズに裁断したのち、電極表面(塗着面)を目視
により観察したところ、直径3mm程度のニツケル粉の凝
集物がやはり観察された。
Comparative Example 1 A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that nickel powder A2 was used instead of nickel powder A2 as the conductive powder. In the prepared paste-like electrode mixture, particles of nickel powder having a diameter of about 3 mm were observed. In addition, this electrode mixture is applied to a conductive substrate, rolled,
After cutting to a predetermined size, the electrode surface (coating surface) was visually observed. As a result, aggregates of nickel powder having a diameter of about 3 mm were also observed.

【0036】比較例2 導電性粉末として、ニツケル粉A2部に代えて、ニツケ
ル粉E2部を用いた以外は、実施例1と同様にして、水
素吸蔵合金電極を製造した。調製したペ―スト状の電極
合剤中には、直径3mm程度のニツケル粉の粒が観察され
た。また、この電極合剤を導電性基材に塗着、圧延し、
所定サイズに裁断したのち、電極表面(塗着面)を目視
により観察したところ、直径3mm程度のニツケル粉の凝
集物がやはり観察された。
Comparative Example 2 A hydrogen storage alloy electrode was manufactured in the same manner as in Example 1, except that nickel powder E2 was used instead of nickel powder A2 as the conductive powder. In the prepared paste-like electrode mixture, particles of nickel powder having a diameter of about 3 mm were observed. In addition, this electrode mixture is applied to a conductive substrate, rolled,
After cutting to a predetermined size, the electrode surface (coating surface) was visually observed. As a result, aggregates of nickel powder having a diameter of about 3 mm were also observed.

【0037】以上の実施例1〜3および比較例1,2の
各水素吸蔵合金電極について、活性化処理の回数を測定
した。活性化処理は、70℃,6時間の条件で行つた。
なお、活性化処理の回数は、製造した電極が最大容量を
示すまでに必要な充放電サイクル数であり、この水素吸
蔵合金電極を用いてニツケル水素蓄電池を製造した場合
の初期立ち上がり特性の良否を判断する指標となる。
The number of times of the activation treatment was measured for each of the hydrogen storage alloy electrodes of Examples 1 to 3 and Comparative Examples 1 and 2. The activation treatment was performed at 70 ° C. for 6 hours.
The number of times of the activation treatment is the number of charge / discharge cycles required for the manufactured electrode to exhibit the maximum capacity, and the quality of the initial startup characteristics when a nickel hydrogen storage battery is manufactured using this hydrogen storage alloy electrode. It is an index to judge.

【0038】また実際に、上記の各水素吸蔵合金電極
と、公知のニツケル極と組み合わせ、セパレ―タを介し
て巻回し、これを円筒型容器に挿入し、水酸化カリウム
電解液を注入したのち、封口して、単4型のニツケル水
素蓄電池を製造した。この電池につき、低温での放電特
性として、25℃で175mAで6時間充電したのち、
−20℃の恒温槽中で5時間保持し、700mAで放電
を行い、電池電圧が1.0Vになるまでの放電容量で評
価した。この低温での放電容量と、前記の活性化処理の
回数は、下記の表2に示されるとおりであつた。
In practice, each of the above-mentioned hydrogen storage alloy electrodes is combined with a known nickel electrode, wound through a separator, inserted into a cylindrical container, and injected with a potassium hydroxide electrolyte. Then, the battery was sealed to produce a AAA type nickel hydrogen storage battery. After charging the battery at 175 mA at 25 ° C. for 6 hours as a discharge characteristic at a low temperature,
The battery was held for 5 hours in a constant temperature bath at −20 ° C., discharged at 700 mA, and evaluated by the discharge capacity until the battery voltage became 1.0 V. The discharge capacity at this low temperature and the number of times of the activation treatment were as shown in Table 2 below.

【0039】 [0039]

【0040】上記表2の結果から明らかなように、実施
例1〜3の水素吸蔵合金電極では、比較例1,2の水素
吸蔵合金電極に比べて、活性化処理の回数が1〜2回
で、処理時間が非常に短くて済み、初期特性にすぐれ、
また低温特性にすぐれるニツケル水素蓄電池を、生産性
良好に製造できるものであることがわかる。
As is clear from the results in Table 2, the hydrogen storage alloy electrodes of Examples 1 to 3 require one to two times of activation treatment as compared with the hydrogen storage alloy electrodes of Comparative Examples 1 and 2. The processing time is very short, the initial characteristics are excellent,
It can also be seen that a nickel hydrogen storage battery having excellent low-temperature characteristics can be manufactured with good productivity.

【0041】[0041]

【発明の効果】以上のように、本発明では、導電性粉末
として、一次粒子が球状で、一次粒子の集合体が三次元
的な鎖状構造を持つニツケル粉であつて、その鎖状柱の
直径、結晶子サイズおよび酸素含有量を特定範囲に設定
したニツケル粉を使用したことにより、従来のような凝
集物がみられない水素吸蔵合金電極を提供でき、これを
負極とすることにより、低温特性と初期特性にすぐれ、
しかも生産効率の低下という問題のないニツケル水素蓄
電池を提供することができる。
As described above, according to the present invention, as the conductive powder, the primary particles are spherical, and the aggregate of the primary particles is nickel powder having a three-dimensional chain structure. By using the nickel powder with the diameter, crystallite size and oxygen content set to specific ranges, it is possible to provide a hydrogen-absorbing alloy electrode in which agglomerates are not seen as in the related art, and by using this as a negative electrode, Excellent low temperature characteristics and initial characteristics,
In addition, it is possible to provide a nickel hydrogen storage battery free from the problem of a reduction in production efficiency.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末と導電性粉末と結着剤
を含有する電極合剤を導電性基材に担持させてなる水素
吸蔵合金電極において、上記の導電性粉末として、一次
粒子が球状で、一次粒子の集合体が三次元的な鎖状構造
を持ち、その鎖状柱の直径が0.5μm以下で粉末X線
回析測定による結晶サイズが300Å以下であり、かつ
酸素含有量が0.5〜1.5重量%であるニツケル粉を
含有することを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode comprising an electrode mixture containing a hydrogen storage alloy powder, a conductive powder, and a binder supported on a conductive substrate, wherein the conductive particles have a primary particle having a spherical shape. The aggregate of the primary particles has a three-dimensional chain structure, the diameter of the chain pillar is 0.5 μm or less, the crystal size by powder X-ray diffraction measurement is 300 ° or less, and the oxygen content is A hydrogen-absorbing alloy electrode comprising 0.5 to 1.5% by weight of nickel powder.
【請求項2】 ニツケル粉のタツプ密度が0.2〜0.
8g/ccである請求項1に記載の水素吸蔵合金電極。
2. The nickel powder having a tap density of 0.2 to 0.1.
The hydrogen storage alloy electrode according to claim 1, which is 8 g / cc.
【請求項3】 ニツケル粉のBET比表面積が4〜8m
2 /gである請求項1に記載の水素吸蔵合金電極。
3. The nickel powder has a BET specific surface area of 4 to 8 m.
The hydrogen storage alloy electrode according to claim 1, wherein the hydrogen storage alloy electrode is 2 / g.
【請求項4】 結着剤がスチレンと2−エチルヘキシル
アクリレ―トを主成分とする単量体混合物の共重合体で
ある請求項1に記載の水素吸蔵合金電極。
4. The hydrogen storage alloy electrode according to claim 1, wherein the binder is a copolymer of a monomer mixture containing styrene and 2-ethylhexyl acrylate as main components.
【請求項5】 ニツケル極からなる正極に対し、請求項
1〜4に記載の水素吸蔵合金電極を負極としたことを特
徴とするニツケル水素蓄電池。
5. A nickel hydrogen storage battery comprising a hydrogen storage alloy electrode according to claim 1 as a negative electrode and a positive electrode comprising a nickel electrode.
JP9283471A 1997-10-16 1997-10-16 Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode Withdrawn JPH11121009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9283471A JPH11121009A (en) 1997-10-16 1997-10-16 Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9283471A JPH11121009A (en) 1997-10-16 1997-10-16 Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode

Publications (1)

Publication Number Publication Date
JPH11121009A true JPH11121009A (en) 1999-04-30

Family

ID=17665985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9283471A Withdrawn JPH11121009A (en) 1997-10-16 1997-10-16 Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode

Country Status (1)

Country Link
JP (1) JPH11121009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101855A1 (en) * 2001-06-11 2002-12-19 Santoku Corporation Method for fabricating negative electrode for secondary cell
KR100399339B1 (en) * 2001-04-30 2003-09-26 한국과학기술원 Process of Anode for Ni/MH Secondary Battery using Ni Powder with High Surface Area

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399339B1 (en) * 2001-04-30 2003-09-26 한국과학기술원 Process of Anode for Ni/MH Secondary Battery using Ni Powder with High Surface Area
WO2002101855A1 (en) * 2001-06-11 2002-12-19 Santoku Corporation Method for fabricating negative electrode for secondary cell
JP2002367608A (en) * 2001-06-11 2002-12-20 Santoku Corp Manufacturing method of negative electrode for secondary cell
EP1418636A4 (en) * 2001-06-11 2006-04-26 Santoku Corp Method for fabricating negative electrode for secondary cell
US7160502B2 (en) 2001-06-11 2007-01-09 Santoku Corporation Method for producing anode for rechargeable battery

Similar Documents

Publication Publication Date Title
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
JP2015061815A (en) Cobalt cerium compound, alkaline storage battery, and production method of cobalt cerium compound
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JP3736842B2 (en) Electrode for alkaline electrolyte battery and alkaline electrolyte battery using the same
JP2001185138A (en) Positive electrode active material for alkaline storage battery and manufacturing method therefor
JPH11121009A (en) Hydrogen storage alloy electrode and nickel hydrogen storage battery using the electrode
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP4412877B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method
JPH10172558A (en) Hydride secondary battery
JPH05287422A (en) Hydrogen occluding alloy electrode
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4059357B2 (en) Hydride secondary battery and manufacturing method thereof
WO2022250093A1 (en) High-entropy hydrogen storage alloy, negative electrode for alkaline storage batteries, and alkaline storage battery
JP3945944B2 (en) Hydrogen storage alloy particles for sealed alkaline storage batteries
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS62264557A (en) Metal oxide-hydrogen battery
JP3731455B2 (en) Hydrogen storage alloy electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JPH09320583A (en) Nickel electrode
JPH11121010A (en) Hydride secondary battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH04301045A (en) Hydrogen storage alloy electrode
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
EP0612856B1 (en) Hydrogen storage alloy and electrode therefrom

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104