JPH11213993A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPH11213993A
JPH11213993A JP10009038A JP903898A JPH11213993A JP H11213993 A JPH11213993 A JP H11213993A JP 10009038 A JP10009038 A JP 10009038A JP 903898 A JP903898 A JP 903898A JP H11213993 A JPH11213993 A JP H11213993A
Authority
JP
Japan
Prior art keywords
lead
positive electrode
lattice
battery
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10009038A
Other languages
Japanese (ja)
Inventor
Ichiro Mukoya
一郎 向谷
Arihiko Takemasa
有彦 武政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10009038A priority Critical patent/JPH11213993A/en
Publication of JPH11213993A publication Critical patent/JPH11213993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To manufacture a sealed lead-aid battery which is maintenance-free and has long life. SOLUTION: A grid is made of a lead alloy containing 0.9-2.5 wt.% Sn, Ca whose weight ratio to Sn (Ca/Sn) is 0.09 or less, and 5 ppm or more Bi. The grid is left in the atmosphere of 20-60 deg.C, 60% RH or more for 5 hours to treat the surface, then a pasty active material is filled in the grid to produce a paste type positive plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、長寿命でメンテナ
ンス・フリー特性に優れた密閉形鉛蓄電池の製造法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sealed lead-acid battery having a long life and excellent maintenance-free characteristics.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池は安価で信頼性が高いと
いう特徴を有するため、無停電電源装置などにおいて広
く使用されている。最近これらの装置に使用される密閉
形鉛蓄電池において、メンテナンス・フリーであり、か
つ長寿命であることが強く要求されるようになってき
た。なお、メンテナンス・フリーという課題について
は、使用する格子体の組成としてPb−Sb系合金に代
えて、Pb−Ca−Sn系合金を使用することによって
すでに解決されている。さらに、格子体を構成するPb
−Ca−Sn系合金にビスマスを0.001〜1wt.
%添加することによってボイドの少ない格子体を作製す
る試みが特許第2639751号公報などで開示されて
いる。また、Pb−Ca−Sn系合金にビスマスを添加
すると、格子体の耐食性が向上することも特開平7−0
65822号公報などで開示されている。しかしなが
ら、ビスマスの添加の有無にかかわらず、格子体にPb
−Ca−Sn系合金を使用した場合には、Pb−Sb系
合金を使用した場合に比べて、格子体と活物質との密着
性が悪いため、活物質が格子体から脱落しやすく、その
結果、電池の寿命が短くなるという問題点がある。
2. Description of the Related Art Sealed lead-acid batteries are widely used in uninterruptible power supplies and the like because of their features of being inexpensive and having high reliability. Recently, there has been a strong demand for sealed lead-acid batteries used in these devices to be maintenance-free and have a long life. The maintenance-free problem has already been solved by using a Pb-Ca-Sn-based alloy instead of a Pb-Sb-based alloy as the composition of the lattice used. Further, Pb constituting the lattice body
-0.001 to 1 wt.
For example, Japanese Patent No. 26399751 discloses an attempt to produce a lattice body having a small number of voids by adding%. In addition, when bismuth is added to a Pb-Ca-Sn alloy, the corrosion resistance of the lattice body is improved.
No. 65822 and the like. However, regardless of whether bismuth is added or not, Pb is added to the lattice.
When the -Ca-Sn-based alloy is used, the adhesion between the lattice and the active material is poorer than when the Pb-Sb-based alloy is used. As a result, there is a problem that the life of the battery is shortened.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記した問題
点に鑑みてなされたものであってメンテナンス・フリー
であり、かつ長寿命な密閉形鉛蓄電池を製造することで
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to produce a sealed lead-acid battery which is maintenance-free and has a long life.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、本発明は格子体に用いる鉛合金組成及び格子体を鋳
造した後の表面処理条件の両方を最適化することにし
た。すなわち、スズ(Sn)を0.9〜2.5wt.
%、カルシウム(Ca)とスズ(Sn)の重量比(以
下、Ca/Sn比と略す)が0.09以下、かつビスマ
ス(Bi)を5ppm以上含む鉛合金製の格子体を用
い、該格子体を大気中で、温度20〜60℃、相対湿度
60%以上の雰囲気中で5時間以上放置して表面処理を
した後、ペースト状活物質を充填して正極板を作製する
ことを特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention optimizes both the composition of the lead alloy used for the lattice and the surface treatment conditions after casting the lattice. That is, tin (Sn) is added in an amount of 0.9 to 2.5 wt.
%, A weight ratio of calcium (Ca) to tin (Sn) (hereinafter abbreviated as Ca / Sn ratio) of 0.09 or less, and a grid made of a lead alloy containing bismuth (Bi) of 5 ppm or more. After leaving the body in the atmosphere at a temperature of 20 to 60 ° C. and a relative humidity of 60% or more for 5 hours or more to perform surface treatment, the paste-like active material is filled to produce a positive electrode plate. Is what you do.

【0005】[0005]

【発明の実施の形態】ビスマス含む鉛塊、カルシウムと
アルミニウムの合金粒子(カルシウム含有量10wt.
%)、純度99.9wt.%の錫を原材料として使用し
た。今回はビスマス(0〜100ppm)、カルシウム
(0.05〜0.1wt.%)及びスズ(0.5〜3w
t.%)の添加量の影響を測定した。なお、カルシウム
とアルミニウムの合金を添加している理由は、アルミニ
ウムを添加することによりカルシウムが酸化されにくく
なり、空気中での取扱いが容易になるためである。これ
らの混合物をカーボン製のるつぼを用いて、500±1
0℃で溶解させて混合した後、格子体の形状に彫り込み
がされている250±10℃に加熱した鋳型に注ぎ込ん
で凝固させた後、離型して正極用格子体とした。作製し
た正極用格子体の寸法はw 400mm × l 140mm
× t 4.0mmである。この正極用格子体を温度及び
湿度の異なる雰囲気で表面処理をした後、一酸化鉛と希
硫酸とを混練したペースト状活物質を充填し、大気中で
熟成・乾燥させて未化成の正極板とした。今回、正極用
格子体の表面処理条件を最適化することによって、格子
体と正極活物質である二酸化鉛との密着性が強くなるこ
とが明らかになった。この理由としては、格子表面のス
ズ(Sn)が酸化されて二酸化スズ(SnO2)を生成
することによって、格子体と正極活物質とのアフィニテ
ィの良い接合層を生成するためと考えられる。負極板用
格子体の組成はPb−0.09wt.%Ca−0.2w
t.%Snとし、従来の方法で負極板を作製した。な
お、負極用格子体の寸法は w 400mm × l 140
mm × t 2.5mmである。このようにして作成した
正極板と従来から使用していた負極板とを組み合わせて
密閉形鉛畜電池を作成し、電槽化成した後に過充電寿命
試験をした。本発明の一実施例を以下に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Lead mass containing bismuth, alloy particles of calcium and aluminum (calcium content 10 wt.
%), Purity 99.9 wt. % Tin was used as a raw material. This time, bismuth (0-100 ppm), calcium (0.05-0.1 wt.%) And tin (0.5-3 w
t. %) Was measured. The reason why the alloy of calcium and aluminum is added is that by adding aluminum, calcium is hardly oxidized and handling in the air becomes easy. These mixtures were placed in a carbon crucible at 500 ± 1.
After melting and mixing at 0 ° C., the mixture was poured into a mold heated to 250 ± 10 ° C. engraved in the shape of a lattice, solidified, and then released to obtain a lattice for a positive electrode. The dimensions of the fabricated positive electrode lattice body are w 400 mm x l 140 mm
× t 4.0 mm. After subjecting the positive electrode grid to surface treatment in an atmosphere of different temperature and humidity, the paste is filled with a paste-like active material obtained by kneading lead monoxide and dilute sulfuric acid, and aged and dried in the air to form an unformed positive electrode plate. And This time, it was revealed that by optimizing the surface treatment conditions of the positive electrode grid, the adhesion between the grid and lead oxide, which is the positive electrode active material, was enhanced. This is probably because tin (Sn) on the lattice surface is oxidized to generate tin dioxide (SnO 2 ), thereby forming a bonding layer having good affinity between the lattice and the positive electrode active material. The composition of the grid for the negative electrode plate was Pb-0.09 wt. % Ca-0.2w
t. % Sn, and a negative electrode plate was prepared by a conventional method. The dimensions of the grid for the negative electrode were w 400 mm x l 140
mm × t 2.5 mm. A sealed lead-acid battery was prepared by combining the positive electrode plate thus prepared and a negative electrode plate which had been conventionally used, and an overcharge life test was performed after forming a battery case. One embodiment of the present invention will be described below.

