JP2010102916A - Method for manufacturing positive electrode plate for lead-acid battery, method for manufacturing lead-acid battery, and lead-acid battery - Google Patents
Method for manufacturing positive electrode plate for lead-acid battery, method for manufacturing lead-acid battery, and lead-acid battery Download PDFInfo
- Publication number
- JP2010102916A JP2010102916A JP2008272749A JP2008272749A JP2010102916A JP 2010102916 A JP2010102916 A JP 2010102916A JP 2008272749 A JP2008272749 A JP 2008272749A JP 2008272749 A JP2008272749 A JP 2008272749A JP 2010102916 A JP2010102916 A JP 2010102916A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- positive electrode
- electrode plate
- drying
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、鉛蓄電池用正極板の製造方法と、この正極板を用いた鉛蓄電池の製造方法および鉛蓄電池に関するものである。 The present invention relates to a method for manufacturing a positive electrode plate for a lead storage battery, a method for manufacturing a lead storage battery using the positive electrode plate, and a lead storage battery.
鉛蓄電池用の極板としては、一部の産業用鉛蓄電池を除き、ペースト式極板が主流を占めている。ペースト式極板の製造方法としては、鉛粉(PbO粉体、PbOとPbの混合粉体、あるいは、これらの粉体に、Pb3O4粉体を混合したもの)を希硫酸あるいは水と希硫酸で混練したペーストを、鉛や鉛合金で形成した集電体、あるいは耐硫酸性および耐酸化性を有し、かつ導電性を有したチタンや、導電性チタン酸化物で形成した集電体に充填し、熟成乾燥するものである。 As electrode plates for lead-acid batteries, paste-type electrode plates dominate except for some industrial lead-acid batteries. As a manufacturing method of the paste type electrode plate, lead powder (PbO powder, mixed powder of PbO and Pb, or a mixture of these powders with Pb 3 O 4 powder) is diluted with dilute sulfuric acid or water. A current collector formed from a paste kneaded with dilute sulfuric acid using lead or a lead alloy, or titanium having sulfuric acid resistance and oxidation resistance, and conductivity, or a conductive titanium oxide. It fills the body and aged and dried.
熟成乾燥中の極板では、3PbO・PbSO4(三塩基性硫酸鉛)が主に生成し、この極板を電解酸化(化成)することにより、三塩基性硫酸鉛を鉛蓄電池の正極活物質である二酸化鉛(PbO2)とし、この極板を電解還元(化成)することにより、鉛蓄電池の負極活物質である多孔質の海綿状Pbを得る。 3PbO · PbSO 4 (tribasic lead sulfate) is mainly produced in the electrode plate during aging and drying, and the electrode plate is electrolytically oxidized (chemically formed) to convert the tribasic lead sulfate into a positive electrode active material for a lead storage battery. Lead dioxide (PbO 2 ) is obtained, and the electrode plate is subjected to electrolytic reduction (chemical conversion) to obtain a porous spongy Pb which is a negative electrode active material of the lead storage battery.
特に、正極板の熟成乾燥に関して、熟成乾燥中の正極板の温度(より厳密には熟成乾燥中のペーストの温度)が65℃を越えると、3PbO・PbSO4に加えて、4PbO・PbSO4(四塩基性硫酸鉛)が生成する。この四塩基性硫酸鉛は、三塩基性硫酸鉛に比較して、その結晶粒径は粗大であるため、特に、PbO2への電解酸化反応が進行しがたく、化成効率が極端に低下する結果、鉛蓄電池の容量が大幅に低下するという問題があった。 In particular, with respect to aging drying of the positive electrode plate, the temperature of the positive electrode plate in the maturation drying (more strictly, a temperature of the paste in the maturation drying) exceeds 65 ° C., in addition to 3PbO · PbSO 4, 4PbO · PbSO 4 ( Tetrabasic lead sulfate). Since this tetrabasic lead sulfate has a coarse crystal grain size compared to tribasic lead sulfate, the electrolytic oxidation reaction to PbO 2 is difficult to proceed, and the chemical conversion efficiency is extremely reduced. As a result, there has been a problem that the capacity of the lead storage battery is greatly reduced.
上記の、正極板の熟成乾燥は、鉛蓄電池の製造工程の中でも、鉛蓄電池の容量性能を決定付ける重要なプロセスの一つである。したがって、上記の容量性能の低下を勘案して、熟成乾燥工程における最高温度は、少なくとも65℃未満に制御することが行なわれてきている。 The above-described maturing and drying of the positive electrode plate is one of the important processes that determine the capacity performance of the lead storage battery among the manufacturing processes of the lead storage battery. Therefore, in consideration of the above-mentioned decrease in capacity performance, the maximum temperature in the aging drying process has been controlled to be at least less than 65 ° C.
上記のような、熟成乾燥における最高温度の制限があるために、熟成乾燥に要する時間は極めて長時間であり、充填したペースト厚みにも関連するが、ペースト中の水分含有量を、乾燥終了の目安である3.0質量%以下とするに必要な時間として、30〜40時間もの極めて長い時間を要しており、鉛蓄電池の生産リードタイム短縮にあたっての障害になっていた。 Due to the limitation of the maximum temperature in aging drying as described above, the time required for aging drying is extremely long, and it is related to the thickness of the filled paste. As a time required for setting it to 3.0 mass% or less which is a standard, an extremely long time of 30 to 40 hours is required, which has been an obstacle to shortening the lead time for producing lead-acid batteries.
このような、鉛蓄電池用の正極板の熟成乾燥時間を短縮する手法として、特許文献1には、熟成乾燥炉内を、大気圧より減圧することにより、ペースト中の水分蒸発を促進させる手法が提案されている。
上記した特許文献1は、減圧によってペーストの水分蒸発を促進させるため、正極板の熟成乾燥温度を低く抑えることができるが、その熟成乾燥炉としては、気密性を有した炉室と、減圧用のポンプが必要となる。また、炉室は、減圧時においても大気圧によって、破損しない十分な強度を有していることが必要であり、また、減圧用のポンプも、炉内容積(例えば90〜200m3)といった大容積内を、ペースト中の水分蒸発を促進するに十分な減圧能力を有しているものが必要であり、設備コストは、従来の熟成乾燥炉に比較して極めて高価であり、また、作業者がその内部に入り得る減圧炉を使用するという関係上、作業安全上も好ましくないものであった。 Since the above-mentioned Patent Document 1 promotes moisture evaporation of the paste by decompression, the aging drying temperature of the positive electrode plate can be kept low. As the aging drying furnace, an oven chamber having airtightness, Pump is required. Further, the furnace chamber needs to have sufficient strength not to be damaged by the atmospheric pressure even during decompression, and the decompression pump has a large volume (for example, 90 to 200 m 3 ). The inside of the volume must have a pressure-reducing capability sufficient to promote the evaporation of moisture in the paste, and the equipment cost is extremely high compared to a conventional aging drying furnace, In view of the use of a pressure-reducing furnace that can enter the interior, it is undesirable from the viewpoint of work safety.
したがって、特許文献1で示された手法は、作業安全を考慮して、作業者がその内部に入れない程度の容積の小型のものを複数用意することになる。したがって、結局は、実験室的には比較的容易な手法であるが、鉛蓄電池用正極板を大量生産するにあたっては、上記したような設備上の制約が極めて大きいものであった。 Therefore, the technique disclosed in Patent Document 1 prepares a plurality of small-sized ones in such a volume that an operator cannot enter the interior in consideration of work safety. Therefore, in the end, although it is a relatively easy method in the laboratory, the above-mentioned facility restrictions are extremely large when mass-producing the positive electrode plate for a lead storage battery.
本発明は、前記したような、特許文献1で示された減圧炉を用いることなく、従来、熟成乾燥炉を用いて高温で熟成乾燥を行なった場合、正極に起因する、鉛蓄電池の容量低下が発生するという、相反する課題を解決するものである。すなわち、本発明の目的とするところは、乾燥温度を高めることによって、熟成乾燥時間を短縮しても、電池の容量低下を引き起こさない鉛蓄電池用正極板の製造方法と、この鉛蓄電池用正極板を用いた鉛蓄電池の製造方法を提供し、この正極板を用いることにより、高容量の鉛蓄電池を生産リードタイムを短縮して提供するものである。 In the present invention, when the aging drying is performed at a high temperature by using an aging drying furnace without using the decompression furnace shown in Patent Document 1 as described above, the capacity of the lead storage battery is reduced due to the positive electrode. It solves the conflicting problem that occurs. That is, the object of the present invention is to produce a positive electrode plate for a lead storage battery that does not cause a decrease in the capacity of the battery even if the aging drying time is shortened by increasing the drying temperature, and the positive electrode plate for the lead storage battery The present invention provides a method for producing a lead-acid battery using a battery, and uses this positive electrode plate to provide a high-capacity lead-acid battery with a reduced production lead time.
