JPH09147872A - Negative electrode plate for lead-acid battery - Google Patents

Negative electrode plate for lead-acid battery

Info

Publication number
JPH09147872A
JPH09147872A JP7323792A JP32379295A JPH09147872A JP H09147872 A JPH09147872 A JP H09147872A JP 7323792 A JP7323792 A JP 7323792A JP 32379295 A JP32379295 A JP 32379295A JP H09147872 A JPH09147872 A JP H09147872A
Authority
JP
Japan
Prior art keywords
lignin
negative electrode
electrode plate
salt
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7323792A
Other languages
Japanese (ja)
Inventor
Akira Kamata
彰 鎌田
Masahiko Onari
雅彦 小齊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7323792A priority Critical patent/JPH09147872A/en
Publication of JPH09147872A publication Critical patent/JPH09147872A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of the service life of a negative electrode plate at a high temperature by containing a mixture of a polymer of styrene sulfonic acid (a derivative) and lignin. SOLUTION: After lead powder containing PbO, dilute sulfuric acid, an inorganic expander 0 to 2wt.%, an organic expander composed of a mixture of a polymer of styrene sulfonic acid (a derivative) and Na salt type lignin of sulfite lignin obtained by a sulfite method and a plate reinforcing agent 0.5 to 0.2wt.% according to its necessity are kneaded together, it is filled in a lattice body, and is aged, and is dried.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池用負極板の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a negative electrode plate for a lead storage battery.

【0002】[0002]

【従来の技術とその課題】鉛蓄電池は自動車の始動・点
灯用をはじめ小容量のコンシューマー用から大容量の据
置用まで多くの用途で使用されている。また、近年は環
境問題の観点から電気自動車の電源としても注目されて
いる。
2. Description of the Related Art Lead-acid batteries are used in many applications including starting and lighting of automobiles, as well as small capacity consumers and large capacity stationary applications. In recent years, it has also attracted attention as a power source for electric vehicles from the viewpoint of environmental issues.

【0003】最近の自動車用鉛蓄電池の使用状況をみる
と、これらの電池は新たな使用環境下におかれるように
なりつつあると考えられる。すなわち、エアーコンディ
ショナーやオーディオ機器、さらにはカーナビゲーショ
ンシステムなど多くの電装機器が採用され、鉛蓄電池に
対する負荷が大きくなっている。また、居住空間を確保
するためおよび空気抵抗を低減するためにエンジンルー
ムは小さくなり、エンジンの高出力化も重なって、エン
ジンルーム内は相当な高温になっており、鉛蓄電池もこ
の高温にさらされるようになってきている。
Looking at the recent usage of lead acid batteries for automobiles, it is considered that these batteries are being put under new usage environment. That is, many electric components such as an air conditioner, an audio device, and a car navigation system are adopted, and a load on the lead storage battery is increasing. In addition, the engine room becomes smaller in order to secure living space and air resistance, and due to the higher output of the engine, the temperature inside the engine room is considerably high, and the lead storage battery is also exposed to this high temperature. Are becoming available.

【0004】また、電気自動車用といった深い充放電を
繰り返し、大電流を必要とする電池においても、室内空
間を最大限にとるために、電池のおかれる状況は非常に
コンパクトにおさえられ、電池温度は高温にさらされる
ようになっている。
Further, even in the case of a battery that requires a large current by repeating deep charge and discharge such as for an electric vehicle, the condition of the battery can be kept very compact in order to maximize the indoor space, and the battery temperature Is exposed to high temperatures.

【0005】鉛蓄電池用負極板には一般に有機エキスパ
ンダー(エキスパンダー:防縮剤)、無機エキスパンダ
ー(硫酸バリウム)およびカーボンが添加されており、
それぞれ鉛蓄電池用負極板の各種性能向上に寄与してい
る。これらの内、有機エキスパンダーは、一般にはリグ
ニンと呼ばれるパルプ製造時に得られる副生成物が用い
られており、電池の充放電にともなって進行する負極活
物質(金属鉛)の成長を抑えて活物質が収縮するのを抑
制し、活物質を微細化し、負極板の放電容量、特に高率
放電容量が低下するのを防いでいる。
Generally, an organic expander (expander: shrink-proofing agent), an inorganic expander (barium sulfate) and carbon are added to the negative electrode plate for a lead storage battery.
Each contributes to various performance improvements of the negative electrode plate for lead acid batteries. Among them, the organic expander generally uses a by-product called lignin, which is obtained during pulp production, and suppresses the growth of the negative electrode active material (lead metal) that progresses as the battery is charged and discharged to suppress the active material. To prevent the active material from becoming finer and prevent the discharge capacity of the negative electrode plate, particularly the high rate discharge capacity, from decreasing.

【0006】しかし、上述した自動車用鉛蓄電池の使用
環境の変化や電気自動車への適用といった高温での使用
に対して現在使用しているリグニンでは満足できる寿命
性能を得ることは困難であった。これは、リグニンが高
温にさらされた場合、分解あるいは電解液に溶出して、
その量が減少するためと考えられる。そのため、高温下
でも寿命性能の低下の少ない負極板、すなわち、分解も
しくは溶出しにくいような有機エキスパンダーが求めら
れていた。
However, it has been difficult to obtain a satisfactory life performance with the lignin currently used for high temperature use such as change of use environment of the above-mentioned lead acid battery for automobiles and application to electric vehicles. This is because when lignin is exposed to high temperatures, it decomposes or elutes in the electrolyte,
It is considered that the amount decreases. Therefore, there has been a demand for a negative electrode plate with less deterioration in life performance even at high temperatures, that is, an organic expander that is difficult to decompose or elute.

【0007】[0007]

【課題を解決するための手段】本発明は、上述したよう
な高温下での負極板の寿命性能の低下という問題点を解
決するもので、鉛蓄電池用負極板にスチレンスルホン酸
あるいはその誘導体のポリマーとリグニンとの混合物を
添加することを特徴とするもので、好ましくは、該リグ
ニンがサルファイト法で得られるサルファイトリグニン
のNa塩型もしくはクラフト法で得られるクラフトリグ
ニンの酸型であることを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problem of deterioration of the life performance of a negative electrode plate under high temperature, and a styrene sulfonic acid or its derivative is used as a negative electrode plate for a lead storage battery. It is characterized by adding a mixture of a polymer and lignin, and preferably, the lignin is an Na salt form of sulfite lignin obtained by the sulfite method or an acid form of kraft lignin obtained by the kraft method. It is characterized by.

【0008】[0008]

【発明の実施の形態】本発明による鉛蓄電池用負極板
は、スチレンスルホン酸あるいはその誘導体のポリマー
とリグニンとの混合物を添加した鉛粉を希硫酸で練合
し、活物質ペーストを作り、これを格子に充填した後、
熟成および乾燥をおこなって作製する。ここで用いるリ
グニンとしては、サルファイト法で得られるサルファイ
トリグニンのNa塩型あるいはクラフト法で得られるク
ラフトリグニンの酸型のものがよい。この様に構成する
ことにより、特に高温下における電池寿命性能の低下を
防止できる。
BEST MODE FOR CARRYING OUT THE INVENTION A negative electrode plate for a lead storage battery according to the present invention is prepared by kneading a lead powder containing a mixture of a polymer of styrene sulfonic acid or its derivative and lignin with diluted sulfuric acid to prepare an active material paste. After filling the
It is prepared by aging and drying. The lignin used here is preferably the sodium salt form of sulfite lignin obtained by the sulfite method or the acid form of craft lignin obtained by the craft method. With such a configuration, it is possible to prevent the deterioration of the battery life performance especially at high temperatures.

【0009】[0009]

【実施例】【Example】

(実施例1)以下に本発明の詳細を実施例をもとに説明
する。
Example 1 Details of the present invention will be described below based on examples.

【0010】まず、リグニンとしてサルファイト法で製
造されるサルファイトリグニンのNa塩を、スチレンス
ルホン酸あるいはその誘導体のポリマーの一例としてポ
リスチレンスルホン酸のNa塩(平均分子量:約1万)
を用意した。これらを単体もしくは混合して5種の有機
エキスパンダーを調整した。
First, the sodium salt of sulfite lignin produced by the sulfite method is used as the lignin, and the Na salt of polystyrenesulfonic acid (average molecular weight: about 10,000) is used as an example of a polymer of styrenesulfonic acid or its derivative.
Was prepared. These were used alone or mixed to prepare 5 kinds of organic expanders.

【0011】これらの有機エキスパンダーを用いて表1
に示す5種の負極板を得た。
Table 1 was prepared using these organic expanders.
Five types of negative electrode plates shown in were obtained.

