JPH0982317A - Negative plate for lead-acid battery - Google Patents

Negative plate for lead-acid battery

Info

Publication number
JPH0982317A
JPH0982317A JP7255526A JP25552695A JPH0982317A JP H0982317 A JPH0982317 A JP H0982317A JP 7255526 A JP7255526 A JP 7255526A JP 25552695 A JP25552695 A JP 25552695A JP H0982317 A JPH0982317 A JP H0982317A
Authority
JP
Japan
Prior art keywords
lignin
salt
sulfite
negative electrode
sodium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255526A
Other languages
Japanese (ja)
Inventor
Akira Kamata
彰 鎌田
Masahiko Onari
雅彦 小斉
Shigeharu Osumi
重治 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7255526A priority Critical patent/JPH0982317A/en
Publication of JPH0982317A publication Critical patent/JPH0982317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in the life performance of a negative plate at high temperature by adding a mixture of naphthalenesulfonic acid or its derivative and lighin. SOLUTION: As lignin, the sodium salt of sulfite lignin manufactured by a sulfite process, and as naphthalenesulfonic acid or the condensation product of its derivative, the sodium salt of naphthalenesulfonic acid formaldehyde condensation product are prepared. By mixing these compounds, five kinds of organic expanders are prepared, and negative plates 1-5 are produced. The negative plate 1 uses only the sodium salt of sulfite lignin produced by the sulfite process, and the negative plate 5 uses only the sodium salt of naphthalenesulfonic acid formaldehyde condensation product. The negative plates 2, 3, 4 use mixtures of the specified ratios of the sodium salt of sulfite lignin and the sodium salt of naphthalenesulfonic acid formaldehyde condensation product. The adding amount of each organic expander is 0.2wt.% as the solid content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池用負極板の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a negative electrode plate for a lead storage battery.

【0002】[0002]

【従来の技術とその課題】鉛蓄電池は自動車の始動・点
灯用をはじめ小容量のコンシューマー用から大容量の据
置用まで多くの用途で使用されている。また、近年は環
境問題の観点から電気自動車の電源としても注目されて
いる。
2. Description of the Related Art Lead-acid batteries are used in many applications including starting and lighting of automobiles, as well as small capacity consumers and large capacity stationary applications. In recent years, it has also attracted attention as a power source for electric vehicles from the viewpoint of environmental issues.

【0003】最近の自動車用鉛蓄電池の使用状況をみる
と、これらの電池は新たな使用環境下におかれるように
なりつつあると考えられる。すなわち、エアーコンディ
ショナーやオーディオ機器、さらにはカーナビゲーショ
ンシステムなど多くの電装機器が採用され、鉛蓄電池に
対する負荷が大きくなっている。また、居住空間を確保
するためおよび空気抵抗を低減するためにエンジンルー
ムは小さくなり、エンジンの高出力化も重なって、エン
ジンルーム内は相当な高温になっており、鉛蓄電池もこ
の高温にさらされるようになってきている。
Looking at the recent usage of lead acid batteries for automobiles, it is considered that these batteries are being put under new usage environment. That is, many electric components such as an air conditioner, an audio device, and a car navigation system are adopted, and a load on the lead storage battery is increasing. In addition, the engine room becomes smaller in order to secure living space and air resistance, and due to the higher output of the engine, the temperature inside the engine room is considerably high, and the lead storage battery is also exposed to this high temperature. Are becoming available.

【0004】また、電気自動車用といった深い充放電を
繰り返し、大電流を必要とする電池においても、室内空
間を最大限にとるために、電池のおかれる状況は非常に
コンハ゜クトにおさえられ、電池温度は高温にさらされるよう
になっている。
Further, even in the case of a battery that requires a large current by repeating deep charge and discharge such as for an electric vehicle, the condition of the battery is kept very compact in order to maximize the indoor space, and the battery temperature Is exposed to high temperatures.

【0005】鉛蓄電池用負極板には一般に有機エキスパ
ンダー、無機エキスパンダー( 硫酸バリウム) およびカ
ーボンが添加されており、それぞれ鉛蓄電池用負極板の
各種性能向上に寄与している。これらの内、有機エキス
パンダーは、一般にはリグニンと呼ばれるパルプ製造時
に得られる副生成物が用いられており、電池の充放電に
ともなって進行する負極活物質( 金属鉛) の成長を抑え
て活物質が収縮するのを抑制し、活物質を微細化し、負
極板の放電容量、特に高率放電容量が低下するのを防い
でいる。
Generally, an organic expander, an inorganic expander (barium sulfate) and carbon are added to the negative electrode plate for a lead storage battery, which contributes to various performance improvements of the negative electrode plate for a lead storage battery. Of these, organic expanders generally use lignin, which is a by-product obtained during pulp production, and suppresses the growth of the negative electrode active material (lead metal) that progresses as the battery is charged and discharged. To prevent the active material from becoming finer and prevent the discharge capacity of the negative electrode plate, particularly the high rate discharge capacity, from decreasing.

【0006】しかし、上述した自動車用鉛蓄電池の使用
環境の変化や電気自動車への適用といった高温での使用
に対して現在使用しているリグニンでは満足できる寿命
性能を得ることは困難であった。これは、リグニンが高
温にさらされた場合、分解あるいは電解液に溶出して、
その量が減少するためと考えられる。そのため、高温下
でも寿命性能の低下の少ない負極板、すなわち、分解も
しくは溶出しにくいような有機エキスパンダーが求めら
れていた。
However, it has been difficult to obtain a satisfactory life performance with the lignin currently used for high temperature use such as change of use environment of the above-mentioned lead acid battery for automobiles and application to electric vehicles. This is because when lignin is exposed to high temperatures, it decomposes or elutes in the electrolyte,
It is considered that the amount decreases. Therefore, there has been a demand for a negative electrode plate with less deterioration in life performance even at high temperatures, that is, an organic expander that is difficult to decompose or elute.

【0007】[0007]

【課題を解決するための手段】本発明は、上述したよう
な高温下での負極板の寿命性能の低下という問題点を解
決するもので、鉛蓄電池用負極板にナフタリンスルホン
酸あるいはその誘導体の縮合物とリグニンとの混合物を
添加することを特徴とするもので、好ましくは、該リグ
ニンがサルファイト法で得られるサルファイトリグニン
のNa塩型もしくはクラフト法で得られるクラフトリグ
ニンの酸型であることを特徴とするものである。
The present invention solves the above-mentioned problem of deterioration of the life performance of the negative electrode plate under high temperature, and the use of naphthalene sulfonic acid or its derivative in the negative electrode plate for lead acid batteries It is characterized by adding a mixture of a condensate and lignin, and preferably the lignin is the Na salt form of sulfite lignin obtained by the sulfite method or the acid form of kraft lignin obtained by the kraft method. It is characterized by that.

【0008】[0008]

【発明の実施の形態】ナフタリンスルホン酸あるいはそ
の誘導体の縮合物とリグニンとの混合物を添加した鉛粉
を希硫酸で練合し、活物質ペーストを作り、これを格子
に充填した後、熟成および乾燥をおこなって本発明鉛蓄
電池用負極板を作製する。ここで用いるリグニンとして
は、サルファイト法で得られるサルファイトリグニンの
Na塩型あるいはクラフト法で得られるクラフトリグニ
ンの酸型のものがよい。
BEST MODE FOR CARRYING OUT THE INVENTION Lead powder to which a mixture of a condensate of naphthalene sulfonic acid or its derivative and lignin is added is kneaded with dilute sulfuric acid to prepare an active material paste, which is filled in a grid and then aged and The negative electrode plate for lead-acid battery of the present invention is prepared by drying. The lignin used here is preferably the sodium salt form of sulfite lignin obtained by the sulfite method or the acid form of craft lignin obtained by the craft method.

【0009】[0009]

【実施例】【Example】

(実施例1)以下に本発明の詳細を実施例をもとに説明
する。
Example 1 Details of the present invention will be described below based on examples.

【0010】まず、リグニンとしてサルファイト法で製
造されるサルファイトリグニンのNa塩を、ナフタリン
スルホン酸あるいはその誘導体の縮合物の一例としてナ
フタリンスルホン酸ホルムアルデヒド縮合物のNa塩を
用意した。これらを単体もしくは混合して5種の有機エ
キスパンダーを調整した。
First, an Na salt of sulfite lignin produced by the sulfite method was prepared as a lignin, and an Na salt of a naphthalene sulfonic acid formaldehyde condensate was prepared as an example of a condensate of naphthalene sulfonic acid or a derivative thereof. These were used alone or mixed to prepare 5 kinds of organic expanders.

【0011】これらの有機エキスパンダーを用いて表1
に示す5種の負極板を得た。
Table 1 was prepared using these organic expanders.
Five types of negative electrode plates shown in were obtained.

【0012】[0012]