前記した課題を解決するために、本発明の請求項1に係る発明は、鉛粉を、希硫酸もしくは、水と希硫酸で混練したペースト状活物質を集電体に充填後、熟成乾燥してなる鉛蓄電池用の正極板の製造方法であって、前記鉛粉に含まれる鉛質量を100質量部としたときに、前記鉛粉に0.03質量部以上、0.8質量部以下の量のリグニンを添加するとともに、前記熟成乾燥工程において、前記正極板の温度を65℃以上とする工程を含むことを特徴とする鉛蓄電池用正極板の製造方法を示すものである。 In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is a method in which lead powder is mixed with dilute sulfuric acid or pasty active material kneaded with water and dilute sulfuric acid, and then aged and dried. A lead plate for a positive electrode plate, wherein the lead powder contains 0.03 parts by mass and 0.8 parts by mass or less when the mass of lead contained in the lead powder is 100 parts by mass. The manufacturing method of the positive electrode plate for lead acid batteries characterized by including the process of adding the quantity of lignin and making the temperature of the said positive electrode plate 65 degreeC or more in the said aging drying process.
また、本発明の請求項2に係る発明は、鉛粉を、希硫酸もしくは、水と希硫酸で混練したペースト状活物質を集電体に充填後、熟成乾燥してなる鉛蓄電池用の正極板の製造方法であって、前記鉛粉に含まれる鉛質量を100質量部としたときに、前記鉛粉に0.01質量部以上、0.8質量部以下のビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物を添加するとともに、前記熟成乾燥工程において、前記正極板の温度を65℃以上とする工程を含むことを特徴とする鉛蓄電池用正極板の製造方法を示すものである。 Further, the invention according to claim 2 of the present invention is a positive electrode for a lead storage battery, in which lead powder is filled in a current collector with a paste-like active material kneaded with dilute sulfuric acid or water and dilute sulfuric acid, and then aged and dried. A method for producing a plate, wherein the lead powder contains 0.01 mass part or more and 0.8 mass part or less of bisphenols and sulfites or amino acids when the mass of lead contained in the lead powder is 100 mass parts A method for producing a positive electrode plate for a lead-acid battery, comprising adding a formaldehyde condensate and a step of setting the temperature of the positive electrode plate to 65 ° C. or higher in the aging and drying step.
また、本発明の請求項3に係る発明は、前記した請求項1もしくは請求項2のいずれかで得た正極板と、負極板とを組み合わせて鉛蓄電池とすることを特徴とする鉛蓄電池の製造方法を示すものであり、本発明の請求項4に係る発明は、請求項3で示した鉛蓄電池の製造方法によって得た鉛蓄電池を示すものである。 The invention according to claim 3 of the present invention is a lead storage battery characterized in that the positive electrode plate obtained in any one of claim 1 or claim 2 and the negative electrode plate are combined to form a lead storage battery. A manufacturing method is shown, and the invention according to claim 4 of the present invention shows a lead storage battery obtained by the manufacturing method of the lead storage battery shown in claim 3.
上記した本発明によれば、鉛蓄電池用正極板を熟成乾燥する際に、熟成乾燥温度が65℃を越えても、鉛蓄電池の容量低下の要因となる四塩基性硫酸鉛の生成が顕著に抑制されるので、容量低下の抑制された鉛蓄電池を得るこことができるとともに、熟成乾燥温度を従来よりも高く設定できるため、熟成乾燥時間の短縮化が可能となる。したがって、従来、熟成乾燥温度の高温化による所要時間の短縮によって、電池容量が低下するという、相反する課題が解決でき、生産性を損なうことなく、高容量の鉛蓄電池用の正極板および鉛蓄電池を得ることができる。 According to the present invention described above, when the positive electrode plate for lead storage battery is aged and dried, even if the aging drying temperature exceeds 65 ° C., the production of tetrabasic lead sulfate that causes a decrease in the capacity of the lead storage battery is remarkable. Since it is suppressed, it is possible to obtain a lead storage battery in which the decrease in capacity is suppressed, and the aging drying temperature can be set higher than before, so that the aging drying time can be shortened. Accordingly, a positive electrode plate and a lead-acid battery for a high-capacity lead-acid battery that can solve the conflicting problem that the battery capacity is reduced by shortening the required time by increasing the aging and drying temperature, and without impairing productivity. Can be obtained.
以下、本発明の実施の形態による鉛蓄電池用正極板の製造方法、鉛蓄電池の製造方法およびこれを用いた鉛蓄電池を説明する。 Hereinafter, the manufacturing method of the positive electrode plate for lead acid batteries by the embodiment of the present invention, the manufacturing method of lead acid battery, and the lead acid battery using this are explained.
(第1の実施形態)
本発明による第1の実施形態として、従来より知られている、ボールミル法、バートンポット法等によって得た鉛粉を準備する。この鉛粉はその製造法によっても異なるが、10質量%〜30質量%の金属鉛と70質量%〜90質量%酸化鉛(PbO)との混合粉体である。なお、この鉛粉に、従来から知られているように、化成効率の向上を目的として、鉛丹(Pb3O4)を鉛粉に添加してもよい。ただし、鉛粉への鉛丹の添加によって、化成効率が向上し、これによって鉛蓄電池の初期容量も向上するものの、正極活物質同士の結合力は低下し、その添加量の増大に伴って、深放電寿命が低下する傾向が認められるため、鉛丹の添加量は、鉛粉中に含まれる鉛100質量部に対して25質量部を上限とすることが好ましい。
(First embodiment)
As a first embodiment according to the present invention, lead powder obtained by a conventionally known ball mill method, Burton pot method or the like is prepared. The lead powder is a mixed powder of 10% by mass to 30% by mass of metallic lead and 70% by mass to 90% by mass of lead oxide (PbO), although it varies depending on the production method. In addition, as is conventionally known, lead tan (Pb 3 O 4 ) may be added to the lead powder for the purpose of improving chemical conversion efficiency. However, although the chemical conversion efficiency is improved by the addition of the red lead to the lead powder, thereby improving the initial capacity of the lead storage battery, the binding force between the positive electrode active materials decreases, and with the increase of the addition amount, Since the tendency for a deep discharge lifetime to fall is recognized, it is preferable that the addition amount of a red lead shall make an upper limit 25 mass parts with respect to 100 mass parts of lead contained in lead powder.
本発明では、この鉛粉の鉛粉中に含まれる鉛100質量部あたり、0.03質量部以上、0.8質量部以下のリグニンを添加する。その後、水を添加して水練りを行なった後、20℃における密度が1.100〜1.400程度の濃度の希硫酸を添加し、硫酸練りを行なって正極ペーストを作成する。 In this invention, 0.03 mass part or more and 0.8 mass part or less lignin are added per 100 mass parts of lead contained in the lead powder of this lead powder. Then, after adding water and kneading with water, dilute sulfuric acid having a density of about 1.100 to 1.400 at 20 ° C. is added, and sulfuric acid kneading is performed to prepare a positive electrode paste.
この正極ペーストは、鉛もしくは鉛合金、さらには、耐酸性および耐アルカリ性を有したチタン金属や、導電性チタン酸化物層、あるいは他の導電性の金属酸化物層等の、導電性を有した集電体に、その所望量を充填し、熟成乾燥を行なう。 This positive electrode paste had conductivity such as lead or lead alloy, and also titanium metal having acid resistance and alkali resistance, conductive titanium oxide layer, or other conductive metal oxide layer. The current collector is filled with the desired amount and aged and dried.
本発明では、熟成乾燥工程の、熟成工程に引き続いて行なわれる乾燥工程において、正極板の最高温度を65℃以上とする工程を含む。本発明によれば、熟成乾燥工程に、正極板の温度が65℃を越える工程が含まれていても、正極ペースト中へのリグニンの添加により、四塩基性硫酸鉛の粗大結晶の成長が著しく抑制されるため、高容量の鉛蓄電池用正極板を得ることができる。また、この本発明によって得た鉛蓄電池用正極板を用いることにより、高容量の鉛蓄電池を得ることができる。 In this invention, the drying process performed after an aging process of an aging drying process includes the process which makes the maximum temperature of a positive electrode plate 65 degreeC or more. According to the present invention, even when the aging drying step includes a step in which the temperature of the positive electrode plate exceeds 65 ° C., the growth of coarse crystals of tetrabasic lead sulfate is remarkable due to the addition of lignin into the positive electrode paste. Since it is suppressed, a high capacity positive electrode plate for a lead storage battery can be obtained. Moreover, a high capacity lead acid battery can be obtained by using the positive electrode plate for a lead acid battery obtained by the present invention.
なお、本発明における熟成乾燥工程において、いわゆる初期の熟成過程では、従来から、知られているような、一例として、温度40℃、湿度60〜100RH%の条件で熟成を行い、その後、65℃以上に熟成乾燥炉内を昇温し、短時間で乾燥する。なお、熟成過程に要する時間は、極板厚みによっても異なるが、通常の1.0〜4.0mm程度のペースト厚みの極板では4〜12時間程度に設定することができる。 In the aging and drying step of the present invention, in the so-called initial aging process, as conventionally known, for example, aging is performed under conditions of a temperature of 40 ° C. and a humidity of 60 to 100 RH%, and then 65 ° C. As described above, the temperature inside the aging drying furnace is raised and dried in a short time. The time required for the aging process varies depending on the thickness of the electrode plate, but can be set to about 4 to 12 hours for a normal electrode plate having a paste thickness of about 1.0 to 4.0 mm.
上記の熟成過程に引き続いて行なわれる、乾燥工程は、極板厚み、および乾燥温度(熟成乾燥工程における最高温度に相当)にも異なるが、少なくとも65℃以上とする。なお、乾燥温度の上限は110℃、好ましくは100℃以下である。特に、熟成乾燥工程に、正極板の温度が110℃を越える工程が含まれると、正極板の急激な乾燥によって、正極板表面と正極板内部の乾燥状態の差が拡大されること、特に、正極板表面のペーストは急激に乾燥されるため、集電体とペーストとの間に隙間が生じたり、あるいはペースト自体にクラックが生じることによって、集電体からの正極ペースト(熟成乾燥後)の脱落が生じやすくなったり、あるいは、正極ペースト(熟成乾燥後)同士、あるいは正極ペースト(熟成乾燥後)と集電体との間の密着性の低下によって、集電体の集電効率が低下し、鉛蓄電池としたときに容量低下を引き起こすためである。 The drying process performed subsequent to the aging process is different from the electrode plate thickness and the drying temperature (corresponding to the maximum temperature in the aging drying process), but is at least 65 ° C. or higher. The upper limit of the drying temperature is 110 ° C., preferably 100 ° C. or less. In particular, when the aging drying step includes a step in which the temperature of the positive electrode plate exceeds 110 ° C., the rapid drying of the positive electrode plate expands the difference in the dry state between the positive electrode surface and the positive electrode plate, Since the paste on the surface of the positive electrode plate is drastically dried, a gap is formed between the current collector and the paste, or cracks are generated in the paste itself, so that the positive electrode paste from the current collector (after aging and drying) The current collection efficiency of the current collector decreases due to the loss of adhesion or the decrease in the adhesion between the positive electrode pastes (after aging and drying) or between the positive electrode paste (after aging and drying) and the current collector. This is because the capacity of the lead storage battery is reduced.
表1に、鉛粉中に含まれる鉛100質量部に対して、0.03質量部のリグニンを添加し、水と希硫酸で混合して得たペーストを鉛合金の集電体に充填し、35℃、80RH%で6時間熟成した後、乾燥温度を60℃、65℃、67℃、80℃、98℃、100℃、110℃で設定したときの、正極ペースト中の水分含有量が3.0質量%および0.5質量%となるに至る時間を示す。なお、乾燥工程では、一切の加湿を行なっていない。なお、表1では、集電体は格子状であり、格子ます目の部分の正極ペーストの最大厚み(極板厚み)は2.0mmの例を示している。 In Table 1, 0.03 parts by mass of lignin is added to 100 parts by mass of lead contained in the lead powder, and a paste obtained by mixing with water and dilute sulfuric acid is filled into a lead alloy current collector. After aging at 35 ° C. and 80 RH% for 6 hours, the moisture content in the positive electrode paste when the drying temperature was set at 60 ° C., 65 ° C., 67 ° C., 80 ° C., 98 ° C., 100 ° C., 110 ° C. Time to reach 3.0 mass% and 0.5 mass% is shown. In the drying process, no humidification is performed. Table 1 shows an example in which the current collector has a lattice shape, and the maximum thickness (electrode plate thickness) of the positive electrode paste at the lattice grid portion is 2.0 mm.
表1に示したように、乾燥時間中の温度を65℃以上とすること、より好ましくは67℃以上とすることにより、乾燥終了の目安である正極ペースト中の水分含有量が3.0質量%まで低下する時間を著しく短縮することができる。なお、本発明において、乾燥時間中の温度を65℃以上とすることは必須であるが、上限としては、前記したように、110℃、好ましくは100℃以下、さらに好ましくは、98℃以下とする。例えば、98℃と100℃では、正極ペーストの亀裂の発生状況に顕著な差が認められる(98℃において少なく、100℃において顕著に多い。)ものの、また、乾燥時間(水分含有量3.0質量%)に、殆ど差は認められないことからである。したがって、熟成乾燥工程中に、正極板温度が100℃以上となる段階を含むことは望ましくなく、その温度を100℃未満、例えば98℃以下とすべきである。 As shown in Table 1, by setting the temperature during the drying time to 65 ° C. or more, more preferably 67 ° C. or more, the moisture content in the positive electrode paste, which is a measure of completion of drying, is 3.0 mass. % Can be significantly shortened. In the present invention, it is essential that the temperature during the drying time is 65 ° C. or higher, but the upper limit is 110 ° C., preferably 100 ° C. or lower, more preferably 98 ° C. or lower, as described above. To do. For example, at 98 ° C. and 100 ° C., there is a significant difference in the occurrence of cracks in the positive electrode paste (less at 98 ° C. and significantly more at 100 ° C.), but also the drying time (water content 3.0). This is because there is almost no difference in mass%). Therefore, it is not desirable to include a stage in which the positive electrode plate temperature becomes 100 ° C. or higher in the aging drying process, and the temperature should be less than 100 ° C., for example, 98 ° C. or lower.
次に、本実施形態においては、リグニンを含む鉛粉を水と希硫酸で混合する例を示したが、水練りを省略し、リグニンを含む鉛粉を希硫酸のみで混合してもよい。 Next, in this embodiment, although the example which mixes the lead powder containing lignin with water and dilute sulfuric acid was shown, the water kneading may be omitted and the lead powder containing lignin may be mixed only with dilute sulfuric acid.
また、リグニンの添加ポイントとしては、鉛粉を、水と希硫酸、もしくは希硫酸との混合を始める以前の段階で添加してもよく、希硫酸の添加が終了した時点でもよく、あるいは水練りを始める時点であり、かつ希硫酸の添加を開始する以前の段階で添加してもよい。また、リグニンを水、あるいはごく希薄な希硫酸中に分散させたものを、上記の各時点の、いずれかの時点で添加してもよい。 In addition, lignin may be added at a stage prior to the start of mixing of water and dilute sulfuric acid or dilute sulfuric acid, at the point when the addition of dilute sulfuric acid is completed, or by kneading with water. May be added at the stage of starting the process and before the start of the addition of dilute sulfuric acid. Further, lignin dispersed in water or dilute dilute sulfuric acid may be added at any one of the above time points.
なお、リグニンとしては、例えば、日本製紙ケミカル社製のサンエキスP252(リグニンスルホン酸ナトリウム)、バニオール(変性リグニンスルホン酸ナトリウム)、バニレックス(部分脱スルホン酸ナトリウム)やパールレックスNP(高分子量リグニンスルホン酸ナトリウム)(以上、いずれも商品名)や、Borregaard LignoTech社製のVanispers A(変性オキシリグニンのナトリウム塩)あるいは、Vanisperse HT−1(高変性リグニンスルホン酸ナトリウム)(以上、いずれも商品名)を用いることができるが、これらの限定されるものではない。 As lignin, for example, Sun Extract P252 (sodium lignin sulfonate), vaniol (modified sodium lignin sulfonate), vanillex (partially desulfonated sodium) or Pearl Rex NP (high molecular weight lignin sulfone) manufactured by Nippon Paper Chemicals Co., Ltd. Acid sodium) (above, all are trade names), Vanperser A (sodium salt of modified oxylignin) manufactured by Borregaard LignoTech, or Vanisserse HT-1 (highly modified sodium lignin sulfonate) (all are trade names) However, it is not limited to these.
これらリグニンの添加量としては、前記したように、鉛粉中に含まれる鉛を100質量部として0.03質量部以上とする。なお、リグニンの添加量が0.80質量部を越え、例えば1.0質量部とすると、後述する実施例において示したように、鉛蓄電池の容量が低下する傾向が認められるため、リグニン添加量の上限は、鉛粉中に含まれる鉛を100質量部としたときに0.80質量部以下とすることが好ましい。 As described above, the amount of lignin added is 0.03 parts by mass or more with 100 parts by mass of lead contained in the lead powder. When the amount of lignin added exceeds 0.80 parts by mass, for example, 1.0 parts by mass, the capacity of the lead storage battery tends to decrease as shown in the examples described later. The upper limit is preferably 0.80 parts by mass or less when the lead contained in the lead powder is 100 parts by mass.
そして、本発明の第1の実施形態によれば、鉛蓄電池用正極板の熟成乾燥工程において、温度が65℃を越える工程を含む。そして、より好ましくは67℃以上の段階が含まれる。このような表現は、熟成工程から乾燥工程に移行する際、熟成温度である、例えば40℃から65℃に昇温する段階が乾燥工程に含まれ、乾燥工程の間のすべてにおいて、65℃以上とすることは実質的に不可能であるためである。 And according to the 1st Embodiment of this invention, the process which temperature exceeds 65 degreeC is included in the aging drying process of the positive electrode plate for lead acid batteries. More preferably, a stage of 67 ° C. or higher is included. Such an expression includes a stage of raising the temperature from 40 ° C. to 65 ° C., which is a ripening temperature when moving from the aging step to the drying step. This is because it is practically impossible.
そして、正極ペーストの原料となる鉛粉中、あるいは正極ペーストの製造途中の各段階の、少なくとも一つの段階で、前記した量のリグニンを添加することにより、熟成乾燥工程中における粗大な四塩基性硫酸鉛結晶の生成が抑制され、その結果として高容量の鉛蓄電池用正極板を得ることができる。そして、本発明によって得た鉛蓄電池用正極板と、公知の負極板、セパレータとを組み合わせて、公知の方法により、鉛蓄電池を組み立てることにより、高容量の鉛蓄電池を、生産に要する時間を短縮化して得ることができるという、顕著な効果を奏する。 Then, in the lead powder as a raw material of the positive electrode paste, or at each stage in the middle of the production of the positive electrode paste, by adding the above amount of lignin, coarse tetrabasic during the aging and drying process Formation of lead sulfate crystals is suppressed, and as a result, a high capacity positive electrode plate for a lead storage battery can be obtained. And, by combining the positive electrode plate for a lead storage battery obtained by the present invention with a known negative electrode plate and a separator and assembling the lead storage battery by a known method, the time required for production of a high capacity lead storage battery is shortened. There is a remarkable effect that it can be obtained.
(第2の実施形態)
次に本発明の第2の実施形態による鉛蓄電池用正極板の製造方法、鉛蓄電池の製造方法およびこれを用いた鉛蓄電池を説明する。
(Second Embodiment)
Next, the manufacturing method of the positive electrode plate for lead acid batteries by the 2nd Embodiment of this invention, the manufacturing method of lead acid batteries, and a lead acid battery using the same are demonstrated.
本発明の第2の実施形態は、前記した本発明の第1の実施形態における、鉛粉中、あるいは正極ペーストの製造途中の各段階の、少なくとも一つの段階でのリグニンの添加に替えて、ビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物(以下、縮合物)を、鉛粉中、あるいは正極ペーストの製造途中の各段階の、少なくとも一つの段階で添加するものである。但し、当該縮合物の鉛粉に対する添加量は、第1の実施形態で示した各種のリグニンとは異なり、鉛粉中の鉛100質量部に対して、0.01質量%以上とする。 In the second embodiment of the present invention, instead of adding lignin in at least one of the stages in the production of the lead powder or the positive electrode paste in the first embodiment of the present invention described above, A formaldehyde condensate (hereinafter referred to as condensate) of bisphenols and sulfites or amino acids is added in at least one stage in the lead powder or each stage during the production of the positive electrode paste. However, the amount of the condensate added to the lead powder is 0.01% by mass or more with respect to 100 parts by mass of lead in the lead powder, unlike the various lignins shown in the first embodiment.
また、当該縮合物の上限は、第1の実施の形態で示したものと同様の理由により、鉛粉中の鉛100質量部に対して、0.8質量部以下とすることが好ましい。 Moreover, it is preferable that the upper limit of the said condensate shall be 0.8 mass part or less with respect to 100 mass parts of lead in lead powder for the same reason as what was shown in 1st Embodiment.
本発明の第1の実施形態と、本発明の第2の実施形態とは、鉛粉中への添加物が、リグニンであるか、ビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物であるかの差であって、その他のところは変わるところはない。 In the first embodiment of the present invention and the second embodiment of the present invention, whether the additive to lead powder is lignin, or a formaldehyde condensate of bisphenols and sulfites or amino acids. It ’s the difference, and everything else remains the same.
本発明の第2の実施形態によれば、前記した本発明の第1の実施形態と同様、鉛蓄電池の正極板を熟成乾燥する際、特に、乾燥工程における温度を65℃以上としても、鉛蓄電池の容量低下の要因となる、粗大な四塩基性硫酸鉛の生成が顕著に抑制されるため、熟成乾燥工程に要する時間を顕著に短縮しつつ、高容量の鉛蓄電池用正極板を得ることができる。 According to the second embodiment of the present invention, as in the first embodiment of the present invention described above, when the positive electrode plate of the lead storage battery is aged and dried, in particular, even if the temperature in the drying process is set to 65 ° C. or higher, the lead Since the production of coarse tetrabasic lead sulfate, which causes a reduction in the capacity of the storage battery, is significantly suppressed, a high capacity positive electrode plate for a lead storage battery can be obtained while significantly reducing the time required for the aging and drying process. Can do.
なお、乾燥工程における温度の上限は、第1の実施形態に示したものと同様の理由により、110℃以下、好ましくは100℃以下、さらに好ましくは100℃未満、例えば98℃以下とする。また、乾燥工程における温度は65℃以上、より好ましくは67℃以上の段階が含まれる。このような表現は、第1の実施の形態で示したように、熟成工程から乾燥工程に移行する際、熟成温度である、例えば40℃から65℃に昇温する段階が乾燥工程に含まれるためによる。 The upper limit of the temperature in the drying step is 110 ° C. or less, preferably 100 ° C. or less, more preferably less than 100 ° C., for example 98 ° C. or less, for the same reason as described in the first embodiment. Moreover, the temperature in a drying process includes the stage of 65 degreeC or more, More preferably, 67 degreeC or more. As described in the first embodiment, such a representation includes a stage of raising the temperature from 40 ° C. to 65 ° C., which is an aging temperature, when the aging process is shifted to the drying process. Because of.
なお、本発明の第2の実施形態に用いるビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物として、例えば、日本製紙ケミカル社製のビスパーズP121、同P125および同P215(以上、商品名)を用いることができる。また、これらの添加物の添加ポイントとしては、鉛粉を、水と希硫酸、もしくは希硫酸との混合を始める以前の段階で添加してもよく、希硫酸の添加が終了した時点、あるいは水練りを始める時点であり、かつ希硫酸の添加を開始する以前の段階で添加してもよい。また、ビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物を水、あるいはごく希薄な希硫酸中に分散させたものを上記の各時点のいずれかの時点で添加してもよい。 As the formaldehyde condensate of bisphenols and sulfites or amino acids used in the second embodiment of the present invention, for example, Bispaz P121, P125 and P215 (trade names) manufactured by Nippon Paper Chemical Co., Ltd. are used. Can do. In addition, as an addition point of these additives, lead powder may be added at a stage before the start of mixing of water and dilute sulfuric acid or dilute sulfuric acid. The kneading may be added at the time when kneading is started and before the addition of dilute sulfuric acid is started. Further, a product obtained by dispersing a formaldehyde condensate of bisphenols and sulfites or amino acids in water or very dilute dilute sulfuric acid may be added at any one of the above time points.
そして、本発明による鉛蓄電池用正極板と、公知の負極板、セパレータとを組み合わせて鉛蓄電池を公知の方法により、組み立てることにより、高容量の鉛蓄電池を、生産に要する時間を短縮化して得ることができるという、顕著な効果を奏する。 Then, a lead storage battery is assembled by combining a positive electrode plate for a lead storage battery according to the present invention, a known negative electrode plate, and a separator by a known method, thereby obtaining a high capacity lead storage battery with a reduced production time. It has a remarkable effect of being able to.
次に、本発明の効果を、実施例により、説明する。 Next, the effect of the present invention will be described with reference to examples.
ボールミル法による鉛粉に、第1の実施形態で示したリグニン、あるいは第2の実施形態で示したビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物を種々の添加量で添加した。なお、鉛粉は、75質量%のPbO(red−PbO(R−PbO)と呼ばれる、テトラゴナル構造を有するPbOであり、バートンポット法鉛粉、ボールミル法鉛粉といった、鉛蓄電池用活物質用として商業的に生産される鉛粉に含まれるPbOである。)と残部の25質量%が金属Pbからなる。 The lignin shown in the first embodiment or the bisphenols and sulfites or formaldehyde condensates of amino acids shown in the second embodiment were added to the lead powder by the ball mill method in various addition amounts. In addition, lead powder is PbO which has a tetragonal structure called 75 mass% PbO (red-PbO (R-PbO), and is used for active materials for lead storage batteries such as Barton pot method lead powder and ball mill method lead powder. PbO contained in commercially produced lead powder) and the remaining 25% by mass is composed of metal Pb.
なお、リグニンとしては、第1の実施形態で示したところの、日本製紙ケミカル社製バニレックス(商品名)であり、その中でもバニレックスNと呼ばれる、部分脱スルホンリグニンスルホン酸ナトリウム粉末を用いた。また、ビスフェノール類と亜硫酸塩もしくはアミノ酸のホルムアルデヒド縮合物としては、第2の実施形態で示したところの、日本製紙ケミカル社製ビスパーズP215(商品名)の粉末を添加した。 As the lignin, a partially desulfurized sodium lignin sulfonate powder, which is Vanillex (trade name) manufactured by Nippon Paper Chemicals Co., Ltd., which is shown in the first embodiment, is called Vanillex N among them. In addition, as a formaldehyde condensate of bisphenols and sulfites or amino acids, powder of Bisperz P215 (trade name) manufactured by Nippon Paper Chemical Co., Ltd. as shown in the second embodiment was added.
これら、バニレックスNあるいはビスパーズP215を種々の添加量で添加した鉛粉、および比較のために、これらの添加物を添加しない鉛粉を水と希硫酸(20℃における密度1.300g/cm3)で混合して各種正極用ペーストを作成した。次にこれら各種の正極ペーストをPb−0.06質量%Ca−1.60質量%Sn合金からなるエキスパンド格子体に充填して正極板を得た。なお、正極ペーストの充填量は、一枚の正極板に充填された正極ペースト中に含まれる鉛量が各極板で一定となるよう、微調整した。なお、このように正極ペースト充填量を微調整した後の、エキスパンド格子体を含む、それぞれの正極板の厚みは2.0±0.07mmであり、添加物の添加量にそれほど影響を受けなかった。なお、正極板面の両面にはペースト紙とよばれる薄紙を貼り付けた状態として、この状態で60枚の正極板を一山として積層した状態(すなわちスタック状態)で熟成乾燥を行なった。 These lead powder added with various addition amounts of Vanillex N or Bisperz P215, and for comparison, lead powder without addition of these additives, water and dilute sulfuric acid (density 1.300 g / cm 3 at 20 ° C.) The various positive electrode pastes were prepared by mixing with the above. Next, these various positive electrode pastes were filled in an expanded lattice body made of a Pb-0.06 mass% Ca-1.60 mass% Sn alloy to obtain a positive electrode plate. The filling amount of the positive electrode paste was finely adjusted so that the amount of lead contained in the positive electrode paste filled in one positive electrode plate was constant in each electrode plate. In addition, the thickness of each positive electrode plate including the expanded lattice after finely adjusting the positive electrode paste filling amount in this way is 2.0 ± 0.07 mm, and is not significantly affected by the additive amount. It was. In addition, aging drying was performed in a state in which thin paper called paste paper was pasted on both surfaces of the positive electrode plate, and in this state, 60 positive electrodes were stacked together (ie, in a stacked state).
そして、これら各種の正極用ペーストを用いた各種正極板について、40℃、85RH%の加湿加温状態で12時間、熟成させた後、温度を変化させて乾燥を行なうことにより、熟成乾燥工程を行なった。なお、乾燥中の正極板を、0.5時間間隔でサンプリングし、正極用ペースト中に含まれる水分含有量を測定し、正極ペースト中の水分含有量が、3.0質量%を下回った段階で熟成乾燥工程終了とした。 The various positive electrode plates using these various positive electrode pastes are aged in a humidified and heated state of 40 ° C. and 85 RH% for 12 hours, and then dried by changing the temperature to perform an aging drying step. I did it. The positive electrode plate being dried was sampled at intervals of 0.5 hours, the water content contained in the positive electrode paste was measured, and the water content in the positive electrode paste was less than 3.0% by mass. The aging drying process was completed.
表2および表3に、鉛粉中のバニレックスNあるいはビスパーズP215の添加量と、乾燥工程における温度条件および乾燥に要した時間を示す。なお、バニレックスNおよびビスパーズP215の添加量を、ともに、鉛粉中に含まれる鉛の質量を100質量部としたときの質量部で示した。 Tables 2 and 3 show the addition amount of Vanillex N or Bisperz P215 in the lead powder, the temperature conditions in the drying step, and the time required for drying. In addition, both the addition amount of Vanillex N and Bisper P215 were shown by the mass part when the mass of the lead contained in lead powder was 100 mass parts.
表2および表3から、鉛粉中へのバニレックスNあるいはビスパーズP215の添加の有無および添加量の変化に係わらず、乾燥温度が65℃以上で、乾燥時間が急激に短縮化され、さらに67℃以上で、さらに急激に短縮化される。なお、熟成(40℃)から乾燥(60℃〜100℃)への切替に際して、熟成温度(40℃)から乾燥温度(60℃〜100℃)までの昇温に0.5時間〜1.5時間を要し、その後は乾燥終了まで温度を設定した乾燥温度に保持した。なお、この熟成から乾燥へ移行する過程での昇温時間は、熟成乾燥炉の時間当たりの供給熱量に依存するため、より大容量の乾燥炉を用いれば、さらなる昇温時間の短縮化が可能となる。 From Table 2 and Table 3, the drying temperature is 65 ° C. or more and the drying time is drastically shortened to 67 ° C. regardless of the presence or absence of addition of Vanillex N or Bisperz P215 to the lead powder and the amount of addition. With the above, it is shortened more rapidly. When switching from aging (40 ° C.) to drying (60 ° C. to 100 ° C.), the temperature is raised from the aging temperature (40 ° C.) to the drying temperature (60 ° C. to 100 ° C.) for 0.5 hours to 1.5 hours. It took time, and thereafter, the temperature was maintained at the set drying temperature until the end of drying. The temperature rise time during the transition from aging to drying depends on the amount of heat supplied per hour in the aging drying oven, so if a larger capacity drying oven is used, the temperature raising time can be further shortened. It becomes.
次に、表2および表3に示した各正極板から未化成活物質をサンプリングし、各未化成活物質を、X線回折装置を用いて、未化成活物質中の四塩基性硫酸鉛(以下、4BS)の定性分析を行なった。なお、X線回折装置としては、株式会社リガク製RINT2200を使用し、X線発生装置としては、Cuをターゲットとし、X線管電圧40kV、X線管電流40mAで発生させたCu−Kα線を用い、測定角度2θを20°〜40°の間をスキャンして4BSに特徴的に現れるピーク(2θ=27.6°)のピーク強度I(4BS)と、PbO(本実施例においては、R−PbO)に特徴的に現れるピーク(2θ=28.7°)のピーク強度I(R−PbO)の比率K(=I(4BS)/I(R−PbO))を求めた。 Next, an unformed active material is sampled from each positive electrode plate shown in Table 2 and Table 3, and each unformed active material is converted into tetrabasic lead sulfate ( Hereinafter, qualitative analysis of 4BS) was performed. As the X-ray diffractometer, RINT2200 manufactured by Rigaku Co., Ltd. is used. As the X-ray generator, Cu-Kα rays generated at an X-ray tube voltage of 40 kV and an X-ray tube current of 40 mA are used. The peak intensity I (4BS) of the peak (2θ = 27.6 °) that appears characteristically in 4BS when the measurement angle 2θ is scanned between 20 ° and 40 ° and PbO (in this example, R The ratio K (= I (4BS) / I (R-PbO)) of the peak intensity I (R-PbO) of the peak (2θ = 28.7 °) characteristically appearing in -PbO) was determined.
さらに、表2および表3に示した各正極板と、公知の負極板を用いて、JIS D5301:2006(始動用鉛蓄電池)に示すところの、公称電圧12V、5時間率定格容量48Ahの55D23形電池(以下、電池)を作成した。 Furthermore, using each positive electrode plate shown in Table 2 and Table 3 and a known negative electrode plate, 55D23 having a nominal voltage of 12 V and a rated capacity of 48 Ah of 48 Ah as shown in JIS D5301: 2006 (lead storage battery for starting). A battery (hereinafter referred to as a battery) was prepared.
これらの各電池は、正極板が異なる他は、負極板、セパレータ、電解液、その他の電池を構成する部品材料は同一のものを用いた。なお、負極板については、従来から知られているように、正極板に用いたと同様のボールミル式鉛粉に既述したバニレックスNと硫酸バリウムおよびカーボンとを添加したものに水と希硫酸を添加混合して得た負極用ペーストを、Pb−0.07質量%Ca−0.25質量%Sn合金からなるエキスパンド格子体に充填し、熟成乾燥したものとした。 Each of these batteries was the same as the negative electrode plate, the separator, the electrolytic solution, and other component materials constituting the battery except that the positive electrode plate was different. As for the negative electrode plate, water and dilute sulfuric acid are added to the same ball mill type lead powder as previously used for the positive electrode plate, with the addition of vanillax N, barium sulfate and carbon as previously known. The negative electrode paste obtained by mixing was filled in an expanded lattice body made of a Pb-0.07 mass% Ca-0.25 mass% Sn alloy, and aged and dried.
そして、各正極板の5枚と、上記の共通の負極板6枚とを組み合わせて単一セルとした。なお、セパレータとしては、公知の微孔性ポリエチレンセパレータ(ポリエチレン、シリカ、カーボンおよび耐酸化剤としてのオイルを含む)の袋状に加工したものに負極板を収納している。そして、以降は、公知の方法により、これらの単一セルの6個を電槽のセル室内に収納して、各セルを直列接続し、電槽に蓋をし、端子溶接を行なって電池を組立て、各セルに希硫酸電解液を注液した後、通電化成し、通電化成後、各電池の電解液密度(20℃換算値)を1.285g/cm3に調整するとともに、電解液面を正極および負極ストラップ(図示せず)の上面より30mmの位置に設定した。 And 5 sheets of each positive electrode plate and 6 said common negative electrode plates were combined, and it was set as the single cell. In addition, as a separator, the negative electrode plate is accommodated in the thing processed into the bag shape of the well-known microporous polyethylene separator (Including polyethylene, a silica, carbon, and the oil as an antioxidant). Then, in the following, six of these single cells are housed in the cell chamber of the battery case by a known method, each cell is connected in series, the battery case is covered, terminal welding is performed, and the battery is connected. After assembling and injecting dilute sulfuric acid electrolyte into each cell, conducting energization, and after energizing, adjusting the electrolyte density (converted to 20 ° C) of each battery to 1.285 g / cm 3 Was set at a position 30 mm above the upper surfaces of the positive and negative straps (not shown).
そして、各電池を25℃雰囲気下に放置した後、同じ25℃雰囲気下で9.6Aの定電流で放電終止電圧10.5Vまで放電することにより、各電池の5時間率放電容量を求めた。 And after leaving each battery in 25 degreeC atmosphere, it discharged to the discharge end voltage 10.5V with the constant current of 9.6A in the same 25 degreeC atmosphere, and calculated | required the 5-hour rate discharge capacity of each battery. .
各正極板の未化成活物質のX線回折における、4BSに特徴的に現れるピーク(2θ=27.6°)のピーク強度I(4BS)と、PbO(本実施例においては、R−PbO)に特徴的に現れるピーク(2θ=28.7°)のピーク強度I(R−PbO)の比率K(=I(4BS)/I(R−PbO))と、前記した各正極板を用いた各電池の5時間率容量の測定結果を表4および表5に示す。なお、表4には、鉛粉に添加剤を全く添加しない、もしくは添加剤としてバニレックスNのみを添加した結果を示し、表5には、鉛粉に添加剤としてビスパーズP215のみを添加した結果を示した。なお、各電池記号は、使用した正極板の記号と同一とした。 In the X-ray diffraction of the unformed active material of each positive electrode plate, the peak intensity I (4BS) of a peak (2θ = 27.6 °) characteristically appearing in 4BS and PbO (in this example, R-PbO) The ratio K (= I (4BS) / I (R-PbO)) of the peak intensity I (R-PbO) of the peak (2θ = 28.7 °) characteristically shown in FIG. Tables 4 and 5 show the measurement results of the 5-hour rate capacity of each battery. Table 4 shows the results of adding no additive to lead powder or adding only Vanillex N as an additive, and Table 5 shows the result of adding only Bispraz P215 as an additive to lead powder. Indicated. Each battery symbol was the same as the symbol of the positive electrode plate used.
表4および表5に示した様に、正極ペーストにバニレックスNもビスパーズP215も添加しなかった電池A1〜電池A6に関して、乾燥温度が60℃の電池A1には、正極板中に四塩基性硫酸鉛は検出できず、定格容量(48Ah)に対して余裕を有した電池容量を有していることがわかる。但し、この仕様は、乾燥時間を他の65℃以上としたものに比較して長く、生産性に極めて劣る。 As shown in Tables 4 and 5, with respect to the batteries A1 to A6 in which neither Vanillex N nor Bisper P215 was added to the positive electrode paste, the battery A1 having a drying temperature of 60 ° C. contained tetrabasic sulfuric acid in the positive electrode plate. Lead cannot be detected, and it can be seen that the battery capacity has a margin with respect to the rated capacity (48 Ah). However, this specification is longer than other types having a drying time of 65 ° C. or higher and is extremely inferior in productivity.
次に、乾燥温度を65℃とした場合、正極中に四塩基性鉛の生成が確認され、電池容量も、A1に比較して低下する。さらに乾燥温度を67℃から100℃にかけて上げていくと、乾燥時間は短縮化されるものの、四塩基性鉛の生成が促進され、それとともに、電池容量も低下し、乾燥温度67℃で、定格容量である48Ahを割り込む結果となった。 Next, when the drying temperature is set to 65 ° C., the production of tetrabasic lead is confirmed in the positive electrode, and the battery capacity is also reduced as compared with A1. Further, when the drying temperature is increased from 67 ° C to 100 ° C, the drying time is shortened, but the production of tetrabasic lead is promoted, and at the same time, the battery capacity is reduced. As a result, the capacity of 48 Ah was interrupted.
一方、バニレックスNを、鉛粉中の鉛100質量部に対して0.03質量部〜0.8質量部添加したものは、乾燥温度を65℃以上としても四塩基性硫酸鉛が検出できず、電池容量も定格値に対して十分な容量を有していた。しかしながら、乾燥温度が100℃の例では、電池容量は定格値以上であるものの、乾燥温度が65℃〜98℃の場合に比較して低下する傾向が認められた。したがって、乾燥温度は、好ましくは、100℃未満、例えば、実施例にあるように98℃以下とする。また、このような乾燥温度は、活物質自体の亀裂、あるいは、活物質と、格子との間の隙間が抑制されるとともに、乾燥終了までの時間が顕著に短縮化でき、最も本発明の効果を得ることができる。 On the other hand, when Vanillex N is added in an amount of 0.03 to 0.8 parts by mass with respect to 100 parts by mass of lead in the lead powder, tetrabasic lead sulfate cannot be detected even when the drying temperature is 65 ° C. or higher. The battery capacity was sufficient for the rated value. However, in the example where the drying temperature is 100 ° C., although the battery capacity is equal to or higher than the rated value, a tendency to decrease as compared with the case where the drying temperature is 65 ° C. to 98 ° C. was recognized. Therefore, the drying temperature is preferably less than 100 ° C., for example, 98 ° C. or less as in the examples. In addition, such a drying temperature can suppress cracks in the active material itself, or a gap between the active material and the lattice, and can significantly shorten the time until the end of drying. Can be obtained.
乾燥温度を100℃としたものは、活物質内の亀裂および活物質と格子間での隙間の発生が乾燥温度98℃以下のものを比較して顕著であり、これによって、正極容量が低下し、電池容量が低下したと推測される。 When the drying temperature is set to 100 ° C., cracks in the active material and generation of gaps between the active material and the lattice are remarkable compared with those having a drying temperature of 98 ° C. or less, which decreases the positive electrode capacity. It is estimated that the battery capacity has decreased.
一方、バニレックスNを、鉛粉中の鉛100質量部に対して1.0質量部添加したものは、乾燥温度を65℃以上としても四塩基性硫酸鉛が検出できないものの、電池容量は、バニレックス添加量を0.03質量部〜0.8質量部以下としたものに比較して、明らかに低下していた。これはバニレックスNの添加量過多により、活物質間の導電性ネットワークが阻害されたこと、および/あるいは、バニレックスNの酸化反応により化成電気量が消費され、結果として容量低下したと推測される。 On the other hand, the addition of 1.0 part by mass of Vanillex N to 100 parts by mass of lead in the lead powder, although tetrabasic lead sulfate cannot be detected even when the drying temperature is 65 ° C. or higher, the battery capacity is Compared with what added amount was 0.03 mass part-0.8 mass part or less, it was falling clearly. This is presumed that the conductive network between the active materials was inhibited due to the excessive addition amount of Vanillex N, and / or the amount of chemical electricity was consumed by the oxidation reaction of Vanillex N, resulting in a decrease in capacity.
次に、ビスパーズP215を添加した電池に関しても、バニレックスNを添加した電池と同様の挙動を示した。バニレックスNと同様、前記した理由により、ビスパーズP215の添加量は、鉛粉中の鉛100質量部に対して0.01質量部〜0.8質量部が好ましい。特に、ビスパーズP215とバニレックスNとを比較すると、乾燥温度65〜98℃の範囲において、ビスパーズP215を添加したものの方が、バニレックスNを添加した電池に比較して容量特性に優れており、本実施例において最も好ましい結果が得られた。また、乾燥完了に至るまでの時間も、バニレックスNと比較しても変化がなく、短時間で高温の熟成乾燥を行なっても、四塩基性硫酸鉛の生成が抑制され、結果として、熟成乾燥時間に要する時間を顕著に短縮化した上で、高容量の鉛蓄電池を得られるという、顕著な効果が得られた。 Next, regarding the battery to which Bisperz P215 was added, the same behavior as the battery to which Vanillex N was added was shown. Like Vanillex N, for the reasons described above, the addition amount of Bispraz P215 is preferably 0.01 parts by mass to 0.8 parts by mass with respect to 100 parts by mass of lead in the lead powder. In particular, when comparing Vispers P215 and Vanillex N, the addition of Bispurs P215 in the drying temperature range of 65-98 ° C is superior in capacity characteristics compared to the battery added with Vanillex N. The most favorable results were obtained in the examples. In addition, the time to completion of drying is not changed compared to Vanillex N, and even when aging drying at a high temperature in a short time, the formation of tetrabasic lead sulfate is suppressed. As a result, aging drying is performed. The remarkable effect of obtaining a high-capacity lead-acid battery while significantly shortening the time required was obtained.
本実施例においては、鉛粉中に粉末状のバニレックスNあるいはビスパーズP215を添加した後、水と希硫酸で混合した例を述べたが、希硫酸のみで混合した場合にも同様に本発明の効果が得られた。また、添加物を水で混合した後、あるいは希硫酸で混合した後に添加しても本発明の効果が得られた。なお、希硫酸で混合に添加剤を添加する場合には、添加剤の分散性を向上するために、添加剤を添加後、さらに混合を継続して行なうことが好ましい。 In this embodiment, an example in which powdered vanillex N or bispraz P215 is added to lead powder and then mixed with water and dilute sulfuric acid has been described. The effect was obtained. Further, the effect of the present invention was obtained even when the additive was added after mixing with water or after mixing with dilute sulfuric acid. In addition, when adding an additive to mixing with dilute sulfuric acid, in order to improve the dispersibility of an additive, it is preferable to continue mixing after adding an additive.
また、本実施例においては、粉末状のバニレックスNあるいはビスパーズP215を添加した例を示したが、これら粉末状の添加剤を予め水等の溶媒に分散させておき、ペースト混合の任意の段階で混合物に添加しても本発明の効果を得ることができる。また、バニレックスNあるいはビスパーズP215に限定されず、本発明の第1および第2の実施形態で示した各種のリグニンおよび縮合物を用いることにより、実施例で示したと同様の、本発明の効果を得ることができる。 Further, in this example, an example in which powdery Vanillex N or Bisper P215 was added was shown. However, these powdery additives are previously dispersed in a solvent such as water, and at any stage of paste mixing. Even if it adds to a mixture, the effect of this invention can be acquired. Further, the present invention is not limited to Vanillex N or Bispaz P215, and by using the various lignins and condensates shown in the first and second embodiments of the present invention, the same effects of the present invention as shown in the examples can be obtained. Obtainable.
以上、本発明によれば、従来極めて長時間を有していた熟成乾燥工程の所要時間を短縮できるとともに、当該工程の所要時間を短縮化するために乾燥温度を65℃以上としたときに生成する粗大な四塩基性硫酸鉛の結晶の成長が抑制できることから、従来は不可能であった、熟成乾燥工程の所要時間の短縮化と、電池の高容量化が両立できるという、極めて顕著な効果を奏する。 As described above, according to the present invention, it is possible to shorten the time required for the ripening drying process, which has been extremely long in the past, and to generate when the drying temperature is 65 ° C. or higher in order to shorten the time required for the process. Since the growth of coarse tetrabasic lead sulfate crystals can be suppressed, it is possible to achieve both the shortening of the time required for the aging drying process and the high capacity of the battery, both of which have been impossible in the past. Play.
また、本発明は、特許文献1で示されたような減圧炉や減圧装置といった特殊な装置を必要とせず、従来の熟成乾炉で対応可能である点も好ましいものである。 The present invention is also preferable in that it does not require a special apparatus such as a decompression furnace or a decompression apparatus as disclosed in Patent Document 1, and can be handled by a conventional aging drying furnace.