【0012】[0012]

【表1】 すなわち、PbOを約75重量%含む見掛け比重約1.
8g/cm3 の鉛粉100kgと、比重約1.15の希
硫酸を約20リットル、添加剤として、無機エキスパン
ダー(硫酸バリウム)を0.7重量%、カーボンを0.
2重量%、および有機エキスパンダーを混練し、格子に
充填した後、熟成および乾燥をおこない有機エキスパン
ダーの異なる5種の負極板を得た。なお、硫酸バリウム
およびカーボンの添加量は電池の使用目的によって変更
でき、その範囲は通常、硫酸バリウムの場合0〜2重量
%であり、カーボンの場合0〜2重量%である。また、
本実施例では用いなかったが、格子のます目が粗い場合
や極板強度を必要とする場合、合成有機繊維等の極板補
強剤を添加することがある。この添加量は通常、0.0
5〜0.2%である。
[Table 1] That is, the apparent specific gravity of PbO is about 1.
100 kg of lead powder of 8 g / cm 3 , about 20 liters of dilute sulfuric acid having a specific gravity of about 1.15, 0.7% by weight of an inorganic expander (barium sulfate) as an additive, and 0.1% of carbon.
After 2% by weight and an organic expander were kneaded and filled in a grid, aging and drying were carried out to obtain five types of negative electrode plates having different organic expanders. The addition amounts of barium sulfate and carbon can be changed depending on the purpose of use of the battery, and the range is usually 0 to 2% by weight for barium sulfate and 0 to 2% by weight for carbon. Also,
Although not used in this example, a plate reinforcing agent such as a synthetic organic fiber may be added when the grid is coarse or when the plate strength is required. This amount is usually 0.0
It is 5 to 0.2%.

【0013】ここで、負極板1は有機エキスパンダーと
してサルファイト法で製造されるサルファイトリグニン
のNa塩を単体で用いたものであり、負極板5はポリス
チレンスルホン酸のNa塩を単体で用いたものである。
負極板2、3および4は、サルファイトリグニンのNa
塩とポリスチレンスルホン酸のNa塩とをそれぞれ、
3:1、1:1および1:3で混合した有機エキスパン
ダーを用いたものである。有機エキスパンダーの添加量
は単体および混合品を問わず、固形分で0.2重量%を
添加した。
Here, the negative electrode plate 1 uses the Na salt of sulfite lignin produced by the sulfite method as an organic expander alone, and the negative electrode plate 5 uses the Na salt of polystyrenesulfonic acid alone. It is a thing.
The negative electrode plates 2, 3 and 4 are made of sulfite lignin Na.
A salt and a Na salt of polystyrene sulfonic acid,
An organic expander mixed at 3: 1, 1: 1 and 1: 3 was used. The addition amount of the organic expander is 0.2% by weight in terms of solid content, regardless of whether it is a single substance or a mixed product.

【0014】なお、本実施例において負極格子には、P
b−0.07重量%Ca−0.5重量%Sn合金からな
る、エキスパンド格子を用いたが、通常鉛蓄電池で使用
される鋳造格子を用いてもよい。また、格子合金には、
Pb−Ca(−Sn)系合金のほか、Pb−Sb系合金
等を用いることができる。
In the present embodiment, the negative electrode grid has P
Although an expanded grid made of b-0.07 wt% Ca-0.5 wt% Sn alloy was used, a cast grid normally used in lead-acid batteries may be used. In addition, in the lattice alloy,
In addition to Pb-Ca (-Sn) alloys, Pb-Sb alloys and the like can be used.

【0015】一方、正極ペーストには、PbOを約75
重量%含む見掛け比重約1.8g/cm3 の鉛粉100
kgに対し、比重約1.15の希硫酸を約25リットル
の割合で混練したものを用いた。この正極ペーストに
は、化成効率を向上させる目的で鉛丹を添加したり、極
板強度を向上させるために長さが2〜5mm程度の合成
繊維を添加してもよい。合成繊維の添加量としては0.
1〜0.3重量%程度が適当である。
On the other hand, the positive electrode paste contains about 75 PbO.
100% lead powder with an apparent specific gravity of about 1.8 g / cm 3
A mixture obtained by kneading dilute sulfuric acid having a specific gravity of about 1.15 with respect to kg at a ratio of about 25 liters was used. Lead oxide may be added to the positive electrode paste for the purpose of improving the conversion efficiency, or synthetic fiber having a length of about 2 to 5 mm may be added for improving the strength of the electrode plate. The amount of synthetic fiber added was 0.
About 1 to 0.3% by weight is suitable.

【0016】上記正極ペーストを、鉛合金製格子に充填
し、熟成および乾燥をおこない正極板を得た。なお、本
実施例で用いた格子は、Pb−0.07重量%Ca−
1.5重量%Sn合金からなる鋳造格子であったが、エ
キスパンド格子を用いることでコストダウンがはかれ
る。また、正極に用いる格子合金には、通常鉛蓄電池に
用いられているPb−Ca(−Sn)系合金やPb−S
b系合金等を用いることができる。
A lead alloy grid was filled with the above positive electrode paste and aged and dried to obtain a positive electrode plate. The lattice used in this example is Pb-0.07 wt% Ca-.
Although it was a cast lattice made of 1.5 wt% Sn alloy, the cost can be reduced by using the expanded lattice. In addition, the lattice alloy used for the positive electrode is a Pb-Ca (-Sn) -based alloy or Pb-S that is usually used for lead-acid batteries.
A b-based alloy or the like can be used.

【0017】これらの負極板および正極板と隔離体とを
積層し、JIS D5301記載の公称電圧12V、5
時間率公称容量48Ahの55D23形自動車用電池を
表2に示ように5種類(A〜E)製作した。なお、電槽
化成後の硫酸比重は20℃で1.28とした。
The negative electrode plate, the positive electrode plate and the separator are laminated to obtain a nominal voltage of 12 V and 5 V described in JIS D5301.
As shown in Table 2, five types (A to E) of 55D23 type automobile batteries having a nominal rate of hourly capacity of 48 Ah were manufactured. The specific gravity of sulfuric acid after battery case formation was 1.28 at 20 ° C.

【0018】正負極板の隔離体には直径約10〜20μ
mのガラス繊維を抄造してなるガラスマットとシリカ粉
体、ガラス繊維、樹脂繊維等を抄造してなるセパレータ
とを張り合わせたものを用いた。
The separator of the positive and negative plates has a diameter of about 10 to 20 μm.
A glass mat formed by making m of glass fiber and a separator formed by making silica powder, glass fiber, resin fiber and the like were laminated together.

【0019】これら5種の鉛蓄電池を用い、まず、JI
S D5301記載の充電受入性試験に供した。すなわ
ち、完全充電した電池を常温にて5時間率電流(9.6
A)で2.5時間放電し、更に周囲温度0±2℃におい
て12時間以上放置した後、該周囲温度下で端子電圧1
4.4±0.1Vで充電し、その10分目電流を測定し
た。
Using these five types of lead-acid batteries, first, JI
It was subjected to the charge acceptability test described in SD5301. That is, a fully charged battery is heated at room temperature for 5 hours at a rate current (9.6).
After discharging at A) for 2.5 hours and leaving it for 12 hours or more at an ambient temperature of 0 ± 2 ° C, the terminal voltage 1 at the ambient temperature.
The battery was charged at 4.4 ± 0.1 V, and the current at 10 minutes was measured.

【0020】次いで、JIS D5301記載の5時間
率容量および高率放電容量を調査した。5時間率放電試
験は、電解液温度を25±2℃において5時間率電流で
放電終止電圧10.5Vまで放電し、その放電容量を調
査した。また、高率放電試験は、電解液温度を−15±
1℃において300Aで放電終止電圧6Vまで放電し、
その放電容量を調査した。これらの試験結果を表2にあ
わせて示した。
Next, the 5-hour rate capacity and high rate discharge capacity described in JIS D5301 were investigated. In the 5-hour rate discharge test, the electrolyte was discharged at a temperature of 25 ± 2 ° C. with a 5-hour rate current to a discharge end voltage of 10.5 V, and the discharge capacity was investigated. In addition, the high rate discharge test, the electrolyte temperature -15 ±
Discharge to discharge end voltage 6V at 300A at 1 ° C,
The discharge capacity was investigated. The results of these tests are also shown in Table 2.

【0021】[0021]

【表2】 充電受入性および5時間率放電容量はいずれの電池A〜
Eも大差なく同等であった。高率放電容量は、サルファ
イトリグニンのNa塩およびポリスチレンスルホン酸の
Na塩をそれぞれ単独で用いた従来品である電池Aおよ
びEに比べて、サルファイトリグニンのNa塩とポリス
チレンスルホン酸のNa塩とを混合して用いた本発明に
よる電池B、CおよびDが優れていた。このように、サ
ルファイトリグニンのNa塩とポリスチレンスルホン酸
のNa塩とを混合したことにより、電池の初期性能に予
期しない相乗効果が現れた。
[Table 2] Charge acceptability and 5 hour rate discharge capacity of any battery A ~
E was also almost the same. The high rate discharge capacity is higher than that of batteries A and E, which are conventional products in which the sodium salt of sulfite lignin and the sodium salt of polystyrene sulfonic acid are used alone, respectively. The batteries B, C and D according to the present invention, which were prepared by mixing and using, were excellent. Thus, by mixing the Na salt of sulfite lignin and the Na salt of polystyrene sulfonic acid, an unexpected synergistic effect appeared in the initial performance of the battery.