【表1】 すなわち、PbOを約75重量%含む見掛け比重約1.
8g/cm3 の鉛粉100kgと、比重約1.15の希
硫酸を約20リットル、添加剤として、無機エキスパン
ダー( 硫酸バリウム) を0.7重量%、カーボンを0.
2重量%、および有機エキスパンダーを混練し、格子に
充填した後、熟成および乾燥をおこない有機エキスパン
ダーの異なる5種の負極板を得た。なお、硫酸バリウム
およびカーボンの添加量は電池の使用目的によって変更
でき、その範囲は通常、硫酸バリウムの場合0〜2重量
%であり、カーボンの場合0〜2重量%である。また、
本実施例では用いなかったが、格子の升目が荒い場合や
極板強度を必要とする場合、合成有機繊維等の極板補強
剤を添加することがある。この添加量は通常、0.05
〜0.2%である。
[Table 1] That is, the apparent specific gravity of PbO is about 1.
100 kg of 8 g / cm 3 lead powder, about 20 liters of dilute sulfuric acid having a specific gravity of about 1.15, 0.7% by weight of an inorganic expander (barium sulfate) as an additive, and 0.1% of carbon.
After 2% by weight and an organic expander were kneaded and filled in a grid, aging and drying were carried out to obtain five types of negative electrode plates having different organic expanders. The addition amounts of barium sulfate and carbon can be changed depending on the purpose of use of the battery, and the range is usually 0 to 2% by weight for barium sulfate and 0 to 2% by weight for carbon. Also,
Although not used in this example, a plate reinforcing agent such as a synthetic organic fiber may be added when the grid of the grid is rough or when the plate strength is required. This amount is usually 0.05
Is about 0.2%.

【0013】ここで、負極板1は有機エキスパンダーと
してサルファイト法で製造されるサルファイトリグニン
のNa塩を単体で用いたものであり、負極板5はナフタ
リンスルホン酸ホルムアルデヒド縮合物のNa塩を単体
で用いたものである。負極板2、3および4は、サルフ
ァイトリグニンのNa塩とナフタリンスルホン酸ホルム
アルデヒド縮合物のNa塩とをそれぞれ、3:1、1:
1および1:3で混合した有機エキスパンダーを用いた
ものである。有機エキスパンダーの添加量は単体および
混合品を問わず、固形分で0.2重量%を添加した。
Here, the negative electrode plate 1 uses a Na salt of sulfite lignin produced by the sulfite method as an organic expander alone, and the negative electrode plate 5 uses the Na salt of naphthalenesulfonic acid formaldehyde condensate as a simple substance. Used in. The negative electrode plates 2, 3 and 4 were prepared by mixing Na salt of sulfite lignin and Na salt of naphthalene sulfonic acid formaldehyde condensate with 3: 1, 1: 1, respectively.
The organic expander used was a mixture of 1 and 1: 3. The addition amount of the organic expander is 0.2% by weight in terms of solid content, regardless of whether it is a single substance or a mixed product.

【0014】なお、本実施例において負極格子には、P
b−0.07重量%Ca−0.5重量%Sn合金からな
る、エキスパンド格子を用いたが、通常鉛蓄電池で使用
される鋳造格子を用いてもよい。また、格子合金には、
Pb−Ca(−Sn)系合金のほか、Pb−Sb系合金
等を用いることができる。
In the present embodiment, the negative electrode grid has P
Although an expanded grid made of b-0.07 wt% Ca-0.5 wt% Sn alloy was used, a cast grid normally used in lead-acid batteries may be used. In addition, in the lattice alloy,
In addition to Pb-Ca (-Sn) alloys, Pb-Sb alloys and the like can be used.

【0015】一方、正極ペーストには、PbOを約75
重量%含む見掛け比重約1.8g/cm3 の鉛粉100
kgに対し、比重約1.15の希硫酸を約25リットル
の割合で混練したものを用いた。この正極ペーストに
は、化成効率を向上させる目的で鉛丹を添加したり、極
板強度を向上させるために長さが2〜5mm程度の合成
繊維を添加してもよい。合成繊維の添加量としては0.
1〜0.3重量%程度が適当である。
On the other hand, the positive electrode paste contains about 75 PbO.
100% lead powder with an apparent specific gravity of about 1.8 g / cm 3
A mixture obtained by kneading dilute sulfuric acid having a specific gravity of about 1.15 with respect to kg at a ratio of about 25 liters was used. Lead oxide may be added to the positive electrode paste for the purpose of improving the conversion efficiency, or synthetic fiber having a length of about 2 to 5 mm may be added for improving the strength of the electrode plate. The amount of synthetic fiber added was 0.
About 1 to 0.3% by weight is suitable.

【0016】上記正極ペーストを、鉛合金製格子に充填
し、熟成および乾燥をおこない正極板を得た。なお、本
実施例で用いた格子は、Pb−0.07重量%Ca−
1.5重量%Sn合金からなる鋳造格子であったが、エ
キスパンド格子を用いることでコストダウンがはかれ
る。また、正極に用いる格子合金には、通常鉛蓄電池に
用いられているPb−Ca(−Sn)系合金やPb−S
b系合金等を用いることができる。
A lead alloy grid was filled with the above positive electrode paste and aged and dried to obtain a positive electrode plate. The lattice used in this example is Pb-0.07 wt% Ca-.
Although it was a cast lattice made of 1.5 wt% Sn alloy, the cost can be reduced by using the expanded lattice. In addition, the lattice alloy used for the positive electrode is a Pb-Ca (-Sn) -based alloy or Pb-S that is usually used for lead-acid batteries.
A b-based alloy or the like can be used.

