JP2011076822A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2011076822A
JP2011076822A JP2009225948A JP2009225948A JP2011076822A JP 2011076822 A JP2011076822 A JP 2011076822A JP 2009225948 A JP2009225948 A JP 2009225948A JP 2009225948 A JP2009225948 A JP 2009225948A JP 2011076822 A JP2011076822 A JP 2011076822A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009225948A
Other languages
Japanese (ja)
Other versions
JP5469979B2 (en
Inventor
Akihide Tanaka
明秀 田中
Etsuko Nishimura
悦子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009225948A priority Critical patent/JP5469979B2/en
Publication of JP2011076822A publication Critical patent/JP2011076822A/en
Application granted granted Critical
Publication of JP5469979B2 publication Critical patent/JP5469979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To enhance safety of a lithium ion secondary battery. <P>SOLUTION: A negative electrode of the lithium ion secondary battery is made of a negative active material layer and a current collector. The negative active material layer contains, as the main component, carbon in which a spacing of (002) planes d<SB>002</SB>measured with an X-ray diffraction device (XRD) is 0.340-0.390 nm, and the volume resistivity of the negative active material layer is 1×10<SP>-1</SP>to 1×10<SP>2</SP>Ωcm. Alternatively, carbon in which a spacing of (002) planes d<SB>002</SB>measured with the X-ray diffraction device (XRD) is not less than 0.3348 nm and less than 0.340 nm is contained as the main component, and the volume resistivity of the negative active material layer is 1×10<SP>-2</SP>to 1×10<SP>2</SP>Ωcm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

1980年代,1990年代の携帯電話やノートPCの発達に伴い、それらの電源用として二次電池は高性能化されている。二次電池としては鉛蓄電池やニッカド電池より、高エネルギー密度を持つリチウムイオン二次電池が主に用いられている。   With the development of mobile phones and notebook PCs in the 1980s and 1990s, secondary batteries have been improved in performance as power sources for them. As the secondary battery, a lithium ion secondary battery having a higher energy density is mainly used than a lead storage battery or a nickel cadmium battery.

リチウムイオン二次電池の電解液には、主に非水溶媒が用いられる。従って、過充電,加熱,短絡などが生じても発熱暴走状態となったりせず、さらに、電池が破裂発火しないよう安全性の確保が重要である。内部短絡を防止し、信頼性を高めるための技術として、特開2004−39558号公報(特許文献1)では、正負極に、180℃における体積抵抗率が−20℃以上〜60℃における体積抵抗率に比べて2.5倍以上である導電材を設けることが開示されている。その結果、短絡電流による急激な温度上昇を抑制する。   A non-aqueous solvent is mainly used for the electrolytic solution of the lithium ion secondary battery. Therefore, it is important to ensure safety so that the battery does not run out of heat even if overcharge, heating, short circuit, etc. occur, and the battery does not burst and ignite. As a technique for preventing an internal short circuit and improving reliability, in Japanese Patent Application Laid-Open No. 2004-39558 (Patent Document 1), a volume resistivity at −20 ° C. or more and −20 ° C. to 60 ° C. is applied to the positive and negative electrodes. It is disclosed to provide a conductive material that is at least 2.5 times the rate. As a result, a rapid temperature rise due to a short circuit current is suppressed.

また、特開2005−011043号公報(特許文献2)には、正極および負極の少なくとも一方の表面にフィラーおよび樹脂結着剤からなる多孔膜を接着させることが開示されている。   Japanese Patent Laying-Open No. 2005-011043 (Patent Document 2) discloses that a porous film made of a filler and a resin binder is bonded to at least one surface of a positive electrode and a negative electrode.

特開2004−39558号公報JP 2004-39558 A 特開2005−011043号公報JP 2005-011043 A

引用文献1のように、高温にならないと短絡電流が抑えられないシャットダウン機構には、常温での発熱を穏やかにする効果がない。従って、100〜200℃以下で電流が流れにくくできても、急激な発熱では、正極や負極や電解液がそれまでに自己発熱する温度に達してしまうと、継続的に発熱が起こり、熱暴走してしまうおそれがある。   As in the cited document 1, the shutdown mechanism in which the short-circuit current cannot be suppressed unless the temperature becomes high has no effect of mildly generating heat at room temperature. Therefore, even if the current can hardly flow at 100 to 200 ° C. or less, sudden heat generation causes continuous heat generation when the positive electrode, the negative electrode, or the electrolyte reaches a temperature at which it self-heats, and thermal runaway occurs. There is a risk of it.

特許文献2のように、絶縁層を負極表面に設ける技術では、絶縁層の部分を突き破るような異物による短絡の場合には効果がない。また、絶縁層が容量ロスになってしまう。   As in Patent Document 2, the technique of providing an insulating layer on the negative electrode surface has no effect in the case of a short circuit caused by a foreign matter that breaks through the portion of the insulating layer. In addition, the insulating layer becomes a capacity loss.

従って本発明の目的は、熱暴走の防止を行うための他の手法を検討し、リチウムイオン二次電池の安全性を向上させることにある。   Accordingly, an object of the present invention is to study other methods for preventing thermal runaway and to improve the safety of lithium ion secondary batteries.

リチウムイオン二次電池は、リチウムイオンを吸蔵放出する正極と、リチウムイオンを吸蔵放出する負極と、およびリチウムイオンを含む電解質を溶解させた有機電解液を具備し、正極および負極がセパレータを介して配置されている。リチウムイオン二次電池の負極は、負極が負極活物質層と集電体からなる。上記課題を解決する本願発明のリチウムイオン二次電池は、負極活物質に抵抗を上昇させる物質を塗布すること、もしくは負極活物質層に抵抗を上昇させる物質を混合することにある。   A lithium ion secondary battery includes a positive electrode that occludes and releases lithium ions, a negative electrode that occludes and releases lithium ions, and an organic electrolyte solution in which an electrolyte containing lithium ions is dissolved. Has been placed. The negative electrode of the lithium ion secondary battery includes a negative electrode active material layer and a current collector. The lithium ion secondary battery of the present invention that solves the above problems is to apply a substance that increases resistance to the negative electrode active material, or to mix a substance that increases resistance to the negative electrode active material layer.

負極活物質層の体積抵抗率を、炭素(002)面の面間隔d002が0.340以上0.390nm以下である炭素材(非晶質炭素)の場合は1×10-1〜1×102Ω・cm、炭素(002)面の面間隔d002が0.3348以上0.340nm未満である炭素材(黒鉛)の場合は1×10-2〜1×102Ω・cmとすることが好ましい。このような範囲で負極活物質層を使用することにより、内部短絡が発生した場合であっても短絡電流を抑制することができ、信頼性の向上に寄与する。 The volume resistivity of the negative electrode active material layer is 1 × 10 −1 to 1 × in the case of a carbon material (amorphous carbon) in which the interplanar spacing d 002 of the carbon (002) plane is 0.340 to 0.390 nm. 10 2 Ω · cm, the surface spacing d 002 of carbon (002) plane in the case of carbon material (graphite) is less than 0.3348 or more 0.340nm to 1 × 10 -2 ~1 × 10 2 Ω · cm It is preferable. By using the negative electrode active material layer in such a range, even when an internal short circuit occurs, the short circuit current can be suppressed, which contributes to the improvement of reliability.

上記の構成によれば、リチウムイオン二次電池の信頼性を向上させることが可能であり、携帯電話やノートPCなどの電子機器や、ハイブリッド自動車や電気自動車に好適に使用可能である。   According to said structure, the reliability of a lithium ion secondary battery can be improved and it can be used conveniently for electronic devices, such as a mobile telephone and a notebook PC, a hybrid vehicle, and an electric vehicle.

リチウムイオン二次電池の断面図。Sectional drawing of a lithium ion secondary battery.

リチウムイオン二次電池は、リチウムイオンを可逆的に吸蔵,放出する正極と負極を有し、正極および負極はセパレータを介して対向して配置されている。正負極は、正負極それぞれの活物質層と集電体からなる。さらに、電池缶などの容器に挿入され、リチウムを含む電解質を非水溶媒に溶解させた電解液を具備する。   A lithium ion secondary battery has a positive electrode and a negative electrode that reversibly occlude and release lithium ions, and the positive electrode and the negative electrode are arranged to face each other with a separator interposed therebetween. The positive and negative electrodes are each composed of an active material layer and a current collector for each of the positive and negative electrodes. Further, the battery includes an electrolytic solution that is inserted into a container such as a battery can and in which an electrolyte containing lithium is dissolved in a non-aqueous solvent.

電池が押しつぶされたり、異物などが正負極間に混入したりした際に、電池内で正極と負極がセパレータを突き破って接触し、内部短絡が発生することがある。内部短絡が発生すると、大電流が流れてしまい、電池が破裂したり、発熱するおそれがある。他にも、過充電,加熱,短絡などの際には、電池の発熱や破裂発火にいたるおそれがある。   When the battery is crushed or foreign matter is mixed between the positive and negative electrodes, the positive electrode and the negative electrode may break through the separator and contact each other in the battery, causing an internal short circuit. When an internal short circuit occurs, a large current flows and the battery may burst or generate heat. In addition, in the case of overcharge, heating, short circuit, etc., there is a risk of battery heat generation or explosion.

リチウムイオン二次電池用の負極活物質としては、リチウム金属や合金,炭素材料が知られている。リチウム金属や合金では充放電サイクルを重ねるに従いデンドライドが析出してしまうが、炭素材料にはその問題がなくサイクル特性がよく、安全性も高い。負極活物質としては、X線回折装置(XRD)測定により求められる炭素(002)面の面間隔d002が0.340以上0.390nm以下である炭素材(非晶質炭素)、もしくは炭素(002)面の面間隔d002が0.3348以上0.340nm未満である炭素材(黒鉛)を使用される。なお、d002が0.390nm以上では、初回の不可逆容量が増大し、電池容量が減少するため好ましくない。 As negative electrode active materials for lithium ion secondary batteries, lithium metal, alloys, and carbon materials are known. In lithium metals and alloys, dendrites are deposited as the charge and discharge cycles are repeated, but carbon materials do not have this problem and have good cycle characteristics and high safety. As the negative electrode active material, a carbon material (amorphous carbon) having an interplanar spacing d 002 of 0.340 to 0.390 nm determined by X-ray diffractometer (XRD) measurement, or carbon ( 002) surface plane spacing d 002 of used carbon material (graphite) is less than 0.3348 or more 0.340 nm. In the d 002 is more than 0.390 nm, the irreversible capacity of the first increases, unfavorably the battery capacity decreases.

リチウムイオン二次電池の電解液には、可燃性の非水溶媒が主に用いられる。そのため、非水溶媒を使用する場合、負極活物質が炭素材料であっても安全性を向上させる手段を講じる必要がある。   A flammable non-aqueous solvent is mainly used for the electrolyte of the lithium ion secondary battery. Therefore, when a non-aqueous solvent is used, it is necessary to take measures to improve safety even if the negative electrode active material is a carbon material.

本願発明者らは、負極の体積抵抗率を増大させ、内部短絡が起こった際の常温での電流を抑制することが安全性を向上させるために重要であることを見出した。負極に用いられる炭素材料は正極材に比べて電子伝導性が高く、負極と缶や正極と接触が起こった場合に大電流が流れてしまうためである。   The inventors of the present application have found that it is important to increase the volume resistivity of the negative electrode and suppress current at room temperature when an internal short circuit occurs in order to improve safety. This is because the carbon material used for the negative electrode has higher electron conductivity than the positive electrode material, and a large current flows when contact between the negative electrode and the can or the positive electrode occurs.

そのため、負極活物質層の体積抵抗率を高くすることとした。負極活物質としてX線回折装置(XRD)測定により求められる炭素(002)面の面間隔d002が0.340以上0.390nm以下である炭素材(非晶質炭素)、もしくは炭素(002)面の面間隔d002が0.3348以上0.340nm未満である炭素を使用し、前者の場合は負極活物質層の抵抗値を1×10-1以上、後者の場合は1×10-2以上とすることにより十分な短絡電流抑制の効果が得られる。一方、1×102Ω・cmを超える抵抗値とすると、電子抵抗が高くなりすぎて電池抵抗が上がってしまうので、上記範囲内で調整することが好ましい。
特に、負極活物質層の体積抵抗率は、1×10-1以上1×101Ω・cm以下が好ましく、さらに5×10-0以上1×101Ω・cm以下が好ましい。このような体積抵抗率とすることにより、内部短絡が起こった際の短絡電流を抑制できる。
Therefore, the volume resistivity of the negative electrode active material layer is increased. A carbon material (amorphous carbon) having an interplanar spacing d 002 of 0.340 to 0.390 nm obtained by X-ray diffractometer (XRD) measurement as a negative electrode active material, or carbon (002) Carbon having a surface spacing d 002 of 0.3348 or more and less than 0.340 nm is used. In the former case, the resistance value of the negative electrode active material layer is 1 × 10 −1 or more, and in the latter case, 1 × 10 −2. By setting it as the above, the effect of sufficient short circuit current suppression is acquired. On the other hand, if the resistance value exceeds 1 × 10 2 Ω · cm, the electronic resistance becomes too high and the battery resistance increases, so it is preferable to adjust within the above range.
In particular, the volume resistivity of the negative electrode active material layer is preferably 1 × 10 −1 to 1 × 10 1 Ω · cm, more preferably 5 × 10 −0 to 1 × 10 1 Ω · cm. By setting it as such a volume resistivity, the short circuit current at the time of an internal short circuit can be suppressed.

負極の体積抵抗率を増大させる手段の例として、炭素活物質表面を被覆する方法や、負極活物質層に抵抗体を添加する方法が挙げられる。被覆,添加する材料はリチウムイオンと合金化しない材料が好ましい。リチウムイオンと合金化する材料は、合金化することで膨張しやすく、このような材料を用いた場合サイクル特性が悪化する場合がある。   Examples of means for increasing the volume resistivity of the negative electrode include a method of coating the surface of the carbon active material and a method of adding a resistor to the negative electrode active material layer. The material to be coated and added is preferably a material that does not alloy with lithium ions. A material that is alloyed with lithium ions easily expands when alloyed, and when such a material is used, the cycle characteristics may deteriorate.

主材である炭素材の表面に、体積抵抗率が高く、かつ、リチウムイオンと合金化しない材料を用いて被覆を行うことが好ましい。負極活物質の主材である炭素の体積抵抗率をd002が0.340以上0.390nmの炭素の場合に1×10-1以上1×102Ω・cm以下、d002が0.3348以上0.340nm未満である炭素の場合に1×10-2以上1×102Ω・cm以下とする。この範囲とすることで、容易に負極活物質層の体積低効率を上記範囲
に調整しやすい。負極活物質層の体積抵抗率が結果的に上記範囲よりも小さいと短絡電流抑制の効果が小さく、抵抗率が大きいと電池抵抗が上がりすぎ好ましくない。
It is preferable to coat the surface of the main carbon material using a material having a high volume resistivity and not alloyed with lithium ions. The main material in which the volume resistivity of the carbon of the negative electrode active material d 002 is 1 × 10 -1 or more 1 × 10 2 Ω · cm or less in the case of carbon 0.390nm than 0.340, d 002 is 0.3348 In the case of carbon that is greater than or equal to 0.340 nm and greater than or equal to 1 × 10 −2 and less than or equal to 1 × 10 2 Ω · cm By setting it as this range, it is easy to adjust the volume low efficiency of the negative electrode active material layer to the above range. If the volume resistivity of the negative electrode active material layer is smaller than the above range, the effect of suppressing the short circuit current is small, and if the resistivity is large, the battery resistance is undesirably increased.

炭素の表面を被覆する材料は体積抵抗率5×104Ω・cm以上10-1Ω・cm以下の材料が好ましい。炭素材を被覆した場合に、上記の範囲の抵抗値に調整するのに好適であり、被覆処理を行うコストがかかりにくい。前記表面被覆層の膜厚が、前記負極活物質の累積50%粒径(50%D)に対して0.1%以上1%以下の厚みであることが好ましい。0.1%未満の場合、表面に被覆が均等にできにくい。また、1%を超えた範囲では抵抗の厚みが厚くなりすぎ、抵抗値が上がりすぎる場合がある。 The material covering the carbon surface is preferably a material having a volume resistivity of 5 × 10 4 Ω · cm to 10 −1 Ω · cm. When a carbon material is coated, it is suitable for adjusting to a resistance value in the above range, and the cost for performing the coating process is less likely to be required. It is preferable that the film thickness of the surface coating layer is 0.1% or more and 1% or less with respect to the cumulative 50% particle size (50% D) of the negative electrode active material. When it is less than 0.1%, it is difficult to uniformly cover the surface. Moreover, in the range exceeding 1%, the thickness of the resistance becomes too thick, and the resistance value may increase too much.

炭素表面を被覆する原料としては、たとえばCaO,Sc23,SrO2,SnO2,BaO,La23,Nd23,WO3,Al23,SiO2等の酸化物、またはAlN,GaN,SiN等の窒化物、またはこれらの混合物を用いることができる。また、炭素表面を被覆する方法としてはたとえば溶液からの塗布法,蒸着法,ラングミュアブロジェット(LB)法,電解重合法,プラズマ重合法,CVD(chemical vapor deposition)法,スパッタリング法などを用いることができる。 Examples of the raw material for coating the carbon surface include oxides such as CaO, Sc 2 O 3 , SrO 2 , SnO 2 , BaO, La 2 O 3 , Nd 2 O 3 , WO 3 , Al 2 O 3 , and SiO 2 . Alternatively, a nitride such as AlN, GaN, SiN, or a mixture thereof can be used. As a method for coating the carbon surface, for example, a coating method from a solution, a vapor deposition method, a Langmuir Blodget (LB) method, an electrolytic polymerization method, a plasma polymerization method, a CVD (chemical vapor deposition) method, a sputtering method, or the like is used. Can do.

また、負極の体積抵抗率を上げる他の方法としては、被覆材に換えて、もしくは前記被覆材に加えて、負極活物質層への抵抗体の添加(混合)することが挙げられる。抵抗体としては、被覆層の場合と同様に体積抵抗率が高く、かつ、リチウムイオンと合金化しない材料を使用し、粒子が好ましい。例えば、アクリル樹脂,ポリカーボネート樹脂,ウレタン樹脂,メラミン樹脂等から成る樹脂ビーズやソーダ硝子,カリ硝子,硼珪酸ガラス等のガラスから成るガラスビーズ、またはCaO,Sc23,SrO2,SnO2,BaO,La23,Nd23,WO3,Al23,SiO2等の酸化物、またはAlN,GaN,SiN等の窒化物、またはこれらの混合物があげられる。炭素材の被覆,炭素材と抵抗体粒子の混合の両方を行ってもよい。 Another method for increasing the volume resistivity of the negative electrode includes adding (mixing) a resistor to the negative electrode active material layer in place of or in addition to the coating material. As the resistor, a material having a high volume resistivity and not alloyed with lithium ions is used as in the case of the coating layer, and particles are preferable. For example, resin beads made of acrylic resin, polycarbonate resin, urethane resin, melamine resin, etc., glass beads made of glass such as soda glass, potassium glass, borosilicate glass, or CaO, Sc 2 O 3 , SrO 2 , SnO 2 , Examples thereof include oxides such as BaO, La 2 O 3 , Nd 2 O 3 , WO 3 , Al 2 O 3 and SiO 2 , nitrides such as AlN, GaN and SiN, and mixtures thereof. Both coating of the carbon material and mixing of the carbon material and resistor particles may be performed.

抵抗体の添加量は負極活物質に対して30重量部以上50重量部以下が好ましい。30重量部未満では、混合状態によっては導電経路が形成されて抵抗が低くなってしまう可能性が生じるし、50重量部を超える範囲では電池容量が低くなりすぎる。   The addition amount of the resistor is preferably 30 parts by weight or more and 50 parts by weight or less with respect to the negative electrode active material. If it is less than 30 parts by weight, there is a possibility that a conductive path is formed depending on the mixed state and the resistance becomes low, and if it exceeds 50 parts by weight, the battery capacity becomes too low.

抵抗体の混合の方法としては、負極活物質層に均一に分散させる他、層内で含有量に差を設けてもよい。抵抗体の添加量を負極活物質層内で均一にする必要はない。特に、負極活物質層の負極表面側に比して、集電体と接する側で抵抗体の含有量を少なくすることが好ましい。抵抗体の添加量が、負極表面側に対して、集電体と接する界面側で少ない構成にすることにより、短絡電流の抑制効果を高めることが可能である。また、活物質層全体に抵抗体を分散させず、一部に抵抗体が添加されていない活物質層を設けることにより、電池容量を高めることが可能である。負極活物質層を、活物質と抵抗体との混合比を変更した複数層よりなる多層構造としたり、熱処理などで抵抗体の分散方法を変更することにより実現できる。例えば、集電体と接する側の活物質層には前記抵抗体を含まない層を設けることが好ましい。負極活物質層が少なくとも二層よりなり、集電体側の層には抵抗体を含まず、負極表面側の層に抵抗体を混合することが好ましい。また、負極表面側に対して、集電体と接する界面側で少なくすることによっても、高い効果を得られる。   As a method of mixing the resistors, in addition to being uniformly dispersed in the negative electrode active material layer, a difference in content may be provided in the layer. It is not necessary to make the addition amount of the resistor uniform in the negative electrode active material layer. In particular, it is preferable to reduce the content of the resistor on the side in contact with the current collector as compared with the negative electrode surface side of the negative electrode active material layer. The effect of suppressing the short circuit current can be enhanced by adopting a configuration in which the amount of the resistor added is smaller on the interface side in contact with the current collector than on the negative electrode surface side. In addition, it is possible to increase the battery capacity by providing an active material layer in which no resistor is added to the active material layer without dispersing the resistor in the entire active material layer. The negative electrode active material layer can be realized by a multilayer structure composed of a plurality of layers in which the mixing ratio of the active material and the resistor is changed, or by changing the resistor dispersion method by heat treatment or the like. For example, the active material layer on the side in contact with the current collector is preferably provided with a layer that does not include the resistor. It is preferable that the negative electrode active material layer includes at least two layers, the current collector side layer does not include a resistor, and the resistor is mixed with the negative electrode surface side layer. Moreover, a high effect can be obtained by reducing the amount on the interface side in contact with the current collector with respect to the negative electrode surface side.

なお、活物質層の体積抵抗率は、例えば活物質層間に金属電極を形成し直流4端子法で評価する方法や、抵抗率測定装置を用いた4探針法で測定する。また、炭素材料の体積抵抗率は例えば、適当に加圧して粉体抵抗測定装置などを用いて測定する。   The volume resistivity of the active material layer is measured by, for example, a method in which a metal electrode is formed between the active material layers and evaluated by a direct current four-terminal method, or a four-probe method using a resistivity measuring device. In addition, the volume resistivity of the carbon material is measured using, for example, a powder resistance measuring device with appropriate pressure applied.

(負極)
本発明のリチウムイオン二次電池用負極炭素材料の作成方法は、特に限定されないが、例えば天然炭素,石油コークスや石炭ピッチコークスなどから得られる易炭素化材料を1000以上3000℃以下の高温で熱処理したものや、熱可塑性樹脂,ナフタレン,アントラセン,フェナントロレン,コールタール,タールピッチ等をオートクレーブ等の機器で予め熱処理を行い粉砕した後、800℃以上の不活性雰囲気でカ焼したものがあげられる。いずれの材料もその後に粉砕して粒度を調整した後解砕・分級を行って粒度を更に調整することによって、炭素材料を作製することができる。
(Negative electrode)
The method for producing the negative electrode carbon material for a lithium ion secondary battery of the present invention is not particularly limited. For example, an easily carbonized material obtained from natural carbon, petroleum coke, coal pitch coke, or the like is heat-treated at a high temperature of 1000 to 3000 ° C. And those that have been pulverized by heat-treating the thermoplastic resin, naphthalene, anthracene, phenanthrolen, coal tar, tar pitch, etc. in advance using an autoclave or other equipment and then calcining in an inert atmosphere at 800 ° C or higher. It is done. Any material can be pulverized to adjust the particle size, and then pulverized and classified to further adjust the particle size, thereby producing a carbon material.

また、本発明の負極炭素材料はレーザ回折/散乱式粒度分布測定装置により求めた累積50%粒径(50%D)が3μm以上30μm以下であるのが好ましく、特に3μm以上25μm以下が好ましくさらに特に5μm以上20μm以下が好ましい。平均粒径が30μmを超える場合、電極に凹凸ができやすくなるため、電池特性が低下する事や、活物質内へのイオン拡散長が長くなるため、充放電特性に問題があること、3μm未満の場合、つぶれにくくなるため、密度を上げにくくなる問題がある。なお、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザ回折式粒度分布測定装置で測定することができ、平均粒径は50%Dとして算出される。   The negative electrode carbon material of the present invention preferably has a cumulative 50% particle size (50% D) determined by a laser diffraction / scattering particle size distribution analyzer of 3 μm to 30 μm, particularly preferably 3 μm to 25 μm. Particularly, it is preferably 5 μm or more and 20 μm or less. When the average particle size exceeds 30 μm, the electrodes are likely to be uneven, so that the battery characteristics are deteriorated and the ion diffusion length into the active material is long, so that there is a problem in the charge / discharge characteristics, less than 3 μm In the case of, there is a problem that it is difficult to increase the density because it is difficult to be crushed. The particle size distribution can be measured with a laser diffraction particle size distribution analyzer by dispersing a sample in purified water containing a surfactant, and the average particle size is calculated as 50% D.

また、本発明の負極炭素材料は77K窒素吸着測定より得た吸着等温線をBET(Brunauer-Emmet-Teller)法を用いて求めた比表面積が、1m2/g以上10m2/g以下であるのが好ましい。1m2/g未満の場合は、活物質とリチウムイオンとの反応面積が減少するため、充放電特性が悪化し、10m2/gを超えた場合は、電解液との反応が起こりやすくなるため、不可逆容量が増大してしまうことや、寿命特性が悪化してしまう。 Further, the negative electrode carbon material of the present invention has a specific surface area of 1 m 2 / g or more and 10 m 2 / g or less obtained from an adsorption isotherm obtained by 77K nitrogen adsorption measurement using the BET (Brunauer-Emmet-Teller) method. Is preferred. If it is less than 1 m 2 / g, the reaction area between the active material and lithium ions decreases, so the charge / discharge characteristics deteriorate, and if it exceeds 10 m 2 / g, reaction with the electrolyte tends to occur. The irreversible capacity increases and the life characteristics deteriorate.

負極電極の作成方法は、特に限定されないが、例えば被覆した負極活物質に、更に結着剤を溶解もしくは分散させた溶媒を、ボールミル,プラネタリーミキサー等一般的な混錬分散方法を用いて、よく混練分散するか、負極炭素に抵抗体と結着剤を溶解もしくは分散させた溶媒をボールミル,プラネタリーミキサー等一般的な混錬分散方法を用いて、よく混練分散して、負極合剤スラリーを作成する。その後、塗布機を用いてこの負極合剤スラリーを銅等の金属箔上に、塗布後例えば120℃前後の適当な温度にて真空乾燥し、プレス機を用いて圧縮成型後所望の大きさに切断または打ち抜き、負極にすることができる。   The method for producing the negative electrode is not particularly limited. For example, a solvent in which a binder is further dissolved or dispersed in the coated negative electrode active material, using a general kneading dispersion method such as a ball mill or a planetary mixer, Thoroughly knead and disperse, or use a common kneading and dispersing method such as ball mill, planetary mixer, etc. to dissolve or disperse the resistor and binder in the negative electrode carbon, and then mix and disperse the negative electrode mixture slurry. Create After that, the negative electrode mixture slurry is coated on a metal foil such as copper using a coating machine, and then vacuum-dried at an appropriate temperature of, for example, about 120 ° C. After compression molding using a press machine to a desired size. It can be cut or punched into a negative electrode.

塗料を作成する際の溶剤としては、特に限定されないが、例えばN−メチル−2−ピロリドン(NMP),エチレングリコール,トルエン,キシレンなどがあげられる。   Although it does not specifically limit as a solvent at the time of producing a coating material, For example, N-methyl- 2-pyrrolidone (NMP), ethylene glycol, toluene, xylene etc. are mention | raise | lifted.

上記の結着剤としては上記有機系結着剤としては、特に限定されないが、例えば、スチレン−ブタジエン共重合体,メチル(メタ)アクリレート,エチル(メタ)アクリレート,ブチル(メタ)アクリレート,(メタ)アクリロニトリル,ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル,アクリル酸,メタクリル酸,イタコン酸,フマル酸,マレイン酸等のエチレン性不飽和カルボン酸,ポリ弗化ビニリデン,ポリエチレンオキサイド,ポリエピクロヒドリン,ポリフォスファゼン,ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。この有機系結着剤の含有量は、本発明のリチウムイオン二次電池用負極材と有機系結着剤の合計100重量部に対して1重量部以上15重量部以下含有することが好ましい。1重量部未満では、電極が剥離する場合があるし、15重量部より上の場合は、直流抵抗(DCR)が上昇することがある。   The above-mentioned organic binder is not particularly limited as the above-mentioned binder. For example, styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meta ) Ethylenically unsaturated carboxylic acid esters such as acrylonitrile, hydroxyethyl (meth) acrylate, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, polyvinylidene fluoride, polyethylene oxide, Examples thereof include high molecular compounds having high ionic conductivity such as polyepichlorohydrin, polyphosphazene, and polyacrylonitrile. The content of the organic binder is preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight in total of the negative electrode material for a lithium ion secondary battery of the present invention and the organic binder. If it is less than 1 part by weight, the electrode may be peeled off, and if it is above 15 parts by weight, the direct current resistance (DCR) may increase.

後述のように、上記のような被覆材,抵抗体を混合し、負極活物質層の体積抵抗率を、炭素(002)面の面間隔d002が0.340以上0.390nm以下である炭素材(非晶質炭素)の場合は1×10-1〜1×102Ω・cm、炭素(002)面の面間隔d002が0.3348以上0.340nm未満である炭素材(黒鉛)の場合は1×10-2〜1×102Ω・cmとすることが好ましい。このような範囲で負極活物質層を使用することにより、内部
短絡が発生した場合であっても短絡電流を抑制することができ、信頼性の向上に寄与する。
As will be described later, the above-described coating material and resistor are mixed, and the volume resistivity of the negative electrode active material layer is set to be a carbon (002) plane spacing d 002 of not less than 0.340 and not more than 0.390 nm. In the case of a material (amorphous carbon), a carbon material (graphite) having 1 × 10 −1 to 1 × 10 2 Ω · cm and a carbon (002) plane spacing d 002 of 0.3348 or more and less than 0.340 nm In this case, it is preferably 1 × 10 −2 to 1 × 10 2 Ω · cm. By using the negative electrode active material layer in such a range, even when an internal short circuit occurs, the short circuit current can be suppressed, which contributes to the improvement of reliability.

(正極)
正極の作成には、正極活物質に適当な溶媒に溶解、もしくは分散させた結着剤を加えてボールミル,プラネタリーミキサー等一般的な混錬分散方法を用いてよく混練分散して、正極合剤スラリーを作成する。その後、塗布機を用いてこの正極合剤スラリーをアルミ等の金属箔上に、塗布後120℃にて真空乾燥した後、圧縮成型後所望の大きさに切断または打ち抜き、正極にすることができる。
(Positive electrode)
In preparing the positive electrode, a binder dissolved or dispersed in an appropriate solvent is added to the positive electrode active material and kneaded and dispersed using a general kneading and dispersing method such as a ball mill or a planetary mixer. An agent slurry is prepared. Thereafter, this positive electrode mixture slurry can be vacuum-dried at 120 ° C. after being applied onto a metal foil such as aluminum using a coating machine, and then cut or punched into a desired size after compression molding to obtain a positive electrode. .

正極作成において、DCR低減のために必要な場合は導電助剤を加えることが好ましい。導電助剤としては、特に限定されないが例えば高導電性を有する粉末状炭素,鱗片状炭素、あるいはカーボンブラックなどの無定形炭素を用いることができ、これらを組み合わせてもよい。この導電助剤の含有量は、本発明のリチウムイオン二次電池用負極材と導電助剤の合計100重量部に対して0重量部以上15重量部以下含有することが好ましい。
15重量部を超えた場合、DCR低減効果は少なく容量だけが著しく低下してしまう。
In preparing the positive electrode, it is preferable to add a conductive aid if necessary for reducing DCR. Although it does not specifically limit as a conductive support agent, For example, amorphous carbon, such as powder carbon, scale-like carbon, or carbon black which has high electroconductivity, may be used. The content of the conductive assistant is preferably 0 to 15 parts by weight with respect to a total of 100 parts by weight of the negative electrode material for a lithium ion secondary battery and the conductive auxiliary of the present invention.
When it exceeds 15 parts by weight, the DCR reduction effect is small and only the capacity is significantly reduced.

正極活物質としては、スピネル型立方晶,層状型六方晶,オリビン型斜方晶,三斜晶等の結晶構造を有するリチウムと遷移金属との複合化合物を用いる。高出力、かつ長寿命といった観点では、リチウムとニッケル,マンガン,コバルトを少なくとも含有する層状型六方晶が好まく、特にLiMnaNibCocmd2が好ましい。(但し、MはFe,V,Ti,Cu,Al,Sn,Zn,Mg,Bからなる群から選ばれる少なくとも一種であり、好ましくはAl,B,Mg)また、0≦a≦0.6,0.3≦b≦0.7,0≦c≦0.4,0≦d≦0.1である。正極活物質は、平均粒径が10μm以下であることが好ましい。 As the positive electrode active material, a composite compound of lithium and a transition metal having a crystal structure such as spinel cubic, layered hexagonal, olivine orthorhombic or triclinic is used. From the viewpoint of high output and long life, a layered hexagonal crystal containing at least lithium, nickel, manganese, and cobalt is preferable, and LiMn a Ni b Co cmd O 2 is particularly preferable. (However, M is at least one selected from the group consisting of Fe, V, Ti, Cu, Al, Sn, Zn, Mg, and B, preferably Al, B, Mg). 0 ≦ a ≦ 0.6 , 0.3 ≦ b ≦ 0.7, 0 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.1. The positive electrode active material preferably has an average particle size of 10 μm or less.

(電解液)
電解液は溶媒として、直鎖状もしくは環状カーボネート類を主成分とすることが望ましく、これにエステル類,エチル類等を混合することもできる。カーボネート類として例えばエチレンカーボネート(EC),プロピレンカーボネート,ブチレンカーボネート,ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),メチルエチルカーボネート,ジエチルカーボネート、などがあげられる。これらを単独あるいは混合した溶媒を用いる。
(Electrolyte)
The electrolytic solution preferably has a linear or cyclic carbonate as a main component as a solvent, and can be mixed with esters, ethyls, and the like. Examples of carbonates include ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate, diethyl carbonate, and the like. These are used alone or in a mixed solvent.

電解液のリチウム塩は、電池の充放電により電解液中を移動するリチウムイオンを供給するもので、LiClO4,LiCF3SO3,LiPF6,LiBF4,LiAsF6などを単独もしくは2種類以上を用いることができる。電解質濃度は0.7以上1.5Mが望ましく上記範囲を外れるとDCRが上昇してしまう傾向がある。 The lithium salt of the electrolytic solution supplies lithium ions that move through the electrolytic solution by charging / discharging the battery. LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6, etc. are used alone or in combination. Can be used. The electrolyte concentration is preferably 0.7 or more and 1.5M, and if it is out of the above range, the DCR tends to increase.

電解液には不飽和基を含有する環状カーボネートを添加しても良い。不飽和基を含有する環状カーボネートとしては、例えばビニレンカーボネート,ビニルエチレンカーボネートをあげる事ができる。添加量としては、電解液全体の重量を100重量部とすると、0.1重量部以上5重量部以下が好ましい。上記範囲より少ないと効果が見えなくなり、上記より多すぎるとDCRが大きくなってしまう傾向がある。   You may add the cyclic carbonate containing an unsaturated group to electrolyte solution. Examples of the cyclic carbonate containing an unsaturated group include vinylene carbonate and vinyl ethylene carbonate. The amount added is preferably 0.1 parts by weight or more and 5 parts by weight or less, assuming that the total weight of the electrolytic solution is 100 parts by weight. If the amount is less than the above range, the effect cannot be seen. If the amount is more than the above range, the DCR tends to increase.

上記セパレータとしては、正極と負極の短絡を防ぐことができるなら特に限定されないが、例えばポリエチレン,ポリプロピレン等のポリオレフィンを主成分とした不織布,クロス,微孔フィルム又はそれらを組み合わせたものを使用することができる。   The separator is not particularly limited as long as it can prevent a short circuit between the positive electrode and the negative electrode. For example, a nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof may be used. Can do.

(電池)
上記の構成は、種々のリチウムイオン二次電池に適用することができ、構造は特に限定されない。リチウムイオン二次電池では、通常、正極,負極とそれらを隔てるためのセパレータを重ねて捲回した捲回式電極群,正極,負極,セパレータを積層状にした積層型電極群が使用される。
(battery)
The above configuration can be applied to various lithium ion secondary batteries, and the structure is not particularly limited. In a lithium ion secondary battery, a wound electrode group in which a positive electrode, a negative electrode, and a separator for separating them are stacked and wound, and a stacked electrode group in which a positive electrode, a negative electrode, and a separator are stacked are used.

上記のような構成により、内部短絡が起きた際に流れる電流を抑制できる。その結果、安全性が向上したリチウムイオン二次電池を提供できる。   With the configuration as described above, the current that flows when an internal short circuit occurs can be suppressed. As a result, a lithium ion secondary battery with improved safety can be provided.

〔実施例〕
以下、本発明の実施の形態について、実施例を用いて説明する。なお、実施例は一例であり、すべてがこれに限られるわけではない。まず被覆し抵抗を上昇させた炭素活物質を用いて負極活物質層の抵抗を上昇させた実施例から示す。
〔Example〕
Hereinafter, embodiments of the present invention will be described using examples. In addition, an Example is an example and all are not restricted to this. First, an example in which the resistance of the negative electrode active material layer is increased using a carbon active material that has been coated to increase the resistance will be described.

(実施例1)
実施例1では、負極活物質として、被覆層を設けて抵抗を上昇させた炭素活物質を用いた例について説明する。
Example 1
In Example 1, an example in which a carbon active material in which a coating layer is provided to increase resistance as a negative electrode active material will be described.

負極活物質の合成手順を示す。まずオートクレーブを用いて、石炭系コールタールを400℃で熱処理し生コークスを得た。この生コークスを粉砕した後、1500℃にて不活性雰囲気中でカ焼を行い、炭素層間距離(d002)が0.345nmの炭素材料を得た。本実施例の炭素材料における炭素002面の面間隔d002はX線回折装置(リガク製:RU200B)を用いて測定した。X線源には、Cuを用い回折確度はSiを用いて補正を行った。測定により得たピークをプロファイルフィッティングすることにより、ブラッグの式を用いて算出することができる。 The synthesis procedure of the negative electrode active material is shown. First, using an autoclave, coal-based coal tar was heat-treated at 400 ° C. to obtain raw coke. After pulverizing this raw coke, calcination was performed at 1500 ° C. in an inert atmosphere to obtain a carbon material having a carbon interlayer distance (d 002 ) of 0.345 nm. Plane spacing d 002 of the carbon 002 plane of the carbon material of the present embodiment is an X-ray diffractometer (Rigaku: RU200B) was used for the measurement. As the X-ray source, Cu was used and diffraction accuracy was corrected using Si. By performing profile fitting on the peak obtained by measurement, it can be calculated using the Bragg equation.

この炭素材料を分級機付きの衝撃破砕機を用いて粉砕し、300メッシュの篩にて粗粉を除去して炭素粒子とした。その際の平均粒径は16.6μmで比表面積は1.8m2/gであった。なお、実施例における材料の粒径(50%D)はレーザ回折/散乱式粒度分布測定装置((株)堀場製作所製:LA−920)を用いて調べた。光源としては、He−Neレーザ1mWを用い、炭素粒子の分散媒はイオン交換水に界面活性剤を2滴いれた物とした。予め5分以上超音波処理を行い、更に測定中も超音波処理を行って、凝集を防ぎつつ測定を行った。測定結果の累積50%粒径(50%D)を平均粒径とした。また、炭素材料の比表面積は、炭素材料を120℃で3時間真空乾燥した後、日本ベル株式会社製BELSORP−miniを用い、77Kでの窒素吸着を用いて平衡時間300秒で測定した吸着等温線をBET法で解析し求めた。 This carbon material was pulverized using an impact crusher equipped with a classifier, and coarse particles were removed with a 300 mesh sieve to obtain carbon particles. At that time, the average particle size was 16.6 μm and the specific surface area was 1.8 m 2 / g. In addition, the particle diameter (50% D) of the material in an Example was investigated using the laser diffraction / scattering type particle size distribution measuring apparatus (Horiba Ltd. make: LA-920). A He—Ne laser 1 mW was used as a light source, and a dispersion medium of carbon particles was obtained by adding two drops of a surfactant to ion exchange water. The ultrasonic treatment was performed for 5 minutes or more in advance, and the ultrasonic treatment was also performed during the measurement, and the measurement was performed while preventing aggregation. The cumulative 50% particle size (50% D) of the measurement results was taken as the average particle size. In addition, the specific surface area of the carbon material is an adsorption isotherm measured by vacuum drying the carbon material at 120 ° C. for 3 hours, and then using BELSORP-mini manufactured by Nippon Bell Co., Ltd. and using nitrogen adsorption at 77K with an equilibrium time of 300 seconds. The line was analyzed by BET method.

上記炭素粒子にCaOをCVD法を用いて20nm均一被覆し、負極活物質とした。この際、負極活物質層の体積抵抗率4.5×10-1Ω・cmであり、被覆炭素の体積抵抗率は4.6×10-1Ω・cmであった。本実施例における体積抵抗率は三菱化学製ロレスターGP,MCP−T610を用いて測定した。前者は被覆活物質層そのものを、後者は被覆した炭素を測定した結果である。炭素材料は、40MPaで圧力をかけた粉体抵抗より、電極は4探針法を用いて測定した。 The carbon particles were uniformly coated with CaO using a CVD method to a thickness of 20 nm to obtain a negative electrode active material. At this time, the volume resistivity of the negative electrode active material layer was 4.5 × 10 −1 Ω · cm, and the volume resistivity of the coated carbon was 4.6 × 10 −1 Ω · cm. The volume resistivity in the present example was measured using Lorester GP, MCP-T610 manufactured by Mitsubishi Chemical. The former is the result of measuring the coated active material layer itself, and the latter is the result of measuring the coated carbon. For the carbon material, the electrode was measured by a four-probe method based on the powder resistance applied with a pressure of 40 MPa.

(実施例2)
CVD法を用いて被覆した厚みを50nmに変更した事以外は実施例1と同様に行った。負極活物質層の体積抵抗率1.4×10-0Ω・cmであり、被覆炭素の体積抵抗率は1.3×10-0Ω・cmであった。
(Example 2)
The same procedure as in Example 1 was performed except that the thickness coated using the CVD method was changed to 50 nm. The volume resistivity of the negative electrode active material layer was 1.4 × 10 −0 Ω · cm, and the volume resistivity of the coated carbon was 1.3 × 10 −0 Ω · cm.

(実施例3)
CVD法を用いて被覆した厚みを100nmに変更した事以外は実施例1と同様に行った。負極活物質層の体積抵抗率6.0×10-0Ω・cmであり、被覆炭素の体積抵抗率は5.9×10-0Ω・cmであった。
(Example 3)
The same operation as in Example 1 was performed except that the thickness covered by the CVD method was changed to 100 nm. The volume resistivity of the negative electrode active material layer was 6.0 × 10 −0 Ω · cm, and the volume resistivity of the coated carbon was 5.9 × 10 −0 Ω · cm.

(実施例4)
CVD法を用いて被覆した厚みを150nmに変更した事以外は実施例1と同様に行った。負極活物質層の体積抵抗率3.5×101Ω・cmであり、被覆炭素の体積抵抗率は3.5×101Ω・cmであった。
Example 4
The same procedure as in Example 1 was performed except that the thickness coated using the CVD method was changed to 150 nm. The negative electrode active material layer had a volume resistivity of 3.5 × 10 1 Ω · cm, and the coated carbon had a volume resistivity of 3.5 × 10 1 Ω · cm.

(実施例5)
カ焼温度を2800℃にした事以外は、実施例1と同様に行った。
(Example 5)
The same procedure as in Example 1 was performed except that the calcination temperature was 2800 ° C.

この際の炭素層間距離(d002)を0.336nm、平均粒径は15.8μmで比表面積は1.9m2/gであった。この際、負極活物質層の体積抵抗率7.5×10-2Ω・cmであり、被覆炭素の体積抵抗率は7.4×10-2Ω・cmであった。 The distance between carbon layers (d 002 ) at this time was 0.336 nm, the average particle diameter was 15.8 μm, and the specific surface area was 1.9 m 2 / g. At this time, the volume resistivity of the negative electrode active material layer was 7.5 × 10 −2 Ω · cm, and the volume resistivity of the coated carbon was 7.4 × 10 −2 Ω · cm.

(実施例6)
CVD法を用いて被覆した厚みを50nmに変更した事以外は実施例5と同様に行った。負極活物質層の体積抵抗率2.5×10-0Ω・cmであり、被覆炭素の体積抵抗率は2.5×10-0Ω・cmであった。
(Example 6)
The same procedure as in Example 5 was performed, except that the thickness covered by the CVD method was changed to 50 nm. The negative electrode active material layer had a volume resistivity of 2.5 × 10 −0 Ω · cm, and the coated carbon had a volume resistivity of 2.5 × 10 −0 Ω · cm.

(実施例7)
CVD法を用いて被覆した厚みを100nmに変更した事以外は実施例5と同様に行った。負極活物質層の体積抵抗率5.5×10-0Ω・cmであり、被覆炭素の体積抵抗率は5.5×10-0Ω・cmであった。
(Example 7)
The same procedure as in Example 5 was performed except that the thickness coated using the CVD method was changed to 100 nm. The negative electrode active material layer had a volume resistivity of 5.5 × 10 −0 Ω · cm, and the coated carbon had a volume resistivity of 5.5 × 10 −0 Ω · cm.

(実施例8)
CVD法を用いて被覆した厚みを150nmに変更した事以外は実施例5と同様に行った。負極活物質層の体積抵抗率3.1×101Ω・cmであり、被覆炭素の体積抵抗率は3.1×101Ω・cmであった。
(Example 8)
The same procedure as in Example 5 was performed except that the thickness coated using the CVD method was changed to 150 nm. The volume resistivity of the negative electrode active material layer was 3.1 × 10 1 Ω · cm, and the volume resistivity of the coated carbon was 3.1 × 10 1 Ω · cm.

(比較例1)
炭素への被覆を行わなかったこと以外は実施例1と同様に行った。負極活物質層の体積抵抗率4.8×10-2Ω・cmであり、被覆炭素の体積抵抗率は4.8×10-2Ω・cmであった。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that carbon was not coated. The negative electrode active material layer had a volume resistivity of 4.8 × 10 −2 Ω · cm, and the coated carbon had a volume resistivity of 4.8 × 10 −2 Ω · cm.

(比較例2)
CVD法を用いて被覆した厚みを3nmに変更した事以外は実施例1と同様に行った。
負極活物質層の体積抵抗率1.5×10-2Ω・cmであり、被覆炭素の体積抵抗率は1.5×10-2Ω・cmであった。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the thickness coated using the CVD method was changed to 3 nm.
The negative electrode active material layer had a volume resistivity of 1.5 × 10 −2 Ω · cm, and the coated carbon had a volume resistivity of 1.5 × 10 −2 Ω · cm.

(比較例3)
CVD法を用いて被覆した厚みを500nmに変更した事以外は実施例1と同様に行った。負極活物質層の体積抵抗率5.8×102Ω・cmであり、被覆炭素の体積抵抗率は5.8×102Ω・cmであった。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that the thickness coated using the CVD method was changed to 500 nm. The volume resistivity of the negative electrode active material layer was 5.8 × 10 2 Ω · cm, and the volume resistivity of the coated carbon was 5.8 × 10 2 Ω · cm.

(比較例4)
CVD法を用いて被覆した材料をCaOからリチウムと合金化するSiに変更した事以外は実施例1と同様に行った。負極活物質層の体積抵抗率4.3×10-0Ω・cmであり、被覆炭素の体積抵抗率は4.2×10-0Ω・cmであった。
(Comparative Example 4)
The same procedure as in Example 1 was performed except that the material coated using the CVD method was changed from CaO to Si alloyed with lithium. The negative electrode active material layer had a volume resistivity of 4.3 × 10 −0 Ω · cm, and the coated carbon had a volume resistivity of 4.2 × 10 −0 Ω · cm.

(比較例5)
炭素への被覆を行わなかったこと以外は実施例5と同様に行った。負極活物質層の体積抵抗率7.5×10-3Ω・cmであり、被覆炭素の体積抵抗率は7.5×10-3Ω・cmであった。
(Comparative Example 5)
The same procedure as in Example 5 was performed except that the coating on carbon was not performed. The negative electrode active material layer had a volume resistivity of 7.5 × 10 −3 Ω · cm, and the coated carbon had a volume resistivity of 7.5 × 10 −3 Ω · cm.

(リチウムイオン二次電池の作製)
次に、正極活物質の合成手順を示す。原料として酸化ニッケル,酸化マンガン,酸化コバルトを使用し、原子比でNi:Mn:Co比が1:1:1となるように秤量し、湿式粉砕機で粉砕混合した。次に、結着剤としてポリビニルアルコール(PVA)を加えた粉砕混合粉を噴霧乾燥機で造粒した。得られた造粒粉末を高純度アルミナ容器に入れ、PVAを蒸発させるため600℃で12時間の仮焼成を行い、空冷後解砕した。さらに、解砕粉にLi:遷移金属(Ni,Mn,Co)の原子比が1:1:1となるよう水酸化リチウム一水和物を添加し、充分混合した。この混合粉末を高純度アルミナ容器に入れて900℃で6時間の本焼成を行った。得られた正極活物質をボールミルで解砕分級した。この正極活物質の平均粒径は6μmであった。
(Production of lithium ion secondary battery)
Next, a procedure for synthesizing the positive electrode active material will be described. Nickel oxide, manganese oxide, and cobalt oxide were used as raw materials, and weighed so that the atomic ratio of Ni: Mn: Co was 1: 1: 1, and pulverized and mixed with a wet pulverizer. Next, the pulverized mixed powder to which polyvinyl alcohol (PVA) was added as a binder was granulated with a spray dryer. The obtained granulated powder was put in a high-purity alumina container, pre-baked at 600 ° C. for 12 hours to evaporate PVA, crushed after air cooling. Further, lithium hydroxide monohydrate was added to the pulverized powder so that the atomic ratio of Li: transition metal (Ni, Mn, Co) was 1: 1: 1 and mixed well. This mixed powder was put into a high-purity alumina container and subjected to main firing at 900 ° C. for 6 hours. The obtained positive electrode active material was pulverized and classified with a ball mill. The average particle diameter of this positive electrode active material was 6 μm.

次に、上記の正極,負極活物質を用いてリチウムイオン二次電池を作製した。   Next, a lithium ion secondary battery was produced using the above positive electrode and negative electrode active materials.

図1は、本発明のリチウムイオン二次電池の断面図を示す図である。図1で、10は正極、11はセパレータ、12は負極、13は電池缶、14は正極タブ、15は負極タブ、16は内蓋、17は内圧開放弁、18はガスケット、19はPTC素子、20は電池蓋である。   FIG. 1 is a diagram showing a cross-sectional view of a lithium ion secondary battery of the present invention. In FIG. 1, 10 is a positive electrode, 11 is a separator, 12 is a negative electrode, 13 is a battery can, 14 is a positive electrode tab, 15 is a negative electrode tab, 16 is an inner lid, 17 is an internal pressure release valve, 18 is a gasket, and 19 is a PTC element. , 20 is a battery lid.

まず、正極を作製した。正極活物質85.0重量部に導電材として粉末状炭素とアセチレンブラックをそれぞれ7.0重量部と2.0重量部加え、あらかじめ結着剤として6.0重量部のPVDFをN−メチル−2−ピロリドン(NMP)に溶解した溶液を加えて、さ
らにプラネタリ−ミキサーで混合し正極合剤スラリーとした。このスラリーを塗布機で厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布した。塗布後ロールプレス機により電極密度が2.55g/ccになるように圧縮成形し、正極とした。
First, a positive electrode was produced. 7.0 parts by weight and 2.0 parts by weight of powdered carbon and acetylene black as conductive materials were added to 85.0 parts by weight of the positive electrode active material, respectively, and 6.0 parts by weight of PVDF was previously added as a binder to N-methyl- A solution dissolved in 2-pyrrolidone (NMP) was added and further mixed with a planetary mixer to obtain a positive electrode mixture slurry. This slurry was uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 μm with an applicator. After the application, it was compression-molded so as to have an electrode density of 2.55 g / cc with a roll press machine to obtain a positive electrode.

次に、負極を作製した。負極活物質として、前記被覆炭素材料を91.6重量部に導電材として、結着剤として8.4重量部のポリフッ化ビニリデン(PVDF)をNMPに溶解した溶液を加えて、さらにプラネタリ−ミキサーで混合し負極合剤スラリーとした。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布した。塗布後ロールプレス機により電極密度が1.25g/ccになるように圧縮成形し、負極とした。   Next, a negative electrode was produced. As a negative electrode active material, a solution in which 91.6 parts by weight of the coated carbon material is used as a conductive material and 8.4 parts by weight of polyvinylidene fluoride (PVDF) is dissolved in NMP as a binder is added, and a planetary mixer is further added. To make a negative electrode mixture slurry. This slurry was applied uniformly and evenly on both sides of a rolled copper foil having a thickness of 10 μm with a coating machine. After the application, it was compression molded by a roll press machine so that the electrode density was 1.25 g / cc to obtain a negative electrode.

まず、正極と負極を所望の大きさに裁断し、未塗布部にそれぞれ集電タブを超音波溶接した。集電タブはそれぞれ正極にはアルミニウムのリード片、負極にはニッケルのリード片を用いた。その後、厚み30μmのセパレータを多孔性のポリエチレンフィルムで正極と負極に挟みながら捲回した。この捲回体を電池缶に挿入し、負極タブを電池缶の缶底に抵抗溶接により接続し、正極タブには正極蓋を超音波溶接により接続した。体積比がエチレンカーボネート(EC),ジメチルカーボネート(DMC),ジエチルカーボネート(DEC)の体積比1:1:1の混合溶媒に1モル/リットルのLiPF6を溶解させた電解液を注液し、その後、正極蓋を電池缶にかしめて密封し、リチウムイオン電池を得た。
生成した電池の性能について以下の方法により確認を行った。
First, the positive electrode and the negative electrode were cut into desired sizes, and current collecting tabs were ultrasonically welded to the uncoated portions. Each of the current collecting tabs used an aluminum lead piece for the positive electrode and a nickel lead piece for the negative electrode. Thereafter, a separator having a thickness of 30 μm was wound while being sandwiched between a positive electrode and a negative electrode by a porous polyethylene film. The wound body was inserted into the battery can, the negative electrode tab was connected to the bottom of the battery can by resistance welding, and the positive electrode lid was connected to the positive electrode tab by ultrasonic welding. An electrolyte solution in which 1 mol / liter of LiPF 6 was dissolved in a mixed solvent with a volume ratio of 1: 1: 1 of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) was poured, Thereafter, the positive electrode lid was caulked and sealed in a battery can to obtain a lithium ion battery.
The performance of the produced battery was confirmed by the following method.

(DCR測定)
DCRを測定し電池の出力密度を求めた。作製した電池を常温(25℃)前後で0.3C相当の電流で4.1Vまで充電し、その後4.1Vで電流が0.03Cになるまで定電圧充電を行った。30分休止後に0.3C相当の定電流で2.7Vまで定電流放電を行った。
これを4サイクル行い初期化し、4サイクル目の放電容量より電池重量辺りの容量密度[mAh/g]を求めた。さらに0.3Cで3.6Vまで定電流充電行った後、電流4CA,8CA,12CA,16CAの電流値で10秒間放電した。この時の電圧値を求めて、これを2.5Vまで外挿したときの限界電流から出力密度を求めた。
(DCR measurement)
The DCR was measured to determine the battery power density. The produced battery was charged to 4.1 V at a current equivalent to 0.3 C around room temperature (25 ° C.), and then charged at a constant voltage at 4.1 V until the current reached 0.03 C. After a 30-minute pause, constant current discharge was performed up to 2.7 V with a constant current corresponding to 0.3 C.
This was repeated for 4 cycles to initialize, and the capacity density [mAh / g] around the weight of the battery was determined from the discharge capacity at the 4th cycle. Furthermore, after carrying out constant current charge to 3.6V at 0.3C, it discharged for 10 second with the electric current value of 4CA, 8CA, 12CA, and 16CA. The voltage value at this time was obtained, and the output density was obtained from the limit current when this was extrapolated to 2.5V.

(サイクル特性)
DCRを測定した電池を用いてサイクル特性を測定した。1CAの定電流で4.1V−2.7Vを5000サイクル行った後、さらに0.3Cで3.6Vまで定電流充電行った後、電流4CA,8CA,12CA,16CAの電流値で10秒間放電した。得られた直線
の傾きより直流抵抗を求めた。また、これを2.5Vまで外挿したときの限界電流から出力密度を求めた。表1に、5000サイクル後の抵抗上昇率(初期抵抗を100とした。
)を示した。
(Cycle characteristics)
The cycle characteristics were measured using the battery whose DCR was measured. After carrying out 5000 cycles of 4.1V-2.7V with a constant current of 1CA, and further carrying out a constant current charge to 3.6V at 0.3C, it discharges for 10 seconds with the current value of 4CA, 8CA, 12CA, and 16CA. did. The DC resistance was determined from the slope of the obtained straight line. Moreover, the output density was calculated | required from the limiting current when this was extrapolated to 2.5V. In Table 1, the rate of increase in resistance after 5000 cycles (the initial resistance was taken as 100).
)showed that.

(安全性試験)
次いで安全性試験として電池の圧潰試験を行った。充電電圧4.1V,充電時間2時間,制限電流800mAの定電圧・定電流充電を行い、電池の圧潰試験を行った。直径6mm
の円柱の丸棒を用いて、この丸棒が電池の外寸が最も長くなる方向に対して垂直になる方向から電池の中央部に押しつけて、電池の厚みが半分になるまで潰した。この際結果を変化無し、弁作動のみ、弁作動+発煙,弁作動+発煙+発火に分類した。ここで弁作動のみとは安全弁が開いた状態,弁作動+発煙は安全弁が開いて同時に気体が噴出した状態,弁作動+発煙+発火は気体が電池から噴出し、発火した状態である。また、各表では変化なしは「変化無し」、弁作動のみを「弁作動」、弁作動+発煙を「発煙」、弁作動+発煙+発火を「発火」と記載した。
(Safety test)
Next, a battery crush test was performed as a safety test. A constant voltage / constant current charge with a charging voltage of 4.1 V, a charging time of 2 hours and a limiting current of 800 mA was performed, and a battery crushing test was performed. 6mm in diameter
The round bar was pressed against the center of the battery from the direction perpendicular to the direction in which the outer dimension of the battery was the longest, and crushed until the thickness of the battery was halved. At this time, the results were classified as no change, valve operation only, valve operation + smoke, valve operation + smoke + ignition. Here, only the valve operation is a state in which the safety valve is open, valve operation + smoke is a state in which the safety valve is open and gas is simultaneously ejected, and valve operation + smoke + ignition is a state in which gas is ejected from the battery and ignited. In each table, “no change” indicates no change, “valve operation” indicates only valve operation, “smoke” indicates valve operation + smoke, and “fire” indicates valve operation + smoke + ignition.

同様に、過充電試験をしてから電池の圧潰試験を行った。充電電圧を4.3Vに変更した以外は上記圧潰試験と同様の手順で行った。実施例1ないし8,比較例1ないし5の負極を用いて作製した電池の試験結果を表1に示す。   Similarly, a battery crushing test was performed after an overcharge test. The procedure was the same as the crushing test except that the charging voltage was changed to 4.3V. Table 1 shows the test results of the batteries manufactured using the negative electrodes of Examples 1 to 8 and Comparative Examples 1 to 5.

Figure 2011076822
Figure 2011076822

表1の実施例1〜8,比較例1,2および5より、体積低効率が高くなると、体積抵抗率が低い場合に比べて、圧潰試験の際に4.1Vおよび4.3Vで発火が見られなかったことから、安全性が向上している。また、実施例1〜8と比較例3を比較すると、体積抵抗率が高すぎると、DCRが急激に上昇したために出力密度が低下したことがわかる。また、体積抵抗率の上限、下限はd002の値により変化している。したがって、X線回折装置(XRD)測定により求められる炭素(002)面の面間隔d002が0.340以上0.390nmである炭素を主材とした場合には、体積抵抗率を1×10-1以上1×102Ω・cm以下がよい。また、d002が0.3348以上0.340nm未満である炭素を主材とした場合には、炭素の体積抵抗率を1×10-2以上1×102Ω・cm以下がよい。 From Examples 1 to 8 and Comparative Examples 1, 2 and 5 in Table 1, when the volume low efficiency is increased, ignition occurs at 4.1 V and 4.3 V during the crush test as compared with the case where the volume resistivity is low. Safety was improved because it was not seen. Moreover, when Examples 1-8 are compared with the comparative example 3, when the volume resistivity is too high, it can be seen that the output density is lowered because the DCR is rapidly increased. Further, the upper limit and lower limit of the volume resistivity change depending on the value of d002 . Therefore, when the carbon (002) plane distance d 002 obtained by X-ray diffractometer (XRD) measurement is 0.340 to 0.390 nm, the volume resistivity is 1 × 10. -1 or more and 1 × 10 2 Ω · cm or less is preferable. Further, when carbon whose d 002 is 0.3348 or more and less than 0.340 nm is used as a main material, the volume resistivity of carbon is preferably 1 × 10 −2 or more and 1 × 10 2 Ω · cm or less.

また、実施例1〜8と比較例4を見ると、リチウムイオンと合金化する材料を被覆材料として選定すると、サイクル特性が悪化することがわかる。   Moreover, when Examples 1-8 and the comparative example 4 are seen, if the material alloyed with lithium ion is selected as a coating | covering material, it turns out that cycling characteristics deteriorate.

(実施例9)
炭素に被覆を行わず、かわりに負極スラリー作製時に抵抗体として、CaOを30重量部添加した事以外は実施例1と同様に行った。負極活物質層の体積抵抗率1.9×10-0Ω・cmであった。
Example 9
Instead of coating carbon, the same procedure as in Example 1 was performed except that 30 parts by weight of CaO was added as a resistor when preparing the negative electrode slurry. The volume resistivity of the negative electrode active material layer was 1.9 × 10 −0 Ω · cm.

(実施例10)
CaOの添加量を50重量部に変更した事以外は実施例9と同様に行った。負極活物質層の体積抵抗率2.9×101Ω・cmであった。
(Example 10)
The same operation as in Example 9 was performed except that the amount of CaO added was changed to 50 parts by weight. The volume resistivity of the negative electrode active material layer was 2.9 × 10 1 Ω · cm.

(実施例11)
CaOを添加しない炭素層を予め塗布した後に、負極スラリー作製時に抵抗体として、CaOを30重量部添加しその上に塗布した事以外は実施例9と同様に行った。負極活物質層の体積抵抗率7.8×10-1Ω・cmであった。
(Example 11)
This was performed in the same manner as in Example 9 except that a carbon layer to which no CaO was added was applied in advance, and 30 parts by weight of CaO was added as a resistor during the preparation of the negative electrode slurry. The volume resistivity of the negative electrode active material layer was 7.8 × 10 −1 Ω · cm.

(比較例6)
CaOの添加量を10重量部に変更した事以外は実施例9と同様に行った。負極活物質層の体積抵抗率4.2×10-2Ω・cmであった。
(Comparative Example 6)
The same operation as in Example 9 was performed except that the amount of CaO added was changed to 10 parts by weight. The volume resistivity of the negative electrode active material layer was 4.2 × 10 −2 Ω · cm.

(比較例7)
CaOの添加量を80重量部に変更した事以外は実施例9と同様に行った。負極活物質層の体積抵抗率2.9×103Ω・cmであった。
(Comparative Example 7)
The same operation as in Example 9 was performed except that the amount of CaO added was changed to 80 parts by weight. The volume resistivity of the negative electrode active material layer was 2.9 × 10 3 Ω · cm.

(比較例8)
添加種をCaOからリチウムイオンと合金化するSiに変更した事以外は実施例9と同様に行った。負極活物質層の体積抵抗率6.8×10-0Ω・cmであった。
(Comparative Example 8)
The same operation as in Example 9 was performed except that the additive species was changed from CaO to Si alloying with lithium ions. The volume resistivity of the negative electrode active material layer was 6.8 × 10 −0 Ω · cm.

実施例9〜11,比較例6〜8の負極を用いて作製した電池の試験結果を表2に示す。   Table 2 shows the test results of the batteries manufactured using the negative electrodes of Examples 9 to 11 and Comparative Examples 6 to 8.

Figure 2011076822
Figure 2011076822

表2の実施例9〜11と比較例1,6より、表1と同様に体積抵抗率が低い場合に比べて、体積低効率の上昇に応じて圧潰試験の際に4.1Vおよび4.3Vで発火が見られなかったことから安全性が向上している。また、実施例9〜11と比較例7より、体積低効率が高すぎると、DCRが急激に上昇したために出力密度が低下している。比較例8を見るとリチウムイオンと合金化する材料を被覆材料として選定すると、サイクル特性が悪化することがわかる。   From Examples 9 to 11 and Comparative Examples 1 and 6 in Table 2, 4.1 V and 4. V in the crushing test according to the increase in volume low efficiency compared to the case where the volume resistivity is low as in Table 1. Safety was improved because no ignition was seen at 3V. Further, from Examples 9 to 11 and Comparative Example 7, when the volume low efficiency is too high, the output density is lowered because the DCR rapidly increases. It can be seen from Comparative Example 8 that the cycle characteristics are deteriorated when a material alloyed with lithium ions is selected as the coating material.

また、実施例11より、抵抗体を含まない層を設けて多層構造とすることにより、容量を稼ぐことができる。   Further, from Example 11, the capacity can be increased by providing a layer not including a resistor to form a multilayer structure.

内部短絡時の電池の安全性を向上させたリチウムイオン二次電池を提供できる。   It is possible to provide a lithium ion secondary battery with improved battery safety during an internal short circuit.

10 正極
11 セパレータ
12 負極
13 電池缶
14 正極タブ
15 負極タブ
16 内蓋
17 内圧開放弁
18 ガスケット
19 PTC素子
20 電池蓋
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Separator 12 Negative electrode 13 Battery can 14 Positive electrode tab 15 Negative electrode tab 16 Inner cover 17 Internal pressure release valve 18 Gasket 19 PTC element 20 Battery cover

Claims (16)

リチウムイオンを可逆的に吸蔵放出する正極と、リチウムイオンを可逆的に吸蔵放出する負極と、前記正極および負極の間に配置されたセパレータと、前記リチウムイオンを含む電解質を溶解させた有機電解液と、を具備するリチウムイオン二次電池において、
前記負極は、負極活物質層と、集電体とよりなり、
前記負極活物質層はX線回折装置(XRD)測定により求められる炭素(002)面の面間隔d002が0.340以上0.390nmである炭素を主材とし、
前記負極活物質層の体積低効率は1×10-1以上1×102Ω・cm以下であることを特徴とするリチウムイオン二次電池。
An organic electrolytic solution in which a positive electrode that reversibly stores and releases lithium ions, a negative electrode that reversibly stores and releases lithium ions, a separator disposed between the positive electrode and the negative electrode, and an electrolyte containing the lithium ions are dissolved. In a lithium ion secondary battery comprising:
The negative electrode comprises a negative electrode active material layer and a current collector,
The negative active material layer surface spacing d 002 of carbon (002) face obtained by X-ray diffractometer (XRD) measurement as a main material of carbon is 0.390nm than 0.340,
The lithium ion secondary battery, wherein the volumetric efficiency of the negative electrode active material layer is 1 × 10 −1 or more and 1 × 10 2 Ω · cm or less.
リチウムイオンを可逆的に吸蔵放出する正極と、リチウムイオンを可逆的に吸蔵放出する負極と、前記正極および負極の間に配置されたセパレータと、前記リチウムイオンを含む電解質を溶解させた有機電解液と、を具備するリチウムイオン二次電池において、
前記負極は、負極活物質層と、集電体とよりなり、
前記負極活物質層は、X線回折装置(XRD)測定により求められる炭素(002)面の面間隔d002が0.3348以上0.340nm未満である炭素を主材とし、
前記負極活物質層の体積抵抗率は1×10-2以上1×102Ω・cm以下であることを特徴とするリチウムイオン二次電池。
An organic electrolytic solution in which a positive electrode that reversibly stores and releases lithium ions, a negative electrode that reversibly stores and releases lithium ions, a separator disposed between the positive electrode and the negative electrode, and an electrolyte containing the lithium ions are dissolved. In a lithium ion secondary battery comprising:
The negative electrode comprises a negative electrode active material layer and a current collector,
The negative active material layer, carbon (002) face plane spacing d 002 of which is determined by X-ray diffractometer (XRD) measurement as a main material of carbon is less than 0.3348 or more 0.340 nm,
The negative electrode active material layer has a volume resistivity of 1 × 10 −2 or more and 1 × 10 2 Ω · cm or less.
請求項1に記載されたリチウムイオン二次電池において、
前記主材の炭素の体積抵抗率は1×10-1以上1×102Ω・cm以下であることを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 1,
The lithium ion secondary battery according to claim 1, wherein a volume resistivity of carbon of the main material is 1 × 10 −1 or more and 1 × 10 2 Ω · cm or less.
請求項2に記載されたリチウムイオン二次電池において、
前記主材の炭素の体積抵抗率は1×10-2以上1×102Ω・cm以下であることを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 2,
The lithium ion secondary battery according to claim 1, wherein a volume resistivity of carbon of the main material is 1 × 10 −2 or more and 1 × 10 2 Ω · cm or less.
請求項1または2に記載されたリチウムイオン二次電池において、
前記主材の炭素は、表面に体積抵抗率5×104Ω・cm以上1×10-1Ω・cm以下の材料による被覆層を有することを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1 or 2,
The main material carbon has a coating layer of a material having a volume resistivity of 5 × 10 4 Ω · cm or more and 1 × 10 −1 Ω · cm or less on a surface thereof.
請求項1または2に記載されたリチウムイオン二次電池において、
前記主材の炭素は、表面に酸化物、窒化物、または酸化物及び窒化物の混合物を含む被覆層を有することを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1 or 2,
2. The lithium ion secondary battery according to claim 1, wherein the main material carbon has a coating layer including an oxide, a nitride, or a mixture of an oxide and a nitride on a surface thereof.
請求項6に記載されたリチウムイオン二次電池において、
前記被覆層は、CaO,Sc23,SrO2,SnO2,BaO,La23,Nd23,WO3,AlN,GaN,SiNの少なくともいずれかを含むことを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 6,
The covering layer includes at least one of CaO, Sc 2 O 3 , SrO 2 , SnO 2 , BaO, La 2 O 3 , Nd 2 O 3 , WO 3 , AlN, GaN, and SiN. Ion secondary battery.
請求項1または2に記載されたリチウムイオン二次電池において、
前記主材の炭素は被覆層を有し、前記被覆層の膜厚は、前記被覆層を備えた炭素の累積50%粒径(50%D)に対して0.1%以上1%以下であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1 or 2,
The carbon of the main material has a coating layer, and the film thickness of the coating layer is 0.1% or more and 1% or less with respect to the cumulative 50% particle size (50% D) of the carbon provided with the coating layer. A lithium ion secondary battery characterized by being.
請求項1または2に記載されたリチウムイオン二次電池において、
前記負極活物質層は、抵抗体粒子を含有することを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1 or 2,
The said negative electrode active material layer contains a resistor particle | grain, The lithium ion secondary battery characterized by the above-mentioned.
請求項9に記載されたリチウムイオン二次電池において
前記抵抗体粒子は、ガラスビーズ,樹脂ビーズ,酸化物粒子,窒化物粒子の少なくともいずれかを含有することを特徴とするリチウムイオン二次電池。
10. The lithium ion secondary battery according to claim 9, wherein the resistor particles contain at least one of glass beads, resin beads, oxide particles, and nitride particles. 11.
請求項9に記載されたリチウムイオン二次電池において、前記抵抗体粒子は、アクリル樹脂,ポリカーボネート樹脂,ウレタン樹脂,メラミン樹脂,ソーダ硝子,カリ硝子,硼珪酸ガラス,CaO,Sc23,SrO2,SnO2,BaO,La23,Nd23,WO3,Al23,SiO2,AlN,GaN,SiNのいずれかを含有することを特徴とするリチウムイオン二次電池。 10. The lithium ion secondary battery according to claim 9, wherein the resistor particles are acrylic resin, polycarbonate resin, urethane resin, melamine resin, soda glass, potassium glass, borosilicate glass, CaO, Sc 2 O 3 , SrO. 2 , a lithium ion secondary battery containing any one of SnO 2 , BaO, La 2 O 3 , Nd 2 O 3 , WO 3 , Al 2 O 3 , SiO 2 , AlN, GaN, and SiN. 請求項9に記載されたリチウムイオン二次電池において、前記抵抗体粒子の添加量は、前記主材の炭素に対して30以上50重量部以下であることを特徴とするリチウムイオン二次電池。   10. The lithium ion secondary battery according to claim 9, wherein the additive amount of the resistor particles is 30 to 50 parts by weight with respect to carbon of the main material. 請求項9に記載されたリチウムイオン二次電池において、前記抵抗体粒子の添加量は、 前記負極活物質層の表面側が前記負極活物質層の集電体側よりも多いことを特徴とするリチウムイオン二次電池。   10. The lithium ion secondary battery according to claim 9, wherein the amount of the resistor particles added is greater on the surface side of the negative electrode active material layer than on the current collector side of the negative electrode active material layer. Secondary battery. 請求項9に記載されたリチウムイオン二次電池において、
前記負極活物質層は複数の層よりなり、少なくとも一層に前記抵抗体粒子を含有することを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 9,
The negative electrode active material layer is composed of a plurality of layers, and the resistor particles are contained in at least one layer.
請求項9に記載されたリチウムイオン二次電池において、
前記集電体上に、集電体側より、前記抵抗体粒子を含まない負極活物質層と、前記抵抗体粒子を含む層を備えたことを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 9,
A lithium ion secondary battery comprising a negative electrode active material layer not including the resistor particles and a layer including the resistor particles on the current collector from the current collector side.
請求項9に記載されたリチウムイオン二次電池において、
前記抵抗体粒子は、リチウムイオンと合金化しない材料であることを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 9,
The lithium ion secondary battery, wherein the resistor particles are a material that does not alloy with lithium ions.
JP2009225948A 2009-09-30 2009-09-30 Lithium ion secondary battery Expired - Fee Related JP5469979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225948A JP5469979B2 (en) 2009-09-30 2009-09-30 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225948A JP5469979B2 (en) 2009-09-30 2009-09-30 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011076822A true JP2011076822A (en) 2011-04-14
JP5469979B2 JP5469979B2 (en) 2014-04-16

Family

ID=44020615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225948A Expired - Fee Related JP5469979B2 (en) 2009-09-30 2009-09-30 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5469979B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867949A (en) * 2011-07-04 2013-01-09 微宏新材料(湖州)有限公司 Anode material of lithium-ion secondary battery and preparation method of anode material
WO2014115322A1 (en) * 2013-01-28 2014-07-31 株式会社 日立製作所 Negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell obtained using same
WO2014181447A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Lithium-ion secondary battery
CN105633378A (en) * 2016-03-02 2016-06-01 三峡大学 Method for preparing GaN/conductive substrate composite material by magnetron sputtering method and application of GaN/conductive substrate composite material on lithium ion battery
WO2021205765A1 (en) * 2020-04-10 2021-10-14 三菱マテリアル株式会社 Negative-electrode material, battery, method for producing negative-electrode material, and method for producing battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH11111270A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Lithium secondary battery
JP2005222933A (en) * 2004-01-05 2005-08-18 Showa Denko Kk Negative pole material for lithium battery, and lithium battery
JP2006294316A (en) * 2005-04-07 2006-10-26 Sharp Corp Lithium ion secondary battery and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH11111270A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Lithium secondary battery
JP2005222933A (en) * 2004-01-05 2005-08-18 Showa Denko Kk Negative pole material for lithium battery, and lithium battery
JP2006294316A (en) * 2005-04-07 2006-10-26 Sharp Corp Lithium ion secondary battery and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867949A (en) * 2011-07-04 2013-01-09 微宏新材料(湖州)有限公司 Anode material of lithium-ion secondary battery and preparation method of anode material
US20130011738A1 (en) * 2011-07-04 2013-01-10 Microvast New Materials (Huzhou) Co., LTD. Cathode material of lithium ion secondary battery and method for manufacturing the same
CN102867949B (en) * 2011-07-04 2015-09-30 微宏动力系统(湖州)有限公司 Lithium ion secondary battery anode material and preparation method thereof
US9281516B2 (en) 2011-07-04 2016-03-08 Microvast Power Systems Co., Ltd. Cathode material of lithium ion secondary battery and method for manufacturing the same
WO2014115322A1 (en) * 2013-01-28 2014-07-31 株式会社 日立製作所 Negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell obtained using same
JP5941999B2 (en) * 2013-01-28 2016-06-29 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using them
WO2014181447A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Lithium-ion secondary battery
CN105633378A (en) * 2016-03-02 2016-06-01 三峡大学 Method for preparing GaN/conductive substrate composite material by magnetron sputtering method and application of GaN/conductive substrate composite material on lithium ion battery
WO2021205765A1 (en) * 2020-04-10 2021-10-14 三菱マテリアル株式会社 Negative-electrode material, battery, method for producing negative-electrode material, and method for producing battery

Also Published As

Publication number Publication date
JP5469979B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5300502B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP5121614B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
TWI569497B (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
WO2015025443A1 (en) Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
JP5627250B2 (en) Lithium ion battery
KR101539843B1 (en) Anode Active Material of High Density and Methode for Preparation of The Same
KR101723186B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101558044B1 (en) Bimodal type-anode active material and lithium secondary battery comprising the same
WO2011067982A1 (en) Active material particles and use of same
WO2013054481A1 (en) Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell
JPWO2015140983A1 (en) Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte secondary battery, battery pack, and method for producing non-aqueous electrolyte battery active material
JPWO2010150513A1 (en) Electrode structure and power storage device
JP2015179565A (en) Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack
EP3364483A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP5665828B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
KR20160102026A (en) Electrical device
KR101697008B1 (en) Lithium secondary battery
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
EP2712009A1 (en) Bimodal-type anode active material and lithium secondary battery including same
JP2008112594A (en) Lithium secondary battery
JP2011146158A (en) Lithium secondary battery
JP5469979B2 (en) Lithium ion secondary battery
WO2015140984A1 (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
KR20170084307A (en) Electrical device
WO2011058979A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5469979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees