JPH1021913A - Battery chargeable and dischargeable reversibly for plural times - Google Patents

Battery chargeable and dischargeable reversibly for plural times

Info

Publication number
JPH1021913A
JPH1021913A JP8176214A JP17621496A JPH1021913A JP H1021913 A JPH1021913 A JP H1021913A JP 8176214 A JP8176214 A JP 8176214A JP 17621496 A JP17621496 A JP 17621496A JP H1021913 A JPH1021913 A JP H1021913A
Authority
JP
Japan
Prior art keywords
battery
lithium
negative electrode
carbon
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8176214A
Other languages
Japanese (ja)
Inventor
Michiko Igawa
享子 井川
Yoshimi Komatsu
誼 小松
Shigeo Tsuruoka
重雄 鶴岡
Shiyuuko Yamauchi
修子 山内
Toshinori Dosono
利徳 堂園
Tadashi Muranaka
村中  廉
Masanori Yoshikawa
正則 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8176214A priority Critical patent/JPH1021913A/en
Publication of JPH1021913A publication Critical patent/JPH1021913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the energy density per unit volume and prevent occurrence of short circuit and ignition by utilizing as a negative electrode active material a material produced by coating the surface of a carbon based material, to and from which lithium is intercalated and released, with a specified oxide. SOLUTION: In a secondary battery containing a non-aqueous electrolytic solution, a material produced by coating the surface of a carbon-based material, to and from which lithium is intercalated and released, with an oxide containing one or more elements selected from Li, Ge, Sn, Pb, Sb, Bi, B, Al, Si, and In is used as a negative electrode active material. As the carbon based material, to and from which lithium is intercalated and released, natural graphite, artificial graphite, pitch coke, hollow carbon molecule, amorphous carbon, etc., may be usable. By using this battery, a system can be made compact. A battery in which short circuiting due to dendrite hardly occurs and which has a long life and high safeness is thus obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は可逆的に複数回の充
放電が可能な電池に係り、特に非水電解液を用いた二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery that can be reversibly charged and discharged a plurality of times, and more particularly to a secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、二次電池はパソコンや携帯電話な
どの電源として、あるいは電気自動車や電力貯蔵用の電
源として、なくてはならない重要な構成要素の一つとな
っている。
2. Description of the Related Art In recent years, secondary batteries have become one of the essential components that are indispensable as power sources for personal computers and mobile phones, or as power sources for electric vehicles and power storage.

【0003】携帯型コンピュータ(ペンコンピュータと
呼ばれるものも含む)や携帯情報端末(Personal Digita
l Assistant、あるいはPersonal Intelligent Communic
ator、あるいはハンドヘルド・コミュニケータ)といっ
た移動体通信(モービル・コンピューティング)が必要
とされる要求として、小型化,軽量化が挙げられる。し
かし、液晶表示パネルのバックライトや描画制御によっ
て消費される電力が高いことや、二次電池の容量が現状
ではまだ不十分であることなどの点から、システムのコ
ンパクト化が難しい状況にある。
A portable computer (including a pen computer) and a personal digital assistant (Personal Digita)
l Assistant or Personal Intelligent Communic
A demand for mobile communication (mobile computing) such as an ator or a hand-held communicator includes miniaturization and weight reduction. However, it is difficult to make the system compact because the power consumed by the backlight and the drawing control of the liquid crystal display panel is high, and the capacity of the secondary battery is still insufficient at present.

【0004】さらに、地球環境問題の高まりとともに排
ガスや騒音を出さない電気自動車が関心を集めている。
しかし、車体に対して電池の占める体積が極めて大きい
ことや、電池の総重量が著しく重いなどから、車内のス
ペースが狭い,車体の安定性が悪い,加速性が悪いなど
の問題点が生じている。これらもまた、二次電池のエネ
ルギー密度が低いことが原因となっている。
[0004] Further, with the increase of global environmental problems, electric vehicles that do not emit exhaust gas and noise have attracted attention.
However, since the battery occupies an extremely large volume with respect to the vehicle body and the total weight of the battery is extremely heavy, there are problems such as a small space inside the vehicle, poor stability of the vehicle body, and poor acceleration. I have. These are also caused by the low energy density of the secondary battery.

【0005】二次電池を用いたシステムの小型化を実現
させるには、二次電池のエネルギー密度を現在よりもさ
らに増加させる必要がある。非水電解液を用いた二次電
池用負極材料としては、リチウム金属やナトリウム金
属、これらを用いた合金が代表的であるが、充放電の間
にリチウム金属やナトリウム金属が樹枝状に析出し、内
部短絡を起こしたり、発火したりする欠点を有する。こ
れに対し、リチウム金属やナトリウム金属が樹枝状に析
出しないことから安全性の面で有利である、リチウムを
可逆的に挿入放出できる炭素を主体とする材料が実用化
されている。この材料の欠点は、真密度が低いために体
積当りのエネルギー密度が低いことにある。高エネルギ
ー密度化を図るためには、炭素材料の持っている体積当
りのエネルギー密度を向上させる必要がある。例えば、
リチウム二次電池用負極においてカーボン層の表面にリ
チウム合金からなる多孔性の層を形成する(特開平7−32
6342号),リチウム系金属層とカーボン層との積層構造
を有する粒状物を用いる(特開平7−326345 号),黒鉛
とリチウム含有金属酸化物からなる混合体を用いる(特
開平8−7886号)などがある。
[0005] In order to reduce the size of a system using a secondary battery, it is necessary to further increase the energy density of the secondary battery compared to the present. As a negative electrode material for a secondary battery using a non-aqueous electrolyte, lithium metal, sodium metal, and alloys using these are typical.However, lithium metal or sodium metal precipitates in a dendritic manner during charge and discharge. It has the disadvantage of causing an internal short circuit or firing. On the other hand, a material mainly composed of carbon capable of reversibly inserting and releasing lithium has been put into practical use, which is advantageous in terms of safety since lithium metal and sodium metal do not precipitate in a dendritic manner. The disadvantage of this material is that the energy density per volume is low due to the low true density. In order to increase the energy density, it is necessary to increase the energy density per volume of the carbon material. For example,
In a negative electrode for a lithium secondary battery, a porous layer made of a lithium alloy is formed on the surface of a carbon layer (Japanese Patent Laid-Open No. 7-32).
No. 6342), a granular material having a laminated structure of a lithium-based metal layer and a carbon layer is used (JP-A-7-326345), and a mixture of graphite and a lithium-containing metal oxide is used (JP-A-8-7886). )and so on.

【0006】[0006]

【発明が解決しようとする課題】非水電解液を用いた二
次電池のエネルギー密度を現在よりもさらに増加させる
ためには、二次電池用負極材料の体積エネルギー密度の
向上が必要である。カーボン層の表面に体積当りのエネ
ルギー密度の高いリチウム合金からなる層を形成するこ
とにより、エネルギー密度の向上が期待できる。しか
し、リチウム合金は樹枝状析出物を形成しやすいため、
安全性の面での問題が残る。リチウム系金属層とカーボ
ン層との積層構造を有する粒状物を用いる場合にも同様
である。また、黒鉛とリチウム含有金属酸化物からなる
混合体を用いる場合にも体積当りのエネルギー密度の高
いリチウム含有金属酸化物が存在することにより、エネ
ルギー密度は増加する。しかし、黒鉛とリチウム含有金
属酸化物とでは充電作動電位、すなわちリチウム挿入電
位が異なるため、黒鉛とリチウム含有金属酸化物が均一
に混合されていないと、リチウムが局所的に金属として
析出し、短絡や発火等の事故を起こしやすい。
In order to further increase the energy density of a secondary battery using a non-aqueous electrolyte, it is necessary to improve the volume energy density of a negative electrode material for a secondary battery. By forming a layer made of a lithium alloy having a high energy density per volume on the surface of the carbon layer, an improvement in energy density can be expected. However, lithium alloys tend to form dendritic precipitates,
There remain security issues. The same applies to the case where a granular material having a laminated structure of a lithium-based metal layer and a carbon layer is used. Also, when a mixture of graphite and a lithium-containing metal oxide is used, the energy density increases due to the presence of the lithium-containing metal oxide having a high energy density per volume. However, since the charging operation potential, that is, the lithium insertion potential, differs between graphite and the lithium-containing metal oxide, if the graphite and the lithium-containing metal oxide are not uniformly mixed, lithium locally precipitates as a metal and short-circuits. Accidents such as fire and fire.

【0007】このように、二次電池用負極材料の体積エ
ネルギー密度の向上を図るのに有効な方法はあまり見出
されていない。
As described above, few effective methods have been found for improving the volume energy density of the negative electrode material for a secondary battery.

【0008】本発明は体積当りのエネルギー密度が従来
のものより向上し、かつ短絡や発火のない安全性の高い
二次電池用負極材料を提供することを目的とする。
[0008] It is an object of the present invention to provide a highly safe negative electrode material for a secondary battery which has a higher energy density per volume than conventional ones and is free from short-circuiting and ignition.

【0009】[0009]

【課題を解決するための手段】本発明の電池および負極
は、負極活物質として、リチウムを挿入,放出するカー
ボンを主体とする材料の周りにLi,Ge,Sn,P
b,Sb,Bi,B,Al,Si,Inから選ばれた少
なくとも1種を含む酸化物を被覆したものを使用するこ
とを特徴とする。リチウムを挿入,放出するカーボンを
主体とする材料としては、天然黒鉛(燐状黒鉛,燐片状
黒鉛,土状黒鉛など),人造黒鉛,石油系ピッチコーク
ス,石炭ピッチコークス,中空状炭素分子(フラーレ
ン),中空状炭素繊維(ナノチューブ),非晶質カーボ
ン等がある。これらのカーボンに銀,錫,銅,亜鉛,鉛
等の金属を担持あるいはめっきしたものを使用しても良
い。これらのカーボンの表面にLi,Ge,Sn,P
b,Sb,Bi,B,Al,Si,Inから選ばれた少
なくとも1種以上を含む酸化物を被覆する。被覆する方
法としては、酸化物のターゲットを用いてカーボン表面
にスパッタ等で酸化物層を被覆させるドライプロセスに
よる方法,金属を電解めっき、あるいは無電解めっきし
た後、酸化雰囲気で熱処理して表面に酸化物皮膜を被覆
させる方法,カーボンの表面に微粒子の酸化物を混合さ
せながら機械的に融合させることによりカーボン表面に
酸化物層を形成させる方法などがある。被覆の形状とし
ては、膜状にカーボン表面を被覆しても、粒状にカーボ
ン表面に複数個の粒子が付着してもよい。被覆する量を
カーボンに対する酸化物の重量比で表すと、好ましくは
80/20から20/80の範囲であり、さらに好まし
くは60/40から40/60の範囲であり、最も好ま
しくは45/55から55/45の範囲である。この範
囲とは、カーボンの放電容量特性と酸化物の放電容量特
性とがほぼ同等となる領域を選択するのが良い。例え
ば、カーボンに放電容量が200mAh/gのものを使
用し、酸化物に放電容量が800mAh/gのものを使
用した場合には、カーボンに対する酸化物の重量比を2
0/80とする。これによりカーボンの放電容量特性と
酸化物の放電容量特性とがほぼ同等となる。カーボンと
酸化物の容量をほぼ同等の容量にすることにより、一方
の材料だけが極端に使用されるということがないので、
デンドライトが生成しにくく、短絡や発火等の危険のな
い複合型の負極材料が得られる。両者の混合によって重
量当たりのエネルギー密度および体積当たりのエネルギ
ー密度が大きく低下することのないように、また、一方
の材料だけが極端に使われることによって起こる電流集
中がないように、両者の放電容量が同等となる領域で使
用する。また、カーボン表面に被覆することによって酸
化物を混合させているため、通常の混合方法に比べて均
一に酸化物が分散していることから、デンドライトが生
成しにくい。本発明は両者の材料の長所の相乗効果によ
って高エネルギー密度化とサイクルの長寿命化を達成で
きるものであり、カーボン単独でも、酸化物単独でも得
られない。
A battery and a negative electrode according to the present invention comprise, as a negative electrode active material, Li, Ge, Sn, P
It is characterized by using a material coated with an oxide containing at least one selected from b, Sb, Bi, B, Al, Si and In. Materials mainly composed of carbon that inserts and releases lithium include natural graphite (phosphorous graphite, flaky graphite, earthy graphite, etc.), artificial graphite, petroleum pitch coke, coal pitch coke, hollow carbon molecules ( Fullerene), hollow carbon fiber (nanotube), amorphous carbon and the like. A material obtained by carrying or plating a metal such as silver, tin, copper, zinc, or lead on these carbons may be used. Li, Ge, Sn, P
An oxide containing at least one selected from b, Sb, Bi, B, Al, Si, and In is coated. As a method of coating, a method using a dry process of coating an oxide layer on a carbon surface by sputtering or the like using an oxide target, or electroplating or electroless plating of a metal, followed by heat treatment in an oxidizing atmosphere to form a coating on the surface. There are a method of coating an oxide film, and a method of forming an oxide layer on the carbon surface by mixing and mechanically fusing the oxides of fine particles on the carbon surface. Regarding the shape of the coating, the carbon surface may be coated in a film form, or a plurality of particles may be attached to the carbon surface in a granular form. The amount to be coated, expressed as a weight ratio of oxide to carbon, is preferably in the range of 80/20 to 20/80, more preferably in the range of 60/40 to 40/60, and most preferably 45/55. To 55/45. As this range, it is preferable to select a region in which the discharge capacity characteristics of carbon and the oxide are approximately equal. For example, when a discharge capacity of 200 mAh / g is used for carbon and a discharge capacity of 800 mAh / g is used for oxide, the weight ratio of oxide to carbon is 2%.
0/80. As a result, the discharge capacity characteristics of carbon and the discharge capacity characteristics of the oxide become substantially equal. By making the capacities of carbon and oxide almost equal, only one material will not be used extremely,
It is possible to obtain a composite negative electrode material in which dendrite is less likely to be generated and there is no danger such as short circuit or ignition. The discharge capacities of both materials should be such that the energy density per unit weight and the energy density per unit volume do not significantly decrease due to the mixture of the two, and there is no current concentration caused by the extreme use of only one of the materials. Use in the area where is equal. In addition, since the oxide is mixed by coating on the carbon surface, the oxide is more uniformly dispersed as compared with the ordinary mixing method, so that it is difficult to generate dendrites. According to the present invention, a high energy density and a long cycle life can be achieved by the synergistic effect of the advantages of both materials, and neither carbon alone nor oxide alone can be obtained.

【0010】さらに本発明では該酸化物が非晶質である
ことを特徴とする。酸化物の負極としての充電反応は、
酸素のマトリックス中に存在するLi,Ge,Sn,P
b,Sb,Bi,B,Al,Si,In等の元素と無秩
序に固溶あるいは合金化する形でリチウムが挿入する。
そのため、リチウムの挿入した後の酸化物は非晶質化す
る。従って、用いる酸化物は非晶質でも良い。この非晶
質酸化物の充電電位はカーボンの充電電位に比べて低い
ため、カーボンの外周に被覆することにより、カーボン
中に取り込まれなかったリチウムをデンドライト析出さ
せることなく非晶質の酸化物層内に取り込むことができ
る。
Further, the present invention is characterized in that the oxide is amorphous. The charge reaction of the oxide as a negative electrode is
Li, Ge, Sn, P present in the oxygen matrix
Lithium is inserted in such a manner as to be randomly dissolved and alloyed with elements such as b, Sb, Bi, B, Al, Si, and In.
Therefore, the oxide after the insertion of lithium becomes amorphous. Therefore, the oxide used may be amorphous. Since the charge potential of this amorphous oxide is lower than the charge potential of carbon, the amorphous oxide layer is formed by coating the outer periphery of carbon without dendrite depositing lithium not taken into carbon. Can be taken in.

【0011】電解液としては、例えばプロピレンカーボ
ネート,プロピレンカーボネート誘導体,エチレンカー
ボネート,ブチレンカーボネート,ビニレンカーボネー
ト,ガンマーブチルラクトン,ジメチルカーボネート,
ジエチルカーボネート,メチルエチルカーボネート、
1,2−ジメトキシエタン,2−メチルテトラヒドロフ
ラン,ジメチルスルフォキシド、1,3−ジオキソラ
ン,ホルムアミド,ジメチルホルムアミド,ジオキソラ
ン,アセトニトリル,ニトロメタン,ギサンメチル,酢
酸メチル,プロピオン酸メチル,プロピオン酸エチル,
リン酸トリエステル,トリメトキシメタン,ジオキソラ
ン誘導体,ジエチルエーテル、1,3−プロパンサルト
ン,スルホラン,3−メチル−2−オキサゾリジノン,
テトラヒドロフラン,テトラヒドロフラン誘導体,ジオ
キソラン、1,2−ジエトキシエタン、また、これらの
ハロゲン化物などからなる群より選ばれた少なくとも一
つ以上の非水溶媒とリチウム塩、例えばLiClO4
LiBF4,LiPF6, LiCF3SO3,LiC
3CO2,LiAsF6,LiSbF6,LiB10
10,LiAlCl4 ,LiCl,LiBr,LiI,
低級脂肪族カルボン酸リチウム,クロロボランリチウ
ム,四フェニルホウ酸リチウムなどからなる群より選ば
れた少なくとも一つ以上の塩との混合溶液を用いること
により、本発明の負極活物質は良好な特性を示す。
Examples of the electrolyte include propylene carbonate, propylene carbonate derivatives, ethylene carbonate, butylene carbonate, vinylene carbonate, gamma-butyl lactone, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate,
1,2-dimethoxyethane, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, gisanmethyl, methyl acetate, methyl propionate, ethyl propionate,
Phosphate triester, trimethoxymethane, dioxolane derivative, diethyl ether, 1,3-propanesultone, sulfolane, 3-methyl-2-oxazolidinone,
At least one non-aqueous solvent selected from the group consisting of tetrahydrofuran, tetrahydrofuran derivative, dioxolan, 1,2-diethoxyethane, and halides thereof, and a lithium salt such as LiClO 4 ,
LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiC
F 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 C
l 10 , LiAlCl 4 , LiCl, LiBr, LiI,
By using a mixed solution with at least one salt selected from the group consisting of lithium lower aliphatic carboxylate, lithium chloroborane, lithium tetraphenylborate, and the like, the negative electrode active material of the present invention exhibits good characteristics. .

【0012】正極活物質としてはリチウムを挿入,放出
できるものであれば良いが、好ましくはリチウム含有遷
移金属酸化物である。例えば、LixMn24,Lix
oO2,LixNiO2,LixMnO2,LixMaNi
(1−a)O2(MはCo,V,Mn,Fe,B,Mg,
Al,Cu,Crのうち選ばれた1つ以上の元素、a=
0.01−0.95)である。
Any positive electrode active material may be used as long as it can insert and release lithium, and is preferably a lithium-containing transition metal oxide. For example, Li x Mn 2 O 4 , Li x C
oO 2 , Li x NiO 2 , Li x MnO 2 , Li x MaNi
(1-a) O 2 (M is Co, V, Mn, Fe, B, Mg,
One or more elements selected from Al, Cu and Cr, a =
0.01-0.95).

【0013】本発明の可逆的に充放電が可能な電池の用
途は、特に限定されないが、例えばノートパソコン,ペ
ン入力パソコン,ポケットパソコン,ノート型ワープ
ロ,ポケットワープロ,電子ブックプレーヤー,携帯電
話,コードレスフォン子機,ページャー,ハンディータ
ーミナル,携帯コピー,電子手帳,電卓,液晶テレビ,
電気シェーバー,電動工具,電子翻訳機,自動車電話,
トランシーバー,音声入力機器,メモリーカード,バッ
クアップ電源,テープレコーダー,ラジオ,ヘッドホン
ステレオ,携帯プリンター,ハンディークリーナー,ポ
ータブルCD,ビデオムービー,ナビゲーションシステ
ムなどの機器用の電源や、冷蔵庫,エアコン,テレビ,
ステレオ,温水器,オーブン電子レンジ,食器洗い器,
洗濯機,乾燥器,ゲーム機器,照明機器,玩具,ロード
コンディショナー,医療機器,自動車,電気自動車,ゴ
ルフカート,電動カート,電力貯蔵システムなどの電源
として使用することができる。また、民生用の他、軍需
用,宇宙用としても用いることができる。
The use of the reversibly chargeable / dischargeable battery of the present invention is not particularly limited. Phone handset, pager, handy terminal, portable copy, electronic organizer, calculator, LCD TV,
Electric shaver, power tool, electronic translator, car phone,
Power supplies for equipment such as transceivers, voice input devices, memory cards, backup power supplies, tape recorders, radios, headphone stereos, portable printers, handy cleaners, portable CDs, video movies, navigation systems, refrigerators, air conditioners, televisions,
Stereo, water heater, microwave oven, dishwasher,
It can be used as a power source for washing machines, dryers, game devices, lighting devices, toys, road conditioners, medical devices, automobiles, electric vehicles, golf carts, electric carts, power storage systems, and the like. It can be used not only for civilian purposes but also for military use and space.

【0014】本発明の電池を使用することにより、体積
当たりのエネルギー密度を向上できる。これにより、シ
ステムのコンパクト化が図れる。また、デンドライトシ
ョートが起こりにくく、長寿命で安全性の高い電池が得
られる。
By using the battery of the present invention, the energy density per volume can be improved. As a result, the system can be made compact. In addition, a dendrite short circuit hardly occurs, and a long-life and highly safe battery can be obtained.

【0015】[0015]

【発明の実施の形態】以下具体例をあげ、本発明をさら
に詳しく説明するが、発明の主旨を越えない限り、本発
明は実施例に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the examples unless it exceeds the gist of the invention.

【0016】(実施例1)負極材料として人造黒鉛と,
これに被覆する被覆材料として(1)SnSiO3(2)
Al23(3)SnO(4)SnO2(5)PbO
(6)Sb23(7)LiBiO2(8)GeO2(9)
23(10)In23とをそれぞれ重量比で1:1と
なるように秤量した。これを遊星ボールミルを用いて回
転数250rpm,Ar雰囲気中で15時間回転させ、被覆
材料を黒鉛表面に被覆させた。この粉末を93重量%,
結着剤としてポリフッ化ビニリデンを7重量%調製した
合剤を用い、らいかい機で30分混煉後、厚さ30ミク
ロンの銅箔の両面に塗布した。正極にはLiCoO2
末を使用し、これを87重量%,導電剤としてアセチレ
ンブラックを6重量%,結着剤としてポリフッ化ビニリ
デンを7重量%調製した合剤を用い、らいかい機で30
分混煉後、厚さ20ミクロンのアルミ箔の両面に塗布し
た。正負両極はプレス機で圧延成型し、端子をスポット
溶接した後150℃で5時間真空乾燥した。微多孔性ポ
リプロピレン製セパレータを介して正極と負極を積層
し、これを渦巻状に捲回し、アルミ製の電池缶に挿入し
た。負極端子は電池缶に、正極端子は電池蓋に溶接し
た。電解液には1mol のLiPF6 を1リットルのエチ
レンカーボネートとジエチルカーボネートの混合溶液に
溶解したものを使用し、電池缶内に注液した。電池蓋を
かしめて1400mAh容量の円筒型電池を作製した。
電池は280mAで4.2Vまで充電後、280mAで
2.7Vまで放電する定電流充放電を行い、サイクル寿
命と体積エネルギー密度を評価した。結果を表1に示
す。
(Example 1) Artificial graphite as a negative electrode material,
(1) SnSiO 3 (2)
Al 2 O 3 (3) SnO (4) SnO 2 (5) PbO
(6) Sb 2 O 3 (7) LiBiO 2 (8) GeO 2 (9)
B 2 O 3 (10) In 2 O 3 was weighed so that the weight ratio was 1: 1. This was rotated for 15 hours in an Ar atmosphere at a rotation speed of 250 rpm using a planetary ball mill to coat the graphite material with the coating material. 93% by weight of this powder,
Using a mixture prepared by preparing 7% by weight of polyvinylidene fluoride as a binder, the mixture was kneaded with a triturator for 30 minutes, and then applied to both surfaces of a copper foil having a thickness of 30 microns. LiCoO 2 powder was used for the positive electrode, a mixture prepared by preparing 87% by weight of this powder, 6% by weight of acetylene black as a conductive agent, and 7% by weight of polyvinylidene fluoride as a binder.
After mixing and mixing, it was applied to both sides of an aluminum foil having a thickness of 20 microns. The positive and negative electrodes were roll-formed by a press, and the terminals were spot-welded and then vacuum-dried at 150 ° C. for 5 hours. A positive electrode and a negative electrode were laminated with a microporous polypropylene separator interposed therebetween, spirally wound, and inserted into an aluminum battery can. The negative electrode terminal was welded to the battery can, and the positive electrode terminal was welded to the battery lid. As the electrolytic solution, a solution prepared by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solution of ethylene carbonate and diethyl carbonate was used, and the solution was injected into the battery can. The battery cover was swaged to produce a cylindrical battery having a capacity of 1400 mAh.
After charging the battery to 4.2 V at 280 mA, the battery was charged and discharged at a constant current of 280 mA to 2.7 V, and the cycle life and volume energy density were evaluated. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】(比較例1)負極材料として人造黒鉛を9
3重量%,結着剤としてポリフッ化ビニリデンを7重量
%調製した合剤を用い、厚さ30ミクロンの銅箔の両面
に塗布した。実施例1と同様にして電池を作製した。サ
イクル寿命と体積エネルギー密度の結果を表1に示す。
実施例1と比較して体積エネルギー密度が低い。
(Comparative Example 1) 9 artificial graphite was used as a negative electrode material.
A mixture prepared by preparing 3% by weight and 7% by weight of polyvinylidene fluoride as a binder was applied to both surfaces of a copper foil having a thickness of 30 microns. A battery was manufactured in the same manner as in Example 1. Table 1 shows the results of the cycle life and the volume energy density.
The volume energy density is lower than that of Example 1.

【0019】(比較例2)負極材料として人造黒鉛を4
7重量%,SnOを46重量%,結着剤としてポリフッ
化ビニリデンを7重量%調製した合剤を用い、らいかい
機で30分混煉後、厚さ30ミクロンの銅箔の両面に塗
布した。実施例1と同様にして電池を作製した。サイク
ル寿命と体積エネルギー密度の結果を表1に示す。実施
例1と比較して寿命が短く、解体後、負極表面にリチウ
ムのデンドライ析出物を観察した。 (比較例3)負極材料として人造黒鉛とSnOを重量比
で85:15となるように秤量した。これを遊星ボール
ミルを用いて実施例1と同じ条件でSnOを黒鉛表面に
被覆させた。この粉末を93重量%,10重量%、結着
剤としてポリフッ化ビニリデンを7重量%調製した合剤
を用い、らいかい機で30分混煉後、厚さ30ミクロン
の銅箔の両面に塗布した。実施例1と同様にして電池を
作製した。サイクル寿命と体積エネルギー密度の結果を
表1に示す。実施例1と比較して寿命が短く、解体後、
負極表面にリチウムのデンドライ析出物を観察した。ま
た、実施例1と比較して体積エネルギー密度も低い。
(Comparative Example 2) Artificial graphite was used as a negative electrode material.
Using a mixture prepared by preparing 7% by weight, 46% by weight of SnO, and 7% by weight of polyvinylidene fluoride as a binder, the mixture was kneaded for 30 minutes with a rake machine, and applied to both sides of a copper foil having a thickness of 30 microns. . A battery was manufactured in the same manner as in Example 1. Table 1 shows the results of the cycle life and the volume energy density. The life was shorter than that of Example 1, and after disassembly, dendritic deposits of lithium were observed on the negative electrode surface. (Comparative Example 3) As the negative electrode material, artificial graphite and SnO were weighed at a weight ratio of 85:15. This was coated on the graphite surface with SnO using a planetary ball mill under the same conditions as in Example 1. Using a mixture prepared by mixing 93% by weight and 10% by weight of this powder and 7% by weight of polyvinylidene fluoride as a binder, kneading the mixture for 30 minutes with a rake machine, and then applying the mixture to both sides of a 30 micron thick copper foil. did. A battery was manufactured in the same manner as in Example 1. Table 1 shows the results of the cycle life and the volume energy density. The life is shorter than that of Example 1, and after disassembly,
Dendritic deposits of lithium were observed on the negative electrode surface. Further, the volume energy density is lower than that of Example 1.

【0020】(実施例2)負極材料としてAgを担持し
た非晶質カーボンと,これに被覆する被覆材料として
(1)SnSiO3(2)Al23(3)SnO(4)
SnO2(5)PbO(6)Sb23(7)LiBiO2
(8)GeO2(9)B23(10)In23とをそれ
ぞれ重量比で1:1となるように秤量した。実施例1と
同様にして合金表面に被覆させ、これを用いて電池を作
製した。サイクル寿命と体積エネルギー密度の結果を表
2に示す。
Example 2 Amorphous carbon carrying Ag as a negative electrode material and (1) SnSiO 3 (2) Al 2 O 3 (3) SnO (4) as a coating material for coating the same
SnO 2 (5) PbO (6) Sb 2 O 3 (7) LiBiO 2
(8) GeO 2 (9) B 2 O 3 (10) In 2 O 3 were weighed so as to have a weight ratio of 1: 1. The surface of the alloy was coated in the same manner as in Example 1, and a battery was produced using the alloy. Table 2 shows the results of the cycle life and the volume energy density.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明によれば、体積エネルギー密度が
向上できるので、電池のコンパクト化が図れる。
According to the present invention, since the volume energy density can be improved, the battery can be made compact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 修子 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 堂園 利徳 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 吉川 正則 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shuko Yamauchi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Toshinori Dozono 7-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd., Hitachi Research Laboratories (72) Inventor Ren Muranaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Masanori Yoshikawa Hitachi, Ibaraki Prefecture 7-1-1, Omikacho Inside Hitachi Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】負極,正極,リチウム塩を含む非水電解質
からなる可逆的に複数回の充放電が可能な電池に関し、
該負極における負極活物質に、リチウムを挿入,放出す
るカーボンを主体とする材料の周りにLi,Ge,S
n,Pb,Sb,Bi,B,Al,Si,Inから選ば
れた少なくとも1種を含む酸化物を被覆したものを使用
することを特徴とする負極およびそれを用いた電池。
1. A battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte containing a lithium salt, which can be charged and discharged a plurality of times reversibly.
In the negative electrode active material of the negative electrode, around a material mainly composed of carbon that inserts and releases lithium, Li, Ge, S
A negative electrode and a battery using the negative electrode, which are coated with an oxide containing at least one selected from n, Pb, Sb, Bi, B, Al, Si, and In.
【請求項2】該酸化物が非晶質であることを特徴とする
請求項1に記載の負極およびそれを用いた電池。
2. The negative electrode according to claim 1, wherein the oxide is amorphous, and a battery using the negative electrode.
【請求項3】請求項1あるいは2に記載の負極あるいは
電池を用いた電池使用システム。
3. A battery-using system using the negative electrode or the battery according to claim 1.
JP8176214A 1996-07-05 1996-07-05 Battery chargeable and dischargeable reversibly for plural times Pending JPH1021913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8176214A JPH1021913A (en) 1996-07-05 1996-07-05 Battery chargeable and dischargeable reversibly for plural times

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8176214A JPH1021913A (en) 1996-07-05 1996-07-05 Battery chargeable and dischargeable reversibly for plural times

Publications (1)

Publication Number Publication Date
JPH1021913A true JPH1021913A (en) 1998-01-23

Family

ID=16009623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8176214A Pending JPH1021913A (en) 1996-07-05 1996-07-05 Battery chargeable and dischargeable reversibly for plural times

Country Status (1)

Country Link
JP (1) JPH1021913A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767968A1 (en) * 1997-08-28 1999-02-26 Mitsubishi Pencil Co NEGATIVE ELECTRODE FOR LITHIUM ION SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2002117835A (en) * 2000-10-11 2002-04-19 Toyo Tanso Kk Negative electrode for lithium ion secondary battery
KR100370290B1 (en) * 2000-06-16 2003-01-30 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
KR100378013B1 (en) * 1999-09-28 2003-03-29 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
KR100432669B1 (en) * 2001-12-17 2004-05-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium batteries and preparing for same
US6746802B2 (en) 2001-03-08 2004-06-08 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
WO2004055925A1 (en) * 2002-12-17 2004-07-01 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery-use cathode and nonaqueous electrolyte secondary battery
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
US6797434B1 (en) 1999-09-28 2004-09-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, electrode for rechargeable lithium battery, rechargeable lithium battery and method of preparing negative active material for rechargeable lithium secondary battery
KR100453896B1 (en) * 2000-06-16 2004-10-20 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for preparing negative active material for lithium secondary battery
KR100529069B1 (en) * 1999-12-08 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
WO2006071076A1 (en) * 2004-12-30 2006-07-06 Sodiff Advanced Materials Co., Ltd. Non-carbon material-inserted spherical carbonaceous powder and process for preparation thereof
WO2006118227A1 (en) * 2005-04-28 2006-11-09 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
CN1301560C (en) * 2005-05-08 2007-02-21 北京科技大学 Method of preparing Sn-Sb alloy material for negative electrode of lithium ion cell
JP2007184263A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Carbonaceous electrode material for secondary battery, its manufacturing method and secondary battery
CN100341172C (en) * 2005-09-15 2007-10-03 复旦大学 Film lithium ion battery using stannous selenide film as anode material and its preparation method
JP2007258139A (en) * 2005-04-28 2007-10-04 Sumitomo Chemical Co Ltd Active material for nonaqueous secondary battery and its manufacturing method
CN100373664C (en) * 2006-04-07 2008-03-05 北京科技大学 Preparation method for high-capacity Sn-Ni alloy compound as lithium ion battery negative electrode material
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2011076822A (en) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
WO2012067102A1 (en) * 2010-11-16 2012-05-24 日立マクセルエナジー株式会社 Non-aqueous secondary battery
CN105070891A (en) * 2015-09-06 2015-11-18 福建师范大学 Preparation of Ge/GeO2-mesoporous carbon composite electrode material for lithium ion battery and application of Ge/GeO2-mesoporous carbon composite electrode material
US9240593B2 (en) 2005-04-28 2016-01-19 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
JP2016039006A (en) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767968A1 (en) * 1997-08-28 1999-02-26 Mitsubishi Pencil Co NEGATIVE ELECTRODE FOR LITHIUM ION SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
KR100378013B1 (en) * 1999-09-28 2003-03-29 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
US6797434B1 (en) 1999-09-28 2004-09-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, electrode for rechargeable lithium battery, rechargeable lithium battery and method of preparing negative active material for rechargeable lithium secondary battery
KR100529069B1 (en) * 1999-12-08 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100453896B1 (en) * 2000-06-16 2004-10-20 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for preparing negative active material for lithium secondary battery
KR100370290B1 (en) * 2000-06-16 2003-01-30 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2002117835A (en) * 2000-10-11 2002-04-19 Toyo Tanso Kk Negative electrode for lithium ion secondary battery
JP4503807B2 (en) * 2000-10-11 2010-07-14 東洋炭素株式会社 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery
US6746802B2 (en) 2001-03-08 2004-06-08 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
KR100432669B1 (en) * 2001-12-17 2004-05-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium batteries and preparing for same
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2004055925A1 (en) * 2002-12-17 2004-07-01 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery-use cathode and nonaqueous electrolyte secondary battery
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
WO2006071076A1 (en) * 2004-12-30 2006-07-06 Sodiff Advanced Materials Co., Ltd. Non-carbon material-inserted spherical carbonaceous powder and process for preparation thereof
US9240593B2 (en) 2005-04-28 2016-01-19 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
WO2006118227A1 (en) * 2005-04-28 2006-11-09 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
JP2007258139A (en) * 2005-04-28 2007-10-04 Sumitomo Chemical Co Ltd Active material for nonaqueous secondary battery and its manufacturing method
CN1301560C (en) * 2005-05-08 2007-02-21 北京科技大学 Method of preparing Sn-Sb alloy material for negative electrode of lithium ion cell
CN100341172C (en) * 2005-09-15 2007-10-03 复旦大学 Film lithium ion battery using stannous selenide film as anode material and its preparation method
JP2007184263A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Carbonaceous electrode material for secondary battery, its manufacturing method and secondary battery
KR100784589B1 (en) 2006-01-04 2007-12-10 엘에스전선 주식회사 Carbonaceous electrode material for secondary battery and process for production thereof and secondary batteries using the same
CN100373664C (en) * 2006-04-07 2008-03-05 北京科技大学 Preparation method for high-capacity Sn-Ni alloy compound as lithium ion battery negative electrode material
JP2011076822A (en) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
WO2012067102A1 (en) * 2010-11-16 2012-05-24 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP2016039006A (en) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
CN105070891A (en) * 2015-09-06 2015-11-18 福建师范大学 Preparation of Ge/GeO2-mesoporous carbon composite electrode material for lithium ion battery and application of Ge/GeO2-mesoporous carbon composite electrode material

Similar Documents

Publication Publication Date Title
JPH1021913A (en) Battery chargeable and dischargeable reversibly for plural times
JP4942319B2 (en) Lithium secondary battery
JPH1116566A (en) Battery
JP3994238B2 (en) Nonaqueous electrolyte lithium secondary battery
JP2001110421A (en) Substance for activating positive electrode for lithium secondary battery and the lithium secondary battery
JP2004103566A (en) Positive active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4016453B2 (en) Electrode and battery using the same
JPH10208744A (en) Battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JPH11102730A (en) Lithium secondary battery
JPH1140153A (en) Battery
JPH10162823A (en) Non-aqueous secondary battery
TWI535098B (en) Method for manufacturing power storage device
JP4569126B2 (en) Non-aqueous electrolyte secondary battery charging method and non-aqueous electrolyte secondary battery
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JPH10321225A (en) Lithium secondary battery, and portable electric equipment, electronic equipment, electric vehicle and power storing device using this lithium semiconductor battery
JP4534266B2 (en) Nonaqueous electrolyte secondary battery
JPH04162357A (en) Nonaqueous secondary battery
JP4013327B2 (en) Non-aqueous secondary battery
JP2003242972A (en) Negative active material and non-aqueous electrolyte secondary battery and their manufacturing method
JPH1116571A (en) Battery, and electric apparatus using it
JP4534265B2 (en) Nonaqueous electrolyte secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP3835419B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
CN110800136A (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same