【0017】これらの負極板および正極板と隔離体とを
積層し、JIS D5301記載の公称電圧12V、5
時間率公称容量48Ahの55D23形自動車用電池を
表2に示ように5種類(A〜E)製作した。なお、電槽
化成後の硫酸比重は20℃で1.28とした。
The negative electrode plate, the positive electrode plate and the separator are laminated to obtain a nominal voltage of 12 V and 5 V described in JIS D5301.
As shown in Table 2, five types (A to E) of 55D23 type automobile batteries having a nominal rate of hourly capacity of 48 Ah were manufactured. The specific gravity of sulfuric acid after battery case formation was 1.28 at 20 ° C.

【0018】正負極板の隔離体には直径約10〜20μ
mのガラス繊維を抄造してなるガラスマットとシリカ粉
体、ガラス繊維、樹脂繊維等を抄造してなるセパレータ
とを張り合わせたものを用いた。
The separator of the positive and negative plates has a diameter of about 10 to 20 μm.
A glass mat formed by making m of glass fiber and a separator formed by making silica powder, glass fiber, resin fiber and the like were laminated together.

【0019】これら5種の鉛蓄電池を用い、まず、JI
S D5301記載の充電受入性試験に供した。すなわ
ち、完全充電した電池を常温にて5時間率電流( 9.6
A)で2.5時間放電し、更に周囲温度0±2℃におい
て12時間以上放置した後、該周囲温度下で端子電圧1
4.4±0.1Vで充電し、その10分目電流を測定し
た。
Using these five types of lead-acid batteries, first, JI
It was subjected to the charge acceptability test described in SD5301. In other words, a fully charged battery at room temperature with a 5-hour rate current (9.6
After discharging for 2.5 hours in A) and further for 12 hours or more at an ambient temperature of 0 ± 2 ° C, the terminal voltage is 1 at the ambient temperature.
The battery was charged at 4.4 ± 0.1 V, and the current at 10 minutes was measured.

【0020】次いで、JIS D5301記載の5時間
率容量および高率放電容量を調査した。5時間率放電試
験は、電解液温度を25±2℃において5時間率電流で
放電終止電圧10.5Vまで放電し、その放電容量を調
査した。また、高率放電試験は、電解液温度を−15±
1℃において300Aで放電終止電圧6Vまで放電し、
その放電容量を調査した。これらの試験結果を表2にあ
わせて示した。
Next, the 5-hour rate capacity and high rate discharge capacity described in JIS D5301 were investigated. In the 5-hour rate discharge test, the electrolyte was discharged at a temperature of 25 ± 2 ° C. with a 5-hour rate current to a discharge end voltage of 10.5 V, and the discharge capacity was investigated. In addition, the high rate discharge test, the electrolyte temperature -15 ±
Discharge to discharge end voltage 6V at 300A at 1 ° C,
The discharge capacity was investigated. The results of these tests are also shown in Table 2.

【0021】[0021]

【表2】 充電受入性および5時間率放電容量はいずれの電池A〜
Eも大差なく同等であった。高率放電容量は、サルファ
イトリグニンのNa塩およびナフタリンスルホン酸ホル
ムアルデヒド縮合物のNa塩をそれぞれ単独で用いた従
来品である電池AおよびEに比べて、サルファイトリグ
ニンのNa塩とナフタリンスルホン酸ホルムアルデヒド
縮合物のNa塩とを混合して用いた本発明による電池
B、CおよびDが優れていた。このように、サルファイ
トリグニンのNa塩とナフタリンスルホン酸ホルムアル
デヒド縮合物のNa塩とを混合したことにより、電池の
初期性能に予期しない相乗効果が現れた。
[Table 2] Charge acceptability and 5 hour rate discharge capacity of any battery A ~
E was also almost the same. The high rate discharge capacity is higher than that of batteries A and E, which are conventional products using the sodium salt of sulfite lignin and the sodium salt of naphthalene sulfonic acid formaldehyde condensate, respectively, as compared to the conventional batteries A and E. The batteries B, C and D according to the invention, which were used by mixing with the Na salt of the formaldehyde condensate, were excellent. Thus, by mixing the Na salt of sulfite lignin and the Na salt of the naphthalene sulfonic acid formaldehyde condensate, an unexpected synergistic effect appeared in the initial performance of the battery.

【0022】その後、同一の電池を用いてJIS D5
301記載の軽負荷寿命試験を変更した試験に供した。
主な変更点は蓄電池周囲温度を75℃±2℃とし、寿命
判定までの充放電繰り返し回数を500回とした点であ
る。
Then, using the same battery, JIS D5
The test was performed by changing the light load life test described in 301.
The main changes are that the storage battery ambient temperature is 75 ° C. ± 2 ° C., and the number of charge / discharge repetitions until the end of life is 500.

【0023】すなわち、蓄電池周囲温度75℃±2℃と
して、放電を25±0.05Aの電流で4分間行い、引
き続き充電を端子電圧14.8±0.03V( 制限電流
25A) で10分間行い、これを500回繰り返した
後、48時間該周囲温度のまま放置し、判定電流356
Aで30秒間放電し、30秒目電圧を測定した。その
後、充電を端子電圧14.8±0.03V( 制限電流2
5A) で10分間行い、これらを500回毎の上記30
秒目電圧が7.2V以下となるまで繰り返した。
That is, when the storage battery ambient temperature is 75 ° C. ± 2 ° C., discharging is performed at a current of 25 ± 0.05 A for 4 minutes, and then charging is performed at a terminal voltage of 14.8 ± 0.03 V (limit current 25 A) for 10 minutes. After repeating this 500 times, it is left at the ambient temperature for 48 hours, and the judgment current 356 is applied.
The battery was discharged at A for 30 seconds and the voltage was measured at 30 seconds. After that, charge the terminal voltage 14.8 ± 0.03V (limit current 2
5A) for 10 minutes.
This operation was repeated until the second voltage became 7.2 V or less.

【0024】上記試験結果を図1に示す。サルファイト
リグニンのNa塩およびナフタリンスルホン酸ホルムア
ルデヒド縮合物のNa塩をそれぞれ単独で用いた従来品
である電池AおよびEがそれぞれ約4000サイクルお
よび約5000サイクルで寿命となったのに対し、サル
ファイトリグニンのNa塩とナフタリンスルホン酸ホル
ムアルデヒド縮合物のNa塩とを混合して用いた本発明
による電池B、CおよびDはいずれも6000サイクル
以上の寿命性能を有していた。
The test results are shown in FIG. Conventional batteries A and E using the sodium salt of sulfite lignin and the sodium salt of naphthalene sulfonic acid formaldehyde condensate each have a life of about 4000 cycles and about 5000 cycles, respectively. The batteries B, C and D according to the present invention, which were prepared by mixing the Na salt of lignin and the Na salt of the naphthalenesulfonic acid formaldehyde condensate, all had a life performance of 6000 cycles or more.

【0025】寿命試験後、これらの電池を解体したとこ
ろ、電池AおよびEはともに負極活物質の収縮が激し
く、これによって寿命となったものと思われた。一方、
電池B、CおよびDは、6000サイクルで寿命試験を
打ち切り解体したが、これらの電池の負極板に劣化の兆
候はみられず、正極板の劣化である格子腐食が放電電圧
低下の原因であると思われた。
When these batteries were disassembled after the life test, it was considered that the batteries A and E both had a large amount of contraction of the negative electrode active material, which resulted in the end of life. on the other hand,
Batteries B, C and D were disassembled after the life test was discontinued at 6000 cycles, but no sign of deterioration was observed in the negative electrode plate of these batteries, and lattice corrosion, which is deterioration of the positive electrode plate, is the cause of the decrease in discharge voltage. So I thought.

【0026】このように、サルファイトリグニンのNa
塩とナフタリンスルホン酸ホルムアルデヒド縮合物のN
a塩とを混合して添加した負極板の高温での寿命性能は
従来品よりも優れており、両者を混合することで電池の
寿命性能にも予期しない相乗効果が現れた。 (実施例2)リグニンには製法による違いからクラフト
リグニンとサルファイトリグニンとに大別され、更に、
最終処理方法の違いでNa塩( 型) と酸型とに分けられ
る。そこで、これら4種のリグニンとナフタリンスルホ
ン酸ホルムアルデヒド縮合物のNa塩とを混合し、4種
の混合有機エキスパンダーを調製して負極に添加し、そ
の電池性能におよぼす効果を調べた。
Thus, Na of sulfite lignin
N of salt and naphthalenesulfonic acid formaldehyde condensate
The life performance at high temperature of the negative electrode plate mixed with the a salt was higher than that of the conventional product, and the unexpected synergistic effect appeared on the life performance of the battery by mixing both. (Example 2) Lignin is roughly classified into kraft lignin and sulphite lignin due to the difference in production method.
It is classified into Na salt (type) and acid type depending on the final treatment method. Therefore, these four types of lignin were mixed with Na salt of a naphthalenesulfonic acid formaldehyde condensate, four types of mixed organic expanders were prepared and added to the negative electrode, and the effect on the battery performance was investigated.

【0027】比較のため、クラフトリグニンNa塩(
型) および酸型、サルファイトリグニンNa塩( 型) お
よび酸型、ならびにナフタリンスルホン酸ホルムアルデ
ヒド縮合物のNa塩をそれぞれ単体で用いた従来の電池
を試験に供した。
For comparison, Kraft lignin Na salt (
Type) and an acid type, a sulfite lignin Na salt (type) and an acid type, and a conventional battery using a Na salt of a naphthalenesulfonic acid formaldehyde condensate as a single body were subjected to the test.

【0028】これらの有機エキスパンダーを用いて、表
3に示す9種の負極板を得た。なお、負極板1、3およ
び5は、それぞれ実施例1負極板1および5と同一の処
方である。
Nine kinds of negative electrode plates shown in Table 3 were obtained using these organic expanders. The negative electrode plates 1, 3 and 5 have the same formulation as the negative electrode plates 1 and 5 of Example 1, respectively.

【0029】[0029]

【表3】 これらから、実施例1と同様に表4に示す9種の5時間
率公称容量48Ahの55D23型自動車用鉛蓄電池を
製作し、JIS D5301記載の充電受入性試験5時
間率容量および高率放電容量を調査した。
[Table 3] From these, in the same manner as in Example 1, nine types of 55-hour battery type 55D23 lead-acid batteries having a nominal capacity of 48 Ah shown in Table 4 were manufactured, and the charge acceptance test 5 hour rate capacity and high rate discharge capacity described in JIS D5301. investigated.

【0030】上記試験結果を表4にあわせて示す。The test results are also shown in Table 4.

【0031】[0031]

【表4】 充電受入性および5時間率放電容量はいずれの電池A、
CおよびE〜Kも大差なく同等であった。一方、高率放
電容量は、各種リグニンおよびナフタリンスルホン酸ホ
ルムアルデヒド縮合物のNa塩をそれぞれ単独で用いた
従来品である電池A、F〜HおよびEに比べて、各種リ
グニンとナフタリンスルホン酸ホルムアルデヒド縮合物
のNa塩とを混合して用いた本発明による電池Cおよび
I〜Kが優れていた。
[Table 4] Charge acceptability and 5 hour rate discharge capacity are all batteries A,
C and E to K were also almost the same. On the other hand, the high-rate discharge capacity is higher than that of batteries A, FH, and E, which are conventional products using Na salts of various lignin and naphthalenesulfonic acid formaldehyde condensates, respectively, compared with various lignin and naphthalenesulfonic acid formaldehyde condensation products. The batteries C and I to K according to the present invention, which were used by mixing with the Na salt of the product, were excellent.

【0032】これらの電池を実施例1と同様に、JIS
D5301に準じた75℃での軽負荷寿命試験に供し
た結果を図2に示す。クラフトリグニンNa塩( 型) お
よび酸型、サルファイトリグニンNa塩( 型) および酸
型、ならびにナフタリンスルホン酸ホルムアルデヒド縮
合物のNa塩をそれぞれ単体で用いた従来の電池A、
F、G、HおよびEは、いずれも約5000サイクルで
寿命となっていた。これらの電池は負極活物質の収縮が
激しく、これによって寿命となったものと思われた。
These batteries were tested according to JIS 1
The results of the light load life test at 75 ° C. according to D5301 are shown in FIG. Conventional battery A using Kraft lignin Na salt (type) and acid type, sulfite lignin Na salt (type) and acid type, and Na salt of naphthalenesulfonic acid formaldehyde condensate, respectively.
Each of F, G, H and E had a life of about 5000 cycles. It was considered that these batteries had a long contraction due to the large contraction of the negative electrode active material.

【0033】一方、各種リグニンとナフタリンスルホン
酸ホルムアルデヒド縮合物のNa塩とを混合して用いた
本発明による電池CおよびI〜Kは、いずれも大差なく
6000サイクル以上の寿命性能を有していた。特に、
ナフタリンスルホン酸ホルムアルデヒド縮合物のNa塩
とサルファイトリグニンNa塩との混合して用いた電池
Cおよびナフタリンスルホン酸ホルムアルデヒド縮合物
のNa塩とクラフトリグニン酸型との混合して用いた電
池Kは、6000サイクル終了後も負極板の劣化の程度
は著しく小さかった。ナフタリンスルホン酸ホルムアル
デヒド縮合物のNa塩とサルファイトリグニン酸型とを
混合して用いた電池Iおよびナフタリンスルホン酸ホル
ムアルデヒド縮合物のNa塩とクラフトリグニンNa塩
とを混合して用いた電池Jは、負極板にわずかながら収
縮が認められた。
On the other hand, the batteries C and I to K according to the present invention, which were used by mixing various lignins and Na salt of a naphthalene sulfonic acid formaldehyde condensate, all had a life performance of 6000 cycles or more without much difference. . Especially,
The battery C used by mixing the Na salt of the naphthalene sulfonic acid formaldehyde condensate and the sulfite lignin Na salt, and the battery K used by mixing the Na salt of the naphthalene sulfonic acid formaldehyde condensate and the Kraft lignin acid type are Even after the end of 6000 cycles, the degree of deterioration of the negative electrode plate was extremely small. Battery I using a mixture of Na salt of naphthalene sulfonic acid formaldehyde condensate and sulfite lignin acid type and battery J using a mixture of Na salt of naphthalene sulfonic acid formaldehyde condensate and Kraft lignin Na salt, A slight shrinkage was observed on the negative electrode plate.

【0034】このように、特にサルファイトリグニンの
Na塩とナフタリンスルホン酸ホルムアルデヒド縮合物
のNa塩との混合物もしくはクラフトリグニンの酸型と
ナフタリンスルホン酸ホルムアルデヒド縮合物のNa塩
との混合物を有機エキスパンダーとして添加した負極板
の高温での寿命性能は、著しく従来品よりも優れてお
り、両者を混合することで電池の寿命性能にも予期しな
い相乗効果が現れた。
Thus, in particular, a mixture of Na salt of sulfite lignin and Na salt of naphthalene sulfonic acid formaldehyde condensate or a mixture of acid form of kraft lignin and Na salt of naphthalene sulfonic acid formaldehyde condensate is used as an organic expander. The life performance at high temperature of the added negative electrode plate was remarkably superior to that of the conventional product, and by mixing both, an unexpected synergistic effect appeared in the life performance of the battery.

【0035】なお、特開平2-234352に負極添加剤として
ナフタリンスルホン酸あるいはその誘導体の縮合物を用
いることが開示されているが、本発明はこれらの添加剤
を単独で用いるよりもリグニンと混合して使用すること
によって予期されない相乗効果が現れることを見いだし
たものである。
Incidentally, Japanese Unexamined Patent Publication (Kokai) No. 2-234352 discloses that a condensate of naphthalene sulfonic acid or its derivative is used as a negative electrode additive. However, in the present invention, these additives are mixed with lignin rather than used alone. It has been found that an unexpected synergistic effect appears when used as a product.

【0036】また、実施例1および2ではナフタリンス
ルホン酸あるいはその誘導体の縮合物の一例としてナフ
タリンスルホン酸ホルムアルデヒド縮合物のNa塩を用
いたが、これに代えて、ナフタリンスルホン酸( 酸型)
、ナフタリンスルホン酸ホルムアルデヒド縮合物の酸
型、ナフトールスルホン酸( 酸型) 、ナフトールスルホ
ン酸ホルムアルデヒド縮合物のNa塩型等を用いても同
様の相乗効果が得られることを確認した。したがって、
リグニンと混合する有機添加剤として、ナフタリンスル
ホン酸あるいはその誘導体の縮合物であれば上記相乗効
果が期待できることはいうまでもない。
In Examples 1 and 2, Na salt of naphthalenesulfonic acid formaldehyde condensate was used as an example of condensate of naphthalenesulfonic acid or its derivative. Instead of this, naphthalenesulfonic acid (acid type) was used.
It was confirmed that the same synergistic effect can be obtained by using the acid form of naphthalene sulfonic acid formaldehyde condensate, naphthol sulfonic acid (acid form), Na salt form of naphthol sulfonic acid formaldehyde condensate, and the like. Therefore,
It goes without saying that the above synergistic effect can be expected if an organic additive mixed with lignin is a condensate of naphthalene sulfonic acid or its derivative.

【0037】本実施例1、2では開放型の自動車用電池
を用いた試験結果について本発明の効果を述べたが、微
細ガラス繊維を主体とするマットに電解液を含浸・保持
させて無漏液化させた、いわゆるシール鉛蓄電池におい
ても同様の効果が得られた。
In Examples 1 and 2, the effect of the present invention was described with respect to the test results using the open type automobile battery. The mat containing mainly fine glass fibers was impregnated and held with the electrolytic solution to prevent leakage. The same effect was obtained also in a liquefied so-called sealed lead acid battery.

【0038】また、本実施例では高温での軽負荷寿命試
験の結果について詳述したが、この他、深い充放電を伴
うサイクル試験やフロート充電寿命試験においても、ナ
フタリンスルホン酸あるいはその誘導体の縮合物とリグ
ニンとの混合物を添加した負極板の寿命性能は、従来品
と比較し明らかに優れていた。
Although the results of the light load life test at high temperature are described in detail in the present embodiment, in addition to this, the condensation of naphthalene sulfonic acid or its derivative is also performed in the cycle test involving deep charge / discharge and the float charge life test. The life performance of the negative electrode plate to which the mixture of the product and lignin was added was clearly superior to the conventional product.

【0039】このように、実施例1、2で述べた本発明
による効果は鉛蓄電池の形式や試験方法によって変わる
ものではなく、各種鉛蓄電池、各種用途に使用でき得る
ものである。
As described above, the effects of the present invention described in Examples 1 and 2 do not change depending on the type of lead storage battery and the test method, and can be used for various lead storage batteries and various applications.

【0040】[0040]

【発明の効果】以上のように本発明による、鉛蓄電池用
負極板はナフタリンスルホン酸あるいはその誘導体の縮
合物とリグニンとの混合物を添加すること、好ましく
は、該リグニンがサルファイト法で得られるサルファイ
トリグニンのNa塩型もしくはクラフト法で得られるク
ラフトリグニンの酸型であることにより、特に高温下に
おける寿命性能の低下を防止でき、その工業的価値は甚
だ大なるものである。
INDUSTRIAL APPLICABILITY As described above, the negative electrode plate for a lead storage battery according to the present invention contains a mixture of a condensate of naphthalene sulfonic acid or its derivative and lignin, preferably the lignin is obtained by the sulfite method. By using the sodium salt form of sulfite lignin or the acid form of kraft lignin obtained by the kraft method, it is possible to prevent the life performance from being deteriorated particularly at high temperatures, and the industrial value thereof is extremely great.

【図面の簡単な説明】[Brief description of drawings]

【図1】75℃におけるJIS軽負荷寿命試験の結果を
示す図
FIG. 1 is a diagram showing the results of a JIS light load life test at 75 ° C.

【図2】75℃におけるJIS軽負荷寿命試験の結果を
示す図
FIG. 2 is a diagram showing the results of a JIS light load life test at 75 ° C.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ナフタリンスルホン酸あるいはその誘導
体の縮合物とリグニンとの混合物を添加したことを特徴
とする鉛蓄電池用負極板。
1. A negative electrode plate for a lead storage battery, to which a mixture of a condensate of naphthalene sulfonic acid or its derivative and lignin is added.
【請求項2】 リグニンがサルファイト法で得られるサ
ルファイトリグニンのNa塩型であることを特徴とする
請求項1記載の鉛蓄電池用負極板。
2. The negative electrode plate for a lead storage battery according to claim 1, wherein the lignin is a sodium salt type of sulfite lignin obtained by a sulfite method.
【請求項3】 リグニンがクラフト法で得られるクラフ
トリグニンの酸型であることを特徴とする請求項1記載
の鉛蓄電池用負極板。
3. The negative electrode plate for a lead storage battery according to claim 1, wherein the lignin is an acid form of kraft lignin obtained by the kraft method.
JP7255526A 1995-09-07 1995-09-07 Negative plate for lead-acid battery Pending JPH0982317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255526A JPH0982317A (en) 1995-09-07 1995-09-07 Negative plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255526A JPH0982317A (en) 1995-09-07 1995-09-07 Negative plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0982317A true JPH0982317A (en) 1997-03-28

Family

ID=17279970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255526A Pending JPH0982317A (en) 1995-09-07 1995-09-07 Negative plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0982317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018820A (en) * 2005-07-06 2007-01-25 Furukawa Battery Co Ltd:The Sealed lead-acid battery
KR20180020230A (en) * 2015-06-24 2018-02-27 캐보트 코포레이션 Carbonaceous material for lead-acid batteries
WO2018061832A1 (en) * 2016-09-30 2018-04-05 株式会社Gsユアサ Lead acid battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018820A (en) * 2005-07-06 2007-01-25 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JP4491384B2 (en) * 2005-07-06 2010-06-30 古河電池株式会社 Sealed lead acid battery
KR20180020230A (en) * 2015-06-24 2018-02-27 캐보트 코포레이션 Carbonaceous material for lead-acid batteries
US10862109B2 (en) 2015-06-24 2020-12-08 Cabot Corporation Carbonaceous materials for lead acid batteries
WO2018061832A1 (en) * 2016-09-30 2018-04-05 株式会社Gsユアサ Lead acid battery
CN109792053A (en) * 2016-09-30 2019-05-21 株式会社杰士汤浅国际 Lead storage battery
US11424452B2 (en) 2016-09-30 2022-08-23 Gs Yuasa International Ltd. Lead-acid battery

Similar Documents

Publication Publication Date Title
JP3992336B2 (en) Negative electrode for lead acid battery
KR100483246B1 (en) Negative electrode active material, process for its production and lead storage battery
WO2005096431A1 (en) Lead storage battery
JP2007172999A (en) Lead-acid battery
US6548211B1 (en) Negative electrode plate for lead storage battery
WO2005107004A1 (en) Lead acid battery
JP5194729B2 (en) Lead acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2003123760A (en) Negative electrode for lead-acid battery
JPH09147872A (en) Negative electrode plate for lead-acid battery
JP2001332264A (en) Lead battery with miniature control valve
US2759037A (en) Dry charged batteries
JPH0982317A (en) Negative plate for lead-acid battery
JP2002313332A (en) Control valve type lead-acid battery
JPH09147873A (en) Negative electrode plate for lead-acid battery
JP2001210320A (en) Lead-acid storage battery and its manufacturing method
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH11162456A (en) Lead-acid battery
JP2007213896A (en) Lead-acid storage battery
JPH11329420A (en) Manufacture of lead-acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP6775764B2 (en) Lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2001307761A (en) Sealed lead acid battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040705