本発明は、実施例でのべた始動用鉛蓄電池をはじめとして、液式、制御弁式の差なく、様々な用途の鉛蓄電池に適用できる。 The present invention can be applied to lead storage batteries for various uses, including the liquid lead and control valve types, including the solid lead storage battery for starting in the embodiments.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008272749A JP5407271B2 (en) | 2008-10-23 | 2008-10-23 | Method for manufacturing positive electrode plate for lead storage battery, method for manufacturing lead storage battery, and lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008272749A JP5407271B2 (en) | 2008-10-23 | 2008-10-23 | Method for manufacturing positive electrode plate for lead storage battery, method for manufacturing lead storage battery, and lead storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010102916A true JP2010102916A (en) | 2010-05-06 |
JP5407271B2 JP5407271B2 (en) | 2014-02-05 |
Family
ID=42293401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008272749A Expired - Fee Related JP5407271B2 (en) | 2008-10-23 | 2008-10-23 | Method for manufacturing positive electrode plate for lead storage battery, method for manufacturing lead storage battery, and lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5407271B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122132A1 (en) * | 2012-02-14 | 2013-08-22 | 新神戸電機株式会社 | Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate |
CN103606653A (en) * | 2013-10-21 | 2014-02-26 | 安徽省华森电源有限公司 | Automatic curing energy-saving technology of secondary lead regenerated accumulator plate |
CN103762340A (en) * | 2014-01-14 | 2014-04-30 | 天能集团江苏科技有限公司 | Rapid high-temperature curing drying process of lead-acid storage battery unformed electrode plate |
CN104064734A (en) * | 2014-06-17 | 2014-09-24 | 双登集团股份有限公司 | Lead-acid storage battery polar plate curing technology |
JP2016162612A (en) * | 2015-03-03 | 2016-09-05 | 日立化成株式会社 | Control valve type lead storage battery |
US10096862B2 (en) | 2013-11-29 | 2018-10-09 | Gs Yuasa International Ltd. | Lead-acid battery |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5493427A (en) * | 1977-12-30 | 1979-07-24 | Shin Kobe Electric Machinery | Method of producing cathode plate for lead storage battery |
JPS62103974A (en) * | 1985-10-30 | 1987-05-14 | Japan Storage Battery Co Ltd | Positive electrode plate for clad lead battery |
JPS63108672A (en) * | 1986-10-24 | 1988-05-13 | Shin Kobe Electric Mach Co Ltd | Manufacture of cathode plate for lead acid battery |
JPS63160164A (en) * | 1986-12-24 | 1988-07-02 | Shin Kobe Electric Mach Co Ltd | Cathode plate for lead acid battery |
JPH11121008A (en) * | 1997-10-13 | 1999-04-30 | Japan Storage Battery Co Ltd | Negative electrode plate for lead-acid battery |
JP2001511292A (en) * | 1997-01-10 | 2001-08-07 | ゼオ スペシャリティー ケミカルズ,インク | Battery paste dispersant |
JP2002134105A (en) * | 2000-10-24 | 2002-05-10 | Japan Storage Battery Co Ltd | Method of producing electrode plate for lead acid battery |
WO2002039519A1 (en) * | 2000-11-09 | 2002-05-16 | Yuasa Corporation | Negative electrode active material, process for its production and lead storage battery |
JP2002231233A (en) * | 2001-01-31 | 2002-08-16 | Shin Kobe Electric Mach Co Ltd | Control valve-type lead-acid battery |
JP2004127585A (en) * | 2002-09-30 | 2004-04-22 | Shin Kobe Electric Mach Co Ltd | Manufacturing method of pasty negative electrode activator |
JP2005026134A (en) * | 2003-07-04 | 2005-01-27 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2005317501A (en) * | 2004-11-24 | 2005-11-10 | Shin Kobe Electric Mach Co Ltd | Engine drive system |
-
2008
- 2008-10-23 JP JP2008272749A patent/JP5407271B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5493427A (en) * | 1977-12-30 | 1979-07-24 | Shin Kobe Electric Machinery | Method of producing cathode plate for lead storage battery |
JPS62103974A (en) * | 1985-10-30 | 1987-05-14 | Japan Storage Battery Co Ltd | Positive electrode plate for clad lead battery |
JPS63108672A (en) * | 1986-10-24 | 1988-05-13 | Shin Kobe Electric Mach Co Ltd | Manufacture of cathode plate for lead acid battery |
JPS63160164A (en) * | 1986-12-24 | 1988-07-02 | Shin Kobe Electric Mach Co Ltd | Cathode plate for lead acid battery |
JP2001511292A (en) * | 1997-01-10 | 2001-08-07 | ゼオ スペシャリティー ケミカルズ,インク | Battery paste dispersant |
JPH11121008A (en) * | 1997-10-13 | 1999-04-30 | Japan Storage Battery Co Ltd | Negative electrode plate for lead-acid battery |
JP2002134105A (en) * | 2000-10-24 | 2002-05-10 | Japan Storage Battery Co Ltd | Method of producing electrode plate for lead acid battery |
WO2002039519A1 (en) * | 2000-11-09 | 2002-05-16 | Yuasa Corporation | Negative electrode active material, process for its production and lead storage battery |
JP2002231233A (en) * | 2001-01-31 | 2002-08-16 | Shin Kobe Electric Mach Co Ltd | Control valve-type lead-acid battery |
JP2004127585A (en) * | 2002-09-30 | 2004-04-22 | Shin Kobe Electric Mach Co Ltd | Manufacturing method of pasty negative electrode activator |
JP2005026134A (en) * | 2003-07-04 | 2005-01-27 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2005317501A (en) * | 2004-11-24 | 2005-11-10 | Shin Kobe Electric Mach Co Ltd | Engine drive system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122132A1 (en) * | 2012-02-14 | 2013-08-22 | 新神戸電機株式会社 | Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate |
CN104221189A (en) * | 2012-02-14 | 2014-12-17 | 新神户电机株式会社 | Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate |
JPWO2013122132A1 (en) * | 2012-02-14 | 2015-05-18 | 新神戸電機株式会社 | Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate |
CN103606653A (en) * | 2013-10-21 | 2014-02-26 | 安徽省华森电源有限公司 | Automatic curing energy-saving technology of secondary lead regenerated accumulator plate |
US10096862B2 (en) | 2013-11-29 | 2018-10-09 | Gs Yuasa International Ltd. | Lead-acid battery |
CN103762340A (en) * | 2014-01-14 | 2014-04-30 | 天能集团江苏科技有限公司 | Rapid high-temperature curing drying process of lead-acid storage battery unformed electrode plate |
CN104064734A (en) * | 2014-06-17 | 2014-09-24 | 双登集团股份有限公司 | Lead-acid storage battery polar plate curing technology |
JP2016162612A (en) * | 2015-03-03 | 2016-09-05 | 日立化成株式会社 | Control valve type lead storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP5407271B2 (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5407271B2 (en) | Method for manufacturing positive electrode plate for lead storage battery, method for manufacturing lead storage battery, and lead storage battery | |
JP4505464B2 (en) | Battery paste materials and methods | |
EP1223627B1 (en) | Plate making process for lead acid battery | |
JP2008098009A (en) | Cathode plate for lead-acid battery | |
JP2018518798A (en) | Doped conductive oxide and improved electrode for electrochemical energy storage devices based on this material | |
JP2001229920A (en) | Method of manufacturing sealed lead acid battery | |
JP2009048800A (en) | Manufacturing method for paste type positive electrode plate | |
WO2001028012A1 (en) | Organic expander for lead-acid storage batteries | |
JPH11213993A (en) | Manufacture of sealed lead-acid battery | |
JP4293130B2 (en) | Positive electrode plate for lead acid battery and lead acid battery | |
JP2008071717A (en) | Method of chemical conversion of lead-acid battery | |
JP2000357532A (en) | Manufacture of lead-acid battery | |
JPH11162456A (en) | Lead-acid battery | |
KR100342198B1 (en) | Method for producing the positive plate of a lead battery | |
JPH11329420A (en) | Manufacture of lead-acid battery | |
JPH0676815A (en) | Positive electrode plate for lead-acid battery and manufacture thereof | |
JP5003171B2 (en) | Manufacturing method of paste type positive electrode plate | |
JP2773312B2 (en) | Manufacturing method of positive electrode plate for lead-acid battery | |
JP4561191B2 (en) | Method for producing positive active material for paste | |
JP2005322503A (en) | Control-valve type lead-acid storage battery and its manufacturing method | |
JP3164237B2 (en) | Manufacturing method of anode plate for lead-acid battery | |
JP3646634B2 (en) | Lead acid battery | |
JP4501246B2 (en) | Control valve type stationary lead acid battery manufacturing method | |
EP3937276A1 (en) | Anode and lithium ion battery | |
JP2526741B2 (en) | Lead powder for lead-acid battery anode plate and method for manufacturing anode plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111020 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20111114 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131021 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5407271 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |