JPH1092434A - Battery - Google Patents

Battery

Info

Publication number
JPH1092434A
JPH1092434A JP8241594A JP24159496A JPH1092434A JP H1092434 A JPH1092434 A JP H1092434A JP 8241594 A JP8241594 A JP 8241594A JP 24159496 A JP24159496 A JP 24159496A JP H1092434 A JPH1092434 A JP H1092434A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
graphite
energy density
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8241594A
Other languages
Japanese (ja)
Other versions
JP3311597B2 (en
Inventor
Michiko Igawa
享子 井川
Yoshimi Komatsu
誼 小松
Shigeo Tsuruoka
重雄 鶴岡
Shiyuuko Yamauchi
修子 山内
Masanori Yoshikawa
正則 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24159496A priority Critical patent/JP3311597B2/en
Publication of JPH1092434A publication Critical patent/JPH1092434A/en
Application granted granted Critical
Publication of JP3311597B2 publication Critical patent/JP3311597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance the energy density and the output density of secondary battery positive electrode material by containing at least one kind of graphite which has ash portion of specified percentage or less and has La of specified Åor more as a conductive agent. SOLUTION: In a battery which is composed of a negative electrode, a positive electrode, and lithium salt-containing nonaqueous electrolyte and can be reversibly charged and discharged plural times, the positive electrode contains at least one kind of graphite which has ash portion of 0.08% or less and has La of 400Å or more as a conductive agent. When the ash portion is more than 0.08%, impurities react with lithium in positive electrode active material to reduce lithium amount so that the energy density of the positive electrode active material is decreased and output density is reduced since a reaction product is an insulating substance. When the La is less than 400Å, the electron conductivity is deteriorated so that the energy density is decreased. Thereby, the energy density and the output density of secondary battery positive electrode material are enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は可逆的に複数回の充
放電が可能な電池に係り、特に非水電解液を用いた二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery that can be reversibly charged and discharged a plurality of times, and more particularly to a secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、二次電池はパソコンや携帯電話な
どの電源として、あるいは電気自動車や電力貯蔵用の電
源として、なくてはならない重要な構成要素の一つとな
っている。
2. Description of the Related Art In recent years, secondary batteries have become one of the essential components that are indispensable as power sources for personal computers and mobile phones, or as power sources for electric vehicles and power storage.

【0003】携帯型コンピュータ(ペンコンピュータと
呼ばれるものも含む)や携帯情報端末(Personal Digita
l Assistant、あるいはPersonal Intelligent Communic
ator、あるいはハンドヘルド・コミュニケータ)といっ
た移動体通信(モービル・コンピューティング)が必要
とされる要求として、小型化,軽量化が挙げられる。し
かし、液晶表示パネルのバックライトや描画制御によっ
て消費される電力が高いことや、二次電池の容量が現状
ではまだ不十分であることなどの点から、システムのコ
ンパクト化,軽量化が難しい状況にある。
A portable computer (including a pen computer) and a personal digital assistant (Personal Digita)
l Assistant or Personal Intelligent Communic
A demand for mobile communication (mobile computing) such as an ator or a hand-held communicator includes miniaturization and weight reduction. However, it is difficult to make the system compact and lightweight because of the high power consumed by the backlight and drawing control of the liquid crystal display panel, and the fact that the capacity of the secondary battery is still insufficient at present. It is in.

【0004】さらに、地球環境問題の高まりとともに排
ガスや騒音を出さない電気自動車が関心を集めている。
しかし、現状の電池ではエネルギ密度,出力密度が低い
ことから走行距離が短い,加速性が悪い,車内のスペー
スが狭い,車体の安定性が悪いなどの問題点が生じてい
る。
[0004] Further, with the increase of global environmental problems, electric vehicles that do not emit exhaust gas and noise have attracted attention.
However, current batteries have problems such as short running distance, poor acceleration, small space in the vehicle, and poor stability of the vehicle body due to low energy density and low output density.

【0005】二次電池の中でも特に非水電解液を用いた
リチウム二次電池は、電圧が高く、かつ軽量で、高いエ
ネルギ密度が期待されることから注目されている。この
二次電池の正極材料は、ポリアニリン,ポリアセン,ポ
リパラフェニレンなどの導電性高分子やLixCoO2
LixNiO2,LixMn24、これらの遷移金属を他の
遷移金属やアルカリ土類金属,半金属などで置換した複
合酸化物,TiS2,MoS2 などのカルコゲナイト化
合物などが代表的である。しかし、これらはいずれも材
料そのものの抵抗が高い欠点を有する。そのため、正極
活物質に導電剤を添加することによって電子伝導性を高
め、正極活物質としての特性を発現させている。従来、
非水電解液を用いたリチウム二次電池の高エネルギ密度
化、あるいは高出力密度化を達成するため、正極の導電
剤を改良する試みがなされている。例えば、導電剤とし
て空孔率が5〜40%の黒鉛を使用する(特開平7−1303
96号公報),d(002)が3.358Åより大きい材
料を使用する(平7−192718号公報),吸油量が50ml
/100g以上,300ml/100g未満のカーボンブ
ラックを使用する(特開平7−288140号公報)などがあ
る。
[0005] Among secondary batteries, lithium secondary batteries using a non-aqueous electrolyte are particularly attracting attention because of their high voltage, light weight, and high energy density. The cathode material of this secondary battery is made of a conductive polymer such as polyaniline, polyacene, polyparaphenylene, Li x CoO 2 ,
Representative examples include Li x NiO 2 , Li x Mn 2 O 4 , complex oxides obtained by substituting these transition metals with other transition metals, alkaline earth metals, metalloids, etc., and chalcogenite compounds such as TiS 2 and MoS 2. It is. However, all of them have a disadvantage that the resistance of the material itself is high. Therefore, by adding a conductive agent to the positive electrode active material, electron conductivity is increased, and characteristics as the positive electrode active material are developed. Conventionally,
In order to achieve higher energy density or higher output density of a lithium secondary battery using a non-aqueous electrolyte, attempts have been made to improve the conductive agent of the positive electrode. For example, graphite having a porosity of 5 to 40% is used as a conductive agent (Japanese Patent Application Laid-Open No. 7-1303).
No. 96), using a material having a d (002) of greater than 3.358% (Japanese Patent Laid-Open No. 7-192718), having an oil absorption of 50 ml.
/ 100 g or more and less than 300 ml / 100 g of carbon black (JP-A-7-288140).

【0006】[0006]

【発明が解決しようとする課題】導電剤として空孔率が
5〜40%の黒鉛を使用することにより、基体から活物
質が剥離することなく電極の抵抗を低下させることがで
きる。しかし、電極の抵抗が低減できる理由は、黒鉛の
空孔内に結着剤が吸収され、活物質表面を覆わなくなる
からであり、こうした結着剤の電極内分布の制御による
電極抵抗の低減には自ずと限界がある。d(002)が
3.358Åより大きい材料を使用する場合にも同様で
あり、d(002)が大きいと結着剤が層間に入り込む
ため、電極抵抗が低減される。吸油量が50ml/100
g以上300ml/100g未満のカーボンブラックを使
用するにも同様である。これら従来方法では結着剤の電
極内分布の制御により基体から活物質が剥離することな
く電極の抵抗を低下させており、飛躍的な抵抗の低減に
は至らないため、二次電池用正極材料の高エネルギ密度
化、あるいは高出力密度化を図るのに有効な方法はあま
り見出されていない。
By using graphite having a porosity of 5 to 40% as a conductive agent, the resistance of the electrode can be reduced without exfoliating the active material from the substrate. However, the reason why the resistance of the electrode can be reduced is that the binder is absorbed into the pores of the graphite and does not cover the surface of the active material, and the electrode resistance is reduced by controlling the distribution of the binder in the electrode. Has its own limitations. The same applies to the case where a material having d (002) larger than 3.358 ° is used. When d (002) is large, the binder penetrates between the layers, so that the electrode resistance is reduced. Oil absorption 50ml / 100
The same applies when using carbon black in an amount of at least 300 g / 100 g. In these conventional methods, by controlling the distribution of the binder in the electrode, the resistance of the electrode is reduced without the active material peeling from the substrate, and the resistance is not drastically reduced. Effective methods for increasing the energy density or the output density of the semiconductor have not been found.

【0007】本発明は二次電池用正極材料の高エネルギ
密度化、及び高出力密度化を図ることを目的とする。
An object of the present invention is to increase the energy density and the output density of a positive electrode material for a secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明の電池および正極
は、負極,正極,リチウム塩を含む非水電解質からなる
可逆的に複数回の充放電が可能な電池に関し、上記正極
の導電剤として、灰分が0.08% 以下で、かつLaが
400Å以上の黒鉛を少なくとも1種含むことを特徴と
する。本発明で用いられる黒鉛は人造黒鉛,天然黒鉛,
塊状黒鉛,燐片状黒鉛,膨張黒鉛,特殊処理黒鉛,ピッ
チ系黒鉛,コークス系黒鉛などの各種黒鉛が挙げられ
る。これらの黒鉛のうち、灰分が0.08% 以下で、か
つLaが400Å以上のものが好ましく、さらに好まし
くは灰分が0.05% 以下で、かつLaが500Å以
上、最も好ましくは灰分が0.02% 以下で、かつLa
が600Å以上である。灰分が0.08% より多い場合
には、これら不純物が正極活物質中のリチウムと反応し
てリチウム量が減少するため、正極活物質のエネルギ密
度が低下する。また、不純物とリチウムとの反応生成物
が絶縁性物質であるため、電極の抵抗が高くなり、出力
密度が低下する。Laが400Åよりも小さい場合には
黒鉛の電子伝導性が低下するため、電極抵抗を低減させ
ることができず、エネルギ密度も出力密度も低下する。
The battery and the positive electrode of the present invention relate to a battery comprising a negative electrode, a positive electrode and a non-aqueous electrolyte containing a lithium salt, which can be charged and discharged a plurality of times reversibly. And at least one kind of graphite having an ash content of 0.08% or less and a La of 400 ° or more. The graphite used in the present invention is artificial graphite, natural graphite,
Various graphites such as massive graphite, flaky graphite, expanded graphite, specially treated graphite, pitch-based graphite, and coke-based graphite are exemplified. Of these graphites, those having an ash content of 0.08% or less and La of 400% or more are preferred, more preferably 0.05% or less of ash content and 500% or more of La, and most preferably an ash content of 0.5% or more. Not more than 02% and La
Is 600 ° or more. When the ash content is more than 0.08%, these impurities react with lithium in the positive electrode active material to decrease the amount of lithium, so that the energy density of the positive electrode active material decreases. In addition, since the reaction product of the impurity and lithium is an insulating substance, the resistance of the electrode increases and the output density decreases. When La is smaller than 400 °, the electron conductivity of graphite decreases, so that the electrode resistance cannot be reduced, and the energy density and the output density also decrease.

【0009】本発明の電池および正極は、黒鉛を1種以
上含む導電剤に、灰分が0.08%以下で、かつ比表面
積が50m2/g 以上のカーボンブラックを5重量%以
上,75重量%以下の範囲で混合させたものを使用する
ことを特徴とする。本発明で用いられるカーボンブラッ
クはアセチレンブラック,ケッチェンブラック,ファー
ネスブラックなどが挙げられる。これらのカーボンブラ
ックのうち、灰分が0.08%以下で、かつ比表面積が
50m2/g以上のものが好ましく、さらに好ましくは
灰分が0.05%以下で、かつ比表面積が200m2/g
以上、最も好ましくは灰分が0.02% 以下で、かつ比
表面積が350m2/g 以上である。灰分が0.08%
より多い場合には、これら不純物が正極活物質中のリチ
ウムと反応してリチウム量が減少するため、正極活物質
のエネルギ密度が低下する。また、不純物とリチウムと
の反応生成物が絶縁性物質であるため、電極の抵抗が高
くなり、出力密度が低下する。比表面積が50m2/g
よりも小さい場合には結着剤が正極活物質表面を覆うた
め、電極抵抗が低減できず、カーボンブラックの混合効
果が得られないことから、エネルギ密度も出力密度も低
下する。カーボンブラックを黒鉛を1種以上含む導電剤
に5重量%以上,75重量%以下の範囲で混合させたも
のを導電剤として使用することが好ましい。カーボンブ
ラックの混合量が5重量%よりも少ない場合には電極抵
抗が低減できず、カーボンブラックの混合効果が得られ
ない。また、カーボンブラックの混合量が75重量%よ
りも多い場合には結着剤の結着力が低下して基体から活
物質が剥離し、カーボンブラックの混合効果が得られな
い。
In the battery and the positive electrode of the present invention, a conductive agent containing at least one kind of graphite contains carbon black having an ash content of not more than 0.08% and a specific surface area of not less than 50 m 2 / g in an amount of from 5% by weight to 75% by weight. % Is used. The carbon black used in the present invention includes acetylene black, Ketjen black, furnace black and the like. Of these carbon blacks, those having an ash content of not more than 0.08% and a specific surface area of not less than 50 m 2 / g are preferable, and more preferably having an ash content of not more than 0.05% and a specific surface area of 200 m 2 / g.
As described above, most preferably, the ash content is 0.02% or less, and the specific surface area is 350 m 2 / g or more. Ash content is 0.08%
If the amount is larger, these impurities react with lithium in the positive electrode active material to decrease the amount of lithium, so that the energy density of the positive electrode active material decreases. In addition, since the reaction product of the impurity and lithium is an insulating substance, the resistance of the electrode increases and the output density decreases. The specific surface area is 50 m 2 / g
If it is smaller, the binder covers the surface of the positive electrode active material, so that the electrode resistance cannot be reduced and the mixing effect of carbon black cannot be obtained, so that both the energy density and the output density decrease. It is preferable to use, as the conductive agent, a mixture of carbon black and a conductive agent containing at least one kind of graphite in a range of 5% by weight or more and 75% by weight or less. If the mixing amount of carbon black is less than 5% by weight, the electrode resistance cannot be reduced and the mixing effect of carbon black cannot be obtained. On the other hand, if the mixing amount of carbon black is more than 75% by weight, the binding force of the binder is reduced and the active material is peeled off from the substrate, so that the effect of mixing carbon black cannot be obtained.

【0010】本発明で用いられる正極活物質は可逆的に
リチウムイオンを挿入放出できる遷移金属酸化物,遷移
金属硫化物,導電性高分子でも良いが特に好ましくはリ
チウム含有遷移金属酸化物が好ましい。本発明で用いら
れる好ましいリチウム含有遷移金属酸化物はTi,C
r,V,Fe,Mn,Mo,W,Cu,Ni,Coを含
むリチウム含有酸化物が挙げられる。本発明で用いられ
るより好ましいリチウム含有遷移金属酸化物正極活物質
は遷移金属のほかに半金属のAl,Ga,In,Ge,
Sn,Pb,Sb,Biなどを混合してもよい。また、
リチウム以外のアルカリ金属やアルカリ土類金属を混合
することによってさらに好ましい。本発明で用いられる
さらに好ましいリチウム含有正極活物質はLixCoa
2, LixCo(a-b)b2(MはTi,Cr,
V,Fe,Mn,Mo,W,Cu,Ni,Al,Ga,
In,Ge,Sn,Pb,Sb,Bi,リチウム以外の
アルカリ金属,アルカリ土類金属のうち少なくとも一
つ),LixNia2, LixNi(a-b)b2(M
はTi,Cr,V,Fe,Mn,Mo,W,Cu,C
o,Al,Ga,In,Ge,Sn,Pb,Sb,B
i,リチウム以外のアルカリ金属,アルカリ土類金属の
うち少なくとも一つ),LixMn2a4,LixMn
(2a-b)b4(MはTi,Cr,V,Fe,Mo,W,
Cu,Co,Al,Ga,In,Ge,Sn,Pb,S
b,Bi,リチウム以外のアルカリ金属,アルカリ土類
金属のうち少なくとも一つ),Lix2a5,Lix
2(a-b)b5(MはTi,Cr,Co,Ni,Fe,M
n,Mo,W,Cu,Ni,Al,Ga,In,Ge,
Sn,Pb,Sb,Bi,リチウム以外のアルカリ金
属,アルカリ土類金属のうち少なくとも一つ),Lix
Fea2,LixFe(a-b)b2(MはTi,Cr,
V,Co,Mn,Mo,W,Cu,Ni,Al,Ga,
In,Ge,Sn,Pb,Sb,Bi,リチウム以外の
アルカリ金属,アルカリ土類金属のうち少なくとも一
つ),LixCua2, LixCu(a-b)b
2(MはTi,Cr,V,Co,Mn,Mo,W,F
e,Ni,Al,Ga,In,Ge,Sn,Pb,S
b,Bi,リチウム以外のアルカリ金属,アルカリ土類
金属のうち少なくとも一つ),LixCra2
LixCr(a-b)b2(MはTi,Cu,V,Co,M
n,Mo,W,Fe,Ni,Al,Ga,In,Ge,
Sn,Pb,Sb,Bi,リチウム以外のアルカリ金
属,アルカリ土類金属のうち少なくとも一つ),Lix
Fe(MoO4)O3,LixFe(Mo(1-b)b4)O3(M
はTi,Cu,V,Co,Mn,W,Fe,Ni,A
l,Ga,In,Ge,Sn,Pb,Sb,Bi,リチ
ウム以外のアルカリ金属,アルカリ土類金属のうち少な
くとも一つ),LixFe(SO4)a(MoO4)(3-a),L
xFe(SO4)a(Mo(1-b)b4)(3-a)(MはTi,
Cu,V,Co,Mn,W,Fe,Ni,Al,Ga,
In,Ge,Sn,Pb,Sb,Bi,リチウム以外の
アルカリ金属,アルカリ土類金属のうち少なくとも一
つ)(ここでa=1.5〜0.5,b=0.5〜0.000
5)が挙げられる。ここでx値は充放電により増減す
る。
The positive electrode active material used in the present invention may be a transition metal oxide, a transition metal sulfide, or a conductive polymer capable of reversibly inserting and releasing lithium ions, and particularly preferably a lithium-containing transition metal oxide. The preferred lithium-containing transition metal oxide used in the present invention is Ti, C
Lithium-containing oxides containing r, V, Fe, Mn, Mo, W, Cu, Ni, and Co may be mentioned. More preferred lithium-containing transition metal oxide cathode active materials used in the present invention are semi-metals such as Al, Ga, In, Ge, besides transition metals.
Sn, Pb, Sb, Bi and the like may be mixed. Also,
It is more preferable to mix an alkali metal or alkaline earth metal other than lithium. More preferred lithium-containing cathode active material used in the present invention is Li x Co a O
2 , Li x Co (ab) Mb O 2 (M is Ti, Cr,
V, Fe, Mn, Mo, W, Cu, Ni, Al, Ga,
In, Ge, Sn, Pb, Sb, Bi, at least one of alkali metals and alkaline earth metals other than lithium), Li x Ni a O 2 , Li x Ni (ab) M b O 2 (M
Are Ti, Cr, V, Fe, Mn, Mo, W, Cu, C
o, Al, Ga, In, Ge, Sn, Pb, Sb, B
i, at least one of alkali metals other than lithium and alkaline earth metals), Li x Mn 2a O 4 , Li x Mn
(2a-b) M b O 4 (M is Ti, Cr, V, Fe, Mo, W,
Cu, Co, Al, Ga, In, Ge, Sn, Pb, S
b, Bi, at least one of alkali metals other than lithium and alkaline earth metals), Li x V 2a O 5 , Li x V
2 (ab) M b O 5 (M is Ti, Cr, Co, Ni, Fe, M
n, Mo, W, Cu, Ni, Al, Ga, In, Ge,
Sn, Pb, Sb, Bi, at least one of alkali metals other than lithium and alkaline earth metals), Li x
Fe a O 2, Li x Fe (ab) M b O 2 (M is Ti, Cr,
V, Co, Mn, Mo, W, Cu, Ni, Al, Ga,
In, Ge, Sn, Pb, Sb, Bi, at least one of alkali metals other than lithium and alkaline earth metals), Li x Cu a O 2 , Li x Cu (ab) M b O
2 (M is Ti, Cr, V, Co, Mn, Mo, W, F
e, Ni, Al, Ga, In, Ge, Sn, Pb, S
b, Bi, at least one of an alkali metal other than lithium and an alkaline earth metal), Li x C a O 2 ,
Li x Cr (ab) M b O 2 (M is Ti, Cu, V, Co, M
n, Mo, W, Fe, Ni, Al, Ga, In, Ge,
Sn, Pb, Sb, Bi, at least one of alkali metals other than lithium and alkaline earth metals), Li x
Fe (MoO 4) O 3, Li x Fe (Mo (1-b) M b O 4) O 3 (M
Are Ti, Cu, V, Co, Mn, W, Fe, Ni, A
l, Ga, In, Ge, Sn, Pb, Sb, Bi, at least one of alkali metals other than lithium and alkaline earth metals), Li x Fe (SO 4 ) a (MoO 4 ) (3-a) , L
i x Fe (SO 4) a (Mo (1-b) M b O 4) (3-a) (M is Ti,
Cu, V, Co, Mn, W, Fe, Ni, Al, Ga,
In, Ge, Sn, Pb, Sb, Bi, at least one of alkali metals and alkaline earth metals other than lithium (where a = 1.5 to 0.5, b = 0.5 to 0.000)
5). Here, the x value increases or decreases due to charging and discharging.

【0011】電解液は、例えばプロピレンカーボネー
ト,プロピレンカーボネート誘導体,エチレンカーボネ
ート,ブチレンカーボネート,ビニレンカーボネート,
ガンマーブチルラクトン,ジメチルカーボネート,ジエ
チルカーボネート,メチルエチルカーボネート、1,2
−ジメトキシエタン、2−メチルテトラヒドロフラン,
ジメチルスルフォキシド、1,3−ジオキソラン,ホル
ムアミド,ジメチルホルムアミド,ジオキソラン,アセ
トニトリル,ニトロメタン,ギサンメチル,酢酸メチ
ル,プロピオン酸メチル,プロピオン酸エチル,リン酸
トリエステル,トリメトキシメタン,ジオキソラン誘導
体,ジエチルエーテル、1,3−プロパンサルトン,ス
ルホラン、3−メチル−2−オキサゾリジノン,テトラ
ヒドロフラン,テトラヒドロフラン誘導体,ジオキソラ
ン、1,2−ジエトキシエタン、また、これらのハロゲ
ン化物などからなる群より選ばれた少なくとも一つの非
水溶媒とリチウム塩、例えばLiClO4,LiBF4
LiPF6,LiCF3SO3,LiCF3CO2,LiAs
6,LiSbF6,LiB10Cl10,LiAlCl4,L
iCl,LiBr,LiI,低級脂肪族カルボン酸リチ
ウム,クロロボランリチウム,四フェニルホウ酸リチウ
ムなどからなる群より選ばれた少なくとも一つの塩との
混合溶液を用いることにより、本発明の正極は良好な特
性を示す。
The electrolyte may be, for example, propylene carbonate, a propylene carbonate derivative, ethylene carbonate, butylene carbonate, vinylene carbonate,
Gamma-butyl lactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2
-Dimethoxyethane, 2-methyltetrahydrofuran,
Dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, gisanemethyl, methyl acetate, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, diethyl ether, At least one selected from the group consisting of 1,3-propanesultone, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, tetrahydrofuran derivative, dioxolan, 1,2-diethoxyethane, and halides thereof. A non-aqueous solvent and a lithium salt such as LiClO 4 , LiBF 4 ,
LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAs
F 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , L
By using a mixed solution with at least one salt selected from the group consisting of iCl, LiBr, LiI, lithium lower aliphatic carboxylate, lithium chloroborane, lithium tetraphenylborate, and the like, the positive electrode of the present invention has good characteristics. Is shown.

【0012】本発明の可逆的に充放電が可能な電池の用
途は、特に限定されないが、例えばノートパソコン,ペ
ン入力パソコン,ポケットパソコン,ノート型ワープ
ロ,ポケットワープロ,電子ブックプレーヤ,携帯電
話,コードレスフォン子機,ページャ,ハンディーター
ミナル,携帯コピー,電子手帳,電卓,液晶テレビ,電
気シェーバ,電動工具,電子翻訳機,自動車電話,トラ
ンシーバ,音声入力機器,メモリカード,バックアップ
電源,テープレコーダ,ラジオ,ヘッドホンステレオ,
携帯プリンタ,ハンディークリーナ,ポータブルCD,
ビデオムービー,ナビゲーションシステムなどの機器用
の電源や、冷蔵庫,エアコン,テレビ,ステレオ,温水
器,オーブン電子レンジ,食器洗い器,洗濯機,乾燥
器,ゲーム機器,照明機器,玩具,ロードコンディショ
ナ,医療機器,自動車,電気自動車,ゴルフカート,電
動カート,電力貯蔵システムなどの電源として使用する
ことができる。また、民生用の他、軍需用,宇宙用とし
ても用いることができる。
The use of the reversibly chargeable / dischargeable battery of the present invention is not particularly limited. For example, notebook personal computers, pen input personal computers, pocket personal computers, notebook word processors, pocket word processors, electronic book players, mobile phones, cordless phones Phone handset, pager, handy terminal, portable copy, electronic organizer, calculator, LCD TV, electric shaver, power tool, electronic translator, car phone, transceiver, voice input device, memory card, backup power supply, tape recorder, radio, Headphone stereo,
Portable printer, Handy cleaner, Portable CD,
Power supplies for equipment such as video movies and navigation systems, refrigerators, air conditioners, televisions, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, game machines, lighting equipment, toys, road conditioners, medical care It can be used as a power source for equipment, automobiles, electric vehicles, golf carts, electric carts, power storage systems, and the like. It can be used not only for civilian purposes but also for military use and space.

【0013】本発明の導電剤を使用することにより、基
体から活物質が剥離することなく正極抵抗を低減でき、
正極活物質のエネルギ密度の向上が図れる。同時に、出
力密度の向上も図れる。本発明の電極及びこれを用いた
電池を種々のシステムに使用することにより、システム
のコンパクト化及び軽量化が図れる。加えて、ハイレー
トでの充放電が必要なシステムへの適用が可能となる。
By using the conductive agent of the present invention, the positive electrode resistance can be reduced without the active material peeling off from the substrate.
The energy density of the positive electrode active material can be improved. At the same time, the output density can be improved. By using the electrode of the present invention and a battery using the same in various systems, the size and weight of the system can be reduced. In addition, it can be applied to a system that requires charging and discharging at a high rate.

【0014】[0014]

【発明の実施の形態】以下具体例を挙げ、本発明をさら
に詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to specific examples.

【0015】(実施例1)正極材料としてLiNi0.8
Co0.22を使用し、導電剤として灰分が0.01%
で、かつLaが537Å,0.005%で、かつLaが
1027Å,0.08%で、かつLaが423Å,0.0
5% で、かつLaが651Åの黒鉛を結着剤としてポ
リフッ化ビニリデンを重量比で88:7:5となるよう
に秤量、らいかい機で30分混煉後、厚さ20μのアル
ミ箔の両面に塗布した。負極材料として人造黒鉛を93
重量%,結着剤としてポリフッ化ビニリデンを7重量%
調製した合剤を用い、厚さ30μの銅箔の両面に塗布し
た。正負両極はプレス機で圧延成型し、端子をスポット
溶接した後150℃で5時間真空乾燥した。微多孔性ポ
リプロピレン製セパレータを介して正極と負極を積層
し、これを渦巻状に捲回し、アルミ製の電池缶に挿入し
た。負極端子は電池缶に、正極端子は電池蓋に溶接し
た。電解液には1mol のLiPF6 を1リットルのエチ
レンカーボネートとジエチルカーボネートの混合溶液に
溶解したものを使用し、電池缶内に注液した。電池蓋を
かしめて1400mAh容量の円筒型電池を作製した。
電池は280mAで4.2Vまで充電後、280mAで
2.7Vまで放電する定電流充放電を行い、出力密度と
エネルギ密度を評価した。結果を表1に示す。
Example 1 LiNi 0.8 as a positive electrode material
Using Co 0.2 O 2 and 0.01% ash as conductive agent
And La is 537%, 0.005%, La is 1027%, 0.08%, and La is 423%, 0.0%.
5% and La of 651% of graphite was used as a binder, polyvinylidene fluoride was weighed in a weight ratio of 88: 7: 5, mixed with a grinder for 30 minutes, and then 20 μm thick aluminum foil. Coated on both sides. 93 artificial graphite as negative electrode material
7% by weight, polyvinylidene fluoride as binder
The prepared mixture was applied to both surfaces of a copper foil having a thickness of 30 μm. The positive and negative electrodes were roll-formed by a press, and the terminals were spot-welded and then vacuum-dried at 150 ° C. for 5 hours. A positive electrode and a negative electrode were laminated with a microporous polypropylene separator interposed therebetween, spirally wound, and inserted into an aluminum battery can. The negative electrode terminal was welded to the battery can, and the positive electrode terminal was welded to the battery lid. As the electrolytic solution, a solution prepared by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solution of ethylene carbonate and diethyl carbonate was used, and the solution was injected into the battery can. The battery cover was swaged to produce a cylindrical battery having a capacity of 1400 mAh.
The battery was charged at 280 mA to 4.2 V and then charged and discharged at a constant current of 280 mA to 2.7 V, and the output density and energy density were evaluated. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】(比較例1)正極材料としてLiNi0.8
Co0.22を使用し、導電剤として灰分が0.1%で、
かつLaが371の黒鉛を結着剤としてポリフッ化ビニ
リデンを重量比で88:7:5となるように秤量、らい
かい機で30分混煉後、厚さ20μのアルミ箔の両面に
塗布した。負極材料として人造黒鉛を93重量%,結着
剤としてポリフッ化ビニリデンを7重量%調製した合剤
を用い、厚さ30μの銅箔の両面に塗布した。実施例1
と同様にして電池を作製した。出力密度とエネルギ密度
の結果を表1に示す。実施例1と比較して出力密度もエ
ネルギ密度もいずれも低い。 (実施例2)正極材料としてLiNi0.8Co0.22
使用し、導電剤として灰分が0.01%で、かつLaが
537Åの黒鉛と灰分が0.05%で、かつ比表面積が
65m2/gのアセチレンブラックを重量比で50:5
0,5:95,75:25、混合したものを用いた。正
極材料と導電剤と結着剤としてポリフッ化ビニリデンを
重量比で88:7:5となるように秤量、らいかい機で
30分混煉後、厚さ20μのアルミ箔の両面に塗布し
た。実施例1と同様にして電池を作製した。出力密度と
エネルギ密度の結果を表1に示す。
Comparative Example 1 LiNi 0.8 as a positive electrode material
Using Co 0.2 O 2 , ash content is 0.1% as conductive agent,
Polyvinylidene fluoride was weighed at a weight ratio of 88: 7: 5 using graphite having La of 371 as a binder, kneaded with a triturator for 30 minutes, and applied to both sides of a 20 μm thick aluminum foil. . A mixture prepared by preparing 93% by weight of artificial graphite as a negative electrode material and 7% by weight of polyvinylidene fluoride as a binder was applied to both surfaces of a copper foil having a thickness of 30μ. Example 1
In the same manner as in the above, a battery was produced. Table 1 shows the results of the power density and the energy density. Both the output density and the energy density are lower than in the first embodiment. (Example 2) LiNi 0.8 Co 0.2 O 2 was used as a positive electrode material, graphite having an ash content of 0.01%, La of 537 ° and ash content of 0.05%, and a specific surface area of 65 m 2 were used as a conductive agent. / G of acetylene black in a weight ratio of 50: 5
A mixture of 0,5: 95,75: 25 was used. A positive electrode material, a conductive agent, and polyvinylidene fluoride as a binder were weighed at a weight ratio of 88: 7: 5, kneaded with a trimmer for 30 minutes, and applied to both surfaces of a 20 μm thick aluminum foil. A battery was manufactured in the same manner as in Example 1. Table 1 shows the results of the power density and the energy density.

【0018】(比較例2)正極材料としてLiNi0.8
Co0.22を使用し、導電剤として灰分が0.01%
で、かつLaが537Åの黒鉛と灰分が0.1%で、か
つ比表面積が25m2/gのアセチレンブラックを重量
比で50:50となるように秤量,混合したものを用い
た。正極材料と導電剤と結着剤としてポリフッ化ビニリ
デンを重量比で88:7:5となるように秤量、らいか
い機で30分混煉後、厚さ20μのアルミ箔の両面に塗
布した。実施例1と同様にして電池を作製した。出力密
度とエネルギ密度の結果を表1に示す。実施例2と比較
して出力密度もエネルギ密度もいずれも低い。
Comparative Example 2 LiNi 0.8 as a positive electrode material
Using Co 0.2 O 2 and 0.01% ash as conductive agent
A mixture of graphite having an La content of 537 ° and acetylene black having an ash content of 0.1% and a specific surface area of 25 m 2 / g in a weight ratio of 50:50 was used. A positive electrode material, a conductive agent, and polyvinylidene fluoride as a binder were weighed at a weight ratio of 88: 7: 5, kneaded with a trimmer for 30 minutes, and applied to both surfaces of a 20 μm thick aluminum foil. A battery was manufactured in the same manner as in Example 1. Table 1 shows the results of the power density and the energy density. Both the output density and the energy density are lower than in the second embodiment.

【0019】[0019]

【発明の効果】電池及びシステムのコンパクト化及び軽
量化と良好なハイレート特性を実現できる。
As described above, the battery and the system can be made compact and lightweight, and good high-rate characteristics can be realized.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 修子 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 吉川 正則 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuko Yamauchi 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Masanori Yoshikawa 7-1, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside the Hitachi Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】負極,正極,リチウム塩を含む非水電解質
からなる可逆的に複数回の充放電が可能な電池におい
て、上記正極の導電剤として、灰分が0.08%以下
で、かつLaが400Å以上の黒鉛を少なくとも1種含
むことを特徴とする電池。
1. A battery comprising a negative electrode, a positive electrode and a non-aqueous electrolyte containing a lithium salt, which can be charged and discharged a plurality of times reversibly, wherein the conductive material of the positive electrode has an ash content of 0.08% or less and La Contains at least one kind of graphite of 400 ° or more.
【請求項2】請求項1において、灰分が0.08%以下
で、かつ比表面積が50m2/g以上のカーボンブラッ
クを5重量%以上,75重量%以下の範囲で混合させる
電池。
2. The battery according to claim 1, wherein carbon black having an ash content of 0.08% or less and a specific surface area of 50 m 2 / g or more is mixed in a range of 5% by weight or more and 75% by weight or less.
【請求項3】請求項1あるいは2に記載の正極あるいは
電池を用いた電池使用システム。
3. A battery-using system using the positive electrode or the battery according to claim 1.
JP24159496A 1996-09-12 1996-09-12 Secondary battery and its positive electrode Expired - Lifetime JP3311597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24159496A JP3311597B2 (en) 1996-09-12 1996-09-12 Secondary battery and its positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24159496A JP3311597B2 (en) 1996-09-12 1996-09-12 Secondary battery and its positive electrode

Publications (2)

Publication Number Publication Date
JPH1092434A true JPH1092434A (en) 1998-04-10
JP3311597B2 JP3311597B2 (en) 2002-08-05

Family

ID=17076639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24159496A Expired - Lifetime JP3311597B2 (en) 1996-09-12 1996-09-12 Secondary battery and its positive electrode

Country Status (1)

Country Link
JP (1) JP3311597B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045424A (en) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp Electrode active material containing composition, electrode using it, and lithium secondary battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6972164B2 (en) 1998-09-14 2005-12-06 Ngk Insulators, Ltd. Lithium secondary battery for use in electric vehicle
JP2010108889A (en) * 2008-09-30 2010-05-13 Denki Kagaku Kogyo Kk Positive electrode for secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6972164B2 (en) 1998-09-14 2005-12-06 Ngk Insulators, Ltd. Lithium secondary battery for use in electric vehicle
JP2003045424A (en) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp Electrode active material containing composition, electrode using it, and lithium secondary battery
JP2010108889A (en) * 2008-09-30 2010-05-13 Denki Kagaku Kogyo Kk Positive electrode for secondary battery

Also Published As

Publication number Publication date
JP3311597B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JPH1116566A (en) Battery
US20210210744A1 (en) Electrode for lithium-ion secondary battery and manufacturing method thereof, and lithium-ion secondary battery
US6458488B1 (en) Positive electrode activator for lithium secondary battery and lithium secondary battery
JP3928231B2 (en) Lithium secondary battery
JPH1021913A (en) Battery chargeable and dischargeable reversibly for plural times
JP3624663B2 (en) battery
JP3493988B2 (en) Lithium secondary battery
JP4016453B2 (en) Electrode and battery using the same
JPH10208744A (en) Battery
JP2004103566A (en) Positive active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005251716A (en) Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH1083818A (en) Lithium secondary battery
US20060127771A1 (en) Energy storage device
JPH11102730A (en) Lithium secondary battery
JPH1140153A (en) Battery
JPH04162357A (en) Nonaqueous secondary battery
JP3311597B2 (en) Secondary battery and its positive electrode
JPH1116571A (en) Battery, and electric apparatus using it
JP2001068168A (en) Lithium secondary battery
JP2001052704A (en) Lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3107300B2 (en) Lithium secondary battery
JP3835419B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH10208742A (en) Battery
JPH1140200A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

EXPY Cancellation because of completion of term