【0022】その後、同一の電池を用いてJIS D5
301記載の軽負荷寿命試験を変更した試験に供した。
主な変更点は蓄電池周囲温度を75℃±2℃とし、寿命
判定までの充放電繰り返し回数を500回とした点であ
る。
Then, using the same battery, JIS D5
The test was performed by changing the light load life test described in 301.
The main changes are that the storage battery ambient temperature is 75 ° C. ± 2 ° C., and the number of charge / discharge repetitions until the end of life is 500.

【0023】すなわち、蓄電池周囲温度75℃±2℃と
して、放電を25±0.05Aの電流で4分間行い、引
き続き充電を端子電圧14.8±0.03V(制限電流
25A)で10分間行い、これを500回繰り返した
後、48時間該周囲温度のまま放置し、判定電流356
Aで30秒間放電し、30秒目電圧を測定した。その
後、充電を端子電圧14.8±0.03V(制限電流2
5A)で10分間行い、これらを500回毎の上記30
秒目電圧が7.2V以下となるまで繰り返した。
That is, when the storage battery ambient temperature is 75 ° C. ± 2 ° C., discharging is performed at a current of 25 ± 0.05 A for 4 minutes, and subsequently charging is performed at a terminal voltage of 14.8 ± 0.03 V (limit current 25 A) for 10 minutes. After repeating this 500 times, it is left at the ambient temperature for 48 hours, and the judgment current 356
The battery was discharged at A for 30 seconds and the voltage was measured at 30 seconds. After that, charge the terminal voltage 14.8 ± 0.03V (limit current 2
5A) for 10 minutes.
This operation was repeated until the second voltage became 7.2 V or less.

【0024】上記試験結果を図1に示す。サルファイト
リグニンのNa塩およびポリスチレンスルホン酸のNa
塩をそれぞれ単独で用いた従来品である電池AおよびE
がそれぞれ約4000サイクルおよび約3500サイク
ルで寿命となったのに対し、サルファイトリグニンのN
a塩とポリスチレンスルホン酸のNa塩とを混合して用
いた本発明による電池B、CおよびDはいずれも600
0サイクル以上の寿命性能を有していた。
The test results are shown in FIG. Na salt of sulfite lignin and Na of polystyrene sulfonate
Conventional batteries A and E using salt individually
Had a lifespan of about 4000 cycles and about 3500 cycles, respectively, whereas N of sulfite lignin
The batteries B, C, and D according to the present invention, which were prepared by mixing the a salt and the Na salt of polystyrene sulfonic acid, were all 600
It had a life performance of 0 cycles or more.

【0025】寿命試験後、これらの電池を解体したとこ
ろ、電池AおよびEはともに負極活物質の収縮が激し
く、これによって寿命となったものと思われた。一方、
電池B、CおよびDは、6000サイクルで寿命試験を
打ち切り解体したが、これらの電池の負極板に劣化の兆
候はわずかにしかみられず、正極板の劣化である格子腐
食が放電電圧低下の原因であると思われた。
When these batteries were disassembled after the life test, it was considered that the batteries A and E both had a large amount of contraction of the negative electrode active material, which resulted in the end of life. on the other hand,
Batteries B, C and D were disassembled after the life test was discontinued at 6000 cycles, but there were only a few signs of deterioration on the negative electrode plate of these batteries, and the lattice corrosion that is the deterioration of the positive electrode plate caused the discharge voltage drop. Seemed to be.

【0026】このように、サルファイトリグニンのNa
塩とポリスチレンスルホン酸のNa塩とを混合して添加
した負極板の高温での寿命性能は従来品よりも優れてお
り、両者を混合することで電池の寿命性能にも予期しな
い相乗効果が現れた。 (実施例2)リグニンには製法による違いからクラフト
リグニンとサルファイトリグニンとに大別され、更に、
最終処理方法の違いでNa塩(型)と酸型とに分けられ
る。そこで、これら4種のリグニンとポリスチレンスル
ホン酸のNa塩とを混合し、4種の混合有機エキスパン
ダーを調製して負極に添加し、その電池性能におよぼす
効果を調べた。
Thus, Na of sulfite lignin
The high-temperature life performance of the negative electrode plate containing a mixture of salt and Na salt of polystyrene sulfonic acid added is superior to that of conventional products, and by mixing both, an unexpected synergistic effect appears in the life performance of the battery. It was (Example 2) Lignin is roughly classified into kraft lignin and sulphite lignin due to the difference in production method.
It can be classified into Na salt (type) and acid type depending on the final treatment method. Therefore, these four types of lignin were mixed with Na salt of polystyrene sulfonic acid to prepare four types of mixed organic expanders, which were added to the negative electrode, and the effect on the battery performance was examined.

【0027】比較のため、クラフトリグニンNa塩(
型) および酸型、サルファイトリグニンNa塩(型)お
よび酸型、ならびにポリスチレンスルホン酸のNa塩を
それぞれ単体で用いた従来の電池を試験に供した。
For comparison, Kraft lignin Na salt (
Type) and an acid type, a sulfite lignin Na salt (type) and an acid type, and a conventional battery using a Na salt of polystyrenesulfonic acid as a simple substance were subjected to the test.

【0028】これらの有機エキスパンダーを用いて、表
3に示す9種の負極板を得た。なお、負極板1、3およ
び5は、それぞれ実施例1負極板1、3および5と同一
の処方である。
Nine kinds of negative electrode plates shown in Table 3 were obtained using these organic expanders. The negative electrode plates 1, 3 and 5 have the same formulation as the negative electrode plates 1, 3 and 5 of Example 1, respectively.

【0029】[0029]

【表3】 これらから、実施例1と同様に表4に示す9種の5時間
率公称容量48Ahの55D23型自動車用鉛蓄電池を
製作し、JIS D5301記載の充電受入性試験5時
間率容量および高率放電容量を調査した。
[Table 3] From these, in the same manner as in Example 1, nine types of 55-hour battery type 55D23 lead-acid batteries having a nominal capacity of 48 Ah shown in Table 4 were manufactured, and the charge acceptance test 5 hour rate capacity and high rate discharge capacity described in JIS D5301. investigated.

【0030】上記試験結果を表4にあわせて示す。The test results are also shown in Table 4.

【0031】[0031]

【表4】 充電受入性および5時間率放電容量はいずれの電池A、
CおよびE〜Kも大差なく同等であった。一方、高率放
電容量は、各種リグニンおよびポリスチレンスルホン酸
のNa塩をそれぞれ単独で用いた従来品である電池A、
F〜HおよびEに比べて、各種リグニンとポリスチレン
スルホン酸のNa塩とを混合して用いた本発明による電
池CおよびI〜Kが優れていた。
[Table 4] Charge acceptability and 5 hour rate discharge capacity are all batteries A,
C and E to K were also almost the same. On the other hand, the high rate discharge capacity is the battery A, which is a conventional product using each lignin and Na salt of polystyrene sulfonic acid alone.
Compared to F to H and E, the batteries C and I to K according to the present invention, in which various lignins and Na salt of polystyrene sulfonic acid were mixed and used, were superior.

【0032】これらの電池を実施例1と同様に、JIS
D5301に準じた75℃での軽負荷寿命試験に供し
た結果を図2に示す。クラフトリグニンNa塩(型)お
よび酸型、サルファイトリグニンNa塩(型)および酸
型、ならびにポリスチレンスルホン酸のNa塩をそれぞ
れ単体で用いた従来の電池A、F、G、HおよびEは、
いずれも4500サイクルまでに寿命となっていた。こ
れらの電池は負極活物質の収縮が激しく、これによって
寿命となったものと思われた。
These batteries were tested according to JIS 1
The results of the light load life test at 75 ° C. according to D5301 are shown in FIG. Conventional batteries A, F, G, H and E using Kraft lignin Na salt (type) and acid type, sulfite lignin Na salt (type) and acid type, and Na salt of polystyrene sulfonic acid respectively, are
All of them had reached the end of their lives by 4,500 cycles. It was considered that these batteries had a long contraction due to the large contraction of the negative electrode active material.

【0033】一方、各種リグニンとポリスチレンスルホ
ン酸のNa塩とを混合して用いた本発明による電池Cお
よびI〜Kは、いずれも大差なく6000サイクル以上
の寿命性能を有していた。特に、ポリスチレンスルホン
酸のNa塩とサルファイトリグニンNa塩との混合して
用いた電池Cおよびポリスチレンスルホン酸のNa塩と
クラフトリグニン酸型との混合して用いた電池Kは、6
000サイクル終了後も負極板の劣化の程度は著しく小
さかった。ポリスチレンスルホン酸のNa塩とサルファ
イトリグニン酸型とを混合して用いた電池Iおよびポリ
スチレンスルホン酸のNa塩とクラフトリグニンNa塩
とを混合して用いた電池Jは、負極板にわずかながら収
縮が認められた。
On the other hand, the batteries C and I to K according to the present invention, which were used by mixing various lignins and the Na salt of polystyrene sulfonic acid, all had a life performance of 6000 cycles or more without much difference. In particular, Battery C used by mixing Na salt of polystyrene sulfonic acid and Na salt of sulfite lignin and Battery K used by mixing Na salt of polystyrene sulfonic acid and Kraft lignin acid type were 6
Even after 000 cycles, the degree of deterioration of the negative electrode plate was remarkably small. Battery I using a mixture of Na salt of polystyrene sulfonic acid and sulfite lignin acid type and battery J using a mixture of Na salt of polystyrene sulfonic acid and Kraft lignin Na salt shrink slightly to the negative electrode plate. Was recognized.

【0034】このように、特にサルファイトリグニンの
Na塩とポリスチレンスルホン酸のNa塩との混合物も
しくはクラフトリグニンの酸型とポリスチレンスルホン
酸のNa塩との混合物を有機エキスパンダーとして添加
した負極板の高温での寿命性能は、著しく従来品よりも
優れており、両者を混合することで電池の寿命性能にも
予期しない相乗効果が現れた。
As described above, in particular, a mixture of Na salt of sulfite lignin and Na salt of polystyrene sulfonate or a mixture of acid form of kraft lignin and Na salt of polystyrene sulfonate is added as an organic expander at a high temperature. The battery life performance was markedly superior to that of the conventional product, and by mixing the two, an unexpected synergistic effect appeared in the battery life performance.

【0035】なお、実施例1および2ではスチレンスル
ホン酸あるいはその誘導体のポリマーの一例としてポリ
スチレンスルホン酸のNa塩を用いたが、その他の誘導
体や分子量の異なるポリマーを用いても同様の相乗効果
が得られることを確認した。
In Examples 1 and 2, the Na salt of polystyrene sulfonic acid was used as an example of the polymer of styrene sulfonic acid or its derivative, but the same synergistic effect can be obtained by using other derivatives or polymers having different molecular weights. It was confirmed that it was obtained.

【0036】本実施例1、2では開放型の自動車用電池
を用いた試験結果について本発明の効果を述べたが、微
細ガラス繊維を主体とするマットに電解液を含浸・保持
させて無漏液化させた、いわゆるシール鉛蓄電池におい
ても同様の効果が得られた。
In Examples 1 and 2, the effect of the present invention was described on the test results using the open type automobile battery. The mat containing mainly fine glass fibers was impregnated with and retained in the electrolytic solution to prevent leakage. The same effect was obtained also in a liquefied so-called sealed lead acid battery.

【0037】また、本実施例では高温での軽負荷寿命試
験の結果について詳述したが、この他、深い充放電を伴
うサイクル試験やフロート充電寿命試験においても、ス
チレンスルホン酸あるいはその誘導体のポリマーとリグ
ニンとの混合物を添加した負極板の寿命性能は、従来品
と比較し明らかに優れていた。
Although the results of the light load life test at high temperature are described in detail in the present embodiment, the polymer of styrene sulfonic acid or its derivative is also used in the cycle test with deep charge / discharge and the float charge life test. The life performance of the negative electrode plate containing the mixture of lignin and lignin was clearly superior to that of the conventional product.

【0038】このように、実施例1、2で述べた本発明
による効果は鉛蓄電池の形式や試験方法によって変わる
ものではなく、各種鉛蓄電池、各種用途に使用でき得る
ものである。
As described above, the effects of the present invention described in Embodiments 1 and 2 do not change depending on the type of lead storage battery and the test method, and can be used for various lead storage batteries and various applications.

【0039】[0039]

【発明の効果】以上のように本発明による、鉛蓄電池用
負極板はスチレンスルホン酸あるいはその誘導体のポリ
マーとリグニンとの混合物を添加すること、好ましく
は、該リグニンがサルファイト法で得られるサルファイ
トリグニンのNa塩型もしくはクラフト法で得られるク
ラフトリグニンの酸型であることにより、特に高温下に
おける寿命性能の低下を防止でき、その工業的価値は甚
だ大なるものである。
As described above, the negative electrode plate for a lead storage battery according to the present invention contains a mixture of a polymer of styrene sulfonic acid or its derivative and lignin, and preferably the lignin obtained by the sulfite method is used. By using the sodium salt form of phytolignin or the acid form of kraft lignin obtained by the kraft method, it is possible to prevent the life performance from being deteriorated particularly at high temperatures, and its industrial value is extremely great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】75℃におけるJIS軽負荷寿命試験の結果を
示す図
FIG. 1 is a diagram showing the results of a JIS light load life test at 75 ° C.

【図2】75℃におけるJIS軽負荷寿命試験の結果を
示す図
FIG. 2 is a diagram showing the results of a JIS light load life test at 75 ° C.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スチレンスルホン酸あるいはその誘導体
のポリマーとリグニンとの混合物を添加したことを特徴
とする鉛蓄電池用負極板。
1. A negative electrode plate for a lead storage battery, wherein a mixture of a polymer of styrene sulfonic acid or its derivative and lignin is added.
【請求項2】 リグニンがサルファイト法で得られるサ
ルファイトリグニンのNa塩型であることを特徴とする
請求項1記載の鉛蓄電池用負極板。
2. The negative electrode plate for a lead storage battery according to claim 1, wherein the lignin is a sodium salt type of sulfite lignin obtained by a sulfite method.
【請求項3】 リグニンがクラフト法で得られるクラフ
トリグニンの酸型であることを特徴とする請求項1記載
の鉛蓄電池用負極板。
3. The negative electrode plate for a lead storage battery according to claim 1, wherein the lignin is an acid form of kraft lignin obtained by the kraft method.
JP7323792A 1995-11-17 1995-11-17 Negative electrode plate for lead-acid battery Pending JPH09147872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7323792A JPH09147872A (en) 1995-11-17 1995-11-17 Negative electrode plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7323792A JPH09147872A (en) 1995-11-17 1995-11-17 Negative electrode plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH09147872A true JPH09147872A (en) 1997-06-06

Family

ID=18158674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7323792A Pending JPH09147872A (en) 1995-11-17 1995-11-17 Negative electrode plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH09147872A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985238A1 (en) * 1997-05-08 2000-03-15 Optima Batteries, Inc. Improved battery paste compositions and electrochemical cells for use therewith
WO2002039519A1 (en) * 2000-11-09 2002-05-16 Yuasa Corporation Negative electrode active material, process for its production and lead storage battery
JP2007018820A (en) * 2005-07-06 2007-01-25 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JP2012501519A (en) * 2008-09-02 2012-01-19 ハモンド グループ,インク. Improved anti-shrink agent for lead-acid batteries
JPWO2020241882A1 (en) * 2019-05-31 2020-12-03
WO2021182364A1 (en) * 2020-03-09 2021-09-16 日本製紙株式会社 Organic shrink-proofing agent for lead acid storage batteries, and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985238A1 (en) * 1997-05-08 2000-03-15 Optima Batteries, Inc. Improved battery paste compositions and electrochemical cells for use therewith
EP0985238A4 (en) * 1997-05-08 2002-01-02 Optima Batteries Inc Improved battery paste compositions and electrochemical cells for use therewith
WO2002039519A1 (en) * 2000-11-09 2002-05-16 Yuasa Corporation Negative electrode active material, process for its production and lead storage battery
US7022433B2 (en) 2000-11-09 2006-04-04 Gs Yuasa Corporation Negative active material, method of manufacturing its material, and lead acid battery
JP2007018820A (en) * 2005-07-06 2007-01-25 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JP4491384B2 (en) * 2005-07-06 2010-06-30 古河電池株式会社 Sealed lead acid battery
JP2012501519A (en) * 2008-09-02 2012-01-19 ハモンド グループ,インク. Improved anti-shrink agent for lead-acid batteries
JPWO2020241882A1 (en) * 2019-05-31 2020-12-03
US11658347B2 (en) 2019-05-31 2023-05-23 Gs Yuasa International Ltd. Lead-acid battery
WO2021182364A1 (en) * 2020-03-09 2021-09-16 日本製紙株式会社 Organic shrink-proofing agent for lead acid storage batteries, and method for producing same

Similar Documents

Publication Publication Date Title
JP3992336B2 (en) Negative electrode for lead acid battery
RU2554100C2 (en) Electric power accumulation device and its electrode
JP5079324B2 (en) Lead acid battery
US20080199737A1 (en) Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
WO2005096431A1 (en) Lead storage battery
WO2005107004A1 (en) Lead acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JPH09147872A (en) Negative electrode plate for lead-acid battery
JPH0982317A (en) Negative plate for lead-acid battery
KR102225190B1 (en) Manufacturing method of positive electrode active material for lead acid battery using Water based binder
JPH09147873A (en) Negative electrode plate for lead-acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2021111445A (en) Lead-acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JP4041999B2 (en) Lead acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP6775764B2 (en) Lead-acid battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP2016103489A (en) Lead storage battery
JP2007213896A (en) Lead-acid storage battery
JP2001307761A (en) Sealed lead acid battery
JP2008177000A (en) Manufacturing method of paste type positive electrode plate
JP2001155735A (en) Sealed lead acid storage battery
JP2006179378A (en) Backup sealed lead-acid battery for automobile