【0006】[0006]

【実施例】(実施例1〜3、比較例1)前記した条件
で、ビスマスをそれぞれ0、5、10、100ppm含
み、Caを0.07wt.%、Snを0.9wt.%含
む鉛合金(Ca/Sn比:0.078)を用いて正極用
格子体を鋳造し、大気中で温度40℃、相対湿度80%
の雰囲気に10時間放置して表面処理をした。一酸化鉛
を75±4wt.%含むボールミル式の鉛粉100重量
部、濃度35wt.%の硫酸15重量部とを混練し、正
極用のペースト状活物質を作製した。作製した正極用ペ
ースト状活物質を、前記した格子体に充填し、大気中
で、温度40℃、相対湿度98%の雰囲気で20時間放
置して熟成・乾燥させて未化成の正極板を作製した。負
極用のペースト状活物質として、一酸化鉛を75±5w
t.%含むボールミル式の鉛粉を使用した。この鉛粉1
00重量部、リグニン0.2重量部、硫酸バリウム1重
量部と、濃度35wt.%の硫酸7.5重量部を混練し
て負極用のペースト状活物質を作製した。このペースト
状活物質を前記した格子体に充填し、大気中で、温度4
0℃、相対湿度85%の雰囲気で20時間放置して未化
成の負極板を作製した。
Examples (Examples 1 to 3 and Comparative Example 1) Under the conditions described above, bismuth was contained at 0, 5, 10, and 100 ppm, respectively, and Ca was contained at 0.07 wt. %, Sn of 0.9 wt. % Of a lead alloy (Ca / Sn ratio: 0.078), and a temperature of 40 ° C. and a relative humidity of 80% in the atmosphere.
Was left for 10 hours in the atmosphere to perform surface treatment. 75 ± 4 wt. % Of a ball mill type lead powder containing 100% by weight, and a concentration of 35 wt. And 15 parts by weight of sulfuric acid to obtain a paste-like active material for a positive electrode. The prepared paste-like active material for a positive electrode is filled in the above-mentioned lattice, and left in an atmosphere of a temperature of 40 ° C. and a relative humidity of 98% for 20 hours to be aged and dried to prepare an unformed positive electrode plate. did. 75 ± 5w of lead monoxide as paste active material for negative electrode
t. % Ball mill type lead powder was used. This lead powder 1
00 parts by weight, lignin 0.2 parts by weight, barium sulfate 1 part by weight, and a concentration of 35 wt. % Sulfuric acid (7.5 parts by weight) was kneaded to prepare a paste active material for a negative electrode. This paste-like active material is filled in the above-mentioned lattice body, and is heated at a temperature of 4 in the air.
It was left in an atmosphere of 0 ° C. and a relative humidity of 85% for 20 hours to prepare an unformed negative electrode plate.

【0007】これらの正極板と負極板とをガラス繊維製
のセパレータを介して組み合わせてABS製電槽に組み
込んだ後、濃度28wt.%の希硫酸電解液を注入し
た。その後、0.23CA(46A)の電流で44時間
充電して電槽化成をした後、電解液の比重を1.26
(ただし、20℃)に調整し、電圧が2Vで公称容量が
200Ahの密閉形鉛蓄電池を作製した。作成した電池
は60℃、2.23Vの定電圧で連続して過充電をす
る。そして、これらの電池を30日ごとに、20Aの定
電流で終止電圧1.6Vまで放電して容量を測定し、そ
の容量が公称容量の50%を満たさなくなる時を電池の
寿命とし、それまでの期間を測定した。なお、寿命に達
していない電池は前記した条件で過充電試験を続けた。
表1に示すようにビスマスを5ppm以上含む電池の寿
命が長い。
[0007] After combining these positive electrode plate and negative electrode plate via a glass fiber separator and assembling them in an ABS battery case, a concentration of 28 wt. % Dilute sulfuric acid electrolyte was injected. Thereafter, the battery was charged with a current of 0.23 CA (46 A) for 44 hours to form a battery case, and then the specific gravity of the electrolyte was 1.26.
(However, the temperature was adjusted to 20 ° C.) to produce a sealed lead-acid battery having a voltage of 2 V and a nominal capacity of 200 Ah. The prepared battery is continuously overcharged at a constant voltage of 2.23 V at 60 ° C. These batteries are discharged every 30 days at a constant current of 20 A to a final voltage of 1.6 V, and the capacity is measured. The time when the capacity does not satisfy 50% of the nominal capacity is defined as the life of the battery. Was measured. In addition, the battery which did not reach the end of its life was subjected to the overcharge test under the above conditions.
As shown in Table 1, a battery containing bismuth at 5 ppm or more has a long life.

【0008】[0008]

【表1】 [Table 1]

【0009】(実施例2、4、5、比較例2〜5)ビス
マスを10ppm含むPb−Ca−Sn系合金製の格子
体を作製して正極に用いた。鉛合金中のCaの添加量を
0.07、0.10wt.%とし、Sn添加量を0.
5、0.9、2.0、3.0wt.%として表2の組み
合わせで実験した。その他の電池の作製・試験条件は
(実施例1〜3)と同一である。第2表に示すようにS
nを0.9〜2.0wt.%含み、かつCa/Snの比
が0.078以下にすると電池の寿命が長い。
(Examples 2, 4, 5 and Comparative Examples 2 to 5) A lattice body made of a Pb-Ca-Sn-based alloy containing 10 ppm of bismuth was prepared and used as a positive electrode. The addition amount of Ca in the lead alloy is 0.07, 0.10 wt. %, And the amount of Sn added is 0.1%.
5, 0.9, 2.0, 3.0 wt. The experiment was performed using the combinations shown in Table 2 as%. The other conditions for producing and testing the battery are the same as those in (Examples 1 to 3). As shown in Table 2, S
n from 0.9 to 2.0 wt. % And the ratio of Ca / Sn is 0.078 or less, the battery life is prolonged.

【0010】[0010]

【表2】 [Table 2]

【0011】(実施例2、6〜9、比較例6〜8)ビス
マスを10ppm含む、Pb−0.07wt.%Ca−
0.9wt.%Sn系合金(Ca/Sn比=0.07
8)よりなる正極用格子体を作製した。この正極用格子
体を表3に示すように、異なる雰囲気の大気中で10時
間放置して表面を処理した。なお、設備上の理由から、
相対湿度は90%まで測定した。その他の電池の作製・
試験条件は、(実施例1〜3)と同一である。表3に示
すように正極用格子体の表面処理条件として温度が20
〜60℃、相対湿度が60%以上にすると電池の寿命が
長い。
(Examples 2, 6 to 9, Comparative Examples 6 to 8) Pb-0.07 wt. % Ca-
0.9 wt. % Sn-based alloy (Ca / Sn ratio = 0.07)
8) A positive electrode lattice body made of 8) was produced. As shown in Table 3, the surface of the positive electrode grid body was treated by leaving it in the atmosphere of different atmospheres for 10 hours. For equipment reasons,
Relative humidity was measured to 90%. Fabrication of other batteries
The test conditions are the same as in (Examples 1 to 3). As shown in Table 3, the surface treatment conditions for the positive electrode lattice
When the temperature is set to 60 ° C. and the relative humidity is set to 60% or more, the life of the battery is prolonged.

【0012】[0012]

【表3】 [Table 3]

【0013】(実施例2、10、11、比較例9)ビス
マスを10ppm含む、Pb−0.07wt.%Ca−
0.9wt.%Sn系合金(Ca/Sn=0.078)
よりなる正極用格子体を作製した。そして、この正極用
格子体の表面処理条件をそれぞれ温度40℃、相対湿度
80%とし、3時間、5時間、10時間又は20時間放
置した。その他の電池の作製・試験条件は、(実施例1
〜3)と同一である。表4に示すように5時間以上放置
すると電池の寿命が長い。
(Examples 2, 10, 11 and Comparative Example 9) Pb-0.07 wt. % Ca-
0.9 wt. % Sn-based alloy (Ca / Sn = 0.078)
A positive electrode lattice body was produced. Then, the surface treatment conditions of this positive electrode lattice were set to a temperature of 40 ° C. and a relative humidity of 80%, respectively, and left for 3, 5, 10, or 20 hours. Other battery fabrication and test conditions are described in Example 1
To 3). As shown in Table 4, the battery life is prolonged when left for 5 hours or more.

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【発明の効果】上述したように本発明を用いると、スズ
を0.9〜2.5wt.%、カルシウムとスズの重量比
(Ca/Sn比)が0.09以下、かつビスマスを5p
pm以上含むPb−Ca−Sn系合金を格子体に用い、
大気中、温度20〜60℃、相対湿度60%以上の雰囲
気中で5時間以上放置して該格子体の表面を処理した
後、ペースト状活物質を充填してペースト式正極板を作
製しているためメンテナンス・フリーであり、かつ長寿
命な密閉形鉛蓄電池が得られる点で優れている。
According to the present invention, as described above, tin is contained in an amount of 0.9 to 2.5 wt. %, The weight ratio of calcium and tin (Ca / Sn ratio) is 0.09 or less, and bismuth is 5 p
using a Pb-Ca-Sn-based alloy containing at least pm
After the surface of the lattice body is treated by leaving it in an atmosphere at a temperature of 20 to 60 ° C. and a relative humidity of 60% or more for 5 hours or more, a paste-type active material is filled to produce a paste-type positive electrode plate. Therefore, it is excellent in that a sealed lead-acid battery that is maintenance-free and has a long life can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉛合金中にスズ(Sn)を0.9〜2.5
wt.%含み、カルシウム(Ca)とスズ(Sn)の重
量比(Ca/Sn)が0.09以下であり、かつビスマ
ス(Bi)を5ppm以上含む鉛合金製の格子体を用
い、該格子体を大気中で、温度20〜60℃、相対湿度
60%以上の雰囲気に5時間以上放置して表面処理をし
た後、ペースト状活物質を充填することを特徴とする密
閉形鉛蓄電池の製造法。
1. A lead alloy containing tin (Sn) in an amount of 0.9 to 2.5.
wt. %, A weight ratio (Ca / Sn) of calcium (Ca) and tin (Sn) is 0.09 or less, and a lattice material made of a lead alloy containing 5 ppm or more of bismuth (Bi) is used. A method for producing a sealed lead-acid battery, characterized in that it is left in an atmosphere at a temperature of 20 to 60 ° C. and a relative humidity of 60% or more for 5 hours or more to perform surface treatment, and then filled with a paste-like active material.
JP10009038A 1998-01-20 1998-01-20 Manufacture of sealed lead-acid battery Pending JPH11213993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10009038A JPH11213993A (en) 1998-01-20 1998-01-20 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10009038A JPH11213993A (en) 1998-01-20 1998-01-20 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11213993A true JPH11213993A (en) 1999-08-06

Family

ID=11709491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10009038A Pending JPH11213993A (en) 1998-01-20 1998-01-20 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11213993A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403946A2 (en) * 2002-08-13 2004-03-31 Johnson Controls Technology Company Alloy for battery grids
US8974972B2 (en) 2005-05-23 2015-03-10 Johnson Controls Technology Company Battery grid
US9130232B2 (en) 2010-03-03 2015-09-08 Johnson Controls Technology Company Battery grids and methods for manufacturing same
US9577266B2 (en) 2007-03-02 2017-02-21 Johnson Controls Technology Company Negative grid for battery
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
WO2018037563A1 (en) * 2016-08-26 2018-03-01 日立化成株式会社 Lead acid storage battery, forged grid and method for producing same
US10170768B2 (en) 2013-10-08 2019-01-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403946A2 (en) * 2002-08-13 2004-03-31 Johnson Controls Technology Company Alloy for battery grids
EP1403946A3 (en) * 2002-08-13 2004-04-21 Johnson Controls Technology Company Alloy for battery grids
US8974972B2 (en) 2005-05-23 2015-03-10 Johnson Controls Technology Company Battery grid
US8980419B2 (en) 2005-05-23 2015-03-17 Johnson Controls Technology Company Battery grid
US9577266B2 (en) 2007-03-02 2017-02-21 Johnson Controls Technology Company Negative grid for battery
US9130232B2 (en) 2010-03-03 2015-09-08 Johnson Controls Technology Company Battery grids and methods for manufacturing same
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US11824204B2 (en) 2010-04-14 2023-11-21 Cps Technology Holdings Llc Battery and battery plate assembly with absorbent separator
US10985380B2 (en) 2010-04-14 2021-04-20 Cps Technology Holdings Llc Battery and battery plate assembly with highly absorbent separator
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance
US11539051B2 (en) 2011-11-03 2022-12-27 Cps Technology Holdings Llc Battery grid with varied corrosion resistance
US10840515B2 (en) 2013-10-08 2020-11-17 Clarios Germany Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10170768B2 (en) 2013-10-08 2019-01-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US11611082B2 (en) 2013-10-08 2023-03-21 Clarios Germany Gmbh & Co. Kg Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
EP3432394A4 (en) * 2016-08-26 2019-06-12 Hitachi Chemical Company, Ltd. Lead acid storage battery, forged grid and method for producing same
WO2018037563A1 (en) * 2016-08-26 2018-03-01 日立化成株式会社 Lead acid storage battery, forged grid and method for producing same

Similar Documents

Publication Publication Date Title
JPH11213993A (en) Manufacture of sealed lead-acid battery
JP2004349197A (en) Lead-base alloy for lead storage battery and lead storage battery using it
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP2000251896A (en) Lead-acid battery and its manufacture
JPH11176438A (en) Lead-acid battery, and manufacture of material lead powder for lead-acid battery
JP3511949B2 (en) Sealed lead-acid battery
JPH11162456A (en) Lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2002008644A (en) Production method of positive electrode plate for lead storage battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JPH11162455A (en) Lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2003317711A (en) Formation method of lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JP2005322503A (en) Control-valve type lead-acid storage battery and its manufacturing method
JP2001068117A (en) Lead-acid battery
JP2000048812A (en) Positive electrode plate for lead-acid battery
JP2004207003A (en) Liquid type lead acid storage battery
JP3624576B2 (en) Lead-acid battery positive plate
JPH11135117A (en) Lead-acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP2000082489A (en) Lead-acid battery
JP2000182615A (en) Lead-acid battery
JPH0652654B2 (en) Lead acid battery electrode plate manufacturing method