JPH11121008A - Negative electrode plate for lead-acid battery - Google Patents

Negative electrode plate for lead-acid battery

Info

Publication number
JPH11121008A
JPH11121008A JP9296370A JP29637097A JPH11121008A JP H11121008 A JPH11121008 A JP H11121008A JP 9296370 A JP9296370 A JP 9296370A JP 29637097 A JP29637097 A JP 29637097A JP H11121008 A JPH11121008 A JP H11121008A
Authority
JP
Japan
Prior art keywords
negative electrode
formaldehyde condensate
electrode plate
lead
sulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9296370A
Other languages
Japanese (ja)
Other versions
JP3992336B2 (en
Inventor
Yoshito Nishimori
嘉人 西盛
Akira Kamata
彰 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Japan Storage Battery Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Japan Storage Battery Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Japan Storage Battery Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP29637097A priority Critical patent/JP3992336B2/en
Publication of JPH11121008A publication Critical patent/JPH11121008A/en
Application granted granted Critical
Publication of JP3992336B2 publication Critical patent/JP3992336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of the life performance of a negative electrode plate under a high temperature by adding bisphenols and sulfite or amino acid formaldehyde condensate to an active material. SOLUTION: The polymer average molecular weight of bisphenols and sulfite or amino acid formaldehyde condensate added to an active material is preferably 0.3-3.0×10<4> . This condensate is preferably added along with a derivative of naphthalene sulfonic acid formaldehyde condensate. The condensate is preferably added along with lignin or its derivative. More practically, this condensate is a condensate of bisphenol A, sodium sulfite and formaldehyde. This constitution improves the life performance especially under a high temperature so that it can be applied to various kinds of lead-acid batteries and used for various kinds of utilizations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池用負極板の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a negative electrode plate for a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池は自動車の始動・点灯用をはじ
め小容量のコンシューマー用から大容量の据置用まで多
くの用途で使用されている。また、近年は環境問題の観
点から電気自動車の電源としても注目されている。
2. Description of the Related Art Lead-acid batteries are used in many applications from small-capacity consumers to large-capacity stationary ones, such as for starting and lighting vehicles. In recent years, it has also attracted attention as a power source for electric vehicles from the viewpoint of environmental issues.

【0003】最近の自動車用鉛蓄電池の使用状況をみる
と、これらの電池は新たな使用環境下におかれるように
なりつつあると考えられる。すなわち、エアーコンディ
ショナーやオーディオ機器、さらにはカーナビゲーショ
ンシステムなど多くの電装機器が採用され、鉛蓄電池に
対する負荷が大きくなっている。また、居住空間の確保
や空気抵抗低減のためにエンジンルームは小さくなり、
エンジンの高出力化も重なって、エンジンルーム内は相
当な高温になっており、鉛蓄電池もこの高温にさらされ
るようになってきている。
[0003] In view of the recent use of lead-acid batteries for automobiles, it is considered that these batteries are beginning to be used in new use environments. That is, many electric devices such as an air conditioner, an audio device, and a car navigation system are employed, and the load on the lead storage battery is increasing. In addition, the engine room becomes smaller to secure living space and reduce air resistance,
With the increase in the output of the engine, the temperature inside the engine room has become considerably high, and lead-acid batteries have been exposed to this high temperature.

【0004】また、電気自動車用のように深い充放電を
繰り返し、大電流を必要とする電池においても、室内空
間を最大限にとるために、電池のおかれる状況は非常に
コンパクトにおさえられて熱がこもりやすくなり、電池
は高温にさらされるようになっている。
[0004] In addition, even for a battery that requires a large current by repeating deep charging and discharging such as for an electric vehicle, the situation where the battery is placed is extremely compact in order to maximize the indoor space. Heat is more likely to accumulate, and batteries are exposed to higher temperatures.

【0005】鉛蓄電池用負極板には一般に有機エキスパ
ンダー、無機エキスパンダー(通常、硫酸バリウムが使
用されている。)およびカーボンが添加されており、そ
れぞれ鉛蓄電池用負極板の各種性能向上に寄与してい
る。これらの内、有機エキスパンダーは、一般にはリグ
ニンと呼ばれるパルプ製造時に得られる副生成物が用い
られており、電池の充放電にともなって進行する負極活
物質(海綿状鉛)の粗大化を抑え、活物質が収縮するの
を抑制して活物質を微細化し、負極板の放電容量、特に
高率放電容量が低下するのを防いでいる。
In general, an organic expander, an inorganic expander (usually barium sulfate is used) and carbon are added to a negative electrode plate for a lead-acid battery, and each contributes to the improvement of various performances of the negative electrode plate for a lead-acid battery. I have. Among these, the organic expander uses by-products generally obtained during pulp production called lignin, and suppresses the coarsening of the negative electrode active material (spongy lead) that progresses with the charge and discharge of the battery, The active material is miniaturized by suppressing the contraction of the active material, thereby preventing the discharge capacity of the negative electrode plate, particularly the high-rate discharge capacity, from lowering.

【0006】しかし、上述した自動車用鉛蓄電池の使用
環境の変化や電気自動車への適用といった高温での使用
に対して現在使用しているリグニンでは満足できる寿命
性能を得ることは困難であった。これは、リグニンが高
温にさらされた場合、分解あるいは電解液に溶出して、
その量が減少するためと考えられる。そのため、高温下
でも寿命性能の低下の少ない負極板、すなわち、分解も
しくは溶出しにくいような有機エキスパンダ ーが求め
られていた。
However, it has been difficult to obtain satisfactory life performance with lignin currently used for high temperature use such as changes in the use environment of the above-mentioned lead acid battery for automobiles and application to electric vehicles. This is because when lignin is exposed to high temperatures, it decomposes or elutes into the electrolyte,
It is considered that the amount decreases. For this reason, there has been a demand for a negative electrode plate that has a small decrease in life performance even at high temperatures, that is, an organic expander that is not easily decomposed or eluted.

【0007】高温特性にすぐれた有機エキスパンダーと
して、たとえば特開平2−234352や特開平4−6
5062にナフタレンスルホン酸の誘導体を用いること
が述べられている。しかし、特に高温となるような使用
状況では十分な性能とは言い難かった。
As organic expanders having excellent high-temperature characteristics, for example, JP-A-2-234352 and JP-A-4-6.
No. 5062 describes the use of a derivative of naphthalenesulfonic acid. However, it is hard to say that the performance is sufficient especially in a use condition where the temperature is high.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述したよ
うな高温下での負極板の寿命性能の低下という問題点を
解決するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem that the life of the negative electrode plate at high temperatures is reduced.

【0009】[0009]

【課題を解決するための手段】本発明は、鉛蓄電池用負
極活物質に、 ビスフェノール類と亜硫酸塩もしくは
アミノ酸のホルムアルデヒド縮合物を添加したことを特
徴とし。 該ビスフェノール類と亜硫酸塩もしくはア
ミノ酸のホルムアルデヒド縮合物の重量平均分子量が
0.3〜3.0×104 であることを特徴とし。 前
記ビスフェノール類と亜硫酸塩もしくはアミノ酸のホル
ムアルデヒド縮合物がナフタリンスルホン酸ホルムアル
デヒド縮合物の誘導体とともに添加されていることを特
徴とし。前記ビスフェノール類と亜硫酸塩もしくはア
ミノ酸のホルムアルデヒド縮合物がリグニンもしくはそ
の誘導体とともに添加されていることを特徴とし。
ビスフェノール類と亜硫酸塩もしくはアミノ酸のホルム
アルデヒド縮合物がビスフェノールA・亜硫酸ナトリウ
ム・ホルムアルデヒド縮合物であることを特徴とするも
のである。
The present invention is characterized in that a bisphenol and a sulfite or a formaldehyde condensate of an amino acid are added to a negative electrode active material for a lead storage battery. The formaldehyde condensate of the bisphenol with a sulfite or an amino acid has a weight average molecular weight of 0.3 to 3.0 × 10 4 . A formaldehyde condensate of the bisphenol and a sulfite or an amino acid is added together with a derivative of a naphthalenesulfonic acid formaldehyde condensate. A formaldehyde condensate of the bisphenol and a sulfite or an amino acid is added together with lignin or a derivative thereof.
It is characterized in that the formaldehyde condensate of bisphenols and sulfite or amino acid is bisphenol A / sodium sulfite / formaldehyde condensate.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例】以下に本発明の詳細を実施例をもとに説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments.

【0011】〔実施例1〕まず、負極に添加する有機エ
キスパンダーとして以下の重縮合物を用意した。本発明
のビスフェノール類と亜硫酸塩もしくはアミノ酸のホル
ムアルデヒド縮合物とは、特開昭04−352751号
公報記載の縮合物であるが、該公報の実施例に従い、ビ
スフェノールA・亜硫酸塩ナトリウム・ホルムアルデヒ
ド縮合物(以後、ビスフェノールスルホン酸ポリマーと
呼ぶ)を合成した。本物質の構造を1式に示す。
Example 1 First, the following polycondensate was prepared as an organic expander to be added to a negative electrode. The formaldehyde condensate of bisphenols and sulfites or amino acids of the present invention is a condensate described in JP-A-04-352751, and according to the examples of the publication, bisphenol A / sodium sulfite / formaldehyde condensate (Hereinafter referred to as bisphenolsulfonic acid polymer) was synthesized. The structure of this substance is shown in Formula 1.

【0012】またホルムアルデヒドの添加量を調整する
ことにより重量平均分子量が0.1×104、0.3×
104、0.5×104、1.0×104、3.0×1
4、5.0×104の6種を得た。また同様に、ビスフ
ェノールA・グルタミン酸ナトリウム・ホルムアルデヒ
ド縮合物(以後、ビスフェノールカルボン酸ポリマーと
呼ぶ:重量平均分子量1.0×104) を合成した。構
造を2式に示す。
The weight average molecular weight can be adjusted to 0.1 × 10 4 , 0.3 ×
10 4 , 0.5 × 10 4 , 1.0 × 10 4 , 3.0 × 1
There were obtained 6 types of O 4 and 5.0 × 10 4 . Similarly, a bisphenol A / sodium glutamate / formaldehyde condensate (hereinafter referred to as bisphenol carboxylic acid polymer: weight average molecular weight 1.0 × 10 4 ) was synthesized. The structure is shown in two equations.

【0013】[0013]

【化1】 Embedded image

【化2】 なお重量平均分子量はGPC(ゲルパーミエイションク
ロマトグラフィー、標準物質ポリエチレングリコール)
で測定した。従来品としてサルファイト法で製造するサ
ルファイトリグニンNa塩(日本製紙株式会社製バニレ
ックスN、以後、リグニンと呼ぶ)およびナフタリンス
ルホン酸ホルムアルデヒド縮合物のNa塩(日本製紙株
式会社製バニオールHD−100、以後、NSFと呼
ぶ)を用意した。
Embedded image The weight average molecular weight is GPC (gel permeation chromatography, standard substance polyethylene glycol)
Was measured. Sulfite lignin Na salt (Vanilex N manufactured by Nippon Paper Co., Ltd., hereinafter referred to as lignin) and Na salt of a naphthalenesulfonic acid formaldehyde condensate (Vaniol HD-100 manufactured by Nippon Paper Co., Ltd.) (Hereinafter referred to as NSF).

【0014】これらの有機エキスパンダーをそれぞれ
0.2重量%添加して、表1に示す9種の負極板を得
た。すなわち、PbOを約75重量%含む見掛け比重約
1.8g/cm3の鉛粉100kgと、比重約1.15
の希硫酸を約20dm3、添加剤として、無機エキスパ
ンダー(硫酸バリウム)を0.7重量%、カーボンを
0.2重量%、および有機エキスパンダーを0.2重量
%混練し、格子に充填した後、熟成および乾燥をおこな
い有機エキスパンダーの異なる負極板を得た。なお、硫
酸バリウムおよびカーボンの添加量は電池の使用目的に
よって変更でき、その範囲は通常、硫酸バリウムの場合
0〜2重量%であり、カーボンの場合0〜2重量%であ
る。また、有機エキスパンダーの添加量も変更可能であ
るが、通常サイクル用途では0.1〜0.4重量%、フ
ロートやトリクル用途ではそれよりも少ない量を用い
る。
Each of these organic expanders was added in an amount of 0.2% by weight to obtain nine kinds of negative electrode plates shown in Table 1. That is, 100 kg of lead powder having an apparent specific gravity of about 1.8 g / cm 3 containing about 75% by weight of PbO, and a specific gravity of about 1.15
About 20 dm 3 of diluted sulfuric acid, 0.7% by weight of an inorganic expander (barium sulfate), 0.2% by weight of carbon, and 0.2% by weight of an organic expander as additives, and after filling in a lattice. After aging and drying, negative plates having different organic expanders were obtained. The addition amounts of barium sulfate and carbon can be changed depending on the purpose of use of the battery, and the range is usually 0 to 2% by weight for barium sulfate and 0 to 2% by weight for carbon. Also, the amount of the organic expander to be added can be changed, but usually 0.1 to 0.4% by weight for the cycle application, and a smaller amount for the float or trickle application.

【0015】[0015]

【表1】 本実施例では用いなかったが、格子のます目が粗い場合
や極板強度を必要とする場合、合成有機繊維等の極板補
強材を添加することがある。この添加量は通常、0.0
5〜0.2%である。
[Table 1] Although not used in the present embodiment, when the grid is coarse or when plate strength is required, a plate reinforcing material such as a synthetic organic fiber may be added. This addition amount is usually 0.0
5 to 0.2%.

【0016】ここで、負極板1は有機エキスパンダーと
してリグニンを用いたものであり、負極板2はNSFを
用いたものである。負極板3〜8は、各種分子量のビス
フェノールスルホン酸ポリマーを用いたもので、負極板
9はビスフェノールカルボン酸ポリマーを用いたもので
ある。
The negative electrode plate 1 uses lignin as an organic expander, and the negative electrode plate 2 uses NSF. The negative plates 3 to 8 use bisphenolsulfonic acid polymers of various molecular weights, and the negative plate 9 uses a bisphenolcarboxylic acid polymer.

【0017】なお、本実施例において負極格子には、P
b−0.07重量%Ca−0.5重量%Sn合金からな
る、エキスパンド格子を用いたが、通常鉛蓄電池で使用
される鋳造格子を用いてもよい。また、格子合金には、
Pb−Ca(−Sn)系合金のほか、Pb−Sb系合金
等を用いることができる。
In this embodiment, the negative electrode grid contains P
Although an expanded grid made of b-0.07 wt% Ca-0.5 wt% Sn alloy was used, a cast grid usually used in lead-acid batteries may be used. Also, lattice alloys
In addition to the Pb-Ca (-Sn) -based alloy, a Pb-Sb-based alloy or the like can be used.

【0018】一方、正極ペーストには、PbOを約75
重量%含む見掛け比重約1.8g/cm3の鉛粉100
kgに対し、比重約1.15の希硫酸を約25dm3
割合で混練したものを用いた。この正極ペーストには、
化成効率を向上させる目的で鉛丹を添加したり、極板強
度を向上させるために長さが2〜5mm程度の合成繊維
を添加してもよい。合成繊維の添加量としては0.1〜
0.3重量%程度が適当である。
On the other hand, the cathode paste contains about 75 PbO.
Lead powder 100 having an apparent specific gravity of about 1.8 g / cm 3 including weight%
A mixture obtained by kneading diluted sulfuric acid having a specific gravity of about 1.15 with respect to kg at a rate of about 25 dm 3 was used. In this positive electrode paste,
Lead tin may be added for the purpose of improving the formation efficiency, or synthetic fiber having a length of about 2 to 5 mm may be added for improving the strength of the electrode plate. The amount of synthetic fiber added is 0.1 to
About 0.3% by weight is appropriate.

【0019】上記正極ペーストを、鉛合金製格子に充填
し、熟成および乾燥をおこない正極板を得た。なお、本
実施例で用いた正極格子は、Pb−0.07重量%Ca
−1.5重量%Sn合金からなる鋳造格子であったが、
エキスパンド格子を用いることでコストダウンがはかれ
る。また、正極に用いる格子合金には、Pb−Ca(−
Sn)系合金の他にPb−Sb系合金等を用いることが
できる。
The positive electrode paste was filled in a lead alloy grid, aged and dried to obtain a positive electrode plate. Note that the positive electrode grid used in this example was Pb-0.07% by weight Ca.
It was a cast grid made of -1.5 wt% Sn alloy,
The cost can be reduced by using the expanded grid. Pb-Ca (-
A Pb-Sb-based alloy or the like can be used in addition to the Sn) -based alloy.

【0020】これらの負極板および正極板と隔離体とを
積層し、公称電圧12V、3時間率公称容量50Ahの
電気自動車用シール型鉛蓄電池を表2に示すように9種
類製作した。なお、隔離体には直径約0.8μmの微細
ガラス繊維を抄造してなるガラスセパレータを用い、こ
のセパレータおよび正負極板に電解液を含浸保持させ
て、無漏液化したいわゆるシール型電池とした。電槽化
成後の硫酸比重は20℃で1.28とした。
These negative and positive plates and the separator were laminated, and nine types of sealed lead-acid batteries for electric vehicles having a nominal voltage of 12 V and a nominal capacity of 50 Ah were produced as shown in Table 2. The separator used was a glass separator made of fine glass fibers having a diameter of about 0.8 μm, and the separator and the positive and negative electrode plates were impregnated and held with an electrolytic solution to form a so-called sealed battery in which no leakage occurred. . The specific gravity of sulfuric acid after the formation of the battery tank was 1.28 at 20 ° C.

【0021】これら9種の鉛蓄電池を用い、まず、3時
間率放電試験をおこなった。これは、電解液温度を30
±2℃において3時間率電流で放電終止電圧9.9Vま
で放電し、その放電容量を調査するものである。つい
で、高率放電試験をおこなった。これは、電解液温度を
30±2℃において150Aで放電終止電圧6Vまで放
電し、その放電容量を調査するものである。これらの試
験結果を表2にあわせて示した。
First, a three-hour rate discharge test was performed using these nine types of lead storage batteries. This means that the electrolyte temperature is 30
The discharge was performed at a rate of 3 hours at ± 2 ° C. to a discharge termination voltage of 9.9 V, and the discharge capacity was examined. Next, a high rate discharge test was performed. In this method, the battery was discharged at an electrolyte temperature of 30 ± 2 ° C. at 150 A to a discharge termination voltage of 6 V, and its discharge capacity was examined. The test results are shown in Table 2.

【0022】[0022]

【表2】 3時間率容量は、重量平均分子量が0.1×104 のビ
スフェノールスルホン酸ポリマーを用いた電池Cが他の
ものに比べて10%以上低かった。この電池は高率放電
容量も低く、これは、分子量が低く、負極活物質表面に
密な皮膜を形成したがために初期の化成が十分でなかっ
たことが考えられる。0.3×104 以上の重量平均分
子量を有する他のものは、いずれも良好な3時間率およ
び高率放電容量を示した。
[Table 2] The three-hour rate capacity of the battery C using the bisphenolsulfonic acid polymer having a weight average molecular weight of 0.1 × 10 4 was 10% or more lower than that of the other batteries. This battery also has a low high-rate discharge capacity, which is considered to be due to the low molecular weight and the formation of a dense film on the surface of the negative electrode active material, so that the initial formation was not sufficient. All of the others having a weight average molecular weight of 0.3 × 10 4 or more exhibited good 3 hour rate and high rate discharge capacity.

【0023】その後、電気自動車用寿命試験に供した。
すなわち、電池周囲温度50℃±2℃として、放電を3
時間率電流で2.4時間おこない、引き続き充電を10
時間電流で9時間おこない、これを50回繰り返した
後、3時間率放電で電池容量を調査した。これらを50
回毎の上記容量調査で、3時間率容量が定格容量の80
%以下となるまで繰り返した。
Thereafter, it was subjected to a life test for electric vehicles.
That is, assuming that the battery ambient temperature is 50 ° C.
The battery is charged for 2.4 hours at a time rate current, and then charged for 10 hours.
This was performed for 9 hours with a time current, and after repeating this 50 times, the battery capacity was examined by discharging at a rate of 3 hours. These are 50
In the above capacity survey, the 3-hour rate capacity was 80 times the rated capacity.
%.

【0024】上記試験結果を図1に示す。従来品である
リグニンおよびNSFを用いた電池AおよびBは、それ
ぞれ250サイクルおよび300サイクルで寿命となっ
た。寿命原因は負極活物質の表面積低下であった。これ
は、添加した有機エキスパンダーが充電時の還元反応や
電解液である硫酸によって分解され、その効果が低下し
たためと思われた。重量平均分子量が0.1×104
低いビスフェノールスルホン酸ポリマーを用いた電池C
は、従来品よりは優れた性能を示したが、容量推移がや
や劣った。寿命試験終了後の負極活物質に硫酸鉛が蓄積
していたことから、充電受入性能が低かったことが原因
と思われた。逆に分子量が5×104 と高いビスフェノ
ールスルホン酸ポリマーを用いた電池Hは、300サイ
クルとNSF品と同等の寿命性能を示した。分子量が非
常に高分子であり、負極活物質への分散性が他に比べて
劣り、エキスパンダーとしての有効性が制限されたこと
が原因と思われた。重量平均分子量が0.3〜3.0×
104 のビスフェノールスルホン酸ポリマーを用いた電
池DからGは、400サイクル以上と優れた寿命性能を
示した。容量低下の原因は負極板の表面積低下と正極板
の劣化であった。
FIG. 1 shows the test results. Batteries A and B using lignin and NSF, which are conventional products, reached a life of 250 and 300 cycles, respectively. The cause of the life was a decrease in the surface area of the negative electrode active material. This was thought to be because the added organic expander was decomposed by the reduction reaction at the time of charging or by sulfuric acid as the electrolytic solution, and the effect was reduced. Battery C using bisphenolsulfonic acid polymer having a low weight average molecular weight of 0.1 × 10 4
Showed better performance than the conventional product, but the capacity transition was slightly inferior. Since lead sulfate was accumulated in the negative electrode active material after the end of the life test, it was considered that the cause was that the charge receiving performance was low. Conversely, Battery H using the bisphenolsulfonic acid polymer having a high molecular weight of 5 × 10 4 showed 300 cycles and a life performance equivalent to that of the NSF product. The molecular weight was very high, and the dispersibility in the negative electrode active material was inferior to others. Weight average molecular weight of 0.3 to 3.0 ×
Batteries D to G using 10 4 bisphenolsulfonic acid polymers showed excellent life performance of 400 cycles or more. The causes of the capacity decrease were a decrease in the surface area of the negative electrode plate and the deterioration of the positive electrode plate.

【0025】また、ビスフェノールカルボン酸ポリマー
を用いた電池Iも、400サイクル以上の寿命性能を示
した。容量低下原因はビスフェノールスルホン酸ポリマ
ーを用いた電池DからGと同様に、負極板の表面積低下
と正極板の劣化であった。
The battery I using the bisphenol carboxylic acid polymer also exhibited a life performance of 400 cycles or more. The causes of the capacity decrease were a decrease in the surface area of the negative electrode plate and the deterioration of the positive electrode plate as in the batteries D to G using the bisphenolsulfonic acid polymer.

【0026】このように、ビスフェノールスルホン酸ポ
リマーもしくはビスフェノールカルボン酸ポリマー、好
ましくは重量平均分子量0.3〜3.0×104 のビス
フェノールスルホン酸ポリマーを有機エキスパンダーと
して用いることで、従来の1.5倍以上の寿命性能を示
す負極板が得られることがわかった。
As described above, by using a bisphenolsulfonic acid polymer or a bisphenolcarboxylic acid polymer, preferably a bisphenolsulfonic acid polymer having a weight average molecular weight of 0.3 to 3.0 × 10 4 as an organic expander, it is possible to obtain a conventional 1.5 wt. It was found that a negative electrode plate having more than twice the life performance was obtained.

【0027】〔実施例2〕従来から有機エキスパンダー
として用いられているリグニンおよびNSFと優れた有
機エキスパンダーであるビスフェノールスルホン酸ポリ
マーとを各種割合で混合し、4種の混合有機エキスパン
ダーを調製し、その電池性能におよぼす効果を調べた。
Example 2 Lignin and NSF conventionally used as organic expanders were mixed with bisphenolsulfonic acid polymer, which is an excellent organic expander, in various ratios to prepare four kinds of mixed organic expanders. The effect on battery performance was investigated.

【0028】これらの有機エキスパンダーを用いて、表
3に示す記号10〜13の4種の負極板を得た。また、
比較のため、リグニン、NSFおよびビスフェノールス
ルホン酸ポリマーをそれぞれ単体で添加した負極板3種
も用意した。なお、いずれの負極板も有機エキスパンダ
ーは0.2%添加とした。これらの負極板を用いて、実
施例1と同様に表4に示す7種の3時間率公称容量50
Ahの電気動車用シール型鉛蓄電池を製作し、3時間率
容量および高率放電容量を調査した。
Using these organic expanders, four types of negative plates indicated by symbols 10 to 13 shown in Table 3 were obtained. Also,
For comparison, three kinds of negative electrode plates to which lignin, NSF and bisphenolsulfonic acid polymer were individually added were also prepared. In each negative electrode plate, the organic expander was added at 0.2%. Using these negative plates, seven types of three-hour rate nominal capacities of 50 shown in Table 4 were used in the same manner as in Example 1.
Ah-type sealed lead-acid batteries for electric vehicles were manufactured, and their three-hour rate capacity and high rate discharge capacity were investigated.

【0029】[0029]

【表3】 上記試験結果を表4にあわせて示す。3時間率放電容量
はいずれの電池も大差なく、公称容量以上であった。一
方、高率放電容量は、混合有機エキスパンダーを用いた
電池J〜Mが、それぞれを単体で用いた電池よりも優れ
た。原因は明らかではないが、混合することでこれまで
に知られていない相乗作用が得られたと考えられる。
[Table 3] The test results are shown in Table 4. The three-hour rate discharge capacity was not significantly different for any of the batteries, and was higher than the nominal capacity. On the other hand, the batteries J to M using the mixed organic expander were superior in the high rate discharge capacity to the batteries using each of them alone. Although the cause is not clear, it is probable that the mixing resulted in a synergy that was not known before.

【0030】[0030]

【表4】 これらの電池を実施例1と同様に電気自動車電池用の寿
命試験に供した結果を図2に示す。混合有機エキスパン
ダーを負極板に使用した電池J〜Mは、試験を打ち切っ
た500サイクル後もなお、優れた容量を示した。いず
れの電池も容量低下の原因は負極板によるものと思われ
たが、これらの電池の負極板に顕著な劣化状態はみられ
なかった。高率放電容量の増加と同様に原因は明らかで
はないが、混合することでこれまでに知られていない相
乗作用によるものと考えられる。特にNSFとの混合で
効果が大きいようであった。
[Table 4] The results of subjecting these batteries to a life test for an electric vehicle battery in the same manner as in Example 1 are shown in FIG. Batteries J to M using the mixed organic expander for the negative electrode plate exhibited excellent capacity even after 500 cycles of discontinuing the test. In all the batteries, the cause of the decrease in capacity was thought to be due to the negative electrode plate, but no significant deterioration was observed in the negative electrode plates of these batteries. Although the cause is not clear as in the case of the increase in the high rate discharge capacity, it is considered that mixing causes a synergistic effect which has not been known so far. In particular, the effect seemed to be great when mixed with NSF.

【0031】このように、従来から有機エキスパンダー
として用いられているリグニンおよびNSFと優れた有
機エキスパンダーであるビスフェノールスルホン酸ポリ
マーとを混合して添加した負極板の高温での寿命性能
は、著しく対照品よりも優れており、両者を混合するこ
とで電池の寿命性能にも予期しない相乗効果が現れた。
As described above, the life performance at a high temperature of the negative electrode plate to which lignin and NSF conventionally used as an organic expander and bisphenolsulfonic acid polymer which is an excellent organic expander are added is significantly different from that of the negative electrode plate. It was superior to the above, and an unexpected synergistic effect appeared on the life performance of the battery when both were mixed.

【0032】本効果は、ビスフェノールカルボン酸ポリ
マーとリグニンおよびNSFとを混合した場合にも同様
に見られた。
This effect was similarly observed when the bisphenol carboxylic acid polymer was mixed with lignin and NSF.

【0033】〔実施例3〕実施例1および2ではビスフ
ェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデ
ヒド縮合物の一例としてビスフェノールA・亜硫酸ナト
リウム・ホルムアルデヒド縮合物およびビスフェノール
A・グルタミン酸ナトリウム・ホルムアルデヒド縮合物
を用いた。
Example 3 In Examples 1 and 2, bisphenol A / sodium sulfite / formaldehyde condensate and bisphenol A / sodium glutamate / formaldehyde condensate were used as examples of the formaldehyde condensate of bisphenols and sulfites or amino acids. .

【0034】ここでは、ビスフェノール類と亜硫酸塩も
しくはアミノ酸のホルムアルデヒド縮合物のその他の例
として3式に構造を示すビスフェノールAF・亜硫酸ナ
トリウム・ホルムアルデヒド縮合物(重量平均分子量
1.0×104 )、および4式に構造を示すビスフェノ
ールF・亜硫酸ナトリウム・ホルムアルデヒド縮合物
(重量平均分子量1.0×104 )が電池性能におよぼ
す効果を調べた。なお、電池製作方法や試験方法は、実
施例1および2と同じである。
Here, as other examples of the formaldehyde condensate of bisphenols and sulfites or amino acids, bisphenol AF / sodium sulfite / formaldehyde condensate (weight average molecular weight 1.0 × 10 4 ) having a structure represented by Formula 3; The effect of a bisphenol F / sodium sulfite / formaldehyde condensate (weight average molecular weight 1.0 × 10 4 ) having a structure represented by Formula 4 on battery performance was examined. The battery manufacturing method and the test method are the same as those in Examples 1 and 2.

【0035】[0035]

【化3】 Embedded image

【化4】 その結果、ビスフェノールAF・亜硫酸ナトリウム・ホ
ルムアルデヒド縮合物もしくはビスフェノールF・亜硫
酸ナトリウム・ホルムアルデヒド縮合物を添加した負極
板を用いた電池は、実施例1で良好な電池性能を示した
本発明によるビスフェノールA・亜硫酸ナトリウム・ホ
ルムアルデヒド縮合物もしくはビスフェノールA・グル
タミン酸ナトリウム・ホルムアルデヒド縮合物を用いた
電池と、同等か、それ以上の初期性能および寿命性能を
示した。このように、ビスフェノール類と亜硫酸塩もし
くはアミノ酸のホルムアルデヒド縮合物であれば、本発
明の効果が得られるものと思われる。
Embedded image As a result, the battery using the negative electrode plate to which bisphenol AF / sodium sulfite / formaldehyde condensate or bisphenol F / sodium sulfite / formaldehyde condensate was added was the bisphenol A. The initial performance and life performance of the battery using sodium sulfite / formaldehyde condensate or bisphenol A / sodium glutamate / formaldehyde condensate were equal to or better than those of the battery. Thus, it is considered that a formaldehyde condensate of a bisphenol and a sulfite or an amino acid can provide the effects of the present invention.

【0036】本実施例1、2ではシール型鉛蓄電池を用
いた結果について詳細に説明したが、自動車用電池等に
用いられている開放型鉛畜電池においても同様の効果が
得られた。
In the first and second embodiments, the results using the sealed type lead-acid battery were described in detail. However, the same effect was obtained in the open-type lead-acid battery used for a battery for an automobile or the like.

【0037】また、本実施例ではサイクル寿命試験の結
果について詳述したが、この他、フロート充電寿命試験
においても、本発明による負極板の寿命性能は、対照品
と比較し明らかに優れていた。
In this example, the results of the cycle life test were described in detail. In addition, in the float charge life test, the life performance of the negative electrode plate according to the present invention was clearly superior to the control product. .

【0038】このように、本発明による効果は鉛蓄電池
の形式や試験方法によって変わるものではなく、各種鉛
蓄電池に適用でき、各種用途に使用でき得るものであ
る。
As described above, the effect of the present invention does not change depending on the type and test method of the lead storage battery, but can be applied to various lead storage batteries and can be used for various purposes.

【0039】[0039]

【発明の効果】以上のように本発明による、鉛蓄電池用
負極板はビスフェノール類と亜硫酸塩もしくはアミノ酸
のホルムアルデヒド縮合物を添加すること、好ましく
は、重量平均分子量0.3〜3.0×104 の縮合物で
あり、さらに好ましくは、ナフタリンスルホン酸ホルム
アルデヒド縮合物もしくはリグニンとともに添加されて
おり、また、さらに好ましくは、該ビスフェノール類と
亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物が
ビスフェノールA・亜硫酸ナトリウム・ホルムアルデヒ
ド縮合物であることにより、特に高温下における寿命性
能の低下を防止でき、その工業的価値は甚だ大なるもの
である。
As described above, the negative electrode plate for a lead storage battery according to the present invention is prepared by adding a formaldehyde condensate of a bisphenol and a sulfite or an amino acid, preferably having a weight average molecular weight of 0.3 to 3.0 × 10 3. 4 , more preferably added together with a naphthalenesulfonic acid formaldehyde condensate or lignin, and more preferably, the bisphenols and a sulfite or an amino acid formaldehyde condensate are bisphenol A / sodium sulfite / By being a formaldehyde condensate, it is possible to prevent a decrease in life performance especially at a high temperature, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】50℃における寿命試験の結果(実施例1)を
示す図である。
FIG. 1 is a view showing the results of a life test at 50 ° C. (Example 1).

【図2】50℃における寿命試験の結果(実施例2)を
示す図である。
FIG. 2 is a diagram showing a result of a life test at 50 ° C. (Example 2).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】鉛蓄電池用負極板において、活物質にビス
フェノール類と亜硫酸塩もしくはアミノ酸のホルムアル
デヒド縮合物を添加したことを特徴とする鉛蓄電池用負
極板。
1. A negative electrode plate for a lead-acid battery, wherein a bisphenol and a sulfite or a formaldehyde condensate of an amino acid are added to the active material.
【請求項2】該ビスフェノール類と亜硫酸塩もしくはア
ミノ酸のホルムアルデヒド縮合物の重量平均分子量が
0.3〜3.0×104 であることを特徴とする請求項
1記載の鉛蓄電池用負極板。
2. The negative electrode plate for a lead-acid battery according to claim 1, wherein the formaldehyde condensate of the bisphenol and a sulfite or an amino acid has a weight average molecular weight of 0.3 to 3.0 × 10 4 .
【請求項3】前記ビスフェノール類と亜硫酸塩もしくは
アミノ酸のホルムアルデヒド縮合物がナフタリンスルホ
ン酸ホルムアルデヒド縮合物の誘導体とともに添加され
ていることを特徴とする請求項1又は請求項2に記載の
鉛蓄電池用負極板。
3. The negative electrode for a lead storage battery according to claim 1, wherein the formaldehyde condensate of the bisphenol and a sulfite or an amino acid is added together with a derivative of a naphthalenesulfonic acid formaldehyde condensate. Board.
【請求項4】前記ビスフェノール類と亜硫酸塩もしくは
アミノ酸のホルムアルデヒド縮合物がリグニンもしくは
その誘導体とともに添加されていることを特徴とする請
求項1又は請求項2に記載の鉛蓄電池用負極板。
4. The negative electrode plate for a lead-acid battery according to claim 1, wherein said bisphenols and a sulfite or a formaldehyde condensate of an amino acid are added together with lignin or a derivative thereof.
【請求項5】ビスフェノール類と亜硫酸塩もしくはアミ
ノ酸のホルムアルデヒド縮合物がビスフェノールA・亜
硫酸ナトリウム・ホルムアルデヒド縮合物であることを
特徴とする請求項1、2、3もしくは4記載の鉛蓄電池
用負極板。
5. The negative electrode plate for a lead storage battery according to claim 1, wherein the formaldehyde condensate of a bisphenol and a sulfite or an amino acid is bisphenol A / sodium sulfite / formaldehyde condensate.
JP29637097A 1997-10-13 1997-10-13 Negative electrode for lead acid battery Expired - Fee Related JP3992336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29637097A JP3992336B2 (en) 1997-10-13 1997-10-13 Negative electrode for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29637097A JP3992336B2 (en) 1997-10-13 1997-10-13 Negative electrode for lead acid battery

Publications (2)

Publication Number Publication Date
JPH11121008A true JPH11121008A (en) 1999-04-30
JP3992336B2 JP3992336B2 (en) 2007-10-17

Family

ID=17832681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29637097A Expired - Fee Related JP3992336B2 (en) 1997-10-13 1997-10-13 Negative electrode for lead acid battery

Country Status (1)

Country Link
JP (1) JP3992336B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134114A (en) * 2000-10-20 2002-05-10 Japan Storage Battery Co Ltd Lead-acid battery
WO2002039519A1 (en) * 2000-11-09 2002-05-16 Yuasa Corporation Negative electrode active material, process for its production and lead storage battery
JP2003338285A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2004111198A (en) * 2002-09-18 2004-04-08 Japan Storage Battery Co Ltd Lead acid storage battery
JP2005294027A (en) * 2004-03-31 2005-10-20 Yuasa Corp Cathode active material and lead acid storage battery using it
JP2006172921A (en) * 2004-12-16 2006-06-29 Osaka Univ Lead acid storage battery and negative electrode and negative electrode active material used for it
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2007059134A (en) * 2005-08-23 2007-03-08 Gs Yuasa Corporation:Kk Lead acid battery and anode for lead acid battery
JP2008277244A (en) * 2007-04-06 2008-11-13 Shin Kobe Electric Mach Co Ltd Lead-acid battery
US7514177B2 (en) 2004-06-16 2009-04-07 Panasonic Corporation Lead storage battery
JP2010102916A (en) * 2008-10-23 2010-05-06 Panasonic Corp Method for manufacturing positive electrode plate for lead-acid battery, method for manufacturing lead-acid battery, and lead-acid battery
JP2012043594A (en) * 2010-08-18 2012-03-01 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lead acid storage battery, and lead acid storage battery using the negative electrode plate
JP2013065443A (en) * 2011-09-16 2013-04-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2015032480A (en) * 2013-08-02 2015-02-16 株式会社Gsユアサ Liquid-type lead storage battery
JPWO2013073420A1 (en) * 2011-11-16 2015-04-02 新神戸電機株式会社 Lead acid battery
JPWO2013058058A1 (en) * 2011-10-18 2015-04-02 新神戸電機株式会社 Lead acid battery
WO2015163287A1 (en) * 2014-04-22 2015-10-29 日立化成株式会社 Bisphenol resin, electrode, and lead-acid battery
JP5857962B2 (en) * 2010-08-05 2016-02-10 新神戸電機株式会社 Lead acid battery
JP2017155111A (en) * 2016-03-01 2017-09-07 日立化成株式会社 Phenolic resin, electrode, lead-acid battery, methods for producing them, and resin composition
WO2018061832A1 (en) * 2016-09-30 2018-04-05 株式会社Gsユアサ Lead acid battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery
WO2021060327A1 (en) 2019-09-27 2021-04-01 株式会社Gsユアサ Lead acid storage battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134114A (en) * 2000-10-20 2002-05-10 Japan Storage Battery Co Ltd Lead-acid battery
WO2002039519A1 (en) * 2000-11-09 2002-05-16 Yuasa Corporation Negative electrode active material, process for its production and lead storage battery
US7022433B2 (en) 2000-11-09 2006-04-04 Gs Yuasa Corporation Negative active material, method of manufacturing its material, and lead acid battery
JP2003338285A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP4492024B2 (en) * 2002-05-21 2010-06-30 パナソニック株式会社 Lead acid battery
JP2004111198A (en) * 2002-09-18 2004-04-08 Japan Storage Battery Co Ltd Lead acid storage battery
JP2005294027A (en) * 2004-03-31 2005-10-20 Yuasa Corp Cathode active material and lead acid storage battery using it
JP4614048B2 (en) * 2004-03-31 2011-01-19 株式会社Gsユアサ Negative electrode active material, lead-acid battery using the same, and method for producing additive of negative electrode active material
US7514177B2 (en) 2004-06-16 2009-04-07 Panasonic Corporation Lead storage battery
JP2006172921A (en) * 2004-12-16 2006-06-29 Osaka Univ Lead acid storage battery and negative electrode and negative electrode active material used for it
JP2006196191A (en) * 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2007059134A (en) * 2005-08-23 2007-03-08 Gs Yuasa Corporation:Kk Lead acid battery and anode for lead acid battery
JP2008277244A (en) * 2007-04-06 2008-11-13 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2010102916A (en) * 2008-10-23 2010-05-06 Panasonic Corp Method for manufacturing positive electrode plate for lead-acid battery, method for manufacturing lead-acid battery, and lead-acid battery
JP5857962B2 (en) * 2010-08-05 2016-02-10 新神戸電機株式会社 Lead acid battery
JP2012043594A (en) * 2010-08-18 2012-03-01 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lead acid storage battery, and lead acid storage battery using the negative electrode plate
JP2013065443A (en) * 2011-09-16 2013-04-11 Shin Kobe Electric Mach Co Ltd Lead storage battery
JPWO2013058058A1 (en) * 2011-10-18 2015-04-02 新神戸電機株式会社 Lead acid battery
JPWO2013073420A1 (en) * 2011-11-16 2015-04-02 新神戸電機株式会社 Lead acid battery
JP2015032480A (en) * 2013-08-02 2015-02-16 株式会社Gsユアサ Liquid-type lead storage battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery
WO2015163287A1 (en) * 2014-04-22 2015-10-29 日立化成株式会社 Bisphenol resin, electrode, and lead-acid battery
JPWO2015163287A1 (en) * 2014-04-22 2017-04-13 日立化成株式会社 Bisphenol resin, electrode and lead acid battery
JP2017155111A (en) * 2016-03-01 2017-09-07 日立化成株式会社 Phenolic resin, electrode, lead-acid battery, methods for producing them, and resin composition
WO2018061832A1 (en) * 2016-09-30 2018-04-05 株式会社Gsユアサ Lead acid battery
CN109792053A (en) * 2016-09-30 2019-05-21 株式会社杰士汤浅国际 Lead storage battery
US11424452B2 (en) 2016-09-30 2022-08-23 Gs Yuasa International Ltd. Lead-acid battery
WO2021060327A1 (en) 2019-09-27 2021-04-01 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
JP3992336B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JPH11121008A (en) Negative electrode plate for lead-acid battery
EP2471129B1 (en) Electrical storage device and electrode thereof
KR101571191B1 (en) Electrode structure for an energy storage device
JP2007012596A (en) Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
JP2014035836A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2007172999A (en) Lead-acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2019526915A (en) Porous silicon material and conductive polymer binder electrode
CN112470308A (en) Negative electrode active material for lithium secondary battery and secondary battery comprising same
JP2003123760A (en) Negative electrode for lead-acid battery
JP2002134114A (en) Lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP4509660B2 (en) Lead acid battery
JP2001043849A (en) Sealed lead-acid battery
JPH09147872A (en) Negative electrode plate for lead-acid battery
JP6103521B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JPH0982317A (en) Negative plate for lead-acid battery
JPH09147873A (en) Negative electrode plate for lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP2007213896A (en) Lead-acid storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP2004273305A (en) Lead-acid battery
JP4503358B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees