WO2013054481A1 - Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell - Google Patents

Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell Download PDF

Info

Publication number
WO2013054481A1
WO2013054481A1 PCT/JP2012/006177 JP2012006177W WO2013054481A1 WO 2013054481 A1 WO2013054481 A1 WO 2013054481A1 JP 2012006177 W JP2012006177 W JP 2012006177W WO 2013054481 A1 WO2013054481 A1 WO 2013054481A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
sio
secondary battery
Prior art date
Application number
PCT/JP2012/006177
Other languages
French (fr)
Japanese (ja)
Inventor
林 圭一
貴之 弘瀬
佳世 水野
三好 学
石川 英明
正彰 鈴木
めぐみ 田島
栄克 河端
英明 篠田
雄一 平川
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013054481A1 publication Critical patent/WO2013054481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a negative electrode material for a lithium ion secondary battery.
  • lithium ion secondary batteries using lithium cobaltate (LiCoO 2 ) as a positive electrode active material and a carbon-based material as a negative electrode active material have been commercialized as high-capacity secondary batteries meeting this requirement.
  • Such a lithium ion secondary battery can be miniaturized and reduced in weight because of its high energy density, and hence its use as a power source is attracting attention in a wide range of fields.
  • LiCoO 2 which is a positive electrode active material
  • Co which is a rare metal
  • Co which is a rare metal
  • Co is expensive and price fluctuations are large
  • development of a cheap and stable supply of positive electrode active material is desired. Therefore, in order to reduce the use of Co, use is made of lithium manganese nickel-based oxides containing manganese (Mn) and nickel (Ni) in the basic composition at low prices and stable supply of constituent elements, instead of Co. Is considered promising.
  • the negative electrode active material development of a next-generation negative electrode active material having a charge and discharge capacity which greatly exceeds the theoretical capacity of the carbon material has been promoted.
  • silicon-based materials such as silicon and silicon oxide
  • carbon materials have been studied as negative electrode active materials.
  • the negative electrode active material expands and shrinks in association with absorption and release of lithium (Li) in a charge and discharge cycle. Such expansion and contraction degrade the cycle characteristics of the battery more than what it should have.
  • Various studies have been conducted to suppress the deterioration of the cycle characteristics and the like. For example, in patent document 1, the fall of cycling characteristics is suppressed using the composite which compounded the silicon oxide and the carbon material to the negative electrode active material.
  • SiO x silicon oxide
  • SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and in the case of homogeneous solid silicon monoxide SiO, in which the ratio of Si to O is approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by the internal reaction of the solid. .
  • the Si phase obtained by separation is very fine.
  • the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a secondary battery using a negative electrode active material composed of SiO x decomposed into Si and SiO 2 is excellent in cycle characteristics.
  • Patent Document 2 describes that a lithium ion secondary battery using a negative electrode material made of a mixture of lithium silicate powder and natural graphite powder has improved cycle characteristics.
  • a lithium ion secondary battery using a negative electrode material composed of a mixture of SiO x and graphite powder cracks repeatedly develop due to the difference in volume expansion due to repeated expansion and contraction of SiO x accompanying charge and discharge. There is a problem that peeling occurs between the current collector and the negative electrode active material layer.
  • Patent Document 3 in the negative electrode material containing Li occluding particles and graphite particles, the (002) interplanar spacing d (002) by X-ray diffraction method is 0.3354 nm or more and 0.338 nm or less, and G by Raman spectroscopic analysis. It has been proposed to use a graphite particle having an area ratio of peak to D peak of G / D ⁇ 9.
  • the use of Si or SiO as Li storage particles is described, and the use of Si or SiO together with such graphite particles is described to improve the cycle characteristics of the secondary battery.
  • Patent Document 4 composite particles are formed by a spray dry method or the like from a material containing an element that can be alloyed with Li such as Si and a conductive material such as graphite, and the composite particles are internally voided.
  • a negative electrode material has been proposed in which the void volume occupancy of the composite particles is in a predetermined range.
  • the composite particles have a gap that absorbs the expansion component, and the deterioration of the electrode characteristics can be prevented.
  • the conductive network can be sufficiently constructed to prevent the decrease in charge / discharge capacity of the non-aqueous secondary battery.
  • Patent Document 5 proposes a negative electrode material which is made of a mixture of a silicon compound and a carbon material as a buffer material, and the average particle diameter of the silicon compound is smaller than the average particle diameter of the carbon material. Furthermore, in Patent Document 5, the weight composition of the carbon material is made larger than the weight composition of the silicon compound. Patent Document 5 describes that the voids formed by the carbon material absorb the expansion of the silicon compound to suppress the volume change of the entire negative electrode.
  • Patent Document 5 describes a negative electrode in which 60 parts by weight of the carbon material and 30 parts by weight of the silicon compound are mixed in a case where the average particle size of the silicon compound is 1/10 of the average particle size of the carbon material.
  • at least a non-graphitizable carbon material is used as a buffer material, and Mg 2 Si powder is used as a negative electrode active material.
  • Patent Document 6 has a negative electrode whose active material is an alloyed material that can be alloyed with lithium and a carbon material that also functions as a buffer material, and the ratio of the alloyed material is the total amount of the alloyed material and the carbon material
  • a non-aqueous secondary battery has been proposed in which the average particle size of the alloying material is 1 to 30% by weight, and the average particle size of the alloying material is 2/5 or less of that of the carbon material.
  • soft carbon is used as a buffer material
  • Si powder or SiO powder is used as a negative electrode active material.
  • SiO x is relatively poor in conductivity.
  • a material having excellent conductivity that is, a conductive additive into the negative electrode.
  • the particle size of the conductive additive is smaller than the particle size of the negative electrode active material.
  • the surface of the negative electrode active material is covered with the conductive aid by blending a large amount of the conductive aid.
  • the conductive aid also has a function of holding the electrolytic solution, so the electrolytic solution is sufficiently spread near the surface of the negative electrode active material. For this reason, it is considered that the discharge capacity of the lithium ion secondary battery is improved.
  • the conductive aid is compounded in excess, the surface area of the conductive aid becomes excessive, so the adhesion between the negative electrode active material and the conductive aid may be reduced, and the discharge capacity may be reduced.
  • the conductive aid is excessively blended, the amount of the negative electrode active material to the conductive aid decreases. This may also reduce the discharge capacity of the lithium ion secondary battery.
  • Patent Document 7 discloses a composite particle for an electrode in which an electrode active material (core particle) containing a silicate is coated with an electron conductive layer containing carbon and a particulate active material for electrode.
  • the particle size of the particles contained in the electron conductive layer is 300 nm or less. According to Patent Document 7, it is considered that, by configuring the electrode composite particles in this manner, it is possible to suppress the decrease in discharge capacity of the lithium ion secondary battery while improving the conductivity of the electrode.
  • the composite particle for electrode introduced in Patent Document 7 is one in which core particles are coated with an electron conductive layer containing carbon and a particulate active material.
  • a negative electrode active material since many man-hours are required, there is a problem that it is difficult to manufacture the electrode composite particles introduced in Patent Document 7 at low cost.
  • the technology introduced in Patent Document 7 is diverted, and even when SiO x is used instead of a substance such as Li 2 FeSiO 4 or Li 2 MnSiO 4 introduced as silicate in Patent Document 7 It is not always possible to simultaneously achieve the improvement in the conductivity of the negative electrode and the reduction in the discharge capacity of the lithium ion secondary battery.
  • lithium ion secondary batteries are required to have higher capacity and higher energy density. Therefore, in the combination of a positive electrode active material and a negative electrode active material, a combination that makes a lithium ion secondary battery have high capacity and high energy density is required.
  • the energy density refers to energy that can be taken out per unit mass or unit volume, and is expressed in units of Wh / Kg and Wh / L.
  • Energy can be calculated by voltage ⁇ current capacity value.
  • the rated voltage indicates the voltage at a discharge amount which is exactly 1/2 of the total energy when discharged at a current of 0.2C. It can be said that this is an average voltage. Therefore, energy can be calculated by multiplying the average voltage at the time of 0.2 C discharge and the current capacity value.
  • the voltage corresponds to the potential difference between the discharge potential of the positive electrode and the discharge potential of the negative electrode.
  • the discharge potential of the positive electrode is determined by the material of the positive electrode active material used for the positive electrode.
  • a lithium ion secondary battery using a lithium manganese nickel oxide as a positive electrode active material discharges the positive electrode at a charge of up to 4.3 V as compared to a lithium ion secondary battery using lithium cobaltate as a positive electrode active material The potential is low. Therefore, if the negative electrode is the same, a lithium ion secondary battery using a lithium manganese nickel oxide as a positive electrode active material has an average voltage compared to a lithium ion secondary battery using lithium cobaltate as a positive electrode active material It becomes smaller.
  • the discharge potential of the negative electrode is determined by the material of the negative electrode active material used for the negative electrode.
  • a lithium ion secondary battery using a silicon material having a theoretical capacity larger than that of a carbon material as a negative electrode active material has a negative electrode of a lithium ion secondary battery as compared to a lithium ion secondary battery using a carbon material as a negative electrode active material Discharge potential is high. Therefore, if the positive electrode is the same, the average voltage of the lithium ion secondary battery using the silicon-based material as the negative electrode active material is smaller than that of the lithium ion secondary battery using the carbon material as the negative electrode active material.
  • the energy density is calculated by the average voltage x current capacity value at the time of 0.2 C discharge, even if the current capacity value is large, the energy density decreases as the average voltage decreases. There is also.
  • the present invention has been made in view of such circumstances, and has a first object to provide a lithium ion secondary battery capable of achieving both high capacity and high energy density.
  • the second object of the present invention is to prevent peeling of the interface between the current collector and the negative electrode active material layer by reducing the volume change during charge and discharge in a negative electrode material containing Li storage particles and carbon-based particles. Another object is to improve the cycle characteristics of a lithium ion secondary battery using the negative electrode.
  • a third object of the present invention is to use a negative electrode for a lithium ion secondary battery and its negative electrode which can further suppress the volume change of the whole negative electrode when using a negative electrode active material having a large volume change due to lithium absorption and release.
  • Providing a lithium ion secondary battery As described in Patent Document 5 and Patent Document 6, various studies have been made on adding a buffer material, suppressing a volume change of the entire negative electrode, and suppressing deterioration of cycle characteristics.
  • the mass of the negative electrode active material is reduced in the examples, and the mass of the buffer material is increased by about 2 times the mass of the negative electrode active material, and the average particle diameter of the negative electrode active material is The volume change of the whole negative electrode is suppressed by setting it as 2/5 or less of the average particle diameter of these.
  • a third object is to provide a lithium ion secondary battery using a negative electrode for a secondary battery and the negative electrode thereof.
  • the fourth object of the present invention is to use lithium ion secondary battery as a negative electrode material for lithium ion secondary battery, which uses SiO x as a negative electrode active material, is excellent in conductivity and can suppress a decrease in discharge capacity of lithium ion secondary battery.
  • An object of the present invention is to provide a negative electrode for a secondary battery and a lithium ion secondary battery.
  • the fifth object of the present invention is to improve the dispersibility of Li occluding particles and carbon-based particles in the negative electrode active material layer even if the ratio (D 1 / t) is small, and secondary lithium ion using the negative electrode It is about improving the output of the battery.
  • the positive electrode and the negative electrode In the lithium ion secondary battery, it is required to make the positive electrode and the negative electrode as thin as possible.
  • the negative electrode active material layer containing Li occluding particles and carbon-based particles when the thickness of the negative electrode active material layer is reduced, the dispersibility of the Li occluding particles and the carbon-based particles is poor and the conductivity is lowered. there were.
  • natural graphite which is generally used as the carbon-based particles has a large D 50, since a large difference occurs in comparison with the D 50 of Li occlusion particles, that tends to occur unevenness in the distribution of both in the anode active material layer There's a problem.
  • the inventors of the present application decided to use the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer as an indicator of dispersibility. That is, as the ratio (D 1 / t) is smaller, the dispersibility of the carbon-based particles in the negative electrode active material layer is improved. However, when the ratio (D 1 / t) is reduced, there is a problem that the dispersibility of the Li storage particles and the carbon-based particles is reduced, and both are in a relation of conflicting events.
  • the fifth object of the present invention is to improve the dispersibility of Li occluding particles and carbon-based particles in the negative electrode active material layer even if the ratio (D 1 / t) is small, and secondary lithium ion using the negative electrode It is about improving the output of the battery.
  • the lithium ion secondary battery of the present invention comprises a positive electrode, a negative electrode having a negative electrode active material containing SiO x (0.5 ⁇ x ⁇ 1.5 ) and graphite, have, a SiO x and graphite 100 It is characterized in that the blending ratio of SiO x when it is mass% is 27 mass% to 51 mass%.
  • the lithium ion secondary battery using the negative electrode active material whose compounding ratio of SiO x is the said range By setting it as the lithium ion secondary battery using the negative electrode active material whose compounding ratio of SiO x is the said range, compared with the lithium ion secondary battery using a carbon material for the negative electrode active material, the electric capacity of a negative electrode increases. Thus, the increase in discharge potential of the negative electrode can be suppressed, and a lithium ion secondary battery having high capacity and high energy density can be obtained.
  • the composite metal oxide is used as a positive electrode active material, the discharge potential of the positive electrode is lower compared to the case where other positive electrode active materials are used, and therefore the electric capacity of the negative electrode is obtained by combining the positive electrode and the negative electrode. Since the increase of the discharge potential of the negative electrode can be suppressed, the lithium ion secondary battery can have high capacity and high energy density even if the discharge potential of the positive electrode decreases.
  • the composite metal oxide is preferably LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • the blending ratio of SiO x when SiO x and graphite are 100 wt% is 27 wt% to 45 wt%.
  • the lithium ion secondary battery of the present invention comprises a positive electrode, an element capable of alloying with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, And a negative electrode having a negative electrode active material containing a compound of Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi and / or an element, and graphite and an element and / or an element
  • the compounding ratio of the element and / or the compound of the element when the compound is 100% by mass is characterized in that it is 27% by mass to 51% by mass. When the compounding ratio of the element and / or the compound of the element is in the above range, a lithium ion secondary battery having a high capacity and a high energy density can be obtained.
  • the feature of the negative electrode for a lithium ion secondary battery of the present invention to solve the second problem is a negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the current collector.
  • a carbon-based particles in the anode active material layer includes a storage capable Li occluding particles lithium ions, D 50 of D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 2)
  • Ratio (D 1 / D 2 ) is more than 1 and 2 or less
  • the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is One or more and five or less.
  • it refers to a particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, D 50 refers to the median diameter measured on a volume basis.
  • the feature of the lithium ion secondary battery of the present invention for solving the second problem lies in the use of the negative electrode of the present invention.
  • the active material layer is an active material, includes a binder and a buffer material, the active material consists of SiO x powder (0.5 ⁇ x ⁇ 1.5), the buffer material is made of graphite powder, D 50 of the SiO x powder, 1 D 50 of the graphite powder
  • the blending amount of the graphite powder is 36% by mass to 61% by mass when the total of the mass of the graphite powder and the mass of the SiO x powder is 100% by mass, and The content is characterized in that it is 5% by mass to 25% by mass when the mass of the entire active material layer is 100% by mass.
  • the blending amount of the graphite powder is in the above range, and the binder content is in the above range, SiO x is formed in the voids formed by the graphite powder.
  • powder is placed, and also expands SiO x powder, SiO x powder and graphite powder to avoid thick negative electrode thickness is rearranged.
  • Repositioning refers to the fact that the SiO x powder is disposed in the void formed again by the graphite powder so that the SiO x powder and the graphite powder do not expand in the thickness direction of the negative electrode active material layer.
  • the volume change of the negative electrode can be significantly suppressed.
  • SiO x powder enters well into the gap graphite powder forms more and the graphite powder and SiO x powder Arranged with high density. 1/4 smaller than D 50 D 50 of the graphite powder of SiO x powder, SiO x powder would make a aggregate to coarse particles containing a binder, coarse particles are well within voids graphite powder to form I can not get in. SiO x powder is not impenetrable well within void D 50 of SiO x powder form is larger than 1/2 and graphite powder D 50 of the graphite powder.
  • the SiO x powder enters the void formed by the graphite powder well
  • the volume change of the negative electrode can be suppressed, and if it is 61% by mass or less, the electrode capacity of the negative electrode can not be reduced much.
  • the above-mentioned effect is remarkable when content of a binder is the said range.
  • the SiO x powder and the graphite powder are preferably rearranged because the graphite powder and the SiO x powder are peeled off from the current collector.
  • the amount of the binder is more than 25% by mass, the amount of the insulating binder increases, which is not preferable because the conductivity of the entire electrode decreases and the internal resistance increases.
  • the negative electrode active material layer expands in the thickness direction, the conductive path formed between the active material, the conductive additive, and the like is broken, and the conductivity of the negative electrode is lowered.
  • the conductivity of the negative electrode decreases, lithium ions are less likely to be released during discharge.
  • the negative electrode active material layer expands in the thickness direction, the adhesion between the negative electrode active material and the current collector is reduced, or the negative electrode active material is distorted due to the repetition of expansion and contraction of the negative electrode active material, and thus finer Desorption from the electrode leads to deterioration of the battery capacity and cycle characteristics.
  • By suppressing the volume change of the negative electrode it is possible to suppress the deterioration of the electric capacity and the cycle characteristics of the battery.
  • the blending amount of the above-mentioned graphite powder is more preferably 36% by mass to 49% by mass.
  • the volume change of a negative electrode can be suppressed further and it can be set as the battery which suppressed deterioration of cycle characteristics more. If the amount of the graphite powder is more than 49 wt%, the charging and discharging of the repetition, since a large graphite powder D 50 than SiO x powder is easily detached from the binder, the cycle characteristics are deteriorated.
  • the negative electrode for lithium ion secondary battery is formed through a compression molding step, and in the case of compressing the negative electrode for lithium ion secondary battery with a press pressure higher than the press pressure in the compression molding step, the negative electrode in the compression direction. It is preferable that the thickness of the active material layer be reduced.
  • the fact that the thickness of the negative electrode active material layer can be reduced by using such a higher pressing pressure means that the SiO x powder can further enter into the void formed by the graphite powder by applying a high pressing pressure. That indicates that the negative electrode active material layer, be SiO x powder expands, there is room for SiO x powder and graphite powder is rearranged with the expansion of SiO x powder.
  • LiM 2 O 2 (0 ⁇ x ⁇ 1, M 1 is one or more metal elements having a tetravalent Mn essential, M 2 preferably has a positive electrode containing a positive electrode active material a basic composition of lithium manganese oxide represented by a tetravalent Mn two or more metal elements as essential).
  • a voltage of 4.5 V is applied to the battery in the activation step of the active material. This is because the above lithium manganese oxide can not be activated without applying 4.5 V.
  • the electrolytic solution is likely to be decomposed.
  • the voltage applied to the battery is usually 4.3 V as the upper limit.
  • the expansion of the SiO x powder, which is a negative electrode active material is twice as large as that of 4.3 V applied.
  • the negative electrode of the present invention is used, the volume change of the entire negative electrode can be suppressed even in the case of such a high voltage.
  • the negative electrode containing SiO x as a negative electrode active material has a relatively large volume change during charge and discharge.
  • the inventors of the present invention have estimated that the conductive path formed in the negative electrode is cut off during the contraction of SiO x to deteriorate the conductivity of the negative electrode. At least a portion of the conductive path is considered to be formed by the conductive aid disposed on the surface of SiO x . And, if the amount of the conductive auxiliary agent per unit surface area of SiO x is sufficiently large, it is considered that the conductive path is hardly cut even when the SiO x contracts.
  • photographed the mode that the surface of the negative electrode material with few amounts of conductive support agents was observed with the scanning electron microscope (SEM; Scanning Electron Microscope) is shown in FIG.
  • the SEM photograph which imaged the mode which observed the surface of the negative electrode material with many amounts of conductive support agents by SEM is shown in FIG.
  • FIG. 14 when the amount of the conductive auxiliary agent is small, the surface of the relatively large particles SiO x is not sufficiently covered with the conductive auxiliary agent which is a fine particle, and the conductive path is sufficiently It is considered not to be formed.
  • FIG. 15 when the content of the conductive additive is large, the surface of relatively large particles, SiO x , is sufficiently covered with the conductive additive, which is fine particles, to form a large number of conductive paths. It is considered to be
  • the negative electrode material for a lithium ion secondary battery of the present invention is a conductive material containing a negative electrode active material comprising a silicon oxide represented by SiO x (0.3 ⁇ x ⁇ 1.6) and carbon (C).
  • a negative electrode material for a lithium ion secondary battery comprising a aids, a, BET value of SiO x a (m 2 / g) and a1, the amount of SiO x (g) of the b1, BET value of the graphite ( Assuming that m 2 / g) is a 2, the blending amount (g) of graphite is b 2, and the blending amount (g) of the conductive additive is c, ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / It is characterized in that the value of c is 24 or more and 65 or less.
  • the relationship between the surface area of the negative electrode active material described above and the compounding amount of the conductive aid, that is, the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c is based on the mass of the conductive aid.
  • the negative electrode material for a lithium ion secondary battery of the present invention which solves the fourth problem described above, based on the volume of the conductive additive, is silicon represented by SiO x (0.3 ⁇ x ⁇ 1.6).
  • a negative electrode material for a lithium ion secondary battery comprising a negative electrode active material made of an oxide and a conductive aid containing carbon (C), wherein a BET value (m 2 / g) of SiO x is a 1,
  • the blending amount (g) of SiO x is b1
  • the BET value (m 2 / g) of graphite is a 2
  • the blending amount (g) of graphite is b 2
  • the blending amount (cm 3 ) of the conductive aid is d
  • the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d is 43 or more and 120 or less.
  • the negative electrode for a lithium ion secondary battery of the present invention for solving the fourth problem is characterized by being made of the above-described negative electrode material for a lithium ion secondary battery of the present invention.
  • a lithium ion secondary battery of the present invention for solving the fourth problem is characterized by being provided with the above-described lithium ion secondary battery negative electrode of the present invention.
  • the feature of the negative electrode for a lithium ion secondary battery of the present invention to solve the fifth problem is a negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the current collector.
  • a carbon-based particles in the anode active material layer includes a storage capable Li occluding particles lithium ions, D 50 of D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 2) the ratio (D 1 / D 2) is 1/2 or more and 1.3 or less, the ratio of D 50 of the carbonaceous particles (D 1) the thickness of the negative electrode active material layer (t) (D 1 / t) to be 1/4 or more and 2/3 or less.
  • the feature of the lithium ion secondary battery of the present invention for solving the fifth problem lies in the use of the negative electrode of the present invention.
  • the present invention can provide a lithium ion secondary battery having both high capacity and high energy density.
  • pores are inevitably contained between the particles.
  • the pores absorb the stress at the time of expansion and contraction, but the larger ones are smaller than the smaller ones, and the larger ones have better stress absorption. Further, it is considered that as the shape of the pores is closer to a true sphere, stress concentration can be avoided and cracks can be prevented.
  • the D 50 of SiO x which is typical as Li storage particles is about 6.5 ⁇ m in the standard product
  • the particle diameter of graphite which is typical as carbon-based particles is in the range of 10 ⁇ m to 20 ⁇ m. Therefore, in the negative electrode material made of a mixture of SiO x and artificial graphite, the difference in particle size is large, and it has been difficult to have a large number of small pores.
  • D 50 (D 1) and the ratio between D 50 of Li occlusion particle (D 2) (D 1 / D 2) is greater than 1 and 2 of the carbon-based particles Since the following is assumed, D 1 and D 2 are close to each other, and a large number of small pores are contained in the negative electrode active material layer.
  • the thickness of the negative electrode active material layer is desirably as thin as possible in order to reduce the electrical resistance, but when the thickness of the negative electrode active material layer is reduced, D 50 (D 1 ) of the carbon-based particles and the negative electrode active material The ratio (D 1 / t) to the layer thickness (t) also decreases, and the dispersibility of the pores decreases.
  • the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is 1/4 or more and 5/6 or less. T is sufficiently large relative to 1 and the dispersibility of the pores is good.
  • the small and highly dispersible pores contained in the negative electrode active material layer can relieve the stress due to the volume change during charge and discharge. Since peeling can be prevented, cycle characteristics are improved.
  • the negative electrode material and the negative electrode of the present invention use SiO x as the negative electrode active material, they are excellent in conductivity and can suppress a decrease in discharge capacity of a lithium ion secondary battery. Moreover, although the lithium ion secondary battery of the present invention uses SiO x as the negative electrode active material, the conductivity of the negative electrode is excellent and the discharge capacity is unlikely to be reduced.
  • the negative electrode for a lithium ion secondary battery of the present invention has a negative electrode active material layer containing carbon-based particles and Li occlusion particles, D 50 (D 2 of D 50 (D 1) and Li occlusion particles of the carbon-based particles
  • the ratio (D 1 / D 2 ) to ( 1 ) is 1/2 or more and 1.3 or less. That is, since the particle size difference between the carbon-based particles and the Li storage particles is small, in the negative electrode active material layer, the carbon-based particles and the Li storage particles are highly dispersed and uniformly mixed.
  • the contact probability between the Li storage particles and the carbon-based particles is increased, and the ion conductivity of Li ions is improved. Therefore, the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is 1/4 or more and 2/3 or less, and the thickness of the negative electrode active material layer Even if the thickness is reduced, the conductivity of the negative electrode is improved.
  • the output is also improved.
  • FIG. 6 is a graph showing the relationship between discharge capacity (mAh) and voltage (V) (VS. Li / Li + ) in Examples 1 to 3 and Comparative Example 1.
  • FIG. 6 is a graph comparing the graphite ratio and volumetric energy density of Examples 1 to 3 and Comparative Example 1.
  • FIG. It is a SEM image of the cross section of the negative electrode which concerns on Example 5 of this invention. It is a SEM image of the cross section of the negative electrode which concerns on the comparative example 2 of this invention. It is a graph which shows the relationship between cycle number and discharge IR drop. It is a graph which shows the relationship between cycle number and discharge IR drop.
  • FIG. 1 is a schematic view illustrating a negative electrode for a lithium ion secondary battery of the present invention.
  • FIG. 1 It is a schematic diagram explaining the volume change of the negative electrode for lithium ion secondary batteries of this invention.
  • Is a schematic view D 50 of SiO x powder 2 will be described substantially equal or negative electrode for a lithium ion secondary battery using what little smaller and D 50 of the graphite powder 3.
  • It is a schematic diagram explaining the volume change of the negative electrode for lithium ion secondary batteries of FIG. Is a graph comparing the particle size ratio and the electrode density of the SiO x powder and graphite powder. It is a graph which shows the cycle test result of Examples 8-10.
  • FIG. It is a SEM photograph of the surface of negative electrode material with few amounts of conductive support agents.
  • FIG. 20 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14. The vertical axis is the discharge capacity retention rate. It is a graph showing the cycling characteristics of the lithium ion secondary battery of Examples 15 and 16, and a vertical axis
  • FIG. 20 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Examples 15 to 17, wherein the vertical axis is the discharge capacity retention rate.
  • the lithium ion secondary battery of the first embodiment of the present invention has a positive electrode, and a negative electrode having a negative electrode active material containing SiO x (0.5 ⁇ x ⁇ 1.5) and graphite.
  • the positive electrode has a current collector and an active material layer formed on the surface of the current collector.
  • the current collector is a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge.
  • the current collector may be in the form of a foil, a plate or the like, but the shape is not particularly limited as long as it is suitable for the purpose.
  • metal foils such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably, for example.
  • the active material layer contains an active material and a binder. You may add a conductive support agent to an active material layer as needed.
  • the active material is a substance that directly contributes to electrode reactions such as charge reactions and discharge reactions.
  • a lithium containing compound is suitable as an active material of a positive electrode.
  • the positive electrode active material for example, lithium-containing metal composite oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide and the like can be used.
  • Other metal compounds or polymer materials can also be used as the positive electrode active material.
  • Other metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or disulfides such as titanium sulfide or molybdenum sulfide.
  • the polymer material include conductive polymers such as polyaniline or polythiophene.
  • the composite metal oxide is excellent in thermal stability and low in cost. Therefore, by including the composite metal oxide, an inexpensive lithium ion secondary battery with good thermal stability can be obtained.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.0 Ni 0.6 Co 0.2 Mn 0.2 O 2 , Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2, LiCoO 2, it is possible to use a LiNi 0.8 Co 0.2 O 2, LiCoMnO 2. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is preferable in view of thermal stability.
  • the binder is used as a binder for fixing the active material to the current collector.
  • a binder for example, a cured product of polyvinylidene fluoride (PVDF), a cured product of a fluorine-based polymer such as polytetrafluoroethylene (PTFE), a cured product of a rubber such as styrene butadiene rubber (SBR), polyimide, polyamide imide, etc.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • a cured product of an imide polymer, a cured product of an alkoxysilyl group-containing resin, or a cured product of a thermoplastic resin such as polypropylene or polyethylene can be used.
  • a conductive support agent is added to the active material layer as needed to enhance the conductivity of the electrode layer.
  • Carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor) as conductive support agent Grown Carbon Fiber (VGCF) etc. can be added singly or in combination of two or more.
  • the negative electrode has a current collector and an active material layer formed on the surface of the current collector, as in the case of the above-described positive electrode.
  • the active material layer contains an active material and a binder. You may add a conductive support agent to an active material layer as needed.
  • the current collector, the binder and the conductive aid, those similar to those described for the positive electrode can be used.
  • the negative electrode active material consists of SiO x (0.5 ⁇ x ⁇ 1.5) and graphite.
  • SiO x (0.5 ⁇ x ⁇ 1.5) is a general formula representing an amorphous silicon oxide obtained using silicon dioxide (SiO 2 ) and metallic silicon (Si) as raw materials. It is known that SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and in the case of homogeneous solid silicon monoxide SiO which has a ratio of Si to O of approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by internal reaction of the solid. . The Si phase obtained by separation is very fine and dispersed in the SiO 2 phase. In addition, the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a lithium ion secondary battery using a negative electrode active material composed of SiO x decomposed into Si phase and SiO 2 phase is excellent in cycle characteristics.
  • SiO x (0.5 ⁇ x ⁇ 1.5)
  • x is less than 0.5
  • the ratio occupied by the Si phase becomes high, so that the volume change during charge and discharge becomes too large, and lithium ion secondary Battery cycle characteristics are degraded.
  • x exceeds 1.5
  • the ratio of the Si phase decreases to lower the energy density.
  • a further preferable range of x is 0.7 ⁇ x ⁇ 1.2.
  • the raw material silicon oxide powder containing non-crystalline SiO powder is heat-treated at 800 ° C. to 1200 ° C. for 1 hour to 5 hours in an inert atmosphere such as vacuum or in an inert gas.
  • an inert atmosphere such as vacuum or in an inert gas.
  • SiO x (0.5 ⁇ x ⁇ 1.5) has a shape that reduces the specific surface area.
  • D 50 of SiO x is large, the disproportionation reaction may occur only on the particle surface and may not occur to the inside of the particle, and the Si phase can not be separated, so the conventional discharge capacity can not be exhibited. Therefore, D 50 of SiO x is preferably as small as possible.
  • the D 50 of the SiO x is too small, since the coarse particles by aggregation during the formation of the negative electrode may decrease the charge-discharge characteristics of the lithium ion secondary battery. Further, when the D 50 of the SiO x is too small, the specific surface area of the SiO x powder is increased, an increasing number of contact surface with SiO x powder and the electrolyte, will proceed decomposition of the electrolyte, the cycle of the lithium ion secondary battery The characteristics get worse.
  • D 50 of the SiO x is preferably 1 ⁇ m or more.
  • it refers to a particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, D 50 refers to the median diameter measured on a volume basis.
  • D 50 of the SiO x is preferably 15 ⁇ m or less. And D 50 is greater than 15 [mu] m, there is a possibility that disproportionation discharge capacity does not occur until the internal drops than have conventional.
  • the SiO x powder has poor conductivity, the conductivity of the entire electrode becomes nonuniform, and the charge and discharge characteristics of the lithium ion secondary battery are degraded. More preferably, the D 50 of SiO x is 4 ⁇ m to 10 ⁇ m.
  • SiO x (0.5 ⁇ x ⁇ 1.5), commercially available SiO x having a desired D 50 can be used.
  • SiO x may be provided with a covering layer made of a carbon material on the surface. Coating layer comprising a carbon material, not only to impart conductivity to the SiO x, it is possible to prevent the reaction between such SiO x and hydrofluoric acid, thereby improving the battery characteristics of the lithium ion secondary battery.
  • Natural carbon, artificial graphite, coke, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, etc. can be used as the carbon material constituting the covering layer.
  • the covering layer can be formed even by using a mechanical surface fusion treatment method such as mechanofusion or a vapor deposition method such as CVD.
  • the formation amount of the covering layer can be 1% by mass to 50% by mass with respect to the total of SiO x and the covering layer. If the coating layer is less than 1% by mass, the effect of improving conductivity can not be obtained, and if it exceeds 50% by mass, the ratio of SiO x relatively decreases and the negative electrode capacity decreases.
  • the amount of the coating layer formed is preferably in the range of 5% by mass to 30% by mass, and more preferably in the range of 5% by mass to 20% by mass. Note that in the case of providing a coating layer comprising a carbon material on the surface of the SiO x, the proportion of SiO x when the SiO x and graphite is 100 mass%, including the mass of the coating layer.
  • the carbon material forming the covering layer is distinguished from the negative electrode active material graphite.
  • graphite which is a negative electrode active material
  • natural graphite powder artificial graphite powder, spherulite graphite powder (graphitized mesophase carbon small spheres), graphite-based carbon material powder, etc.
  • spherulite graphite powder graphitized mesophase carbon small spheres
  • graphite-based carbon material powder etc.
  • a pyrolyzate of a condensed polycyclic hydrocarbon compound such as pitch and coke
  • Graphite it is preferable to use a powder D 50 is 4 [mu] m ⁇ 30 [mu] m. In particular, those having a D 50 of 5 ⁇ m to 25 ⁇ m are preferable, and those having a D 50 of 8 ⁇ m to 20 ⁇ m are more preferable.
  • the blending ratio of SiO x is 27 wt% to 51 wt% when SiO x and graphite are 100 wt%.
  • the lithium ion secondary battery using the negative electrode active material of this compounding ratio has a lithium ion secondary battery compared to the lithium ion secondary battery using only SiO x (0.5 ⁇ x ⁇ 1.5) as the negative electrode active material.
  • the discharge voltage of the negative electrode of the secondary battery can be reduced, and a lithium ion secondary battery having a high capacity can be obtained as compared to a lithium ion secondary battery using only graphite as a negative electrode active material. Therefore, a lithium ion secondary battery using the negative electrode active material with the above blending ratio can be a lithium ion secondary battery having high capacity and high energy density.
  • the theoretical capacity increases as the amount of SiO x increases the discharge voltage of the negative electrode increases as the proportion of graphite decreases, and the positive electrode can not be used well. More preferably, the blending ratio of SiO x is 27% by mass to 45% by mass.
  • the said negative electrode and positive electrode can be manufactured by a well-known manufacturing method.
  • the said negative electrode and positive electrode can be manufactured by the manufacturing method which has a slurry preparation process, a slurry application
  • the slurry preparation step the active material and the binder resin are mixed to prepare a slurry. If necessary, a solvent and a conductive additive may be added to the slurry.
  • NMP N-methyl pyrrolidone
  • MIBK methyl isobutyl ketone
  • binder resin In order to make active material, binder resin, conductive support agent and solvent mixed and made into slurry, general mixing equipment such as planetary mixer, defoaming kneader, ball mill, paint shaker, vibration mill, lai car, agitator mill etc. You may use it.
  • the slurry is applied to the surface of the current collector.
  • a coating method generally used for producing an electrode for a secondary battery such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method can be used.
  • the coating thickness of the slurry applied to the surface of the current collector is preferably 10 ⁇ m to 40 ⁇ m.
  • the current collector to which the slurry is applied is compression molded by a roll press.
  • the current collector and the slurry are closely bonded by compression molding.
  • the roll press may be one commonly used.
  • Compression molding can be performed, for example, by press molding at a linear pressure of 10 kg / cm to 2000 kg / cm using a roll press.
  • the linear pressure may be appropriately controlled to be an optimum electrode density from the viewpoint of energy density and battery life.
  • the binder resin is cured by heating the slurry closely bonded to the surface of the current collector.
  • heating is performed in accordance with the curing temperature of the binder resin to be used.
  • An active material layer is formed on the current collector by this heat treatment step.
  • the lithium ion secondary battery of the first embodiment of the present invention can use known battery components except using the above-mentioned negative electrode and positive electrode, and can be manufactured by a known method.
  • the battery components include, in addition to the positive electrode and the negative electrode, a separator and an electrolytic solution.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes.
  • a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic can be used.
  • the electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
  • cyclic esters linear esters, ethers can be used as a solvent.
  • cyclic esters for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, gamma valerolactone and the like can be used.
  • chain esters that can be used include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like.
  • ethers for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane and the like can be used.
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
  • lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use a solution dissolved at a concentration of about 7 mol / l.
  • the shape of the lithium ion secondary battery according to the first embodiment of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted.
  • the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • Another lithium ion secondary battery according to the first embodiment of the present invention includes a positive electrode, an element which can be alloyed with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, It has a negative electrode having a negative electrode active material containing Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi and / or a compound of the above elements, and graphite.
  • the blending ratio of the element and / or the compound of the element when the content of the graphite and the compound of the element and / or the element is 100% by mass is 27% by mass to 51% by mass.
  • the compounds of lithium can be alloyed elements, ZnLiAl, AlSb, SiB 4, SiB 6, Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2, MoSi 2, CoSi 2, NiSi 2, CaSi 2, CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO V (0 ⁇ V ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO, etc. may be mentioned.
  • the negative electrode for a lithium ion secondary battery according to the second embodiment of the present invention contains carbon-based particles and Li storage particles.
  • carbon-based particles include natural graphite, artificial graphite, coke, mesophase carbon, vapor grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber and the like, but they have excellent buffer performance and have a D 50 of 1 ⁇ m to Graphite in the range of 15 ⁇ m is preferred.
  • the D 50 of this carbon-based particle is particularly preferably 1 ⁇ m to 10 ⁇ m when the following SiO x is used as the Li storage particle.
  • SiO-based particles As the Li storage particles, silicon, tin, germanium, lead, indium, silicon oxide, tin oxide, etc. can be used, but a silicon oxide represented by SiO x (0.3 ⁇ x ⁇ 1.6) It is desirable to use SiO-based particles consisting of The SiO-based particles are composed of SiO x decomposed into fine Si and SiO 2 covering Si by disproportionation reaction. When x is less than the lower limit value, the Si ratio increases, so that the volume change at the time of charge and discharge becomes too large, and the cycle characteristics deteriorate. When x exceeds the upper limit value, the Si ratio is lowered and the energy density is lowered. The range of 0.5 ⁇ x ⁇ 1.5 is preferable, and the range of 0.7 ⁇ x ⁇ 1.2 is more preferable.
  • the Li occluding particles be composed of SiO-based particles and a covering layer which is made of a carbon material and covers the surface of the SiO-based particles.
  • the covering layer By having the covering layer, the reaction between the SiO-based particles and the hydrofluoric acid can be further prevented, and the cycle characteristics of the lithium ion secondary battery can be improved.
  • the carbon material of the covering layer natural graphite, artificial graphite, coke, mesophase carbon, vapor grown carbon fiber, pitch carbon fiber, PAN carbon fiber, etc. can be used.
  • mechanical surface fusion treatment methods such as mechanofusion described in patent document 2, CVD method etc. can be used.
  • the formation amount of the covering layer can be 1% by mass to 50% by mass with respect to the total of the SiO-based particles and the covering layer. If the coating layer is less than 1% by mass, the effect of improving conductivity can not be obtained, and if it exceeds 50% by mass, the ratio of SiO x relatively decreases and the negative electrode capacity decreases.
  • the amount of the coating layer formed is preferably in the range of 5% by mass to 30% by mass, and more preferably in the range of 5% by mass to 20% by mass.
  • Li occlusion particles is desirably D 50 in the range of 1 [mu] m ⁇ 10 [mu] m.
  • D 50 decreases the charge and discharge characteristics of 10 ⁇ m larger than the lithium ion secondary battery, D 50 is lowered charge-discharge characteristics of the same lithium ion secondary battery for agglomerated with 1 ⁇ m of less than a coarse grain There is a case.
  • the carbon-based particles are mixed in the range of 40% by mass or more and 65% by mass or less, where the total mass of the mixture of the carbon-based particles and the Li storage particles, the conductive auxiliary agent, and the binder resin is 100% by mass. Is preferred.
  • the carbon-based particles are less than 40% by mass, it is difficult to improve the cycle characteristics of the lithium ion secondary battery. Even if the carbon-based particles are mixed at more than 65% by mass, the reason is unknown, but the cycle characteristics of the lithium ion secondary battery are degraded as compared with the case where the carbon-based particles are 65% by mass or less. Furthermore, the mixing amount of the carbon-based particles is more optimally in the range of 45% by mass to 65% by mass.
  • the ratio of D 50 (D 2) of the D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 1 / D 2) shall be greater than 1 and 2 below. When this ratio exceeds 2, the particle size difference becomes large, and it becomes difficult for the negative electrode active material layer to have many small pores.
  • the pores preferably have a shape close to a true sphere, and the ratio (a / b) of the minor diameter (a) to the major diameter (b) of the pores is preferably close to 1. By doing so, stress concentration can be prevented, and cracking and peeling can be prevented.
  • the total volume of pores in the negative electrode active material layer is preferably smaller than the total volume of Li storage particles. When the total volume of the pores is larger than the total volume of the Li storage particles, the capacity per volume of the electrode decreases and the capacity retention rate decreases.
  • the negative electrode of the lithium ion secondary battery of the second embodiment of the present invention has a current collector and a negative electrode active material layer bound on the current collector.
  • the negative electrode active material layer is formed by adding a mixture of carbon-based particles and Li storage particles, a conductive additive, a binder resin, and an appropriate amount of an organic solvent as required, and mixing them to form a slurry by roll coating, dip It can manufacture by apply
  • the thickness (t) of the negative electrode active material layer can be 10 ⁇ m to 20 ⁇ m as in the conventional case.
  • the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is set to 1/4 or more and 5/6 or less.
  • this ratio (D 1 / t) is less than 1/4, the electrical resistance of the negative electrode active material layer is increased and the charge / discharge efficiency of the lithium ion secondary battery is decreased.
  • it exceeds 5/6 the negative electrode active material layer is formed Cracks and peeling are likely to occur. It is particularly desirable that the ratio (D 1 / t) be 1/2 or more and 2/3 or less.
  • the ratio (D 2 / t) of D 50 (D 2 ) of the Li storage particle to the thickness (t) of the negative electrode active material layer is the D 50 (D 1 ) of the above-mentioned carbon-based particle and Li storage particle the ratio of D 50 (D 2) of (D 1 / D 2), and the ratio of D 50 (D 1) and the anode active material layer thickness of the carbon-based particles (t) (D 1 / t ) From 1/8 to 2/3.
  • the same current collector as that described in the first embodiment can be used.
  • the same one as described in the first embodiment can be used.
  • the amount of the conductive aid used is not particularly limited.
  • the addition amount of a conductive support agent can be reduced or there is nothing.
  • the binder resin is used as a binder for binding the active material and the conductive aid to the current collector.
  • the binder resin is required to bind the active material and the like in a small amount as much as possible, and the amount is 0.5 mass of the total of the mixture of the carbon-based particles and the Li storage particles, the conductive aid and the binder resin. % To 50% by mass is desirable. When the amount of binder resin is less than 0.5% by mass, the formability of the electrode is lowered, and when it is more than 50% by mass, the energy density of the electrode is lowered.
  • fluorine-based polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), and imides such as polyimide, polyamide imide, and polyamide imide silica hybrid
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • imides such as polyimide, polyamide imide, and polyamide imide silica hybrid
  • examples thereof include polymers, alkoxysilyl group-containing resins, polyacrylic acids, polymethacrylic acids and polyitaconic acids. Copolymers of acrylic acid and acid monomers such as methacrylic acid, itaconic acid, fumaric acid and maleic acid can also be used.
  • a high binding binder having excellent binding properties is preferable, and at least one selected from polyamideimide resin, polyamideimide silic
  • lithium be pre-doped in the negative electrode in the lithium ion secondary battery of the second embodiment of the present invention.
  • an electrode forming method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically dope lithium can be used.
  • the doping amount of lithium is not particularly limited.
  • Li x Si y O z in the SiO 2 phase of the SiO-based particles of the negative electrode active material by doping with lithium or after the initial charge of the lithium ion secondary battery of the second embodiment of the present invention It contains oxide compounds.
  • Li 4 SiO 4 produced by the above reaction is an inactive substance not involved in the electrode reaction at the time of charge and discharge, and functions to reduce the volume change of the active material at the time of charge and discharge. Therefore, when the oxide-based compound represented by Li x Si y O z is contained in the SiO 2 phase of the SiO-based particles, the lithium ion secondary battery of the present invention further improves the cycle characteristics.
  • the lithium ion secondary battery of the second embodiment of the present invention using the above-mentioned negative electrode can use known positive electrodes, electrolytes and separators which are not particularly limited.
  • the positive electrode may be any one that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid.
  • the positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a lithium ion secondary battery.
  • the positive electrode active material examples include metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 2 , and sulfur.
  • the current collector may be any one commonly used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, stainless steel and the like.
  • the conductive additive the same one as described in the above-mentioned negative electrode can be used.
  • the electrolytic solution is one in which a lithium metal salt which is an electrolyte is dissolved in an organic solvent.
  • the electrolyte is not particularly limited.
  • an organic solvent from an aprotic organic solvent such as fluoroethylene carbonate (FEC), propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), etc.
  • FEC fluoroethylene carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • MEC methyl ethyl carbonate
  • a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 and LiCF 3 SO 3 can be used.
  • lithium metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate Solutions dissolved at concentration can be used.
  • the separator is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape of the lithium ion secondary battery of the second embodiment of the present invention is not particularly limited, and the same shape as that of the first embodiment can be adopted.
  • the negative electrode for a lithium ion secondary battery according to the third embodiment of the present invention has a current collector and an active material layer formed on the surface of the current collector.
  • the active material layer contains an active material, a binder and a buffer material. You may add a conductive support agent to an active material layer as needed.
  • the active material in the third embodiment of the present invention consists of SiO x powder (0.5 ⁇ x ⁇ 1.5).
  • SiO x (0.5 ⁇ x ⁇ 1.5) is a general formula representing an amorphous silicon oxide obtained using silicon dioxide (SiO 2 ) and metallic silicon (Si) as raw materials. It is known that SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and in the case of homogeneous solid silicon monoxide SiO which has a ratio of Si to O of approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by internal reaction of the solid. . The Si phase obtained by separation is very fine and dispersed in the SiO 2 phase.
  • the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a lithium ion secondary battery using a negative electrode active material composed of SiO x decomposed into Si phase and SiO 2 phase is excellent in cycle characteristics.
  • SiO x powder 0.5 ⁇ x ⁇ 1.5
  • x is less than 0.5
  • the ratio occupied by the Si phase becomes high, so that the volume change during charge and discharge becomes too large, and the cycle characteristics descend.
  • x exceeds 1.5
  • the ratio of the Si phase decreases to lower the energy density.
  • a further preferable range of x is 0.7 ⁇ x ⁇ 1.2.
  • the SiO x powder preferably consists of substantially spherical particles. From the viewpoint of charge and discharge characteristics of the lithium ion secondary batteries, preferably as D 50 of the SiO x powder is small. However, if the D 50 is too small, since the coarse particles by aggregation during the formation of the negative electrode may decrease the charge-discharge characteristics of the lithium ion secondary battery. When the D 50 of the SiO x powder is too small, the surface area of the SiO x powder is increased, the contact surface between the SiO x powder and the electrolyte is increased, and the decomposition of the electrolyte proceeds, resulting in the lithium ion secondary battery cycle The characteristics get worse. Therefore, D 50 of SiO x powder is preferably 2 ⁇ m or more. Incidentally, it refers to a particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, D 50 refers to the median diameter measured on a volume basis.
  • D 50 of SiO x powder is preferably 15 ⁇ m or less. And D 50 is greater than 15 [mu] m, since SiO x powder conductivity is poor, the conductivity of the whole electrode becomes uneven, decreases the charge and discharge characteristics of the lithium ion secondary battery.
  • the D 50 of the SiO x powder is 4 ⁇ m to 10 ⁇ m.
  • the span of the SiO x powder is preferably 1.1 to 2.3.
  • SiO x powder having a span of 1.3 to 1.4 is preferable.
  • the span is defined as (D 90 -D 10 ), where the particle diameter corresponding to 10%, 50%, 90% in integrated value in particle size distribution measurement by laser diffraction method is D 10 , D 50 , D 90. / D 50 points.
  • the span of the SiO x powder is 1.1 to 2.3, it means that the width of the particle size distribution is narrow and the variation of the particle diameter is small.
  • SiO x powder does not include those having a large particle size as or extremely having extremely small particle diameter as compared with the D 50.
  • the SiO x powder having a particle diameter extremely smaller than D 50 is contained, the surface area of the SiO x powder is increased, the contact surface between the SiO x powder and the electrolyte is increased, and the decomposition of the electrolyte progresses. The cycle characteristics of the lithium ion secondary battery deteriorate.
  • SiO x powder having a particle diameter extremely larger than D 50 is included, the SiO x powder may not be filled in the void formed by the buffer material graphite powder.
  • SiO x powder it can be a commercially available SiO x powder with desired D 50.
  • generally known grinding methods and grinders can be used.
  • a ball mill, a roller mill, a jet mill, a hammer mill or the like can be used.
  • the pulverization may be performed either wet or dry, but the use of wet pulverization in the presence of an organic solvent such as hexane can prevent the surface oxidation of silicon oxide during pulverization.
  • Wet grinding using an organic solvent is desirable because it can prevent the proportion of inert SiO 2 from increasing.
  • D 50 of the SiO x powder is 1 / 4-1 / 2 of the D 50 of the graphite powder is a cushioning material. If the above range relation of the graphite powder and SiO x powder D 50, graphite powder SiO x powder is placed in the gap to form.
  • the content of the SiO x powder is preferably 32% by mass or more and 52% by mass or less when the mass of the entire active material layer is 100% by mass.
  • the content of the SiO x powder is less than 32% by mass, the amount of graphite relatively increases, the adhesion of the binder is insufficient, and the cycle characteristics of the lithium ion secondary battery are deteriorated.
  • Cycle characteristics of the content of 52 wt% greater than the SiO x powder agglomerated lithium ion secondary battery of the SiO x powder is deteriorated.
  • the binder is used as a binder for fixing the active material and the buffer material to the current collector.
  • the binder is required to bind the active material and the like in an amount as small as possible.
  • the content of the binder when the mass of the entire active material layer is 100% by mass, the content of the binder is 5% by mass to 25% by mass. The content of the binder is more preferably 8% by mass to 15% by mass.
  • the same one as in the first embodiment can be used.
  • a conductive support agent is added to the active material layer as needed to enhance the conductivity of the electrode layer.
  • the same conductive aid as that of the first embodiment can be used.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, about 2% by mass to 10% by mass with respect to 100% by mass of the active material.
  • the buffer material is made of graphite powder.
  • Graphite has a graphite structure (a structure in which hexagonal network planes formed by carbon atoms are regularly stacked). Therefore, graphite has a layered structure, and each layer and each layer are bound by a weak van der Waals force. Therefore, the pressurized graphite powder can absorb the pressure by reducing the distance between the layers.
  • Graphite is also prone to interlayer slippage because of its layered structure, and the pressure applied to the graphite powder is also absorbed by the interlayer slippage. That is, the graphite powder can absorb part of the expansion of SiO x by the elastic deformation of the graphite powder inside.
  • graphite powder natural graphite powder, artificial graphite powder, spherulite graphite powder (graphitized mesophase carbon small spheres), graphite-based carbon material powder, etc.
  • graphite-based carbon material a pyrolyzate of a condensed polycyclic hydrocarbon compound such as pitch and coke can be used.
  • Such a graphite powder has a highly developed graphite structure, and the average interplanar spacing d 002 of the (002) plane determined by powder X-ray diffraction, for example, is 0.336 nm or less.
  • D 50 of the graphite powder is 2 to 4 times the D 50 of the SiO x powder, the amount of graphite powder, when the the sum of the mass of the mass and SiO x powder of the graphite powder is 100 mass% 36% by mass to 61% by mass.
  • the D 50 D 50 of the graphite powder SiO x powder is in the above relationship, SiO x powder having a small particle diameter voids graphite powder form having a large particle diameter are filled.
  • a D 50 is 4 [mu] m ⁇ 30 [mu] m.
  • graphite powder preferably has a D 50 is 5 [mu] m ⁇ 25 [mu] m, and more preferably D 50 is 8 [mu] m ⁇ 20 [mu] m.
  • the filling rate of the graphite powder in the active material layer is determined by the following equation.
  • Packing ratio (mass of graphite per unit volume / true density of graphite) ⁇ 100
  • D 50 of the graphite powder is preferably not less than 4 [mu] m.
  • D 50 of the graphite powder to achieve both power density and energy density by using those 30 ⁇ m or less.
  • the energy density is the battery weight or the power capacity per battery volume
  • the power density is the maximum amount of power that can be provided per battery weight or battery volume.
  • D 50 is greater than 30 ⁇ m of the graphite powder, since the time of application of the slurry can not in coating thickness under the maximum particle diameter or less of graphite powder, inevitably coating thickness becomes thick. When the thickness of the coating film is large, streaks may be formed in the finished coating film, and the power density may be reduced depending on the energy density.
  • the blending amount of the graphite powder is 36% by mass to 61% by mass when the total of the mass of the graphite powder and the mass of the SiO x powder is 100% by mass.
  • the blending ratio of the graphite powder and the SiO x powder is preferably in the above range. Furthermore, the blending amount of the graphite powder is preferably 36% by mass to 49% by mass. When the blending amount of the graphite powder is in this range, the cycle characteristics of the lithium ion secondary battery are less likely to deteriorate.
  • SiO x powder is placed in the gap graphite powder form, and be SiO x powder is expanded, re-arranged so as SiO x powder and the graphite powder does not expand in the thickness direction of the active material layer Be done. Therefore, even if the SiO x powder expands, the volume change in the thickness direction of the negative electrode is suppressed.
  • the negative electrode for a lithium ion secondary battery is formed through a compression molding process, and has a press pressure higher than the press pressure in the compression molding process.
  • the thickness of the active material layer in the compression direction decreases. If there is no room to rearrange, the thickness of the active material layer can not be reduced even if the negative electrode for a lithium ion secondary battery is compressed at a higher pressing pressure.
  • the filling efficiency is improved and the amount of the graphite powder and the SiO x powder contained per unit volume is increased, and thus the electrode Density increases. That electrode density when compared with a constant pressing pressure may be referred to a higher, SiO x powder is placed in the gap graphite powder and SiO x powder form graphite powder as described above, and SiO x powder Even if it expands, it is an index showing that the SiO x powder and the graphite powder are packed in the state of being rearranged. In addition, when the electrode density is high, the filling rate of the graphite powder in the active material layer is also high.
  • FIG. 7 is a schematic view illustrating the negative electrode for a lithium ion secondary battery of the present invention.
  • a state in which the SiO x powder 2 and the graphite powder 3 are bound on the current collector 1 via the binder 4 and the active material layer 5 is formed on the current collector 1 is schematically shown. Is shown.
  • D 50 of the SiO x powder 2 is described as a 1 / 4-1 / 2 of the D 50 of the graphite powder 3.
  • FIG. 8 is a schematic view for explaining the volume change of the negative electrode for a lithium ion secondary battery of the present invention.
  • the left view of FIG. 8 is the same as FIG. 7, and the arrangement after the SiO x powder 2 is expanded by charging is shown in the right view of FIG.
  • the SiO x powder 2 is disposed in the void formed by the graphite powder 3. In the arrangement state of the SiO x powder 2 and the graphite powder 3, there is room for further reducing the thickness of the active material layer 5 if pressure is applied to the active material layer from above.
  • FIG. 8 shows the state when the SiO x powder 2 is expanded. This will be described in comparison with the left view of FIG. 8 (the state before expansion, the same as FIG. 7).
  • the SiO x powder 2 expands about twice in volume upon charging. The fact that the volume of the SiO x powder 2 expands about twice is illustrated as the D 50 of the SiO x powder 2 increases by about 10%.
  • the SiO x powder 2 contacts the graphite powder 3 disposed nearby by expansion. At the contact surface of the graphite powder 3, the graphite powder 3 is slipped between layers, and part of the expansion of the SiO x powder 2 is absorbed by elastic deformation of the surface of the graphite powder 3.
  • the SiO x powder 2 expands, the expanded SiO x powder 2 and the graphite powder 3 disposed near are rearranged so as not to expand in the thickness direction of the active material layer 5. . Therefore, the SiO x powder 2 is again disposed in the void formed by the graphite powder 3 and the thickness of the active material layer 5 hardly changes.
  • Figure 9 is a schematic diagram illustrating the SiO x D 50 of the powder 2 of the graphite powder 3 D 50 substantially equal to or lithium ion secondary battery negative electrode was used slightly smaller, 10, 9 It is a schematic diagram explaining the volume change of the negative electrode for lithium ion secondary batteries described.
  • the left view of FIG. 10 is the same as FIG. 9, and the arrangement after the SiO x powder 2 is expanded by charging is shown in the right view of FIG.
  • D 50 of the SiO x powder 2 is described as a little less than the equivalent D 50 of the graphite powder 3.
  • SiO x powder 2 and graphite powder 3 are bound on current collector 1 via binder 4, and active material layer 5 is formed on current collector 1.
  • D 50 of the SiO x powder 2 is almost equal to D 50 of the graphite powder 3
  • SiO x powder 2 is filled so as to collide with the graphite powder 3
  • the powder 2 and the graphite powder 3 are stacked to form a thickness of the active material layer 5.
  • the active material layer 5 of FIG. 9 more voids are found than in the active material layer 5 of FIG. 7, but since the SiO x powder 2 can not enter into the voids, the active material layer 5 of FIG. Even if pressure is applied from above, the thickness of the active material layer 5 can not be reduced unless the powder is broken.
  • the thickness of the active material layer 5 of FIG. 9 is larger than that of the active material layer 5 of FIG. 7.
  • the thickness of the active material layer 5 in FIG. 10 is increased.
  • the binding force between the binder 4 and the SiO x powder 2 is weakened, the SiO x powder 2 is peeled off from the binder 4, and the conductive path in the electrode is broken. Further, when such expansion and contraction are repeated, the SiO x powder 2 is detached from the current collector 1 or the SiO x powder 2 is distorted to be miniaturized and detached from the current collector 1.
  • D 50 of the SiO x powder 2 is less than 1/4 of the D 50 of the graphite powder 3, aggregation of SiO x powder 2 with each other occurs.
  • D 50 described in FIG. 10 is a D 50 of the graphite powder 3 The same thing as the negative electrode occurs.
  • the negative electrode for a lithium ion secondary battery according to the third embodiment of the present invention comprises a buffer material in an active material layer containing SiO x powder (0.5 ⁇ x ⁇ 1.5) as an active material.
  • the negative electrode for a lithium ion secondary battery can be manufactured by a known manufacturing method. For example, it can be manufactured by the same manufacturing method as that of the first embodiment.
  • the coating thickness of the slurry applied to the surface of the current collector is preferably 10 ⁇ m to 30 ⁇ m.
  • the negative electrode is the negative electrode for a lithium ion secondary battery of the third embodiment. Since the negative electrode is the negative electrode for a lithium ion secondary battery according to the third embodiment, the volume change of the entire negative electrode during charge and discharge is suppressed. Since the volume change of the whole negative electrode is suppressed, the fall of the initial stage efficiency of a lithium ion secondary battery can be suppressed.
  • Initial efficiency is the ratio of the discharge capacity to the initial charge capacity of the battery. Lithium ions are stored at the negative electrode during charge and discharged at the time of discharge. When lithium ions are occluded during charging to expand the negative electrode active material and the thickness of the entire negative electrode is increased, the conductive path in the negative electrode is cut and the conductivity of the negative electrode is reduced. When the conductivity of the negative electrode decreases, lithium ions are less likely to be released during discharge. Thereby, the discharge capacity is reduced and the initial efficiency is reduced.
  • the decrease in the initial efficiency can be suppressed.
  • the ability to suppress the decrease in initial efficiency of the battery means that the amount of lithium ions not released is also reduced while being stored in the negative electrode. Therefore, if the decrease in initial efficiency of the battery can be suppressed, lithium moving between the negative electrode and the positive electrode It is possible to suppress an increase in the amount of ions and, as a result, a decrease in the electric capacity of the battery.
  • the volume change of the whole negative electrode is suppressed, it can suppress that an active material peels or drops off from a collector, and the lithium ion secondary battery of the 3rd Embodiment of this invention can suppress deterioration of cycling characteristics. .
  • the lithium ion secondary battery of the third embodiment using the above-described lithium ion secondary battery negative electrode of the third embodiment is publicly known except that the above-described lithium ion secondary battery negative electrode of the third embodiment is used.
  • Cell components can be used and can be manufactured according to known techniques.
  • a battery component As a battery component, a positive electrode, a negative electrode, a separator, and an electrolytic solution are used.
  • the positive electrode has a current collector and an active material layer bonded to the surface of the current collector.
  • the active material layer contains an active material, a binder, and, optionally, a conductive auxiliary.
  • the current collector, the binder, and the conductive additive are the same as those described for the negative electrode.
  • a lithium-containing compound is suitable as the positive electrode active material.
  • lithium-containing metal composite oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide and the like can be used.
  • Other metal compounds or polymer materials can also be used as the positive electrode active material.
  • Other metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or sulfides such as titanium sulfide or molybdenum sulfide.
  • the polymer material include conductive polymers such as polyaniline or polythiophene.
  • a positive electrode active material As a positive electrode active material, xLi 2 M 1 O 3. (1-x) LiM 2 O 2 (0 ⁇ x ⁇ 1, M 1 is one or more metal elements having a tetravalent Mn essential, M 2 is a tetravalent
  • a voltage of 4.5 V is applied to the battery in the activation process of the active material. This is because the above lithium manganese-based oxide has a layered rock salt structure and can not be activated without applying 4.5 V.
  • the expansion of the SiO x powder which is a negative electrode active material, is twice as large as that of a conventional 4.3 V applied voltage.
  • the negative electrode of the present invention is used, expansion of the entire thickness of the negative electrode can be suppressed even in the case of such a high voltage.
  • the lithium manganese oxide Li 2 MnO 3, it is possible to use a 0.5Li 2 MnO 3 ⁇ 0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2.
  • the separator and the electrolytic solution the same ones as in the first embodiment can be used.
  • the negative electrode material for a lithium ion secondary battery according to the fourth embodiment of the present invention contains a negative electrode active material and a conductive additive.
  • the negative electrode active material is composed of SiO x (0.3 ⁇ x ⁇ 1.6) decomposed into fine Si and silicon oxide (SiO 2 ) covering Si by disproportionation reaction.
  • SiO x 0.3 ⁇ x ⁇ 1.6
  • SiO 2 silicon oxide
  • x is less than the lower limit value, the Si ratio becomes high, so that the volume change during charge and discharge becomes too large, and the cycle characteristics of the lithium ion secondary battery deteriorate.
  • x exceeds the upper limit value, the Si ratio is lowered and the energy density is lowered.
  • x is preferably in the range of 0.5 ⁇ x ⁇ 1.5, and more preferably in the range of 0.7 ⁇ x ⁇ 1.2.
  • the negative electrode active material is preferably in the form of particles, and the particle size is not particularly limited.
  • the negative electrode active material may be primary particles or secondary particles.
  • the D 50 of the negative electrode active material is desirably in the range of 1 ⁇ m to 10 ⁇ m.
  • D 50 is greater than 10 ⁇ m of the negative electrode active material, it may decrease the charge-discharge characteristics of the lithium ion secondary battery.
  • a D 50 of 1 ⁇ m smaller than the negative electrode active material since the aggregated during electrode fabrication it may become coarse particles, which may be similarly reduced charge and discharge characteristics of the lithium ion secondary battery.
  • D 50 herein refers to a median size measured by volume.
  • the SiO x in view of charge and discharge characteristics, it is preferable to use one having a large specific surface area.
  • the specific surface area of SiO x is preferably 2.5 or more and 7.0 or less, and more preferably 2.5 or more and 3.5 or less.
  • the content of the negative electrode active material of the negative electrode material is preferably 20% by mass to 40% by mass, and 27% by mass to 32% by mass, based on 100% by mass of the entire negative electrode material. More preferable.
  • the sum of the content of the negative electrode active material and the graphite described later is preferably 70% by weight or more and 90% by weight or less, and 70% by weight or more and 85% by weight or less, based on 100% by weight of the entire negative electrode material. Is more preferred.
  • the amount of the binder is preferably 8% by mass or more and 20% by mass or less based on 100% by mass of the entire negative electrode material. The same applies to the amount of the negative electrode active material in the negative electrode.
  • Graphite is a material that is compounded mainly to buffer the volume change of SiO x associated with charge and discharge, and it is common to use MAG, SMG, SCMG (registered trademark) or the like. Since these materials are also excellent in conductivity, they may constitute part of the conductive path.
  • the content of the graphite may be set according to the amount of SiO x, and when the content of SiO x is 100 mass%, it is preferably 120 mass% or more and 210 mass% or less. Further, it is preferable sum of the SiO x and the graphite when the entire negative electrode material is 100 mass% is less than 90 wt% to 70 wt%, and more preferably not more than 85 wt% to 70 wt%.
  • carbon black which is a carbonaceous fine particle
  • acetylene black (AB) which is a type of carbon black
  • ketjen black (KB) ketjen black
  • VGCF vapor grown carbon fiber
  • graphite graphite and the like It can be added alone or in combination of two or more.
  • a particle size as a conductive additive is preferably, for example, is preferably D 50 of the conductive additive is used as a 3nm or 300nm or less, used as D 50 is 10nm or more 100nm or less Is more preferable. D 50 here also refers to a median size measured by volume.
  • the conductive support agent is blended in an amount corresponding to the sum of the surface area of the negative electrode active material SiO x and the surface area of the graphite.
  • the surface area of the SiO x (m 2) specifically, a value obtained by multiplying the amount of SiO x (g) the BET values of SiO x (m 2 / g) .
  • the amount of the conductive aid blended into the negative electrode material is the following two arithmetic expressions (the first formula based on the mass of the conductive aid, or the conductive aid It can be calculated based on the second equation based on volume.
  • the first equation is an arithmetic equation in which the mass of the conductive additive is adopted as the amount of the conductive additive to be added to the negative electrode material, and is represented by ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c.
  • a1 is the BET value of SiO x (m 2 / g)
  • a 2 is the BET value of graphite (m 2 / g)
  • b 1 is the compounding amount of SiO x in the negative electrode material (g)
  • b 2 is the negative electrode material
  • the blending amount (g) of graphite and c are the blending amount (g) of the conductive auxiliary in the negative electrode material.
  • the second equation is an arithmetic equation in which the volume of the conductive additive is adopted as the amount of the conductive additive to be added to the negative electrode material, and is represented by ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d.
  • a1, a2, b1 and b2 are the same as above.
  • d is the compounding quantity (cm ⁇ 3 >) of the conductive support agent in negative electrode material.
  • ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d is 43.2 or more and 117 or less, excellent conductivity can be imparted to the negative electrode, and the discharge capacity of the lithium ion secondary battery is lowered Can be suppressed.
  • a conductive support agent what consists only of the carbonaceous fine particles mentioned above may be used, and a thing containing a dispersing agent etc. may be used.
  • the dispersant is a type of surfactant and is an additive for improving the dispersibility of the carbonaceous fine particles.
  • the negative electrode material and the negative electrode according to the fourth embodiment of the present invention may further include a binder resin, a dispersant (surfactant), and the like, in addition to the negative electrode active material, the graphite, and the conductive auxiliary agent described above.
  • binder resin is not limited, fluorine-based polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), imide-based polymers such as polyimide, alkoxysilyl
  • fluorine-based polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE)
  • rubbers such as styrene butadiene rubber (SBR)
  • imide-based polymers such as polyimide, alkoxysilyl
  • group-containing resins polyacrylic acids, polymethacrylic acids and polyitaconic acids.
  • the amount of the binder resin is preferably 8% by mass or more and 20% by mass or less, based on 100% by mass of the entire negative electrode material.
  • the amount of the binder resin is less than 8% by mass, the formability of the electrode decreases, and when it exceeds 20% by mass, the energy density of the electrode decreases and the resistance increases.
  • at least a part of these binder resins may be contained in a denatured state by thermal decomposition or the like.
  • polyamide imide silica hybrid resin refers to that in which a side chain derived from alkoxysilane is formed at the molecular terminal of the polyamide imide resin, and, for example, an alkoxy group-containing silane modified polyamide imide resin (manufactured by Arakawa Chemical Co., Ltd.) It is possible to use commercially available products such as trade name COMPOCELAN, part number H900-2).
  • the negative electrode according to the fourth embodiment of the present invention is prepared by adding organic solvents to these materials and mixing them into a slurry, such as roll coating, dip coating, doctor blade, spray coating, curtain coating, etc. It can be produced by applying (laminating) to the current collector by a method and heating and curing the binder resin.
  • a current collector As a current collector, a general one may be used as a current collector for a negative electrode of a lithium ion secondary battery.
  • a current collector for a negative electrode of a lithium ion secondary battery.
  • what formed metals such as Cu
  • shape such as foil, a board, and a mesh
  • it is the material and shape according to the object, it will not be limited in particular.
  • the lithium ion secondary battery of the fourth embodiment of the present invention using the above-mentioned negative electrode can use known positive electrodes, electrolytes and separators which are not particularly limited.
  • the positive electrode may be any one that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid. There is no limitation in particular in a positive electrode active material, a conductive support agent, and a binder, and it should just be a thing which can be used by a lithium ion secondary battery.
  • the positive electrode active material metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 2 , S or the like can be used.
  • the current collector for the positive electrode may be any one commonly used for the positive electrode of lithium ion secondary batteries, such as aluminum, nickel, stainless steel and the like.
  • the conductive support agent the same one as described for the above-mentioned negative electrode can be used.
  • the electrolytic solution is one in which an Li metal salt as an electrolyte is dissolved in an organic solvent.
  • the electrolyte is not particularly limited.
  • an organic solvent use is made of one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • an electrolyte to be dissolved it is possible to use a Li metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , LiCF 3 SO 3 and the like.
  • Li metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate Solutions dissolved at concentration can be used.
  • the separator is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the negative electrode for a lithium ion secondary battery according to the fifth embodiment of the present invention includes carbon-based particles and Li storage particles.
  • carbon-based particles include natural graphite, artificial graphite, coke, mesophase carbon, vapor grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber and the like, but they have excellent buffer performance and have a D 50 of 1 ⁇ m to Graphite in the range of 15 ⁇ m is preferred.
  • the D 50 of this carbon-based particle is particularly preferably 1 ⁇ m to 10 ⁇ m when the following SiO x is used as the Li storage particle.
  • Li storage particles those similar to the second embodiment can be used.
  • the carbon-based particles are mixed in the range of 40% by mass or more and 65% by mass or less, where the total mass of the mixture of the carbon-based particles and the Li storage particles, the conductive auxiliary agent, and the binder resin is 100% by mass. Is preferred.
  • the carbon-based particles are less than 40% by mass, it is difficult to improve the cycle characteristics of the lithium ion secondary battery. Even if the carbon-based particles are mixed at more than 65% by mass, the reason is unknown, but the cycle characteristics of the lithium ion secondary battery are degraded as compared with the case where the carbon-based particles are 65% by mass or less. Furthermore, the mixing amount of the carbon-based particles is more optimally in the range of 45% by mass to 65% by mass.
  • the ratio of D 50 (D 2) of the D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 1 / D 2) is a 1/2 or more and 1.3 or less. When this ratio is out of this range, the particle size difference becomes large and the dispersibility is lowered.
  • the ratio (D 1 / D 2 ) is particularly preferably 1/2 or more and 1 or less.
  • the negative electrode of the lithium ion secondary battery of the fifth embodiment of the present invention has a current collector and a negative electrode active material layer bound on the current collector.
  • the negative electrode active material layer is formed by adding a mixture of carbon-based particles and Li storage particles, a conductive additive, a binder resin, and an appropriate amount of an organic solvent as required, and mixing them to form a slurry by roll coating, dip It can manufacture by apply
  • the thickness (t) of the negative electrode active material layer can be 10 ⁇ m to 20 ⁇ m as in the conventional case.
  • the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is 1/4 or more and 2/3 or less.
  • this ratio (D 1 / t) is less than 1/4, the electrical resistance of the negative electrode active material layer is increased and the charge and discharge efficiency of the lithium ion secondary battery is decreased. Cracks and peeling are likely to occur. It is particularly desirable that the ratio (D 1 / t) be 1/2 or more and 2/3 or less.
  • the ratio (D 2 / t) of D 50 (D 2 ) of the Li storage particle to the thickness (t) of the negative electrode active material layer is the D 50 (D 1 ) of the above-mentioned carbon-based particle and Li storage particle the ratio of D 50 (D 2) of (D 1 / D 2), and the ratio of D 50 (D 1) and the anode active material layer thickness of the carbon-based particles (t) (D 1 / t ) And 1/8 or more and 13/15 or less.
  • the same conductive aid as that in the second embodiment can be used.
  • the use amount of the conductive aid is not particularly limited, but can be, for example, about 20 parts by mass to 100 parts by mass with respect to 100 parts by mass of the active material. If the amount of the conductive additive is less than 20 parts by mass, efficient conductive paths can not be formed, and if it exceeds 100 parts by mass, the formability of the electrode is deteriorated and the energy density is lowered. In addition, when using Li occlusion particle
  • binder resin the same one as in the second embodiment can be used.
  • lithium be pre-doped in the negative electrode in the lithium ion secondary battery of the fifth embodiment of the present invention.
  • the lithium doping of the negative electrode is the same as that described in the second embodiment.
  • the lithium ion secondary battery of the fifth embodiment of the present invention using the above-mentioned negative electrode can use known positive electrodes, electrolytes and separators which are not particularly limited.
  • the positive electrode may be one that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid.
  • the positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a lithium ion secondary battery.
  • the same materials as those described in the second embodiment can be used.
  • the separator is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape of the lithium ion secondary battery according to the first to fifth embodiments of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted.
  • the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • the lithium ion secondary batteries of the first to fifth embodiments can be mounted on a vehicle.
  • the vehicle can be equipped with a lithium ion secondary battery having high capacity and high energy density, and can be a high performance vehicle.
  • the vehicle may be any vehicle that uses electric energy from batteries for all or part of the power source, for example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
  • the present invention is not limited to the above embodiments. . In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
  • Example 1 to 3 and Comparative Example 1 ⁇ Fabrication of positive electrode> A 20 ⁇ m aluminum foil is prepared as a current collector of the positive electrode, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 (manufactured by Nichia Chemical Co., Ltd.) is prepared as a positive electrode active material, and polyfluorinated as a binder resin of the positive electrode. Vinylidene (PVDF) and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) were prepared as a conductive aid for the positive electrode.
  • PVDF Vinylidene
  • acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.
  • An appropriate amount of N-methylpyrrolidone (NMP) as a solvent was added to the above mixture to prepare a slurry.
  • the above slurry was placed on an aluminum foil, and the slurry was applied to the aluminum foil in the form of a film using a doctor blade.
  • the obtained sheet was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector and the coated product on the current collector were firmly and closely bonded by a roll press.
  • the electrode density was 2.37 g / cm 3 and the electrode weight per unit area was 12.1 mg / cm 2 .
  • the joined product was heated at 120 ° C. for 6 hours in a vacuum dryer, cut into a predetermined shape (25 mm ⁇ 30 mm rectangular shape), and used as a positive electrode with a thickness of about 50 ⁇ m.
  • Alkoxy group-containing silane-modified polyamideimide resin as a binder resin (Arakawa Chemical Industries, Ltd., trade name Compoceran, product number H900-2, solvent composition: N-methylpyrrolidone (NMP) / xylene (Xyl), cured residue 30%, A viscosity of 8000 mPa ⁇ s, silica in the curing residue, 4% by mass, and the curing residue means a solid content obtained by curing the resin and removing volatile components).
  • the negative electrode was produced as follows.
  • the slurry was placed on an electrolytic copper foil having a thickness of 20 ⁇ m, and the slurry was applied in a film form on the electrolytic copper foil using a doctor blade.
  • the obtained sheet was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector and the coated product on the current collector were firmly and closely bonded by a roll press.
  • the joined product was heated at 200 ° C. for 2 hours in a vacuum dryer, and cut into a predetermined shape (26 mm ⁇ 31 mm rectangular shape). It is one.
  • the compounding ratio of SiO and graphite was changed, and the conditions thereafter were the same. 2 to 4 were made.
  • EC ethylene carbonate
  • the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed.
  • the positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • a laminate-type lithium ion secondary battery using the positive electrode and the negative electrode was obtained.
  • the resulting battery is referred to as the lithium ion secondary battery of Example 1.
  • Example 2 As the negative electrode, the negative electrode No. A laminate-type lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that No. 2 was used.
  • Example 3 As the negative electrode, the negative electrode No. A laminate-type lithium ion secondary battery of Example 3 was produced in the same manner as in Example 1 except that No. 3 was used.
  • Comparative example 1 As the negative electrode, the negative electrode No. A laminate-type lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that No. 4 was used.
  • the charge / discharge test is a current corresponding to 0.2 C when the charge / discharge current value is calculated assuming that the capacity of the positive electrode is 155 mAh / g, the charge potential is 4.2 V, the discharge potential is 3.0 V, and this is one cycle
  • the discharge capacity (mAh) was examined.
  • the current for discharging the electric capacity in one hour is represented as 1 C
  • the current for discharging in 5 hours is represented as 0.2 C.
  • FIG. 1 A graph showing the relationship between the discharge capacity (mAh) and the voltage (V) (VS. Li / Li + ) of the lithium ion secondary batteries of Example 1, Example 2, Example 3 and Comparative Example 1 is shown in FIG. .
  • volumetric energy density was calculated from FIG.
  • the volumetric energy density was determined by the method described above. Specifically, the average voltage was determined from the discharge curve, and the energy (Wh) was determined by multiplying the average value by the discharge capacity value. The thickness was measured by combining the electrode and the separator, and the volume (L) of the cell was obtained. The energy (Wh) was divided by the volume (L) to determine the volumetric energy density (Wh / L).
  • the graph which compared volume energy density (Wh / L) and a graphite ratio (wt%) in FIG. 2 is shown.
  • the graphite ratio is the mass% of graphite when the total of SiO, graphite, the conductive additive and the binder resin is 100 mass%.
  • Example 2 From FIG. 2, it is found that the volumetric energy density is the highest in Example 2 and the volumetric energy density is lowered even if the proportion of graphite increases or decreases according to the proportion of graphite in Example 2. This is considered to be because when the graphite ratio is increased, the SiO ratio relatively decreases and the discharge capacity is decreased, but when the graphite ratio is increased, the discharge potential of the negative electrode is decreased and the average voltage is increased.
  • the graphite ratio is 40% by mass to 60% by mass based on 100% by mass of the total of SiO, graphite, the conductive additive and the binder resin as a range in which the volume energy density increases. It turns out that what is good is good.
  • the ratio of 40% by mass to 60% by mass when the total amount of SiO, graphite, the conductive additive and the binder resin is 100% by mass means that when SiO and graphite are 100% by mass.
  • the composition ratio of is 27% by mass to 51% by mass.
  • Example 4 ⁇ Fabrication of negative electrode for lithium ion secondary battery>
  • the SiO powder was heat treated at 900 ° C. for 2 hours to prepare an SiO x powder with a D 50 of 6.5 ⁇ m.
  • the ratio of Si to O is a homogeneous solid silicon monoxide (SiO) of approximately 1: 1, the solid is separated into two phases of Si phase and SiO 2 phase by internal reaction.
  • the Si phase obtained by separation is very fine.
  • a slurry was prepared by mixing 32 parts by mass of the obtained SiO x powder, 50 parts by mass of a graphite powder having a D 50 of 9.2 ⁇ m, 8 parts by mass of carbon black, and 10 parts by mass of a binder solution.
  • the binder solution was prepared by dissolving a polyamideimide resin in N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of about 20 ⁇ m to 30 ⁇ m using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press. This was vacuum-dried to form a negative electrode having a thickness of 15 ⁇ m of the negative electrode active material layer.
  • the ratio of D 50 (D 2) of the D 50 (D 1) and SiO x particles of the graphite particles (D 1 / D 2) is 1.42, D 50 of the graphite particles (D 1)
  • the ratio (D 1 / t) of the thickness to the thickness (t) of the negative electrode active material layer is 0.61.
  • L333 Li [Mn 1/3 Ni 1/3 Co 1/3 ] O 2
  • AB acetylene black
  • PVDF polyvinylidene fluoride
  • the resultant was dried at 80 ° C. for 20 minutes, and the organic solvent was volatilized and removed from the positive electrode mixture. After drying, the electrode density was adjusted by a roll press. The resultant was heat-cured at 200 ° C. for 2 hours in a vacuum drying furnace to obtain a positive electrode in which a positive electrode mixture layer having a thickness of about 50 ⁇ m was laminated on the upper layer of the current collector.
  • the positive electrode was cut into a size of 30 mm ⁇ 25 mm, and the negative electrode was cut into a size of 31 mm ⁇ 26 mm, and the laminate was housed in a laminate film.
  • a rectangular sheet (40 mm ⁇ 40 mm square, 30 ⁇ m thick) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a pair of laminate films, and the three sides were sealed, and then the above electrolytic solution was injected into the bag-like laminate film.
  • FEC fluoro ethylene carbonate
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • a solution of 6 at a concentration of 1 mol / L was used.
  • the positive electrode and the negative electrode were provided with a tab electrically connectable to the outside, and a part of the tab extended to the outside of the laminate cell.
  • Example 5 D 50 is D 50 in place of the graphite powder of 9.2 ⁇ m was formed a negative electrode in the same manner as in Example 4 except for the use of graphite powder 12.5 .mu.m.
  • the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 1.92, the graphite particles D 50 (D 1
  • the ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.83.
  • Example 6 A slurry was prepared by mixing 42 parts by mass of the same SiO x powder as in Example 4, 40 parts by mass of a graphite powder having a D 50 of 9.2 ⁇ m, 3 parts by mass of carbon black, and 15 parts by mass of a binder solution.
  • the binder solution was prepared by dissolving a polyamideimide resin in N-methyl-2-pyrrolidone (NMP).
  • a negative electrode was formed in the same manner as in Example 4 except that this slurry was used.
  • the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 1.92, the graphite particles D 50 (D 1
  • the ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.61.
  • a lithium ion secondary battery was produced in the same manner as in Example 4.
  • D 50 is D 50 in place of the graphite powder of 9.2 ⁇ m was formed a negative electrode in the same manner as in Example 4 except for the use of graphite powder 20.0 .mu.m.
  • the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 3.08, the graphite particles D 50 (D 1
  • the ratio (D 1 / t) of (A) to the thickness (t) of the negative electrode active material layer is 1.33.
  • a lithium ion secondary battery was produced in the same manner as in Example 4.
  • a negative electrode is in the same manner as in Example 6 except for using graphite powder 20.0 .mu.m.
  • the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 3.08, the graphite particles D 50 (D 1
  • the ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.61.
  • a lithium ion secondary battery was produced in the same manner as in Example 6.
  • Example 5 and Comparative Example 2 The cross section of the negative electrode formed in Example 5 and Comparative Example 2 was observed by SEM.
  • the SEM image is shown in FIG. 3 and FIG. It can be seen that small pores are formed more frequently in Example 5 than in Comparative Example 2.
  • the lithium ion secondary batteries of Examples 4 and 5 and Comparative Example 2 are subjected to a constant current charge / discharge test at a charge / discharge current density of 0.2 mA cm ⁇ 2 in the first cycle, and the charge / discharge current density after the second cycle. It carried out by 0.5 mAcm- 2 .
  • the potential range was 0 V to 3.0 V at lithium reference potential and the test was performed at room temperature.
  • an oxide-based compound represented by Li x Si y O z containing Li 4 SiO 4 is formed in the SiO 2 phase of SiO x which is the active material in the negative electrode.
  • the resistance value (discharge IR drop) of the negative electrode 10 seconds after the start of discharge was measured, and the results up to 400 cycles are shown in FIG.
  • Alkoxy group-containing silane-modified polyamideimide resin (Arakawa Chemical Industries, Ltd., trade name: Compoceran, product number H901-2, solvent composition: N-methylpyrrolidone (NMP) / xylene (Xyl), 30% of curing residue, as a binder resin)
  • NMP N-methylpyrrolidone
  • Xyl xylene
  • the negative electrode for lithium ion secondary batteries was produced as follows.
  • the blending amount of the graphite powder is 44% by mass.
  • An appropriate amount of NMP as a solvent was added to the above mixture to prepare a slurry.
  • the slurry was placed on an electrolytic copper foil having a thickness of 20 ⁇ m, and the slurry was applied in a film form on the electrolytic copper foil using a doctor blade.
  • the obtained sheet is dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector and the coated product on the current collector are firmly adhered and bonded with a roll press at a linear pressure of 40 kg / cm. I did.
  • the bonded product was heated at 200 ° C. for 2 hours in a vacuum dryer, cut into a predetermined shape (26 mm ⁇ 31 mm rectangular shape), and used as an electrode having a thickness of about 18 ⁇ m.
  • the particle size ratio of the SiO powder and the graphite powder was changed, and the conditions thereafter were the same. Negative electrodes of Test Examples 1 to 7 were produced, and the electrode density was measured.
  • the graph which compared electrode density and particle size ratio from the result of this Table 1 is shown in FIG. As can be seen from Table 1 and FIG. 11, Test Example 2, Test Example 3 and Test Example 6 in which the particle size ratio is 0.25 to 0.5 have a particle size ratio of 0.1, 0.75, or 1
  • the electrode density was found to be higher than that of Test Example 1, Test Example 4, Test Example 5 and Test Example 7 that are.
  • the particle size ratio of Test Example 3 and Test Example 6 was the same, the electrode density was higher in Test Example 3. This is considered to be because the electrode in the test example 6 and the test example 6 is bulky because the graphite particle diameter D 50 is smaller in the test example 6 and the volume of the electrode in the test example 6 is larger.
  • Test Example 6 has a graphite packing ratio higher than that of Test Example 1, Test Example 4, Test Example 5 and Test Example 7 having a particle size ratio of 0.1, 0.75, or 1 of 24.2% or more. It turned out that it became.
  • the electrode density of 0.06 g / cm 3 in Test Example 2 is higher.
  • Test Example 2 was observed with a scanning electron microscope (SEM).
  • SEM photograph is shown in FIG. It was observed from FIG. 13 that SiO7 was disposed in the void formed by the graphite 6, and the void had room to be relocated.
  • Graphite 6 was observed to be elastically deformed due to its layered structure sliding. Further, it can be observed from FIG. 13 that the space impregnated with the electrolytic solution is sufficiently secured, and the conductive network is also firmly formed.
  • Example 7 ⁇ Production of laminate type lithium ion secondary battery> (Example 7)
  • the electrode of Test Example 2 was a negative electrode.
  • An aluminum foil of 20 ⁇ m was prepared as a current collector of the positive electrode
  • Li 2 MnO 3 was prepared as a positive electrode active material
  • PVDF polyvinylidene fluoride
  • Li 2 MnO 3 which is a positive electrode active material was produced as follows.
  • the raw material mixture was poured, transferred into an electric furnace at 700 ° C., and heated at 700 ° C. in vacuum for 2 hours. At this time, the raw material mixture was melted to form a molten salt, and a black product was precipitated.
  • the crucible containing the molten salt was cooled to room temperature in the electric furnace and then taken out of the electric furnace.
  • the molten salt was sufficiently cooled and solidified, it was immersed in 200 mL of ion-exchanged water with stirring, whereby the solidified molten salt was dissolved in water.
  • the water became a black suspension because the black product was insoluble in water.
  • the black suspension was filtered to give a clear filtrate and a filter cake of black solid on filter paper.
  • the resulting filtrate was filtered with thorough washing with acetone.
  • the washed black solid was vacuum dried at 120 ° C. for 12 hours and then crushed using a mortar and pestle.
  • the X-ray diffraction (XRD) measurement using CuK alpha ray was performed about the obtained black powder. According to XRD, it was found that the obtained black powder had a layered rock salt structure. Further, the composition of the obtained black powder was confirmed to be Li 2 MnO 3 from emission spectral analysis (ICP) and mean valence number analysis of Mn by redox titration.
  • ICP emission spectral analysis
  • a positive electrode was prepared in the same manner as the negative electrode.
  • EC ethylene carbonate
  • the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed.
  • the positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • Comparative example 4 A lithium ion secondary battery of Comparative Example 4 was obtained in the same manner as Example 7 except that the electrode of Test Example 4 was changed to the negative electrode.
  • the electrode thickness before charging was measured, the electrode thickness after charging was measured, and the expansion ratio was calculated.
  • the thickness of the electrode after charging was obtained by decomposing the battery after charging and measuring the thickness of the electrode. Also, the ratio of the discharge capacity to the initial charge capacity was determined as the initial efficiency.
  • the lithium ion secondary battery of Comparative Example 4 had an initial efficiency of 75% and an electrode expansion ratio of 2.1 times
  • the lithium ion secondary battery of Example 7 had an initial efficiency of The electrode expansion can be greatly suppressed to 80.5% and the expansion ratio of the electrode is 1.1 times, and deterioration of the initial efficiency could be suppressed.
  • this battery is operated under the condition that the electrode is expanded by applying a voltage of 4.5 V or more at the time of activation, and it is considered that the same effect can be obtained even at a low voltage.
  • the results of the lithium ion secondary battery of Example 7 using the negative electrode of Test Example 2 are considered to give similar results even when using the negative electrodes of Test Example 3 and Test Example 6.
  • the expansion ratio of the SiO powder causes peeling of the binder and the SiO powder due to the expansion ratio of the electrode of Comparative Example 4 of 2.1 times, so that the electrolyte solution enters therein and the thickness of the electrode further expands.
  • the thickness of the electrode is measured after disassembling the battery after charging and taking out the electrode, so the inside of the battery is not expanded so much.
  • the expansion of the entire negative electrode can be largely suppressed, and the lithium ion secondary battery of Example 7 can suppress the deterioration of the initial efficiency.
  • Lithium ion secondary batteries of Examples 8 to 10 below were produced in the same manner as in Example 7 except that the compounding ratio of the SiO powder of the negative electrode and the graphite powder was changed, and the cycle test was conducted.
  • the blending amount of the graphite powder corresponds to 60.9 mass% when the sum of the mass of the graphite powder and the mass of the SiO powder in Example 8 is 100 mass%.
  • the graphite filling rate was 29.3%. The calculation method of the actual graphite filling rate is shown.
  • the blending amount of the graphite powder corresponds to 48.8 mass% when the sum of the mass of the graphite powder and the mass of the SiO powder in Example 9 is 100 mass%.
  • the graphite loading was 23.4%.
  • the blending amount of the graphite powder corresponds to 36.6% by mass.
  • the graphite loading was 17.6%.
  • Examples 8 to 10 were all excellent in cycle characteristics with a discharge capacity retention ratio of 85% or more up to about 70 cycles. Examples 8 to 10 had the discharge capacity retention rate of 75% or more until the 100th cycle. At the 150th cycle, the discharge capacity retention rate of Example 8 dropped to 50%, but Examples 9 and 10 maintained the discharge capacity retention rate to about 70%. Accordingly, it can be said that all of Examples 8 to 10 have high discharge capacity retention rates and excellent cycle characteristics up to the 100th cycle.
  • the electrode powder and the cycle characteristic both have to be 36 mass% to 61 mass% of the compounding amount of the graphite powder. It was possible to make a lithium ion secondary battery that Further, when the blending amount of the graphite powder is 36% by mass to 49% by mass, it is possible to obtain an electrode in which deterioration of cycle characteristics is particularly suppressed.
  • the lithium ion secondary batteries of Examples 7 to 10 of the present invention were able to suppress the expansion of the electrode thickness, and also obtained excellent results regarding the electric capacity and the cycle characteristics.
  • the SiO powder was heat treated at 900 ° C. for 2 hours to prepare a SiO x powder having a D 50 of 6.5 ⁇ m.
  • the ratio of Si to O is a homogeneous solid SiO of about 1: 1, it is separated into two phases of Si phase and SiO 2 phase by internal reaction of the solid.
  • the Si phase obtained by separation is very fine. That is, the obtained SiO x powder is an aggregate of SiO x particles, and the SiO x particles have a structure in which fine Si particles are dispersed in a matrix of SiO 2 .
  • graphite one having a particle diameter (median diameter, D 50 ) of 9.2 ⁇ m manufactured by Hitachi Chemical Co., Ltd. was used.
  • PAI Arakawa Chemical Industries, Ltd. make, brand name Compoceran AI series, and product number AI-301 were used.
  • the BET value a1 of SiO x used in Comparative Example 5 is 6.5574 m 2 / g
  • the BET value a 2 of graphite is 3.8162 m 2 / g
  • the blending amount b 1 of SiO x is 22 g
  • the b2 was 60 g
  • the compounding amount c of AB as the conduction aid was 3 g. Therefore, values obtained by substituting the respective values into ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c, that is, the mass of the conductive aid, and the surface area of the negative electrode active material and graphite and the conductive aid
  • the value representing the relationship was 124.4.
  • the true density of AB used in Comparative Example 5 was 1.8 g / cm 3 .
  • the composition of the negative electrode material of Comparative Example 5 and the compositions of the negative electrode materials of Examples 11 to 17 described later are shown in Table 2 below.
  • the slurry of the negative electrode material obtained by the above procedure was applied to a current collector, and a negative electrode material layer was formed on the current collector. Specifically, this slurry was applied to the surface of a 20 ⁇ m-thick electrolytic copper foil (current collector) using a doctor blade.
  • the resulting laminate was dried at 80 ° C. for 15 minutes to volatilize and remove the organic solvent from the negative electrode material layer. After drying, the electrode density was adjusted by a roll press. After that, heat curing was performed at 200 ° C. for 2 hours in a vacuum drying furnace to form a negative electrode material layer (solid content) having a thickness of about 15 ⁇ m on the upper layer of the current collector. After that, the negative electrode of Comparative Example 5 was obtained by natural cooling.
  • the composition ratio of each component (solid content) in the slurry was L333: AB: PVDF 88: 6: 6 (mass ratio).
  • the slurry was applied to a current collector, and a positive electrode material layer was laminated on the current collector. Specifically, this slurry was applied to the surface of a 20 ⁇ m thick aluminum foil (current collector) using a doctor blade.
  • the resultant was dried at 80 ° C. for 20 minutes to volatilize and remove the organic solvent from the positive electrode material layer. After drying, the electrode density was adjusted by a roll press. The resultant was heat-cured at 200 ° C. for 2 hours in a vacuum drying furnace to obtain a positive electrode in which a positive electrode material layer (solid content) having a thickness of about 50 ⁇ m was laminated on the upper layer of the current collector.
  • the positive electrode was cut into a size of 30 mm ⁇ 25 mm, and the negative electrode was cut into a size of 31 mm ⁇ 26 mm, and the laminate was housed in a laminate film.
  • a rectangular sheet (40 mm ⁇ 40 mm square, 30 ⁇ m thick) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a pair of laminate films, and the three sides were sealed, and then the above electrolytic solution was injected into the bag-like laminate film.
  • FEC fluoroethylene carbonate
  • EMC ethylene carbonate
  • DMC dimethyl carbonate
  • the positive electrode and the negative electrode were provided with a tab electrically connectable to the outside, and a part of the tab extended to the outside of the laminate cell.
  • Example 11 The negative electrode material of Example 11 is the same as the negative electrode material of Comparative Example 5 except for the compounding amounts of the conductive additive and the binder resin.
  • the negative electrode and the lithium ion secondary battery of Example 11 were manufactured using the negative electrode material of Example 11 in the same manner as in Comparative Example 5.
  • a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB as a conductive additive was 6 g.
  • Example 12 The negative electrode material of Example 12 is the same as the negative electrode material of Comparative Example 5 except for the blending amounts of the conductive additive and the binder resin.
  • the negative electrode and the lithium ion secondary battery of Example 12 are manufactured using the negative electrode material of Example 12 in the same manner as in Comparative Example 5.
  • a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB was 8 g.
  • Example 13 The negative electrode material of Example 13 is the same as the negative electrode material of Comparative Example 5 except for the compounding amounts of the conductive additive and the binder resin.
  • the negative electrode and the lithium ion secondary battery of Example 13 were manufactured using the negative electrode material of Example 13 in the same manner as in Comparative Example 5.
  • a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB was 10 g.
  • the value (mass standard) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c in Example 13 was 37.3.
  • the value (volume basis) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d was 67.1.
  • Example 14 The negative electrode material of Example 14 is the same as the negative electrode material of Comparative Example 5 except for the blending amounts of the conductive additive and the binder resin.
  • the negative electrode and the lithium ion secondary battery of Example 14 were manufactured using the negative electrode material of Example 14 in the same manner as in Comparative Example 5.
  • a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB was 12 g.
  • the value (mass standard) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c in Example 14 was 31.1.
  • the value (volume basis) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d was 56.0.
  • Example 15 The negative electrode material of Example 15 is the same as the negative electrode material of Comparative Example 5 except for the types of the negative electrode active material and graphite, the combined amount of the negative electrode active material, artificial graphite, the conductive additive and the binder resin, and the configuration of the electrolytic solution. It is.
  • the negative electrode active material used in the negative electrode material of Example 15 was SiO X different from Comparative Example 5 and Examples 11 to 14. Specifically, SiO x used in the negative electrode material of Example 15 was a particle size (median diameter, D 50 ) of 5.0 ⁇ m manufactured by the same method as Comparative Example 5. As graphite, as in Comparative Example 5, one manufactured by Hitachi Chemical Co., Ltd. and having a particle diameter (median diameter, D 50 ) of 9.2 ⁇ m was used.
  • EC: EMC: DMC 3 : 3: Using 4 that at a concentration of the LiPF 6 is 1 mol / L in a mixed solution (volume ratio).
  • the negative electrode and the lithium ion secondary battery of Example 15 are manufactured using the negative electrode material of Example 15 in the same manner as in Comparative Example 5.
  • the BET value a1 of SiO x is 2.8029 m 2 / g
  • the BET value a 2 of graphite is 5.9754 m 2 / g
  • the blending amount b 1 of SiO x is 32 g
  • the compounding amount b2 was 50 g
  • the compounding amount c of AB was 6 g. Therefore, the value (mass standard) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c in Example 15 was 64.7.
  • the value (volume basis) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d was 116.5.
  • Example 16 The negative electrode material of Example 16 is the same as the negative electrode material of Example 15 except for the blending amounts of the conductive additive and the binder resin.
  • the negative electrode and the lithium ion secondary battery of Example 16 are manufactured using the negative electrode material of Example 16 in the same manner as in Comparative Example 5.
  • a1, a2, b1 and b2 were the same as in Example 15, and the compounding amount c of AB was 8 g.
  • the value (mass standard) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c in Example 16 was 48.6.
  • the value (volume basis) of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d was 87.4.
  • Example 17 The negative electrode material of Example 17 is the same as the negative electrode material of Example 15 except for the compounding amounts of the conductive additive and the binder resin.
  • the negative electrode and the lithium ion secondary battery of Example 17 are manufactured using the negative electrode material of Example 17 in the same manner as in Comparative Example 5.
  • a1 and a2 were the same as in Example 15, b1 was 27 g, b2 was 45 g, and the blending amount c of AB was 14 g.
  • FIG. 18 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Examples 15 and 16.
  • FIG. 19 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Examples 15 to 17.
  • the vertical axes in FIG. 16 and FIG. 18 represent the discharge capacity (mAh).
  • the vertical axes in FIG. 17 and FIG. 19 represent the discharge capacity retention rate (%).
  • the discharge capacity retention rate refers to the discharge capacity (%) in each cycle when the discharge capacity in the first cycle is 100%.
  • a lithium ion secondary battery with a low discharge capacity retention rate (%) has a large decrease in discharge capacity due to repeated charge and discharge, and is thus inferior in cycle characteristics.
  • Example 14 The discharge capacity retention rate of Example 14 was approximately the same as the discharge capacity retention rate of Comparative Example 5. From this result, it can be said that Example 14 can largely improve the discharge capacity of the lithium ion secondary battery by containing a large amount of the conductive aid, and can suppress the capacity reduction to the same extent as Comparative Example 5.
  • the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c (that is, based on the mass of the conductive aid, the sum of the surface area of the negative electrode active material and graphite and the conductive aid
  • the values representing the relationship were 124.4 in Comparative Example 5, 62.2 in Example 11, 46.7 in Example 12, 37.3 in Example 13, and 31.1 in Example 14. Therefore, considering the discharge capacity retention rate, the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c is in the range of 24 or more and 65 or less (that is, the range including Examples 11 to 17). It is considered necessary. Further, the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c is preferably 37 or more and 65 or less, and more preferably more than 37.3 and less than 62.2.
  • Example 16> Example 17 the discharge capacity (mAh) of the lithium ion secondary batteries of Examples 15 to 17 is larger in the order of Example 16> Example 15, but the discharge capacity retention ratio (%) Were larger in the order of Example 15> Example 16> Example 17. In other words, the capacity reduction of the lithium ion secondary battery was suppressed in the order of Example 15> Example 16> Example 17.
  • the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c was 64.7 in Example 15, 48.6 in Example 16, and 24.6 in Example 17.
  • the lithium ion secondary batteries of Examples 15 to 17 in which the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c is included in the range of 24 or more and 65 or less maintain sufficiently large discharge capacity The rate (%) was shown. Also from this result, according to the negative electrode material of the present invention in which the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c is included in the range of 24 or more and 65 or less, the discharge capacity decreases in the lithium ion secondary battery Can be greatly suppressed.
  • the range of the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c that can improve the discharge capacity retention rate depends on the composition ratio of SiO x in the negative electrode material and the composition of the electrolyte. I also know that I am not influenced much.
  • the discharge capacity retention ratio of the lithium ion secondary batteries of Example 15 and Example 16 was about 95% even after about 180 cycles had passed. That is, in the lithium ion secondary batteries of Example 15 and Example 16, the discharge capacity was particularly difficult to reduce. From this result, it can be said that the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c is preferably 37 or more and 65 or less. Further, it is understood that it is preferable to use SiO x having a BET value of 6.5 m 2 / g or less and graphite having a BET value (m 2 / g) of 3.8 or more and 6.0 or less. In addition, about the BET value of graphite, the same tendency is shown, even if it is 3.5 or more and 6.5 or less.
  • the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c needs to be in the range of 24 to 65 (that is, the range including Examples 11 to 17). Conceivable. If the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d is calculated based on the volume of the conductive additive based on this range, ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / It can be said that the value of d needs to be 43 or more and 120 or less. Further, it is preferable that the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d is 60 or more and 120 or less.
  • Example 11> Comparative Example 5 the discharge IR drop ( ⁇ ) increased in the order of Comparative Example 5> Example 11> Example 12> Example 13> Example 14.
  • Examples 11 to 11 in which the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / c and the value of ⁇ (a1 ⁇ b1) + (a2 ⁇ b2) ⁇ / d are included in the scope of the present invention described above
  • the discharge IR drop is 7 ⁇ or less, which is sufficiently small. Therefore, it can be said that the negative electrode material and the negative electrode of the present invention are excellent in conductivity.
  • the lithium ion secondary battery of the present invention is suitable as a vehicle battery.
  • Example 18 ⁇ Fabrication of negative electrode for lithium ion secondary battery>
  • the SiO powder was heat treated at 900 ° C. for 2 hours to prepare a SiO x powder with a D 50 of 10 ⁇ m.
  • the ratio of Si to O is a homogeneous solid silicon monoxide (SiO) of approximately 1: 1, the solid is separated into two phases of Si phase and SiO 2 phase by internal reaction.
  • the Si phase obtained by separation is very fine.
  • a slurry was prepared by mixing 32 parts by mass of the obtained SiO x powder, 50 parts by mass of graphite powder having a D 50 of 9.2 ⁇ m, 8 parts by mass of ketjen black, and 10 parts by mass of a binder solution.
  • the binder solution was prepared by dissolving a polyamideimide resin in N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to the surface of an electrolytic copper foil (current collector) with a thickness of 15 ⁇ m using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press. This was vacuum-dried to form a negative electrode having a thickness of 15 ⁇ m of the negative electrode active material layer.
  • the ratio of D 50 (D 2) of the D 50 (D 1) and SiO x particles of the graphite particles (D 1 / D 2) is 0.92, D 50 of the graphite particles (D 1)
  • the ratio (D 1 / t) of the thickness to the thickness (t) of the negative electrode active material layer is 0.61.
  • L333 Li [Mn 1/3 Ni 1/3 Co 1/3 ] O 2
  • AB acetylene black
  • PVDF polyvinylidene fluoride
  • the resultant was dried at 80 ° C. for 20 minutes, and the organic solvent was volatilized and removed from the positive electrode mixture. After drying, the electrode density was adjusted by a roll press. The resultant was heat-cured at 200 ° C. for 2 hours in a vacuum drying furnace to obtain a positive electrode in which a positive electrode mixture layer having a thickness of about 50 ⁇ m was laminated on the upper layer of the current collector.
  • the positive electrode was cut into a size of 30 mm ⁇ 25 mm, and the negative electrode was cut into a size of 31 mm ⁇ 26 mm, and the laminate was housed in a laminate film.
  • a rectangular sheet (40 mm ⁇ 40 mm square, 30 ⁇ m thick) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a pair of laminate films, and the three sides were sealed, and then the above electrolytic solution was injected into the bag-like laminate film.
  • FEC fluoro ethylene carbonate
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • a solution of 6 at a concentration of 1 mol / L was used.
  • the positive electrode and the negative electrode were provided with a tab electrically connectable to the outside, and a part of the tab extended to the outside of the laminate cell.
  • a negative electrode is in the same manner as in Example 18 except for using graphite powder 20.0 .mu.m.
  • the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 2.00, the graphite particles D 50 (D 1
  • the ratio (D 1 / t) of (A) to the thickness (t) of the negative electrode active material layer is 1.33.
  • a lithium ion secondary battery was produced in the same manner as in Example 18.
  • a negative electrode is in the same manner as in Example 18 except for using graphite powder 12.5 .mu.m.
  • the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 1.25, the graphite particles D 50 (D 1
  • the ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.83.
  • a lithium ion secondary battery was produced in the same manner as in Example 18.
  • Example 18 had higher dispersibility of each particle than Comparative Example 6.
  • the SEM image of the cross section of the negative electrode of Example 18 is shown in FIG. In the figure, whitish particles are SiO x particles and gray particles are graphite particles.
  • the first discharge IR drop in 3 C discharge was measured. The first discharge IR drop was measured for the resistance value of the negative electrode 10 seconds after the start of discharge. The results are shown in FIGS. 22 and 23, respectively.
  • Example 18 exhibits comparable discharge capacity as compared with Comparative Example 6 and Comparative Example 7, and the discharge IR drop is greatly reduced, and the conductivity is largely improved. it is obvious.

Abstract

Provided is a lithium ion secondary cell having high capacity and high energy density. The lithium ion secondary cell comprises a negative electrode having a negative electrode active substance containing SiOx (0.5 ≤ x ≤ 1.5) and graphite and, when the percentage of SiOx and graphite added is 100 mass%, the ratio of SiOx added is between 27 and 51 mass%. Moreover, by bringing the ratio (D1/D2) of the D50 (D1) of carbon-based particles and D50 (D2) of the Li-storing particles to greater than 1 but 2 or less and the ratio (D1/t) of the D50 (D1) of the carbon-based particles and the thickness (t) of the negative electrode active substance layer to between 1/4 and 5/6, the cycle properties of the lithium ion secondary cell that uses the negative electrode active substance formed from the carbon-based particles and the Li-storing particles is improved.

Description

リチウムイオン二次電池、リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極材料Lithium ion secondary battery, negative electrode for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
 本発明は、リチウムイオン二次電池、リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極材料に関する。 The present invention relates to a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a negative electrode material for a lithium ion secondary battery.
 近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量でかつ高容量の二次電池が必要とされている。現在、この要求に応える高容量二次電池としては、正極活物質としてコバルト酸リチウム(LiCoO)、負極活物質として炭素系材料を用いたリチウムイオン二次電池が商品化されている。このようなリチウムイオン二次電池は、エネルギー密度が高いため小型化および軽量化が図れることから、幅広い分野で電源としての使用が注目されている。 2. Description of the Related Art In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the commercialization of electric vehicles, a small, lightweight, high-capacity secondary battery is required. At present, lithium ion secondary batteries using lithium cobaltate (LiCoO 2 ) as a positive electrode active material and a carbon-based material as a negative electrode active material have been commercialized as high-capacity secondary batteries meeting this requirement. Such a lithium ion secondary battery can be miniaturized and reduced in weight because of its high energy density, and hence its use as a power source is attracting attention in a wide range of fields.
 しかしながら、正極活物質であるLiCoOは希少金属であるCoを原料として製造されるため、今後、資源不足が深刻化すると予想される。さらに、Coは高価であり、価格変動も大きいため、安価で供給の安定している正極活物質の開発が望まれている。そこで、Coの使用を減らすために、Coに代えて、構成元素の価格が安価で供給が安定しているマンガン(Mn)及びニッケル(Ni)を基本組成に含むリチウムマンガンニッケル系酸化物の使用が有望視されている。 However, since LiCoO 2, which is a positive electrode active material, is manufactured using Co, which is a rare metal, as a raw material, it is expected that resource shortage will worsen in the future. Furthermore, since Co is expensive and price fluctuations are large, development of a cheap and stable supply of positive electrode active material is desired. Therefore, in order to reduce the use of Co, use is made of lithium manganese nickel-based oxides containing manganese (Mn) and nickel (Ni) in the basic composition at low prices and stable supply of constituent elements, instead of Co. Is considered promising.
 また負極活物質においては、炭素材料の理論容量を大きく超える充放電容量を持つ次世代の負極活物質の開発が進められている。例えば負極活物質として炭素材料よりも高容量な珪素や珪素酸化物などの珪素系材料が検討されている。しかし、珪素系材料を負極活物質として用いると、充放電サイクルにおいてリチウム(Li)の吸蔵および放出に伴って、負極活物質が膨張および収縮することが知られている。このような膨張、収縮により電池のサイクル特性が本来有するはずのものより劣化する。このサイクル特性などの低下を抑制するために、様々な検討が行われている。例えば特許文献1では、負極活物質に珪素酸化物と炭素材料とを複合化した複合体を用いてサイクル特性の低下を抑制している。 In addition, as for the negative electrode active material, development of a next-generation negative electrode active material having a charge and discharge capacity which greatly exceeds the theoretical capacity of the carbon material has been promoted. For example, silicon-based materials, such as silicon and silicon oxide, having higher capacities than carbon materials have been studied as negative electrode active materials. However, when a silicon-based material is used as a negative electrode active material, it is known that the negative electrode active material expands and shrinks in association with absorption and release of lithium (Li) in a charge and discharge cycle. Such expansion and contraction degrade the cycle characteristics of the battery more than what it should have. Various studies have been conducted to suppress the deterioration of the cycle characteristics and the like. For example, in patent document 1, the fall of cycling characteristics is suppressed using the composite which compounded the silicon oxide and the carbon material to the negative electrode active material.
 また、負極活物質として、酸化ケイ素(SiO:xは0.5≦x≦1.5程度)の使用が検討されている。SiOは熱処理されると、SiとSiOとに分解することが知られている。これは不均化反応といい、SiとOとの比が概ね1:1の均質な固体の一酸化ケイ素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。したがって、SiとSiOとに分解したSiOからなる負極活物質を用いた二次電池は、サイクル特性に優れる。 In addition, use of silicon oxide (SiO x : x is about 0.5 ≦ x ≦ 1.5) has been studied as a negative electrode active material. It is known that SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and in the case of homogeneous solid silicon monoxide SiO, in which the ratio of Si to O is approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by the internal reaction of the solid. . The Si phase obtained by separation is very fine. In addition, the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a secondary battery using a negative electrode active material composed of SiO x decomposed into Si and SiO 2 is excellent in cycle characteristics.
 しかしSiOは導電性が低いため、導電材として黒鉛や非晶質の炭素材料を混合し、導電材粉末とSiO粉末を点又は面で接触させることにより負極に導電性をもたせている。例えば特許文献2には、ケイ酸リチウム粉末と天然黒鉛粉末との混合物からなる負極材料を用いたリチウムイオン二次電池はサイクル特性が向上することが記載されている。ところが、SiOと黒鉛粉末との混合物からなる負極材料を用いたリチウムイオン二次電池は、充放電に伴ってSiOの膨張収縮が繰り返されることにより、体積膨張差によってクラックが進展し、集電体と負極活物質層との間で剥離が生じるという問題があった。 However, since SiO x has low conductivity, graphite and amorphous carbon materials are mixed as a conductive material, and the conductive material powder and SiO x powder are brought into contact with each other at a point or a surface to provide conductivity to the negative electrode. For example, Patent Document 2 describes that a lithium ion secondary battery using a negative electrode material made of a mixture of lithium silicate powder and natural graphite powder has improved cycle characteristics. However, in a lithium ion secondary battery using a negative electrode material composed of a mixture of SiO x and graphite powder, cracks repeatedly develop due to the difference in volume expansion due to repeated expansion and contraction of SiO x accompanying charge and discharge. There is a problem that peeling occurs between the current collector and the negative electrode active material layer.
 そこで特許文献3には、Li吸蔵粒子と黒鉛粒子とを含む負極材料において、X線回折法による(002)面間隔d(002)が0.3354nm以上0.338nm以下、かつラマン分光分析によるGピークとDピークの面積比がG/D≧9である黒鉛粒子を用いることが提案されている。そしてLi吸蔵粒子としてSi又はSiOを用いることが記載され、Si又はSiOをこのような黒鉛粒子と共に用いることで二次電池のサイクル特性が向上することが記載されている。 Therefore, in Patent Document 3, in the negative electrode material containing Li occluding particles and graphite particles, the (002) interplanar spacing d (002) by X-ray diffraction method is 0.3354 nm or more and 0.338 nm or less, and G by Raman spectroscopic analysis. It has been proposed to use a graphite particle having an area ratio of peak to D peak of G / D ≧ 9. The use of Si or SiO as Li storage particles is described, and the use of Si or SiO together with such graphite particles is described to improve the cycle characteristics of the secondary battery.
 また特許文献4には、SiなどのLiと合金化可能な元素を含む材料と、黒鉛などの導電性材料とからスプレードライ法などで複合体粒子を形成し、その複合体粒子が内部に空隙を有し、複合体粒子の空隙体積占有率を所定範囲とした負極材料が提案されている。このように空隙体積占有率を最適範囲とした複合体粒子を負極材料として用いることで、複合体粒子内に膨張分を吸収する隙間が存在し電極特性の劣化を防止できる。また隙間が多くなり過ぎることがないので、導電ネットワークが十分に構築され非水二次電池の充放電容量の低下を防止できる。 Further, in Patent Document 4, composite particles are formed by a spray dry method or the like from a material containing an element that can be alloyed with Li such as Si and a conductive material such as graphite, and the composite particles are internally voided. A negative electrode material has been proposed in which the void volume occupancy of the composite particles is in a predetermined range. As described above, by using the composite particles in which the void volume occupancy is in the optimum range as the negative electrode material, the composite particles have a gap that absorbs the expansion component, and the deterioration of the electrode characteristics can be prevented. In addition, since the gap does not increase too much, the conductive network can be sufficiently constructed to prevent the decrease in charge / discharge capacity of the non-aqueous secondary battery.
 また、負極活物質の膨張、収縮による負極の体積変化を抑制する緩衝材を負極合剤層に添加し、負極全体の体積変化を抑制することで、電池のサイクル特性の劣化を抑制することも検討されている。特許文献5では、ケイ素化合物と、緩衝材としての炭素材料との混合物からなり、ケイ素化合物の平均粒径が炭素材料の平均粒径よりも小さくなるようにした負極材料が提案されている。さらに特許文献5では炭素材料の重量組成が珪素化合物の重量組成よりも大きくなるようにしている。特許文献5には、珪素化合物の膨張を、炭素材料が形成する空隙が吸収して、負極全体としての体積変化を抑えることが記載されている。特許文献5の実施例において珪素化合物の平均粒径が炭素材料の平均粒径の1/10のもので、炭素材料60重量部と珪素化合物30重量部を混合した負極が記載されている。特許文献5において緩衝材として難黒鉛化炭素材料が少なくとも用いられ、負極活物質としてMgSi粉末が用いられている。 In addition, a buffer material that suppresses the volume change of the negative electrode due to expansion and contraction of the negative electrode active material is added to the negative electrode mixture layer to suppress the volume change of the entire negative electrode, thereby suppressing deterioration of the cycle characteristics of the battery. It is being considered. Patent Document 5 proposes a negative electrode material which is made of a mixture of a silicon compound and a carbon material as a buffer material, and the average particle diameter of the silicon compound is smaller than the average particle diameter of the carbon material. Furthermore, in Patent Document 5, the weight composition of the carbon material is made larger than the weight composition of the silicon compound. Patent Document 5 describes that the voids formed by the carbon material absorb the expansion of the silicon compound to suppress the volume change of the entire negative electrode. The example of Patent Document 5 describes a negative electrode in which 60 parts by weight of the carbon material and 30 parts by weight of the silicon compound are mixed in a case where the average particle size of the silicon compound is 1/10 of the average particle size of the carbon material. In Patent Document 5, at least a non-graphitizable carbon material is used as a buffer material, and Mg 2 Si powder is used as a negative electrode active material.
 特許文献6では、リチウムと合金化することのできる合金化材料と緩衝材としても機能する炭素材料を活物質とする負極を有し、合金化材料の割合が合金化材料と炭素材料との総量の1~30重量%であり、合金化材料の平均粒径が炭素材料の平均粒径の2/5以下である非水二次電池が提案されている。特許文献6において、緩衝材はソフトカーボンが用いられ、負極活物質としてSi粉末あるいはSiO粉末が用いられている。 Patent Document 6 has a negative electrode whose active material is an alloyed material that can be alloyed with lithium and a carbon material that also functions as a buffer material, and the ratio of the alloyed material is the total amount of the alloyed material and the carbon material A non-aqueous secondary battery has been proposed in which the average particle size of the alloying material is 1 to 30% by weight, and the average particle size of the alloying material is 2/5 or less of that of the carbon material. In Patent Document 6, soft carbon is used as a buffer material, and Si powder or SiO powder is used as a negative electrode active material.
 SiOは比較的導電性に劣る。負極の導電性を向上させるためには、導電性に優れる材料すなわち導電助剤を負極に配合するのが良いと考えられる。また、通常、導電助剤の粒径は負極活物質の粒径よりも小さい。このため、導電助剤を多く配合することで、負極活物質表面が導電助剤で覆われる。導電助剤には電解液を保持する機能もあるため、負極活物質の表面付近には電解液が充分に行き渡る。このため、リチウムイオン二次電池の放電容量が向上すると考えられる。しかしながら、導電助剤を過剰に配合してしまうと、導電助剤の表面積が過大になるため、負極活物質と導電助剤との密着性が低下し、放電容量が低下する場合がある。また、導電助剤を過剰に配合してしまうと、導電助剤に対する負極活物質の量が低下する。このことによってもリチウムイオン二次電池の放電容量が低下する場合がある。 SiO x is relatively poor in conductivity. In order to improve the conductivity of the negative electrode, it is considered to be preferable to blend a material having excellent conductivity, that is, a conductive additive into the negative electrode. Also, usually, the particle size of the conductive additive is smaller than the particle size of the negative electrode active material. For this reason, the surface of the negative electrode active material is covered with the conductive aid by blending a large amount of the conductive aid. The conductive aid also has a function of holding the electrolytic solution, so the electrolytic solution is sufficiently spread near the surface of the negative electrode active material. For this reason, it is considered that the discharge capacity of the lithium ion secondary battery is improved. However, if the conductive aid is compounded in excess, the surface area of the conductive aid becomes excessive, so the adhesion between the negative electrode active material and the conductive aid may be reduced, and the discharge capacity may be reduced. In addition, when the conductive aid is excessively blended, the amount of the negative electrode active material to the conductive aid decreases. This may also reduce the discharge capacity of the lithium ion secondary battery.
 例えば、特許文献7には、ケイ酸塩を含む電極用活物質(核粒子)を、炭素および微粒子状の電極用活物質を含む電子伝導層で被覆した電極用複合粒子が開示されている。電子伝導層に含まれる微粒子の粒径は300nm以下である。特許文献7によると、電極用複合粒子をこのように構成することで、電極の導電性を向上させつつリチウムイオン二次電池の放電容量の低下を抑制できると考えられる。 For example, Patent Document 7 discloses a composite particle for an electrode in which an electrode active material (core particle) containing a silicate is coated with an electron conductive layer containing carbon and a particulate active material for electrode. The particle size of the particles contained in the electron conductive layer is 300 nm or less. According to Patent Document 7, it is considered that, by configuring the electrode composite particles in this manner, it is possible to suppress the decrease in discharge capacity of the lithium ion secondary battery while improving the conductivity of the electrode.
 しかし、特許文献7に紹介されている電極用複合粒子は、炭素および微粒子状の活物質を含む電子伝導層で核粒子を被覆したものである。このような負極活物質を製造するためには、多くの工数を要するため、特許文献7に紹介されている電極用複合粒子は安価に製造し難いという問題がある。また、特許文献7に紹介されている技術を転用し、特許文献7にケイ酸塩として紹介されているLiFeSiO、LiMnSiO等の物質に代えてSiOを用いた場合にも負極の導電性向上とリチウムイオン二次電池の放電容量低下抑制とを両立できるとは限らない。
特開2010-212228号公報 特開平11-312518号公報 特開2004-362789号公報 特開2003-303588号公報 特開2000-357515号公報 特開2009-238663号公報 特開2009-87682号公報
However, the composite particle for electrode introduced in Patent Document 7 is one in which core particles are coated with an electron conductive layer containing carbon and a particulate active material. In order to manufacture such a negative electrode active material, since many man-hours are required, there is a problem that it is difficult to manufacture the electrode composite particles introduced in Patent Document 7 at low cost. In addition, the technology introduced in Patent Document 7 is diverted, and even when SiO x is used instead of a substance such as Li 2 FeSiO 4 or Li 2 MnSiO 4 introduced as silicate in Patent Document 7 It is not always possible to simultaneously achieve the improvement in the conductivity of the negative electrode and the reduction in the discharge capacity of the lithium ion secondary battery.
JP, 2010-212228, A JP-A-11-312518 JP 2004-362789 A JP 2003-303588 A JP 2000-357515 A JP, 2009-238663, A JP, 2009-87682, A
 上記のように正極活物質、負極活物質などに関して様々な検討が行われている。第1の課題として、リチウムイオン二次電池には、更なる高容量、高いエネルギー密度が求められている。そのため正極活物質と負極活物質との組み合わせにおいて、リチウムイオン二次電池が高容量でかつ高いエネルギー密度となる組み合わせが求められている。 As described above, various studies have been conducted on the positive electrode active material, the negative electrode active material, and the like. As a first problem, lithium ion secondary batteries are required to have higher capacity and higher energy density. Therefore, in the combination of a positive electrode active material and a negative electrode active material, a combination that makes a lithium ion secondary battery have high capacity and high energy density is required.
 ここで、エネルギー密度とは、単位質量または単位体積あたりに取り出せるエネルギーを指し、Wh/Kg、Wh/Lという単位で示される。エネルギーは電圧×電流容量値で計算できる。しかし、電池の場合電圧は残容量で変化するため、電圧は定格電圧を用いる。定格電圧は0.2Cの電流で放電したとき、全エネルギーに対してちょうど1/2である放電量のときの電圧を示す。これは平均電圧であるともいえる。従って0.2C放電のときの平均電圧と、電流容量値を掛け算することによりエネルギーが計算できる。また電圧は正極の放電電位と負極の放電電位の電位差にあたる。 Here, the energy density refers to energy that can be taken out per unit mass or unit volume, and is expressed in units of Wh / Kg and Wh / L. Energy can be calculated by voltage × current capacity value. However, in the case of a battery, the voltage changes with remaining capacity, so the voltage uses the rated voltage. The rated voltage indicates the voltage at a discharge amount which is exactly 1/2 of the total energy when discharged at a current of 0.2C. It can be said that this is an average voltage. Therefore, energy can be calculated by multiplying the average voltage at the time of 0.2 C discharge and the current capacity value. The voltage corresponds to the potential difference between the discharge potential of the positive electrode and the discharge potential of the negative electrode.
 正極の放電電位はその正極に用いられる正極活物質の材料によって決まる。例えば、正極活物質にリチウムマンガンニッケル系酸化物を用いたリチウムイオン二次電池は、コバルト酸リチウムを正極活物質として用いたリチウムイオン二次電池に比べて4.3Vまでの充電では正極の放電電位が低い。そのため、負極が同じであれば、正極活物質にリチウムマンガンニッケル系酸化物を用いたリチウムイオン二次電池は、コバルト酸リチウムを正極活物質として用いたリチウムイオン二次電池に比べて平均電圧が小さくなる。 The discharge potential of the positive electrode is determined by the material of the positive electrode active material used for the positive electrode. For example, a lithium ion secondary battery using a lithium manganese nickel oxide as a positive electrode active material discharges the positive electrode at a charge of up to 4.3 V as compared to a lithium ion secondary battery using lithium cobaltate as a positive electrode active material The potential is low. Therefore, if the negative electrode is the same, a lithium ion secondary battery using a lithium manganese nickel oxide as a positive electrode active material has an average voltage compared to a lithium ion secondary battery using lithium cobaltate as a positive electrode active material It becomes smaller.
 同様に負極の放電電位はその負極に用いられる負極活物質の材料によって決まる。炭素材料よりも理論容量が大きい珪素系材料を負極活物質として用いたリチウムイオン二次電池は、炭素材料を負極活物質に用いたリチウムイオン二次電池に比べてリチウムイオン二次電池の負極の放電電位が高い。そのため、正極が同じであれば、珪素系材料を負極活物質として用いたリチウムイオン二次電池は、炭素材料を負極活物質に用いたリチウムイオン二次電池に比べて平均電圧が小さくなる。 Similarly, the discharge potential of the negative electrode is determined by the material of the negative electrode active material used for the negative electrode. A lithium ion secondary battery using a silicon material having a theoretical capacity larger than that of a carbon material as a negative electrode active material has a negative electrode of a lithium ion secondary battery as compared to a lithium ion secondary battery using a carbon material as a negative electrode active material Discharge potential is high. Therefore, if the positive electrode is the same, the average voltage of the lithium ion secondary battery using the silicon-based material as the negative electrode active material is smaller than that of the lithium ion secondary battery using the carbon material as the negative electrode active material.
 上記のようにエネルギー密度は、0.2C放電のときの平均電圧×電流容量値で計算されるため、例え、電流容量値が大きくても、平均電圧が小さくなれば、エネルギー密度は小さくなることもある。 As described above, since the energy density is calculated by the average voltage x current capacity value at the time of 0.2 C discharge, even if the current capacity value is large, the energy density decreases as the average voltage decreases. There is also.
 本発明は、このような事情に鑑みて為されたものであり、高容量と高エネルギー密度とを両立できるリチウムイオン二次電池を提供することを第1の目的とする。 The present invention has been made in view of such circumstances, and has a first object to provide a lithium ion secondary battery capable of achieving both high capacity and high energy density.
 本発明の第2の目的は、Li吸蔵粒子と炭素系粒子とを含む負極材料において、充放電時の体積変化を緩和することで集電体と負極活物質層との界面の剥離を防止するとともに、その負極を用いたリチウムイオン二次電池のサイクル特性を向上させることにある。 The second object of the present invention is to prevent peeling of the interface between the current collector and the negative electrode active material layer by reducing the volume change during charge and discharge in a negative electrode material containing Li storage particles and carbon-based particles. Another object is to improve the cycle characteristics of a lithium ion secondary battery using the negative electrode.
 本発明の第3の目的は、リチウムの吸蔵・放出に伴う体積変化が大きい負極活物質を用いたとき、負極全体の体積変化をさらに抑制しうるリチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池を提供することである。特許文献5及び特許文献6に記載のように、緩衝材を添加し、負極全体の体積変化を抑制し、サイクル特性の劣化を抑制することに関して各種検討されている。具体的には、特許文献5及び6では、実施例において負極活物質の質量を減らし、緩衝材の質量を負極活物質の質量より約2倍多くいれ、負極活物質の平均粒径を緩衝材の平均粒径の2/5以下とすることによって負極全体の体積変化を抑制している。しかしながら、より高容量の電池にするには、負極活物質の量はより多く入っていることが望まれる。 A third object of the present invention is to use a negative electrode for a lithium ion secondary battery and its negative electrode which can further suppress the volume change of the whole negative electrode when using a negative electrode active material having a large volume change due to lithium absorption and release. Providing a lithium ion secondary battery. As described in Patent Document 5 and Patent Document 6, various studies have been made on adding a buffer material, suppressing a volume change of the entire negative electrode, and suppressing deterioration of cycle characteristics. Specifically, in Patent Documents 5 and 6, the mass of the negative electrode active material is reduced in the examples, and the mass of the buffer material is increased by about 2 times the mass of the negative electrode active material, and the average particle diameter of the negative electrode active material is The volume change of the whole negative electrode is suppressed by setting it as 2/5 or less of the average particle diameter of these. However, for higher capacity batteries, it is desirable that the amount of the negative electrode active material be higher.
 また様々な正極活物質の開発により、従来よりも負極に高い電圧をかけることになるリチウムイオン二次電池が開発されつつある。従来よりも高い電圧を負極にかけることにより、負極活物質の膨張・収縮の度合いがさらに大きくなる。そのため、さらに負極全体の体積変化を抑制しうるリチウムイオン二次電池用負極が求められている。 In addition, development of various positive electrode active materials has led to development of lithium ion secondary batteries in which a higher voltage is applied to the negative electrode than before. By applying a higher voltage to the negative electrode than in the past, the degree of expansion and contraction of the negative electrode active material is further increased. Therefore, there is a demand for a negative electrode for a lithium ion secondary battery capable of further suppressing the volume change of the entire negative electrode.
 本発明は、このような事情に鑑みて為されたものであり、リチウムの吸蔵・放出に伴う体積変化が大きい負極活物質を用いたとき、負極全体の体積変化をさらに抑制しうるリチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池を提供することを第3の目的とする。 The present invention has been made in view of such circumstances, and it is possible to further suppress the volume change of the entire negative electrode when the negative electrode active material having a large volume change associated with lithium absorption and release is used. A third object is to provide a lithium ion secondary battery using a negative electrode for a secondary battery and the negative electrode thereof.
 さらに本発明の第4の目的は、負極活物質としてSiOを用い、導電性に優れ、かつ、リチウムイオン二次電池の放電容量低下を抑制できるリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、および、リチウムイオン二次電池を提供することにある。 Furthermore, the fourth object of the present invention is to use lithium ion secondary battery as a negative electrode material for lithium ion secondary battery, which uses SiO x as a negative electrode active material, is excellent in conductivity and can suppress a decrease in discharge capacity of lithium ion secondary battery. An object of the present invention is to provide a negative electrode for a secondary battery and a lithium ion secondary battery.
 本発明の第5の目的は、比(D/t)が小さくても負極活物質層中におけるLi吸蔵粒子と炭素系粒子との分散性を向上させ、その負極を用いたリチウムイオン二次電池の出力を向上させることにある。 The fifth object of the present invention is to improve the dispersibility of Li occluding particles and carbon-based particles in the negative electrode active material layer even if the ratio (D 1 / t) is small, and secondary lithium ion using the negative electrode It is about improving the output of the battery.
 リチウムイオン二次電池においては、正極及び負極ともできるだけ薄くすることが求められている。ところがLi吸蔵粒子と炭素系粒子とを含む負極活物質層においては、負極活物質層の厚さを薄くするとLi吸蔵粒子と炭素系粒子との分散性が悪く、導電性が低下するという問題があった。特に、炭素系粒子として一般に用いられている天然黒鉛はD50が大きく、Li吸蔵粒子のD50と比較して大きな差が生じるため、負極活物質層中における両者の分布にばらつきが生じ易いという問題がある。 In the lithium ion secondary battery, it is required to make the positive electrode and the negative electrode as thin as possible. However, in the negative electrode active material layer containing Li occluding particles and carbon-based particles, when the thickness of the negative electrode active material layer is reduced, the dispersibility of the Li occluding particles and the carbon-based particles is poor and the conductivity is lowered. there were. In particular, natural graphite which is generally used as the carbon-based particles has a large D 50, since a large difference occurs in comparison with the D 50 of Li occlusion particles, that tends to occur unevenness in the distribution of both in the anode active material layer There's a problem.
 そこで本願発明者らは、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)を分散性の指標とすることとした。すなわち比(D/t)が小さいほど負極活物質層中における炭素系粒子の分散性が向上する。しかし比(D/t)を小さくすると、Li吸蔵粒子と炭素系粒子との分散性が低下するという問題があり、両者は背反事象の関係となっていた。本発明の第5の目的は、比(D/t)が小さくても負極活物質層中におけるLi吸蔵粒子と炭素系粒子との分散性を向上させ、その負極を用いたリチウムイオン二次電池の出力を向上させることにある。 Therefore, the inventors of the present application decided to use the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer as an indicator of dispersibility. That is, as the ratio (D 1 / t) is smaller, the dispersibility of the carbon-based particles in the negative electrode active material layer is improved. However, when the ratio (D 1 / t) is reduced, there is a problem that the dispersibility of the Li storage particles and the carbon-based particles is reduced, and both are in a relation of conflicting events. The fifth object of the present invention is to improve the dispersibility of Li occluding particles and carbon-based particles in the negative electrode active material layer even if the ratio (D 1 / t) is small, and secondary lithium ion using the negative electrode It is about improving the output of the battery.
 (第1の手段)
 本発明者等が鋭意検討した結果、正極と、SiO及び黒鉛を含む負極活物質を有する負極と、を有するリチウムイオン二次電池とした場合に、負極活物質においてSiO及び黒鉛の含有量の範囲を規定することで、高容量で、なおかつ高いエネルギー密度を有するようにすることが出来ることを見いだした。
(First means)
The inventors of the present inventors, have conducted extensive studies, the positive electrode and, when a negative electrode having a negative electrode active material containing SiO x and graphite, a lithium ion secondary battery having a content of SiO x and graphite in the negative electrode active material It has been found that by defining the range of (1), it is possible to have a high capacity and yet have a high energy density.
 すなわち、本発明のリチウムイオン二次電池は、正極と、SiO(0.5≦x≦1.5)及び黒鉛を含む負極活物質を有する負極と、を有し、SiO及び黒鉛を100質量%としたときのSiOの配合割合は27質量%~51質量%であることを特徴とする。 That is, the lithium ion secondary battery of the present invention comprises a positive electrode, a negative electrode having a negative electrode active material containing SiO x (0.5 ≦ x ≦ 1.5 ) and graphite, have, a SiO x and graphite 100 It is characterized in that the blending ratio of SiO x when it is mass% is 27 mass% to 51 mass%.
 SiOの配合割合が上記範囲である負極活物質を用いたリチウムイオン二次電池とすることにより、負極活物質に炭素材料を用いたリチウムイオン二次電池に比べて、負極の電気容量は増加し、かつ負極の放電電位の増加を抑制することができ、高容量で高いエネルギー密度を有するリチウムイオン二次電池とすることが出来る。 By setting it as the lithium ion secondary battery using the negative electrode active material whose compounding ratio of SiO x is the said range, compared with the lithium ion secondary battery using a carbon material for the negative electrode active material, the electric capacity of a negative electrode increases. Thus, the increase in discharge potential of the negative electrode can be suppressed, and a lithium ion secondary battery having high capacity and high energy density can be obtained.
 さらに、正極は、一般式:
LiCoNiMn (p+q+r=1、0<p<1、0≦q<1、0≦r<1)で表される複合金属酸化物を含む正極活物質を有することが好ましい。上記複合金属酸化物を正極活物質とすると、その正極の放電電位が他の正極活物質を用いた場合に比べて低めであるため、上記正極と上記負極とを組み合わせることにより、負極の電気容量は増加し、かつ負極の放電電位の増加を抑制することができるため、正極の放電電位が下がっても、高容量で高いエネルギー密度を有するリチウムイオン二次電池とすることが出来る。
Furthermore, the positive electrode has the general formula:
It is preferable to have a positive electrode active material containing a composite metal oxide represented by LiCo p Ni q Mn r O 2 (p + q + r = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r <1). When the composite metal oxide is used as a positive electrode active material, the discharge potential of the positive electrode is lower compared to the case where other positive electrode active materials are used, and therefore the electric capacity of the negative electrode is obtained by combining the positive electrode and the negative electrode. Since the increase of the discharge potential of the negative electrode can be suppressed, the lithium ion secondary battery can have high capacity and high energy density even if the discharge potential of the positive electrode decreases.
 複合金属酸化物はLiCo1/3Ni1/3Mn1/3であることが好ましい。 The composite metal oxide is preferably LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
 SiO及び黒鉛を100質量%としたときのSiOの配合割合は、27質量%~45質量%であることがさらに好ましい。 It is more preferable that the blending ratio of SiO x when SiO x and graphite are 100 wt% is 27 wt% to 45 wt%.
 本発明のリチウムイオン二次電池は、正極と、リチウムと合金化可能な元素であるNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biおよび/または元素の化合物と、黒鉛とを含む負極活物質を有する負極とを有し、黒鉛と元素および/または元素の化合物とを100質量%としたときの元素および/または元素の化合物の配合割合は27質量%~51質量%であることを特徴とする。元素および/または元素の化合物の配合割合が上記範囲であることにより、高容量で高いエネルギー密度を有するリチウムイオン二次電池とすることが出来る。 The lithium ion secondary battery of the present invention comprises a positive electrode, an element capable of alloying with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, And a negative electrode having a negative electrode active material containing a compound of Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi and / or an element, and graphite and an element and / or an element The compounding ratio of the element and / or the compound of the element when the compound is 100% by mass is characterized in that it is 27% by mass to 51% by mass. When the compounding ratio of the element and / or the compound of the element is in the above range, a lithium ion secondary battery having a high capacity and a high energy density can be obtained.
 (第2の手段)
 上記第2の課題を解決する本発明のリチウムイオン二次電池用負極の特徴は、集電体と、集電体に形成された負極活物質層と、からなるリチウムイオン二次電池用負極であって、負極活物質層には炭素系粒子と、リチウムイオンを吸蔵可能なLi吸蔵粒子と、を含み、炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)が1を超えかつ2以下であり、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)が1/4以上かつ5/6以下であることにある。なお、D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。
(Second means)
The feature of the negative electrode for a lithium ion secondary battery of the present invention to solve the second problem is a negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the current collector. there are a carbon-based particles in the anode active material layer includes a storage capable Li occluding particles lithium ions, D 50 of D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 2) Ratio (D 1 / D 2 ) is more than 1 and 2 or less, and the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is One or more and five or less. Incidentally, it refers to a particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, D 50 refers to the median diameter measured on a volume basis.
 また上記第2の課題を解決する本発明のリチウムイオン二次電池の特徴は、本発明の負極を用いたことにある。 The feature of the lithium ion secondary battery of the present invention for solving the second problem lies in the use of the negative electrode of the present invention.
 (第3の手段)
 本発明者等が第3の課題を鋭意検討した結果、活物質としてSiOx粉末(0.5≦x≦1.5)を含む活物質層に、緩衝材として機能しうる黒鉛粉末を所定配合量で混入し、両粉末の大きさの比を特定することにより、負極全体の体積変化を大きく抑制出来ることを見いだした。
(Third means)
As a result of intensive investigations of the third problem by the present inventors, it was found that graphite powder capable of functioning as a buffer material is incorporated in a predetermined manner in an active material layer containing SiO x powder (0.5 ≦ x ≦ 1.5) as an active material. It has been found that the volume change of the entire negative electrode can be largely suppressed by mixing the amounts and specifying the ratio of the sizes of both powders.
 すなわち、本発明のリチウムイオン二次電池用負極は、集電体と集電体の表面に形成された活物質層とを有するリチウムイオン二次電池用負極において、活物質層は、活物質、バインダー及び緩衝材を含み、活物質はSiOx粉末(0.5≦x≦1.5)からなり、緩衝材は黒鉛粉末からなり、SiO粉末のD50は、黒鉛粉末のD50の1/4~1/2であり、黒鉛粉末の配合量は、黒鉛粉末の質量とSiOx粉末の質量を合計したものを100質量%としたときに36質量%~61質量%であり、バインダーの含有量は活物質層全体の質量を100質量%とした時に5質量%~25質量%であることを特徴とする。 That is, in the negative electrode for a lithium ion secondary battery of the present invention, in the negative electrode for a lithium ion secondary battery having a current collector and an active material layer formed on the surface of the current collector, the active material layer is an active material, includes a binder and a buffer material, the active material consists of SiO x powder (0.5 ≦ x ≦ 1.5), the buffer material is made of graphite powder, D 50 of the SiO x powder, 1 D 50 of the graphite powder The blending amount of the graphite powder is 36% by mass to 61% by mass when the total of the mass of the graphite powder and the mass of the SiO x powder is 100% by mass, and The content is characterized in that it is 5% by mass to 25% by mass when the mass of the entire active material layer is 100% by mass.
 SiO粉末と黒鉛粉末のD50が上記の関係にあり、黒鉛粉末の配合量が上記の範囲にあり、バインダーの含有量が上記範囲にあることによって、黒鉛粉末が形成する空隙内にSiO粉末が配置され、かつSiO粉末が膨張しても、負極の厚みが厚くならないようにSiO粉末及び黒鉛粉末が再配置される。再配置とは、SiO粉末及び黒鉛粉末が負極活物質層の厚み方向には膨らまないように幅方向にずれ、再度黒鉛粉末が形成する空隙内にSiO粉末が配置されることを称す。このように負極活物質層の厚み方向には膨らまないようにSiO粉末及び黒鉛粉末が再配置されることによって、負極の体積変化が大幅に抑制されることが出来る。 When the D 50 of the SiO x powder and the graphite powder is in the above relationship, the blending amount of the graphite powder is in the above range, and the binder content is in the above range, SiO x is formed in the voids formed by the graphite powder. powder is placed, and also expands SiO x powder, SiO x powder and graphite powder to avoid thick negative electrode thickness is rearranged. Repositioning refers to the fact that the SiO x powder is disposed in the void formed again by the graphite powder so that the SiO x powder and the graphite powder do not expand in the thickness direction of the negative electrode active material layer. As such, by repositioning the SiO x powder and the graphite powder so as not to expand in the thickness direction of the negative electrode active material layer, the volume change of the negative electrode can be significantly suppressed.
 SiO粉末のD50は、黒鉛粉末のD50の1/4~1/2であることによって、黒鉛粉末が形成する空隙内にSiO粉末がうまく入り込み、黒鉛粉末とSiO粉末とがより高い密度で配置される。SiO粉末のD50が黒鉛粉末のD50の1/4より小さいと、SiO粉末は凝集してバインダーを含んだ粗大粒子を作ってしまい、黒鉛粉末が形成する空隙内に粗大粒子がうまく入り込めなくなる。SiO粉末のD50が黒鉛粉末のD50の1/2より大きいと黒鉛粉末が形成する空隙内にSiO粉末がうまく入り込めなくなる。 D 50 of the SiO x powder, by a 1 / 4-1 / 2 of the D 50 of the graphite powder, SiO x powder enters well into the gap graphite powder forms more and the graphite powder and SiO x powder Arranged with high density. 1/4 smaller than D 50 D 50 of the graphite powder of SiO x powder, SiO x powder would make a aggregate to coarse particles containing a binder, coarse particles are well within voids graphite powder to form I can not get in. SiO x powder is not impenetrable well within void D 50 of SiO x powder form is larger than 1/2 and graphite powder D 50 of the graphite powder.
 黒鉛粉末の配合量は、黒鉛粉末の質量とSiO粉末の質量を合計したものを100質量%としたときに36質量%以上あれば、黒鉛粉末が形成する空隙内にSiO粉末がうまく入り込み負極の体積変化を抑制でき、61質量%以下であれば負極の電極容量をあまり下げないですむ。 If the blending amount of the graphite powder is 36% by mass or more when the sum of the mass of the graphite powder and the mass of the SiO x powder is 100 mass%, the SiO x powder enters the void formed by the graphite powder well The volume change of the negative electrode can be suppressed, and if it is 61% by mass or less, the electrode capacity of the negative electrode can not be reduced much.
 また上記した効果は、バインダーの含有量が上記範囲であると顕著である。活物質層全体の質量を100質量%とした時にバインダーが5質量%より少ないとSiO粉末及び黒鉛粉末が再配置することによって黒鉛粉末及びSiO粉末が集電体から剥離してしまうので好ましくなく、バインダーが25質量%より多いと、絶縁性のバインダーの量が多くなるため、電極全体の導電性が低下し内部抵抗が高くなるので好ましくない。 Moreover, the above-mentioned effect is remarkable when content of a binder is the said range. When the mass of the entire active material layer is 100% by mass and the binder content is less than 5% by mass, the SiO x powder and the graphite powder are preferably rearranged because the graphite powder and the SiO x powder are peeled off from the current collector. However, if the amount of the binder is more than 25% by mass, the amount of the insulating binder increases, which is not preferable because the conductivity of the entire electrode decreases and the internal resistance increases.
 負極活物質層が厚み方向に膨張すると、活物質、導電助剤などの間に形成されていた導電パスが切れ、負極の導電性が低下する。負極の導電性が低下すると、放電時にリチウムイオンが放出されにくくなる。負極の体積変化を抑制できることによって、放電時にリチウムイオンが放出されにくくなるのを抑制することができ、電池の初期効率(最初の充電容量に対する最初の放電容量の割合)の低下を抑制することができる。 When the negative electrode active material layer expands in the thickness direction, the conductive path formed between the active material, the conductive additive, and the like is broken, and the conductivity of the negative electrode is lowered. When the conductivity of the negative electrode decreases, lithium ions are less likely to be released during discharge. By suppressing the volume change of the negative electrode, it is possible to suppress the lithium ion from becoming difficult to be released during discharge, and to suppress the decrease in the initial efficiency of the battery (the ratio of the initial discharge capacity to the initial charge capacity). it can.
 また、負極活物質層が厚み方向に膨張すると、負極活物質と集電体との密着性が低下したり、負極活物質の膨張と収縮の繰り返しにより負極活物質に歪が生じて微細化して電極から脱離したりして、電池の電気容量及びサイクル特性が悪くなる。負極の体積変化を抑制できることによって、電池の電気容量及びサイクル特性の劣化を抑制することができる。 In addition, when the negative electrode active material layer expands in the thickness direction, the adhesion between the negative electrode active material and the current collector is reduced, or the negative electrode active material is distorted due to the repetition of expansion and contraction of the negative electrode active material, and thus finer Desorption from the electrode leads to deterioration of the battery capacity and cycle characteristics. By suppressing the volume change of the negative electrode, it is possible to suppress the deterioration of the electric capacity and the cycle characteristics of the battery.
 上記黒鉛粉末の配合量は、36質量%~49質量%とすることがさらに好ましい。黒鉛粉末の配合量を上記範囲とすることによって、さらに負極の体積変化を抑制でき、よりサイクル特性の劣化を抑制した電池とすることが出来る。黒鉛粉末の配合量が49質量%より多いと、繰り返しの充放電によって、SiO粉末よりもD50の大きな黒鉛粉末がバインダーから剥離しやすくなるため、サイクル特性が劣化する。 The blending amount of the above-mentioned graphite powder is more preferably 36% by mass to 49% by mass. By making the compounding quantity of graphite powder into the said range, the volume change of a negative electrode can be suppressed further and it can be set as the battery which suppressed deterioration of cycle characteristics more. If the amount of the graphite powder is more than 49 wt%, the charging and discharging of the repetition, since a large graphite powder D 50 than SiO x powder is easily detached from the binder, the cycle characteristics are deteriorated.
 また上記リチウムイオン二次電池用負極は、圧縮成形工程を経て形成されたものであり、圧縮成形工程におけるプレス圧より高いプレス圧でリチウムイオン二次電池用負極を圧縮する場合、圧縮方向の負極活物質層の厚みが減少することが好ましい。 Further, the negative electrode for lithium ion secondary battery is formed through a compression molding step, and in the case of compressing the negative electrode for lithium ion secondary battery with a press pressure higher than the press pressure in the compression molding step, the negative electrode in the compression direction. It is preferable that the thickness of the active material layer be reduced.
 このようにより高いプレス圧を用いて負極活物質層の厚みを減少できるということは、高いプレス圧をかけることによって、SiO粉末はさらに黒鉛粉末が形成する空隙に入り込むことができることを示す。つまり、負極活物質層には、SiO粉末が膨張しても、SiO粉末及び黒鉛粉末がSiO粉末の膨張に伴い再配置される余地があることを示す。 The fact that the thickness of the negative electrode active material layer can be reduced by using such a higher pressing pressure means that the SiO x powder can further enter into the void formed by the graphite powder by applying a high pressing pressure. That indicates that the negative electrode active material layer, be SiO x powder expands, there is room for SiO x powder and graphite powder is rearranged with the expansion of SiO x powder.
 上記のリチウムイオン二次電池用負極を用いることにより、負極の体積変化を抑制しうるリチウムイオン二次電池とすることが出来る。 By using the above negative electrode for a lithium ion secondary battery, it is possible to obtain a lithium ion secondary battery capable of suppressing the volume change of the negative electrode.
 また上記リチウムイオン二次電池は、xLi・(1-x)LiM(0<x≦1,Mは4価のMnを必須とする一種以上の金属元素、Mは4価のMnを必須とする二種以上の金属元素)で表されるリチウムマンガン系酸化物を基本組成とする正極活物質を含む正極を有することが好ましい。正極活物質として、上記のリチウムマンガン系酸化物を用いる場合、その活物質の活性化工程において、電池に4.5Vの電圧をかける。これは上記のリチウムマンガン系酸化物が、4.5Vかけないと活性化できないためである。電池に4.3V以上電圧をかけると電解液の分解を起こしやすいため、通常、電池にかける電圧は4.3Vが上限とされている。電池に電圧を4.5Vかけると、負極活物質であるSiO粉末の膨張は、電圧を4.3Vかけたものより2倍も大きくなる。本発明の負極を用いると、このような高電圧の場合でも負極全体の体積変化を抑制することができる。 In the lithium ion secondary battery, xLi 2 M 1 O 3. (1-x) LiM 2 O 2 (0 <x ≦ 1, M 1 is one or more metal elements having a tetravalent Mn essential, M 2 preferably has a positive electrode containing a positive electrode active material a basic composition of lithium manganese oxide represented by a tetravalent Mn two or more metal elements as essential). When the above lithium manganese oxide is used as the positive electrode active material, a voltage of 4.5 V is applied to the battery in the activation step of the active material. This is because the above lithium manganese oxide can not be activated without applying 4.5 V. When applying a voltage of 4.3 V or more to the battery, the electrolytic solution is likely to be decomposed. Therefore, the voltage applied to the battery is usually 4.3 V as the upper limit. When a voltage of 4.5 V is applied to the battery, the expansion of the SiO x powder, which is a negative electrode active material, is twice as large as that of 4.3 V applied. When the negative electrode of the present invention is used, the volume change of the entire negative electrode can be suppressed even in the case of such a high voltage.
 (第4の手段)
 SiOを負極活物質として含む負極は、充放電時の体積変化が比較的大きい。本発明の発明者等は、負極中に形成されている導電パスがSiOの収縮の際に切断され、負極の導電性が悪化すると推測した。導電パスの少なくとも一部は、SiOの表面に配置される導電助剤により形成されていると考えられる。そして、SiOの単位表面積あたりの導電助剤量が充分に多ければ、SiOの収縮に際しても導電パスは切断され難いと考えられる。
(4th means)
The negative electrode containing SiO x as a negative electrode active material has a relatively large volume change during charge and discharge. The inventors of the present invention have estimated that the conductive path formed in the negative electrode is cut off during the contraction of SiO x to deteriorate the conductivity of the negative electrode. At least a portion of the conductive path is considered to be formed by the conductive aid disposed on the surface of SiO x . And, if the amount of the conductive auxiliary agent per unit surface area of SiO x is sufficiently large, it is considered that the conductive path is hardly cut even when the SiO x contracts.
 導電助剤配合量の少ない負極材料の表面を走査型電子顕微鏡(SEM;Scanning Electron Microscope)により観察した様子を撮像したSEM写真を図14に示す。導電助剤配合量の多い負極材料の表面をSEMで観察した様子を撮像したSEM写真を図15に示す。図14に示すように、導電助剤配合量が少ない場合には、比較的大きな粒子であるSiOの表面が、微細な粒子である導電助剤で充分に覆われず、導電パスが充分に形成されないと考えられる。一方、図15に示すように、導電助剤配合量が多いと、比較的大きな粒子であるSiOの表面が、微細な粒子である導電助剤で充分に覆われ、多数の導電パスが形成されると考えられる。 The SEM photograph which image | photographed the mode that the surface of the negative electrode material with few amounts of conductive support agents was observed with the scanning electron microscope (SEM; Scanning Electron Microscope) is shown in FIG. The SEM photograph which imaged the mode which observed the surface of the negative electrode material with many amounts of conductive support agents by SEM is shown in FIG. As shown in FIG. 14, when the amount of the conductive auxiliary agent is small, the surface of the relatively large particles SiO x is not sufficiently covered with the conductive auxiliary agent which is a fine particle, and the conductive path is sufficiently It is considered not to be formed. On the other hand, as shown in FIG. 15, when the content of the conductive additive is large, the surface of relatively large particles, SiO x , is sufficiently covered with the conductive additive, which is fine particles, to form a large number of conductive paths. It is considered to be
 本発明の発明者等はこの推測を元に鋭意研究を重ね、導電助剤の配合量を、負極材料中のSiOと黒鉛との表面積の和に応じた量にすることで、上記の第4の課題を解決し得ることを見出した。すなわち、本発明のリチウムイオン二次電池用負極材料は、SiO(0.3≦x≦1.6)で表されるケイ素酸化物からなる負極活物質と、炭素(C)を含有する導電助剤と、を含むリチウムイオン二次電池用負極材料であって、SiOのBET値(m/g)をa1とし、SiOの配合量(g)をb1とし、黒鉛のBET値(m/g)をa2とし、黒鉛の配合量(g)をb2とし、導電助剤の配合量(g)をcとしたときに、{(a1×b1)+(a2×b2)}/cの値が24以上65以下であることを特徴とする。 The inventors of the present invention have intensively studied based on this assumption, and by setting the compounding amount of the conductive aid to an amount according to the sum of the surface area of SiO x in the negative electrode material and graphite, the above-mentioned We found that we could solve 4 problems. That is, the negative electrode material for a lithium ion secondary battery of the present invention is a conductive material containing a negative electrode active material comprising a silicon oxide represented by SiO x (0.3 ≦ x ≦ 1.6) and carbon (C). a negative electrode material for a lithium ion secondary battery comprising a aids, a, BET value of SiO x a (m 2 / g) and a1, the amount of SiO x (g) of the b1, BET value of the graphite ( Assuming that m 2 / g) is a 2, the blending amount (g) of graphite is b 2, and the blending amount (g) of the conductive additive is c, {(a1 × b1) + (a2 × b2)} / It is characterized in that the value of c is 24 or more and 65 or less.
 上述した負極活物質の表面積と導電助剤の配合量との関係、すなわち{(a1×b1)+(a2×b2)}/cの値は、導電助剤の質量を基準としている。導電助剤の体積を基準とする場合、上記第4の課題を解決する本発明のリチウムイオン二次電池用負極材料は、SiO(0.3≦x≦1.6)で表されるケイ素酸化物からなる負極活物質と、炭素(C)を含有する導電助剤と、を含むリチウムイオン二次電池用負極材料であって、SiOのBET値(m/g)をa1とし、SiOの配合量(g)をb1とし、黒鉛のBET値(m/g)をa2とし、黒鉛の配合量(g)をb2とし、導電助剤の配合量(cm)をdとしたときに、{(a1×b1)+(a2×b2)}/dの値が43以上120以下であることを特徴とする。 The relationship between the surface area of the negative electrode active material described above and the compounding amount of the conductive aid, that is, the value of {(a1 × b1) + (a2 × b2)} / c is based on the mass of the conductive aid. The negative electrode material for a lithium ion secondary battery of the present invention, which solves the fourth problem described above, based on the volume of the conductive additive, is silicon represented by SiO x (0.3 ≦ x ≦ 1.6). A negative electrode material for a lithium ion secondary battery comprising a negative electrode active material made of an oxide and a conductive aid containing carbon (C), wherein a BET value (m 2 / g) of SiO x is a 1, The blending amount (g) of SiO x is b1, the BET value (m 2 / g) of graphite is a 2, the blending amount (g) of graphite is b 2, and the blending amount (cm 3 ) of the conductive aid is d When this is done, the value of {(a1 × b1) + (a2 × b2)} / d is 43 or more and 120 or less.
 また、上記第4の課題を解決する本発明のリチウムイオン二次電池用負極は、上述した本発明のリチウムイオン二次電池用負極材料を材料としてなることを特徴とする。 The negative electrode for a lithium ion secondary battery of the present invention for solving the fourth problem is characterized by being made of the above-described negative electrode material for a lithium ion secondary battery of the present invention.
 さらに、上記第4の課題を解決する本発明のリチウムイオン二次電池は、上述した本発明のリチウムイオン二次電池用負極を備えることを特徴とする。 Furthermore, a lithium ion secondary battery of the present invention for solving the fourth problem is characterized by being provided with the above-described lithium ion secondary battery negative electrode of the present invention.
 (第5の手段)
 上記第5の課題を解決する本発明のリチウムイオン二次電池用負極の特徴は、集電体と、集電体に形成された負極活物質層と、からなるリチウムイオン二次電池用負極であって、負極活物質層には炭素系粒子と、リチウムイオンを吸蔵可能なLi吸蔵粒子と、を含み、炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)が1/2以上かつ1.3以下であり、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)が1/4以上かつ2/3以下であることにある。
(Fifth means)
The feature of the negative electrode for a lithium ion secondary battery of the present invention to solve the fifth problem is a negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the current collector. there are a carbon-based particles in the anode active material layer includes a storage capable Li occluding particles lithium ions, D 50 of D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 2) the ratio (D 1 / D 2) is 1/2 or more and 1.3 or less, the ratio of D 50 of the carbonaceous particles (D 1) the thickness of the negative electrode active material layer (t) (D 1 / t) to be 1/4 or more and 2/3 or less.
 また上記第5の課題を解決する本発明のリチウムイオン二次電池の特徴は、本発明の負極を用いたことにある。 The feature of the lithium ion secondary battery of the present invention for solving the fifth problem lies in the use of the negative electrode of the present invention.
 (第1の効果)
 本発明は、高容量と高エネルギー密度を両立するリチウムイオン二次電池を提供することができる。
(First effect)
The present invention can provide a lithium ion secondary battery having both high capacity and high energy density.
 (第2の効果)
 炭素系粒子とLi吸蔵粒子との混合物からなる負極活物質層には、粒子どうしの間に必然的に気孔が含まれている。この気孔によって膨張・収縮時の応力が吸収されるのであるが、大きな気孔が小数のものより小さな気孔が多数のものの方が応力吸収性に優れている。また気孔の形状は、真球に近いほど応力集中を回避することができクラックを防止できると考えられる。
(Second effect)
In the negative electrode active material layer made of a mixture of carbon-based particles and Li storage particles, pores are inevitably contained between the particles. The pores absorb the stress at the time of expansion and contraction, but the larger ones are smaller than the smaller ones, and the larger ones have better stress absorption. Further, it is considered that as the shape of the pores is closer to a true sphere, stress concentration can be avoided and cracks can be prevented.
 ところがLi吸蔵粒子として代表的なSiOのD50は標準品で約6.5μm程度であるのに対し、炭素系粒子として代表的な黒鉛の粒子径は10μm~20μmの範囲にある。そのためSiOと人造黒鉛との混合物からなる負極材料においては、粒径差が大きくなり小さな気孔を多数有するようにすることは困難となっていた。 However, while the D 50 of SiO x which is typical as Li storage particles is about 6.5 μm in the standard product, the particle diameter of graphite which is typical as carbon-based particles is in the range of 10 μm to 20 μm. Therefore, in the negative electrode material made of a mixture of SiO x and artificial graphite, the difference in particle size is large, and it has been difficult to have a large number of small pores.
 そこで本発明のリチウムイオン二次電池用負極は、炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)が1を超えかつ2以下としているので、DとDとが近く負極活物質層には小さな気孔が多数含まれるようになる。 So the negative electrode for a lithium ion secondary battery of the present invention, D 50 (D 1) and the ratio between D 50 of Li occlusion particle (D 2) (D 1 / D 2) is greater than 1 and 2 of the carbon-based particles Since the following is assumed, D 1 and D 2 are close to each other, and a large number of small pores are contained in the negative electrode active material layer.
 一方、負極活物質層の厚さは電気抵抗値を小さくするためになるべく薄いことが望ましいが、負極活物質層の厚さを薄くすると、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)も小さくなり、そうなると気孔の分散性が低下してしまう。 On the other hand, the thickness of the negative electrode active material layer is desirably as thin as possible in order to reduce the electrical resistance, but when the thickness of the negative electrode active material layer is reduced, D 50 (D 1 ) of the carbon-based particles and the negative electrode active material The ratio (D 1 / t) to the layer thickness (t) also decreases, and the dispersibility of the pores decreases.
 そこで本発明では、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)を1/4以上かつ5/6以下としているので、Dに対してtが十分に大きく、気孔の分散性がよい。 Therefore, in the present invention, the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is 1/4 or more and 5/6 or less. T is sufficiently large relative to 1 and the dispersibility of the pores is good.
 したがって本発明の負極を用いた本発明のリチウムイオン二次電池は、負極活物質層に含まれる小さくて分散性が高い気孔によって充放電時の体積変化による応力を緩和することができ、クラックや剥離を防止できるためサイクル特性が向上する。 Therefore, in the lithium ion secondary battery of the present invention using the negative electrode of the present invention, the small and highly dispersible pores contained in the negative electrode active material layer can relieve the stress due to the volume change during charge and discharge. Since peeling can be prevented, cycle characteristics are improved.
 (第3の効果)
 本発明のリチウムイオン二次電池用負極を用いることによって、負極の体積変化を抑制しうるリチウムイオン二次電池とすることができる。
(Third effect)
By using the negative electrode for a lithium ion secondary battery of the present invention, it is possible to obtain a lithium ion secondary battery capable of suppressing a volume change of the negative electrode.
 (第4の効果)
 本発明の負極材料および負極は、負極活物質としてSiOを用いているにもかかわらず、導電性に優れ、かつ、リチウムイオン二次電池の放電容量低下を抑制できる。また、本発明のリチウムイオン二次電池は、負極活物質としてSiOを用いているにもかかわらず、負極の導電性に優れ、かつ、放電容量が低下し難い。
(4th effect)
Although the negative electrode material and the negative electrode of the present invention use SiO x as the negative electrode active material, they are excellent in conductivity and can suppress a decrease in discharge capacity of a lithium ion secondary battery. Moreover, although the lithium ion secondary battery of the present invention uses SiO x as the negative electrode active material, the conductivity of the negative electrode is excellent and the discharge capacity is unlikely to be reduced.
 (第5の効果)
 本発明のリチウムイオン二次電池用負極は、炭素系粒子とLi吸蔵粒子とを含む負極活物質層を有し、炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)が1/2以上かつ1.3以下である。すなわち炭素系粒子とLi吸蔵粒子との粒径差が小さいため、負極活物質層では炭素系粒子とLi吸蔵粒子とが高分散で均一に混合されている。
(5th effect)
The negative electrode for a lithium ion secondary battery of the present invention has a negative electrode active material layer containing carbon-based particles and Li occlusion particles, D 50 (D 2 of D 50 (D 1) and Li occlusion particles of the carbon-based particles The ratio (D 1 / D 2 ) to ( 1 ) is 1/2 or more and 1.3 or less. That is, since the particle size difference between the carbon-based particles and the Li storage particles is small, in the negative electrode active material layer, the carbon-based particles and the Li storage particles are highly dispersed and uniformly mixed.
 したがってLi吸蔵粒子と炭素系粒子との接触確率が高まり、Liイオンのイオン導電性が向上する。そのため、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)を1/4以上かつ2/3以下とし、負極活物質層の厚さを薄くしても負極の導電性が向上する。 Therefore, the contact probability between the Li storage particles and the carbon-based particles is increased, and the ion conductivity of Li ions is improved. Therefore, the ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is 1/4 or more and 2/3 or less, and the thickness of the negative electrode active material layer Even if the thickness is reduced, the conductivity of the negative electrode is improved.
 すなわち本発明の負極を用いた本発明のリチウムイオン二次電池は、負極の導電性が向上するため出力も向上する。 That is, in the lithium ion secondary battery of the present invention using the negative electrode of the present invention, since the conductivity of the negative electrode is improved, the output is also improved.
実施例1~3及び比較例1の放電容量(mAh)と電圧(V)(VS.Li/Li)の関係を示すグラフである。6 is a graph showing the relationship between discharge capacity (mAh) and voltage (V) (VS. Li / Li + ) in Examples 1 to 3 and Comparative Example 1. 実施例1~3及び比較例1の黒鉛比率と体積エネルギー密度を比較したグラフである。FIG. 6 is a graph comparing the graphite ratio and volumetric energy density of Examples 1 to 3 and Comparative Example 1. FIG. 本発明の実施例5に係る負極の断面のSEM画像である。It is a SEM image of the cross section of the negative electrode which concerns on Example 5 of this invention. 本発明の比較例2に係る負極の断面のSEM画像である。It is a SEM image of the cross section of the negative electrode which concerns on the comparative example 2 of this invention. サイクル数と放電IRドロップとの関係を示すグラフである。It is a graph which shows the relationship between cycle number and discharge IR drop. サイクル数と放電IRドロップとの関係を示すグラフである。It is a graph which shows the relationship between cycle number and discharge IR drop. 本発明のリチウムイオン二次電池用負極を 説明する模式図である。FIG. 1 is a schematic view illustrating a negative electrode for a lithium ion secondary battery of the present invention. 本発明のリチウムイオン二次電池用負極の体積変化を説明する模式図である。It is a schematic diagram explaining the volume change of the negative electrode for lithium ion secondary batteries of this invention. SiO粉末2のD50が黒鉛粉末3のD50とほぼ同等か少し小さいものを用いたリチウムイオン二次電池用負極を説明する模式図である。Is a schematic view D 50 of SiO x powder 2 will be described substantially equal or negative electrode for a lithium ion secondary battery using what little smaller and D 50 of the graphite powder 3. 図9に記載のリチウムイオン二次電池用負極の体積変化を説明する模式図である。It is a schematic diagram explaining the volume change of the negative electrode for lithium ion secondary batteries of FIG. SiO粉末と黒鉛粉末の粒径比と電極密度とを比較したグラフである。Is a graph comparing the particle size ratio and the electrode density of the SiO x powder and graphite powder. 実施例8~10のサイクル試験結果を示すグラフである。It is a graph which shows the cycle test result of Examples 8-10. 試験例2の負極の断面のSEM(走査型電子顕微鏡)写真である。It is a SEM (scanning electron microscope) photograph of the cross section of the negative electrode of Experiment 2. FIG. 導電助剤配合量の少ない負極材料の表面のSEM写真である。It is a SEM photograph of the surface of negative electrode material with few amounts of conductive support agents. 導電助剤配合量の多い負極材料の表面のSEM写真である。It is a SEM photograph of the surface of negative electrode material with many amounts of conductive support agents. 比較例5、実施例11~実施例14のリチウムイオン二次電池のサイクル特性を表すグラフであり、縦軸は放電容量である。It is a graph showing the cycling characteristics of the lithium ion secondary battery of the comparative example 5 and Example 11-Example 14, and a vertical axis | shaft is discharge capacity. 比較例5、実施例11~実施例14のリチウムイオン二次電池のサイクル特性を表すグラフであり、縦軸は放電容量維持率である。FIG. 20 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14. The vertical axis is the discharge capacity retention rate. 実施例15、16のリチウムイオン二次電池のサイクル特性を表すグラフであり、縦軸は放電容量である。It is a graph showing the cycling characteristics of the lithium ion secondary battery of Examples 15 and 16, and a vertical axis | shaft is discharge capacity. 実施例15~実施例17のリチウムイオン二次電池のサイクル特性を表すグラフであり、縦軸は放電容量維持率である。FIG. 20 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Examples 15 to 17, wherein the vertical axis is the discharge capacity retention rate. 比較例5、実施例11~実施例14のリチウムイオン二次電池の放電IRドロップを表すグラフである。It is a graph showing the discharge IR drop of the lithium ion secondary battery of Comparative Example 5 and Examples 11 to 14. 本発明の実施例18に係る負極の断面のSEM画像である。It is a SEM image of the cross section of the negative electrode concerning Example 18 of this invention. 初期放電容量を示すグラフである。It is a graph which shows initial stage discharge capacity. 初回放電IRドロップを示すグラフである。It is a graph which shows first time discharge IR drop.
 1:集電体、2:SiO粉末、3:黒鉛粉末、4:バインダー、5:活物質層、6:黒鉛、7:SiO。 1: current collector, 2: SiO x powder, 3: graphite powder, 4: Binder, 5: active material layer, 6: Graphite, 7: SiO.
 (第1の実施形態)
<リチウムイオン二次電池>
 本発明の第1の実施形態のリチウムイオン二次電池は、正極と、SiO(0.5≦x≦1.5)及び黒鉛を含む負極活物質を有する負極と、を有する。
First Embodiment
<Lithium ion secondary battery>
The lithium ion secondary battery of the first embodiment of the present invention has a positive electrode, and a negative electrode having a negative electrode active material containing SiO x (0.5 ≦ x ≦ 1.5) and graphite.
 上記正極は、集電体と、集電体の表面に形成された活物質層とを有する。 The positive electrode has a current collector and an active material layer formed on the surface of the current collector.
 集電体は放電或いは充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体のことである。集電体は箔、板等の形状とすることが出来るが、目的に応じていればその形状は特に限定されない。集電体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることが出来る。 The current collector is a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge. The current collector may be in the form of a foil, a plate or the like, but the shape is not particularly limited as long as it is suitable for the purpose. As a collector, metal foils, such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably, for example.
 活物質層は、活物質及びバインダーを含む。活物質層には、必要に応じて導電助剤を加えても良い。活物質とは、充電反応及び放電反応などの電極反応に直接寄与する物質のことである。 The active material layer contains an active material and a binder. You may add a conductive support agent to an active material layer as needed. The active material is a substance that directly contributes to electrode reactions such as charge reactions and discharge reactions.
 正極の活物質としては、リチウム含有化合物が適当である。正極活物質として、例えばリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物などのリチウム含有金属複合酸化物などを用いることが出来る。また正極活物質として他の金属化合物あるいは高分子材料を用いることも出来る。他の金属化合物としては、例えば酸化チタン、酸化バナジウムあるいは二酸化マンガンなどの酸化物、または硫化チタンあるいは硫化モリブデンなどの二硫化物が挙げられる。高分子材料としては例えばポリアニリンあるいはポリチオフェンなどの導電性高分子が挙げられる。 As an active material of a positive electrode, a lithium containing compound is suitable. As the positive electrode active material, for example, lithium-containing metal composite oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide and the like can be used. Other metal compounds or polymer materials can also be used as the positive electrode active material. Other metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or disulfides such as titanium sulfide or molybdenum sulfide. Examples of the polymer material include conductive polymers such as polyaniline or polythiophene.
 特に正極活物質は、一般式:
LiCoNiMn (p+q+r=1、0<p<1、0≦q<1、0≦r<1)で表される複合金属酸化物を含むことが好ましい。上記複合金属酸化物は、熱安定性に優れ、低コストであるため、上記複合金属酸化物を含むことによって、熱安定性のよい、安価なリチウムイオン二次電池とすることが出来る。
In particular, the positive electrode active material has a general formula:
It is preferable to include a composite metal oxide represented by LiCo p Ni q Mn r O 2 (p + q + r = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r <1). The composite metal oxide is excellent in thermal stability and low in cost. Therefore, by including the composite metal oxide, an inexpensive lithium ion secondary battery with good thermal stability can be obtained.
 上記複合金属酸化物として、例えばLiCo1/3Ni1/3Mn1/3、Li1.0Ni0.6Co0.2Mn0.2、Li1.0Ni0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOを用いることができる。中でもLiCo1/3Ni1/3Mn1/3は、熱安定性の点で好ましい。 As the above composite metal oxide, for example, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.0 Ni 0.6 Co 0.2 Mn 0.2 O 2 , Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2, LiCoO 2, it is possible to use a LiNi 0.8 Co 0.2 O 2, LiCoMnO 2. Among them, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is preferable in view of thermal stability.
 バインダーは、活物質を集電体に固定するための結着剤として用いられる。バインダーとして、例えば、ポリフッ化ビニリデン(PVDF)の硬化物、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマーの硬化物、スチレンブタジエンゴム(SBR)等のゴムの硬化物、ポリイミド、ポリアミドイミド等のイミド系ポリマーの硬化物、アルコキシシリル基含有樹脂の硬化物、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などの硬化物を用いることができる。 The binder is used as a binder for fixing the active material to the current collector. As a binder, for example, a cured product of polyvinylidene fluoride (PVDF), a cured product of a fluorine-based polymer such as polytetrafluoroethylene (PTFE), a cured product of a rubber such as styrene butadiene rubber (SBR), polyimide, polyamide imide, etc. A cured product of an imide polymer, a cured product of an alkoxysilyl group-containing resin, or a cured product of a thermoplastic resin such as polypropylene or polyethylene can be used.
 活物質層には、導電助剤が、電極層の導電性を高めるために必要に応じて添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor
Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて添加することが出来る。
A conductive support agent is added to the active material layer as needed to enhance the conductivity of the electrode layer. Carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor) as conductive support agent
Grown Carbon Fiber (VGCF) etc. can be added singly or in combination of two or more.
 負極は、上記正極と同様に、集電体と、集電体の表面に形成された活物質層を有する。活物質層は、活物質及びバインダーを含む。活物質層には、必要に応じて導電助剤を加えても良い。集電体、バインダー、導電助剤は正極で説明したものと同様のものを使用することが出来る。 The negative electrode has a current collector and an active material layer formed on the surface of the current collector, as in the case of the above-described positive electrode. The active material layer contains an active material and a binder. You may add a conductive support agent to an active material layer as needed. As the current collector, the binder and the conductive aid, those similar to those described for the positive electrode can be used.
 負極活物質は、SiOx(0.5≦x≦1.5)及び黒鉛からなる。 The negative electrode active material consists of SiO x (0.5 ≦ x ≦ 1.5) and graphite.
 SiO(0.5≦x≦1.5)は二酸化珪素(SiO)と金属珪素(Si)とを原料として得られる非晶質の珪素酸化物の総称を表す一般式である。SiOは、熱処理されると、SiとSiOとに分解することが知られている。これは不均化反応といい、SiとOとの比が概ね1:1の均質な固体の一酸化珪素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細であり、SiO相の中に分散している。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。したがって、Si相とSiO相とに分解したSiOからなる負極活物質を用いたリチウムイオン二次電池は、サイクル特性に優れている。 SiO x (0.5 ≦ x ≦ 1.5) is a general formula representing an amorphous silicon oxide obtained using silicon dioxide (SiO 2 ) and metallic silicon (Si) as raw materials. It is known that SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and in the case of homogeneous solid silicon monoxide SiO which has a ratio of Si to O of approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by internal reaction of the solid. . The Si phase obtained by separation is very fine and dispersed in the SiO 2 phase. In addition, the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a lithium ion secondary battery using a negative electrode active material composed of SiO x decomposed into Si phase and SiO 2 phase is excellent in cycle characteristics.
 SiOx(0.5≦x≦1.5)において、xが0.5未満であると、Si相の占める比率が高くなるため充放電時の体積変化が大きくなりすぎて、リチウムイオン二次電池のサイクル特性が低下する。またxが1.5を超えると、Si相の比率が低下してエネルギー密度が低下するようになる。さらに好ましいxの範囲は、0.7≦x≦1.2である。 In SiO x (0.5 ≦ x ≦ 1.5), if x is less than 0.5, the ratio occupied by the Si phase becomes high, so that the volume change during charge and discharge becomes too large, and lithium ion secondary Battery cycle characteristics are degraded. In addition, when x exceeds 1.5, the ratio of the Si phase decreases to lower the energy density. A further preferable range of x is 0.7 ≦ x ≦ 1.2.
 一般に、酸素を断った状態であれば800℃以上で、ほぼすべてのSiOが不均化して二相に分離すると言われている。具体的には、非結晶性のSiO粉末を含む原料酸化珪素粉末に対して、真空中または不活性ガス中などの不活性雰囲気中で800℃~1200℃、1時間~5時間の熱処理を行うことで、非結晶性のSiO相および結晶性のSi相の二相を含むSiO粒子からなる粉末が得られる。 In general, it is said that almost all SiO disproportionate and separate into two phases at 800 ° C. or higher in the oxygen-free state. Specifically, the raw material silicon oxide powder containing non-crystalline SiO powder is heat-treated at 800 ° C. to 1200 ° C. for 1 hour to 5 hours in an inert atmosphere such as vacuum or in an inert gas. Thus, a powder composed of SiO particles including two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.
 SiOx(0.5≦x≦1.5)は、比表面積が小さくなる形状が望ましい。ここで、SiOxのD50が大きいと、上記不均化反応が粒子表面のみで起こって粒子内部まで起こらないおそれがあり、Si相が分離できないため、従来持っている放電容量を発揮できなくなるため、SiOxのD50は小さいほど好ましい。 It is desirable that SiO x (0.5 ≦ x ≦ 1.5) has a shape that reduces the specific surface area. Here, if the D 50 of SiO x is large, the disproportionation reaction may occur only on the particle surface and may not occur to the inside of the particle, and the Si phase can not be separated, so the conventional discharge capacity can not be exhibited. Therefore, D 50 of SiO x is preferably as small as possible.
 しかし、SiOxのD50が小さすぎると、負極の形成時に凝集して粗大な粒子となるため、リチウムイオン二次電池の充放電特性が低下する場合がある。またSiOのD50が小さすぎると、SiO粉末の比表面積が大きくなり、SiOx粉末と電解質との接触面が多くなって、電解質の分解が進んでしまい、リチウムイオン二次電池のサイクル特性が悪くなる。 However, the D 50 of the SiO x is too small, since the coarse particles by aggregation during the formation of the negative electrode may decrease the charge-discharge characteristics of the lithium ion secondary battery. Further, when the D 50 of the SiO x is too small, the specific surface area of the SiO x powder is increased, an increasing number of contact surface with SiO x powder and the electrolyte, will proceed decomposition of the electrolyte, the cycle of the lithium ion secondary battery The characteristics get worse.
 そのため、SiOxのD50は、1μm以上であることが好ましい。なお、D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。また、SiOのD50は、15μm以下であることが好ましい。D50が15μmより大きいと、不均化反応が内部まで起こらず放電容量が従来持っているものより低下するおそれがある。またSiO粉末は導電率が悪いため、電極全体の導電性が不均一になり、リチウムイオン二次電池の充放電特性が低下する。SiOのD50が、4μm~10μmであることがさらに好ましい。 Therefore, D 50 of the SiO x is preferably 1μm or more. Incidentally, it refers to a particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, D 50 refers to the median diameter measured on a volume basis. Further, D 50 of the SiO x is preferably 15μm or less. And D 50 is greater than 15 [mu] m, there is a possibility that disproportionation discharge capacity does not occur until the internal drops than have conventional. In addition, since the SiO x powder has poor conductivity, the conductivity of the entire electrode becomes nonuniform, and the charge and discharge characteristics of the lithium ion secondary battery are degraded. More preferably, the D 50 of SiO x is 4 μm to 10 μm.
 SiOx(0.5≦x≦1.5)は、所望のD50を有する市販のSiOxを用いることができる。また、SiOは、表面に炭素材料からなる被覆層を備えるとよい。炭素材料からなる被覆層は、SiOに導電性を付与するだけでなく、SiOとフッ酸などとの反応を防止することができ、リチウムイオン二次電池の電池特性が向上する。被覆層を構成する炭素材料としては、天然黒鉛、人造黒鉛、コークス、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維などを用いることができる。また被覆層を形成するには、珪素酸化物と炭素材料前駆体とを混合して焼成するとよい。炭素材料前駆体としては、糖類、グリコール類、ポリピロール等のポリマーなどの有機化合物やアセチレンブラックなど、焼成により炭素材料に転化しうる有機化合物が使用可能である。その他、メカノフュージョンなどの機械的表面融合処理法、CVDなどの蒸着法を用いても、被覆層を形成することができる。 As SiO x (0.5 ≦ x ≦ 1.5), commercially available SiO x having a desired D 50 can be used. In addition, SiO x may be provided with a covering layer made of a carbon material on the surface. Coating layer comprising a carbon material, not only to impart conductivity to the SiO x, it is possible to prevent the reaction between such SiO x and hydrofluoric acid, thereby improving the battery characteristics of the lithium ion secondary battery. Natural carbon, artificial graphite, coke, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, etc. can be used as the carbon material constituting the covering layer. Moreover, in order to form a coating layer, it is good to mix and bake a silicon oxide and a carbon material precursor. As the carbon material precursor, organic compounds such as saccharides, glycols, polymers such as polypyrrole, and acetylene black can be used, and organic compounds which can be converted into carbon materials by firing can be used. In addition, the covering layer can be formed even by using a mechanical surface fusion treatment method such as mechanofusion or a vapor deposition method such as CVD.
 被覆層の形成量は、SiOと被覆層の合計に対して1質量%~50質量%とすることができる。被覆層が1質量%未満では導電性向上の効果が得られず、50質量%を超えるとSiOの割合が相対的に減少して負極容量が低下してしまう。被覆層の形成量は5質量%~30質量%の範囲が好ましく、5質量%~20質量%の範囲がさらに望ましい。なお、SiOの表面に炭素材料からなる被覆層を備える場合において、SiO及び黒鉛を100質量%としたときのSiOの配合割合には被覆層の質量を含む。被覆層をなす炭素材料は負極活物質である黒鉛とは区別される。 The formation amount of the covering layer can be 1% by mass to 50% by mass with respect to the total of SiO x and the covering layer. If the coating layer is less than 1% by mass, the effect of improving conductivity can not be obtained, and if it exceeds 50% by mass, the ratio of SiO x relatively decreases and the negative electrode capacity decreases. The amount of the coating layer formed is preferably in the range of 5% by mass to 30% by mass, and more preferably in the range of 5% by mass to 20% by mass. Note that in the case of providing a coating layer comprising a carbon material on the surface of the SiO x, the proportion of SiO x when the SiO x and graphite is 100 mass%, including the mass of the coating layer. The carbon material forming the covering layer is distinguished from the negative electrode active material graphite.
 負極活物質である黒鉛として、天然黒鉛粉末、人造黒鉛粉末、球晶黒鉛粉末(黒鉛化メソフェーズカーボン小球体)、グラファイト系炭素材料粉末などを用いることができる。グラファイト系炭素材料としては、ピッチ、コークスなどの縮合多環炭化水素化合物の熱分解物などを用いることができる。 As graphite which is a negative electrode active material, natural graphite powder, artificial graphite powder, spherulite graphite powder (graphitized mesophase carbon small spheres), graphite-based carbon material powder, etc. can be used. As the graphite-based carbon material, a pyrolyzate of a condensed polycyclic hydrocarbon compound such as pitch and coke can be used.
 黒鉛は、D50が4μm~30μmである粉末を用いることが好ましい。特にD50が5μm~25μmであるものが好ましく、D50が8μm~20μmであることがより望ましい。 Graphite, it is preferable to use a powder D 50 is 4 [mu] m ~ 30 [mu] m. In particular, those having a D 50 of 5 μm to 25 μm are preferable, and those having a D 50 of 8 μm to 20 μm are more preferable.
 負極活物質において、SiO及び黒鉛を100質量%としたときにSiOの配合割合は27質量%~51質量%である。この配合割合の負極活物質を用いたリチウムイオン二次電池は、SiO(0.5≦x≦1.5)のみを負極活物質として用いたリチウムイオン二次電池に比べて、リチウムイオン二次電池の負極の放電電圧を低減でき、黒鉛のみを負極活物質として用いたリチウムイオン二次電池に比べて高容量のリチウムイオン二次電池とすることが出来る。そのため上記配合割合の負極活物質を用いたリチウムイオン二次電池は、高容量で、かつ高いエネルギー密度を有するリチウムイオン二次電池とすることが出来る。 In the negative electrode active material, the blending ratio of SiO x is 27 wt% to 51 wt% when SiO x and graphite are 100 wt%. The lithium ion secondary battery using the negative electrode active material of this compounding ratio has a lithium ion secondary battery compared to the lithium ion secondary battery using only SiO x (0.5 ≦ x ≦ 1.5) as the negative electrode active material. The discharge voltage of the negative electrode of the secondary battery can be reduced, and a lithium ion secondary battery having a high capacity can be obtained as compared to a lithium ion secondary battery using only graphite as a negative electrode active material. Therefore, a lithium ion secondary battery using the negative electrode active material with the above blending ratio can be a lithium ion secondary battery having high capacity and high energy density.
 SiOの配合割合は27質量%より少なくても、51質量%より多くてもエネルギー密度が下がる。SiOの量が少なくなると理論容量は少なくなるが、黒鉛が多くなることにより負極の放電電圧が下がる為、正極の能力を出し切ることができる。一方、SiOの量が多くなると理論容量は多くなるが、黒鉛の割合が少なくなることで負極の放電電圧が上がり、正極をうまく使いこなすことができない。またより好ましいSiOの配合割合は27質量%~45質量%である。 The energy density decreases even if the blending ratio of SiO x is less than 27% by mass and more than 51% by mass. The theoretical capacity decreases as the amount of SiO x decreases, but the discharge voltage of the negative electrode decreases as the amount of graphite increases, so the ability of the positive electrode can be fully utilized. On the other hand, although the theoretical capacity increases as the amount of SiO x increases, the discharge voltage of the negative electrode increases as the proportion of graphite decreases, and the positive electrode can not be used well. More preferably, the blending ratio of SiO x is 27% by mass to 45% by mass.
 上記負極及び正極は、公知の製造方法によって製造できる。例えば、上記負極及び正極は、スラリー作成工程と、スラリー塗布工程と、圧縮成形工程と、熱処理工程とを有する製造方法によって製造できる。スラリー作成工程では、活物質と、バインダー樹脂とを混合してスラリーを作成する。必要に応じて溶媒、導電助剤をスラリーに添加しても良い。 The said negative electrode and positive electrode can be manufactured by a well-known manufacturing method. For example, the said negative electrode and positive electrode can be manufactured by the manufacturing method which has a slurry preparation process, a slurry application | coating process, a compression molding process, and a heat treatment process. In the slurry preparation step, the active material and the binder resin are mixed to prepare a slurry. If necessary, a solvent and a conductive additive may be added to the slurry.
 溶媒として、N-メチルピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)、水などが使用できる。 As the solvent, N-methyl pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK), water and the like can be used.
 活物質、バインダー樹脂、導電助剤及び溶媒を混合してスラリーとするには、プラネタリーミキサー、脱泡ニーダー、ボールミル、ペイントシェーカー、振動ミル、ライカイ機、アジテーターミル等の一般的な混合装置を使用すればよい。 In order to make active material, binder resin, conductive support agent and solvent mixed and made into slurry, general mixing equipment such as planetary mixer, defoaming kneader, ball mill, paint shaker, vibration mill, lai car, agitator mill etc. You may use it.
 スラリー塗布工程では、上記スラリーを集電体の表面に塗布する。スラリーの塗布方法として、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法など二次電池用電極を作製する際に一般的に用いる塗布方法を用いることが出来る。集電体の表面に塗布されたスラリーの塗布厚みは10μm~40μmが好ましい。 In the slurry application step, the slurry is applied to the surface of the current collector. As a method of applying the slurry, a coating method generally used for producing an electrode for a secondary battery, such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method can be used. The coating thickness of the slurry applied to the surface of the current collector is preferably 10 μm to 40 μm.
 圧縮成形工程では、スラリーが塗布された集電体をロールプレス機で圧縮成形する。圧縮成形することによって集電体とスラリーとを密着接合させる。ロールプレス機は一般的に用いられるものが使用できる。圧縮成形は、例えばロールプレス機で線圧10Kg/cm~2000Kg/cmでプレス成形することで行うことが出来る。この線圧は、エネルギー密度と電池寿命の観点から適宜最適な電極密度になるように制御されればよい。 In the compression molding step, the current collector to which the slurry is applied is compression molded by a roll press. The current collector and the slurry are closely bonded by compression molding. The roll press may be one commonly used. Compression molding can be performed, for example, by press molding at a linear pressure of 10 kg / cm to 2000 kg / cm using a roll press. The linear pressure may be appropriately controlled to be an optimum electrode density from the viewpoint of energy density and battery life.
 熱処理工程では、集電体の表面に密着接合されたスラリーを加熱することによって、バインダー樹脂を硬化させる。熱処理工程では、使用するバインダー樹脂の硬化温度にあわせて加熱する。この熱処理工程によって、集電体上に活物質層が形成される。 In the heat treatment step, the binder resin is cured by heating the slurry closely bonded to the surface of the current collector. In the heat treatment step, heating is performed in accordance with the curing temperature of the binder resin to be used. An active material layer is formed on the current collector by this heat treatment step.
 本発明の第1の実施形態のリチウムイオン二次電池は、上記の負極及び正極を用いる以外は公知の電池構成要素を用いることが出来、また公知の手法により製造することができる。 The lithium ion secondary battery of the first embodiment of the present invention can use known battery components except using the above-mentioned negative electrode and positive electrode, and can be manufactured by a known method.
 電池構成要素には、正極及び負極以外に、セパレータ、電解液がある。 The battery components include, in addition to the positive electrode and the negative electrode, a separator and an electrolytic solution.
 セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。 The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing the short circuit of the current due to the contact of the both electrodes. For the separator, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, or a porous film made of ceramic can be used.
 電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。 The electrolytic solution contains a solvent and an electrolyte dissolved in the solvent.
 例えば溶媒として環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトン等が使用できる。鎖状エステル類として、例えばジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等が使用できる。エーテル類として、例えばテトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等が使用できる。 For example, cyclic esters, linear esters, ethers can be used as a solvent. As cyclic esters, for example, ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, gamma valerolactone and the like can be used. Examples of chain esters that can be used include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like. As the ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane and the like can be used.
 また上記電解液に溶解させる電解質として、例えばLiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することが出来る。 Further, as an electrolyte to be dissolved in the above-mentioned electrolytic solution, lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.
 例えば、電解液として、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩(電解質)を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することが出来る。 For example, as an electrolytic solution, 0.5 mol / l to 1 lithium salt (electrolyte) such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use a solution dissolved at a concentration of about 7 mol / l.
 本発明の第1の実施形態のリチウムイオン二次電池は、形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。 The shape of the lithium ion secondary battery according to the first embodiment of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted. In any of the shapes, the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
 本発明の第1の実施形態の他のリチウムイオン二次電池は、正極と、リチウムと合金化可能な元素であるNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biおよび/または前記元素の化合物と、黒鉛とを含む負極活物質を有する負極とを有し、黒鉛と元素および/または元素の化合物とを100質量%としたときの元素および/または元素の化合物の配合割合は27質量%~51質量%であることを特徴とする。 Another lithium ion secondary battery according to the first embodiment of the present invention includes a positive electrode, an element which can be alloyed with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, It has a negative electrode having a negative electrode active material containing Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi and / or a compound of the above elements, and graphite. The blending ratio of the element and / or the compound of the element when the content of the graphite and the compound of the element and / or the element is 100% by mass is 27% by mass to 51% by mass.
 リチウムと合金化可能な元素の化合物としては、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<V≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOなどが挙げられる。 The compounds of lithium can be alloyed elements, ZnLiAl, AlSb, SiB 4, SiB 6, Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2, MoSi 2, CoSi 2, NiSi 2, CaSi 2, CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO V (0 <V ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO, etc. may be mentioned.
 (第2の実施形態)
 本発明の第2の実施形態のリチウムイオン二次電池用負極は、炭素系粒子とLi吸蔵粒子とを含む。炭素系粒子としては、天然黒鉛、人造黒鉛、コークス、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維などが例示されるが、緩衝性能に優れ、かつD50が1μm~15μmの範囲にある黒鉛が好ましい。この炭素系粒子のD50は、Li吸蔵粒子として下記のSiOを用いた場合には、1μm~10μmであることが特に望ましい。
Second Embodiment
The negative electrode for a lithium ion secondary battery according to the second embodiment of the present invention contains carbon-based particles and Li storage particles. Examples of carbon-based particles include natural graphite, artificial graphite, coke, mesophase carbon, vapor grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber and the like, but they have excellent buffer performance and have a D 50 of 1 μm to Graphite in the range of 15 μm is preferred. The D 50 of this carbon-based particle is particularly preferably 1 μm to 10 μm when the following SiO x is used as the Li storage particle.
 Li吸蔵粒子としては、ケイ素、錫、ゲルマニウム、鉛、インジウム、酸化ケイ素、酸化錫、などを用いることができるが、SiO(0.3≦x≦1.6)で表されるケイ素酸化物からなるSiO系粒子を用いることが望ましい。このSiO系粒子は、不均化反応によって微細なSiと、Siを覆うSiOとに分解したSiOからなる。xが下限値未満であると、Si比率が高くなるため充放電時の体積変化が大きくなりすぎてサイクル特性が低下する。またxが上限値を超えると、Si比率が低下してエネルギー密度が低下するようになる。0.5≦x≦1.5の範囲が好ましく、0.7≦x≦1.2の範囲がさらに望ましい。 As the Li storage particles, silicon, tin, germanium, lead, indium, silicon oxide, tin oxide, etc. can be used, but a silicon oxide represented by SiO x (0.3 ≦ x ≦ 1.6) It is desirable to use SiO-based particles consisting of The SiO-based particles are composed of SiO x decomposed into fine Si and SiO 2 covering Si by disproportionation reaction. When x is less than the lower limit value, the Si ratio increases, so that the volume change at the time of charge and discharge becomes too large, and the cycle characteristics deteriorate. When x exceeds the upper limit value, the Si ratio is lowered and the energy density is lowered. The range of 0.5 ≦ x ≦ 1.5 is preferable, and the range of 0.7 ≦ x ≦ 1.2 is more preferable.
 またLi吸蔵粒子は、SiO系粒子と、炭素材料からなりSiO系粒子の表面を被覆する被覆層と、からなることが望ましい。被覆層を有することでSiO系粒子とフッ酸などとの反応をさらに防止することができ、リチウムイオン二次電池のサイクル特性が向上する。被覆層の炭素材料としては、天然黒鉛、人造黒鉛、コークス、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維などを用いることができる。また被覆層を形成するには、特許文献2に記載されたメカノフュージョンなどの機械的表面融合処理法、CVD法などを用いることができる。 Further, it is preferable that the Li occluding particles be composed of SiO-based particles and a covering layer which is made of a carbon material and covers the surface of the SiO-based particles. By having the covering layer, the reaction between the SiO-based particles and the hydrofluoric acid can be further prevented, and the cycle characteristics of the lithium ion secondary battery can be improved. As the carbon material of the covering layer, natural graphite, artificial graphite, coke, mesophase carbon, vapor grown carbon fiber, pitch carbon fiber, PAN carbon fiber, etc. can be used. Moreover, in order to form a coating layer, mechanical surface fusion treatment methods, such as mechanofusion described in patent document 2, CVD method etc. can be used.
 被覆層の形成量は、SiO系粒子と被覆層の合計に対して1質量%~50質量%とすることができる。被覆層が1質量%未満では導電性向上の効果が得られず、50質量%を超えるとSiOの割合が相対的に減少して負極容量が低下してしまう。被覆層の形成量は5質量%~30質量%の範囲が好ましく、5質量%~20質量%の範囲がさらに望ましい。 The formation amount of the covering layer can be 1% by mass to 50% by mass with respect to the total of the SiO-based particles and the covering layer. If the coating layer is less than 1% by mass, the effect of improving conductivity can not be obtained, and if it exceeds 50% by mass, the ratio of SiO x relatively decreases and the negative electrode capacity decreases. The amount of the coating layer formed is preferably in the range of 5% by mass to 30% by mass, and more preferably in the range of 5% by mass to 20% by mass.
 Li吸蔵粒子はD50が1μm~10μmの範囲にあることが望ましい。D50が10μmより大きいとリチウムイオン二次電池の充放電特性が低下し、D50が1μmより小さいと凝集して粗大な粒子となるため同様にリチウムイオン二次電池の充放電特性が低下する場合がある。 Li occlusion particles is desirably D 50 in the range of 1 [mu] m ~ 10 [mu] m. D 50 decreases the charge and discharge characteristics of 10μm larger than the lithium ion secondary battery, D 50 is lowered charge-discharge characteristics of the same lithium ion secondary battery for agglomerated with 1μm of less than a coarse grain There is a case.
 炭素系粒子とLi吸蔵粒子との混合比率は、質量比で炭素系粒子:Li吸蔵粒子=55:27~45:37の範囲とするのが好ましい。質量比で炭素系粒子:Li吸蔵粒子=55:27より炭素系粒子の質量比が大きくなると容量が減少するため好ましくなく、炭素系粒子:Li吸蔵粒子=45:37より炭素系粒子の質量比が小さくなるとサイクル特性が悪化するため好ましくない。炭素系粒子とLi吸蔵粒子との混合物と、導電助剤と、バインダー樹脂とを合計した質量を100質量%とした時、炭素系粒子は40質量%以上65質量%以下の範囲で混合されていることが好ましい。炭素系粒子が40質量%未満では、リチウムイオン二次電池のサイクル特性の向上を図ることが困難となる。また炭素系粒子が65質量%を超えて混合されても、理由は不明であるが、炭素系粒子が65質量%以下の場合に比べてリチウムイオン二次電池のサイクル特性が低下する。さらに炭素系粒子の混合量は、45質量%~65質量%の範囲がより最適である。 The mixing ratio of the carbon-based particles to the Li storage particles is preferably in the range of carbon-based particles: Li storage particles = 55: 27 to 45:37 by mass ratio. It is not preferable that the mass ratio of carbon-based particles is larger than that of carbon-based particles: Li storage particles = 55: 27 in mass ratio, since the capacity decreases, and the mass ratio of carbon-based particles: carbon-based particles: Li storage particles = 45: 37 It is not preferable because the cycle characteristics deteriorate if the value of. The carbon-based particles are mixed in the range of 40% by mass or more and 65% by mass or less, where the total mass of the mixture of the carbon-based particles and the Li storage particles, the conductive auxiliary agent, and the binder resin is 100% by mass. Is preferred. If the carbon-based particles are less than 40% by mass, it is difficult to improve the cycle characteristics of the lithium ion secondary battery. Even if the carbon-based particles are mixed at more than 65% by mass, the reason is unknown, but the cycle characteristics of the lithium ion secondary battery are degraded as compared with the case where the carbon-based particles are 65% by mass or less. Furthermore, the mixing amount of the carbon-based particles is more optimally in the range of 45% by mass to 65% by mass.
 炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)は、1を超えかつ2以下とする。この比が2を超えると粒径差が大きくなり、負極活物質層が小さな気孔を多数有するようにすることが困難となる。 The ratio of D 50 (D 2) of the D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 1 / D 2) shall be greater than 1 and 2 below. When this ratio exceeds 2, the particle size difference becomes large, and it becomes difficult for the negative electrode active material layer to have many small pores.
 気孔は真球に近い形状であることが望ましく、気孔の短径(a)と長径(b)との比(a/b)が1に近いことが望ましい。このようにすることで応力集中が防止でき、クラックや剥離を防止することができる。また負極活物質層における気孔の合計容積は、Li吸蔵粒子の合計体積より小さいことが望ましい。気孔の合計容積がLi吸蔵粒子の合計体積より大きくなると、電極の体積あたりの容量が低下するとともに容量維持率が低下する。 The pores preferably have a shape close to a true sphere, and the ratio (a / b) of the minor diameter (a) to the major diameter (b) of the pores is preferably close to 1. By doing so, stress concentration can be prevented, and cracking and peeling can be prevented. The total volume of pores in the negative electrode active material layer is preferably smaller than the total volume of Li storage particles. When the total volume of the pores is larger than the total volume of the Li storage particles, the capacity per volume of the electrode decreases and the capacity retention rate decreases.
 本発明の第2の実施形態のリチウムイオン二次電池の負極は、集電体と、集電体上に結着された負極活物質層と、を有する。負極活物質層は、炭素系粒子とLi吸蔵粒子との混合物と、導電助剤と、バインダー樹脂と、必要に応じ適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、プレスしてバインダー樹脂を硬化させることによって作製することができる。この負極活物質層の厚さ(t)は、従来と同様に10μm~20μmとすることができる。 The negative electrode of the lithium ion secondary battery of the second embodiment of the present invention has a current collector and a negative electrode active material layer bound on the current collector. The negative electrode active material layer is formed by adding a mixture of carbon-based particles and Li storage particles, a conductive additive, a binder resin, and an appropriate amount of an organic solvent as required, and mixing them to form a slurry by roll coating, dip It can manufacture by apply | coating on a collector by methods, such as a coating method, a doctor blade method, a spray coating method, a curtain coating method, and pressing and hardening binder resin. The thickness (t) of the negative electrode active material layer can be 10 μm to 20 μm as in the conventional case.
 炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は、1/4以上かつ5/6以下とする。この比(D/t)が1/4未満では、負極活物質層の電気抵抗が大きくなってリチウムイオン二次電池の充放電効率が低下し、5/6を超えると負極活物質層にクラックや剥離が生じやすくなる。この比(D/t)は、1/2以上かつ2/3以下とすることが特に望ましい。 The ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is set to 1/4 or more and 5/6 or less. When this ratio (D 1 / t) is less than 1/4, the electrical resistance of the negative electrode active material layer is increased and the charge / discharge efficiency of the lithium ion secondary battery is decreased. When it exceeds 5/6, the negative electrode active material layer is formed Cracks and peeling are likely to occur. It is particularly desirable that the ratio (D 1 / t) be 1/2 or more and 2/3 or less.
 また、Li吸蔵粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は、上述した炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)と、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)との関係から、1/8以上かつ2/3以下とする。 Further, the ratio (D 2 / t) of D 50 (D 2 ) of the Li storage particle to the thickness (t) of the negative electrode active material layer is the D 50 (D 1 ) of the above-mentioned carbon-based particle and Li storage particle the ratio of D 50 (D 2) of (D 1 / D 2), and the ratio of D 50 (D 1) and the anode active material layer thickness of the carbon-based particles (t) (D 1 / t ) From 1/8 to 2/3.
 集電体は、上記第1の実施形態で説明したものと同様のものが使用できる。 The same current collector as that described in the first embodiment can be used.
 導電助剤は、上記第1の実施形態で説明したものと同様のものが使用できる。導電助剤の使用量については、特に限定されない。なお炭素材料からなる被覆層をもつLi吸蔵粒子を用いる場合は、導電助剤の添加量を低減あるいはなしとすることができる。 As the conductive additive, the same one as described in the first embodiment can be used. The amount of the conductive aid used is not particularly limited. In addition, when using Li occlusion particle | grains which have a coating layer which consists of carbon materials, the addition amount of a conductive support agent can be reduced or there is nothing.
 バインダー樹脂は、活物質及び導電助剤を集電体に結着するための結着剤として用いられる。バインダー樹脂はなるべく少ない量で活物質等を結着させることが求められ、その量は炭素系粒子とLi吸蔵粒子との混合物と、導電助剤と、バインダー樹脂とを合計したものの0.5質量%~50質量%が望ましい。バインダー樹脂量が0.5質量%未満では電極の成形性が低下し、50質量%を超えると電極のエネルギー密度が低くなる。なお、バインダー樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド、ポリアミドイミド、ポリアミドイミドシリカハイブリッド等のイミド系ポリマー、アルコキシシリル基含有樹脂、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸などが例示される。またアクリル酸と、メタクリル酸、イタコン酸、フマル酸、マレイン酸などの酸モノマーとの共重合物を用いることもできる。中でも結着性に優れた高結着性バインダーが好ましく、ポリアミドイミド樹脂、ポリアミドイミドシリカハイブリッド及びポリアクリル酸から選ばれる少なくとも一種が特に望ましい。 The binder resin is used as a binder for binding the active material and the conductive aid to the current collector. The binder resin is required to bind the active material and the like in a small amount as much as possible, and the amount is 0.5 mass of the total of the mixture of the carbon-based particles and the Li storage particles, the conductive aid and the binder resin. % To 50% by mass is desirable. When the amount of binder resin is less than 0.5% by mass, the formability of the electrode is lowered, and when it is more than 50% by mass, the energy density of the electrode is lowered. As the binder resin, fluorine-based polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), and imides such as polyimide, polyamide imide, and polyamide imide silica hybrid Examples thereof include polymers, alkoxysilyl group-containing resins, polyacrylic acids, polymethacrylic acids and polyitaconic acids. Copolymers of acrylic acid and acid monomers such as methacrylic acid, itaconic acid, fumaric acid and maleic acid can also be used. Among them, a high binding binder having excellent binding properties is preferable, and at least one selected from polyamideimide resin, polyamideimide silica hybrid and polyacrylic acid is particularly desirable.
 本発明の第2の実施形態のリチウムイオン二次電池における負極には、リチウムがプリドーピングされていることが望ましい。負極にリチウムをドープするには、例えば対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電極化成法などを利用することができる。リチウムのドープ量は特に制約されない。 It is desirable that lithium be pre-doped in the negative electrode in the lithium ion secondary battery of the second embodiment of the present invention. In order to dope the negative electrode with lithium, for example, an electrode forming method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically dope lithium can be used. The doping amount of lithium is not particularly limited.
 リチウムをドープすることにより、あるいは本発明の第2の実施形態のリチウムイオン二次電池の初回充電後には、負極活物質のSiO系粒子のSiO相にLiSiで表される酸化物系化合物が含まれている。LiSiとしては、例えばx=0、y=1、z=2のSiO、x=2、y=1、z=3のLiSiO、x=4、y=1、z=4のLiSiOなどが例示される。例えばx=4、y=1、z=4のLiSiOは下記の反応により生成し、クーロン効率は約77%と計算される。
 2SiO + 8.6Li+ + 8.6e- → 1.5Li4.4Si +
1/2LiSiO
Represented by Li x Si y O z in the SiO 2 phase of the SiO-based particles of the negative electrode active material by doping with lithium or after the initial charge of the lithium ion secondary battery of the second embodiment of the present invention It contains oxide compounds. As Li x Si y O z , for example, SiO 2 with x = 0, y = 1, z = 2, Li = 2 SiO 3 with x = 2, y = 1, z = 3 , x = 4, y = 1, Examples are Li 4 SiO 4 with z = 4. For example, Li 4 SiO 4 of x = 4, y = 1, z = 4 is produced by the following reaction, and the coulombic efficiency is calculated to be about 77%.
2SiO + 8.6Li + + 8.6e-→ 1.5Li 4.4 Si +
1 / 2Li 4 SiO 4
 また上記反応が途中で停止した場合には、下記の反応のようにx=2、y=1、z=3のLiSiOとx=4、y=1、z=4のLiSiOの両者が生成し、この場合のクーロン効率も約77%と計算される。
 2SiO + 7.35Li+ + 7.35e- → 1.42LiSi
+ 1/3LiSiO + 1/4LiSiO
Further, when the reaction is stopped halfway, x = 2, y = 1 , z = 3 of Li 2 SiO 3 and x = 4, y = 1, z = 4 in Li 4 SiO as the following reaction 4 both generates the coulombic efficiency of this case is calculated to be about 77%.
2SiO + 7.35Li + + 7.35e-→ 1.42Li 4 Si
+ 1 / 3Li 2 SiO 3 + 1 / 4Li 4 SiO 4
 上記反応によって生成するLiSiOは、充放電時の電極反応に関与しない不活性な物質であり、充放電時の活物質の体積変化を緩和する働きをする。したがってSiO系粒子のSiO相にLiSiで表される酸化物系化合物が含まれる場合には、本発明のリチウムイオン二次電池はサイクル特性がさらに向上する。 Li 4 SiO 4 produced by the above reaction is an inactive substance not involved in the electrode reaction at the time of charge and discharge, and functions to reduce the volume change of the active material at the time of charge and discharge. Therefore, when the oxide-based compound represented by Li x Si y O z is contained in the SiO 2 phase of the SiO-based particles, the lithium ion secondary battery of the present invention further improves the cycle characteristics.
 上記した負極を用いる本発明の第2の実施形態のリチウムイオン二次電池は、特に限定されない公知の正極、電解液、セパレータを用いることができる。正極は、リチウムイオン二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助剤およびバインダーは、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。 The lithium ion secondary battery of the second embodiment of the present invention using the above-mentioned negative electrode can use known positive electrodes, electrolytes and separators which are not particularly limited. The positive electrode may be any one that can be used in a lithium ion secondary battery. The positive electrode has a current collector and a positive electrode active material layer bound on the current collector. The positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid. The positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a lithium ion secondary battery.
 正極活物質としては、金属リチウム、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、硫黄などが挙げられる。集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。導電助剤は上記の負極で記載したものと同様のものが使用できる。 Examples of the positive electrode active material include metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 2 , and sulfur. The current collector may be any one commonly used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, stainless steel and the like. As the conductive additive, the same one as described in the above-mentioned negative electrode can be used.
 電解液は、有機溶媒に電解質であるリチウム金属塩を溶解させたものである。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばフルオロエチレンカーボネート(FEC)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、LiCFSO等の有機溶媒に可溶なリチウム金属塩を用いることができる。 The electrolytic solution is one in which a lithium metal salt which is an electrolyte is dissolved in an organic solvent. The electrolyte is not particularly limited. As an organic solvent, from an aprotic organic solvent such as fluoroethylene carbonate (FEC), propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), etc. One or more selected can be used. Further, as an electrolyte to be dissolved, a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 and LiCF 3 SO 3 can be used.
 例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO、LiPF、LiBF、LiCFSO等のリチウム金属塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 For example, about 0.5 mol / l to about 1.7 mol / l of lithium metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate Solutions dissolved at concentration can be used.
 セパレータは、リチウムイオン二次電池に使用されることができるものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。 The separator is not particularly limited as long as it can be used for a lithium ion secondary battery. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
 本発明の第2の実施形態のリチウムイオン二次電池は、形状に特に限定はなく、第1の実施形態と同様の形状を採用することが出来る。 The shape of the lithium ion secondary battery of the second embodiment of the present invention is not particularly limited, and the same shape as that of the first embodiment can be adopted.
 (第3の実施形態)
 <リチウムイオン二次電池用負極>
 本発明の第3の実施形態のリチウムイオン二次電池用負極は、集電体と、集電体の表面に形成された活物質層を有する。
Third Embodiment
<Anode for lithium ion secondary battery>
The negative electrode for a lithium ion secondary battery according to the third embodiment of the present invention has a current collector and an active material layer formed on the surface of the current collector.
 集電体は第1の実施形態と同様のものが使用できる。 As the current collector, one similar to that of the first embodiment can be used.
 活物質層は、活物質、バインダー及び緩衝材を含む。活物質層には、必要に応じて導電助剤を加えても良い。 The active material layer contains an active material, a binder and a buffer material. You may add a conductive support agent to an active material layer as needed.
 本発明の第3の実施形態における活物質は、SiOx粉末(0.5≦x≦1.5)からなる。SiO(0.5≦x≦1.5)は二酸化珪素(SiO)と金属珪素(Si)とを原料として得られる非晶質の珪素酸化物の総称を表す一般式である。SiOは、熱処理されると、SiとSiOとに分解することが知られている。これは不均化反応といい、SiとOとの比が概ね1:1の均質な固体の一酸化珪素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細であり、SiO相の中に分散している。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。したがって、Si相とSiO相とに分解したSiOからなる負極活物質を用いたリチウムイオン二次電池は、サイクル特性に優れている。 The active material in the third embodiment of the present invention consists of SiO x powder (0.5 ≦ x ≦ 1.5). SiO x (0.5 ≦ x ≦ 1.5) is a general formula representing an amorphous silicon oxide obtained using silicon dioxide (SiO 2 ) and metallic silicon (Si) as raw materials. It is known that SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and in the case of homogeneous solid silicon monoxide SiO which has a ratio of Si to O of approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by internal reaction of the solid. . The Si phase obtained by separation is very fine and dispersed in the SiO 2 phase. In addition, the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a lithium ion secondary battery using a negative electrode active material composed of SiO x decomposed into Si phase and SiO 2 phase is excellent in cycle characteristics.
 SiOx粉末(0.5≦x≦1.5)において、xが0.5未満であると、Si相の占める比率が高くなるため充放電時の体積変化が大きくなりすぎて、サイクル特性が低下する。またxが1.5を超えると、Si相の比率が低下してエネルギー密度が低下するようになる。さらに好ましいxの範囲は、0.7≦x≦1.2である。 In the case of SiO x powder (0.5 ≦ x ≦ 1.5), if x is less than 0.5, the ratio occupied by the Si phase becomes high, so that the volume change during charge and discharge becomes too large, and the cycle characteristics descend. In addition, when x exceeds 1.5, the ratio of the Si phase decreases to lower the energy density. A further preferable range of x is 0.7 ≦ x ≦ 1.2.
 SiOx粉末は、略球状の粒子からなるのが好ましい。リチウムイオン二次電池の充放電特性の観点からは、SiOx粉末のD50が小さいほど好ましい。しかし、D50が小さすぎると、負極の形成時に凝集して粗大な粒子となるため、リチウムイオン二次電池の充放電特性が低下する場合がある。またSiO粉末のD50が小さすぎると、SiO粉末の表面積が大きくなり、SiOx粉末と電解質との接触面が多くなって、電解質の分解が進んでしまい、リチウムイオン二次電池のサイクル特性が悪くなる。そのため、SiOx粉末のD50は、2μm以上であることが好ましい。なお、D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。 The SiO x powder preferably consists of substantially spherical particles. From the viewpoint of charge and discharge characteristics of the lithium ion secondary batteries, preferably as D 50 of the SiO x powder is small. However, if the D 50 is too small, since the coarse particles by aggregation during the formation of the negative electrode may decrease the charge-discharge characteristics of the lithium ion secondary battery. When the D 50 of the SiO x powder is too small, the surface area of the SiO x powder is increased, the contact surface between the SiO x powder and the electrolyte is increased, and the decomposition of the electrolyte proceeds, resulting in the lithium ion secondary battery cycle The characteristics get worse. Therefore, D 50 of SiO x powder is preferably 2μm or more. Incidentally, it refers to a particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, D 50 refers to the median diameter measured on a volume basis.
 また、SiO粉末のD50は、15μm以下であることが好ましい。D50が15μmより大きいと、SiO粉末は導電率が悪いため、電極全体の導電性が不均一になり、リチウムイオン二次電池の充放電特性が低下する。 Further, D 50 of SiO x powder is preferably 15μm or less. And D 50 is greater than 15 [mu] m, since SiO x powder conductivity is poor, the conductivity of the whole electrode becomes uneven, decreases the charge and discharge characteristics of the lithium ion secondary battery.
 SiO粉末のD50が、4μm~10μmであることがさらに好ましい。 More preferably, the D 50 of the SiO x powder is 4 μm to 10 μm.
 SiO粉末のスパンは1.1~2.3であることが好ましい。特にSiO粉末は1.3~1.4のスパンを持つものが好ましい。スパンとは、レーザー回析法による粒度分布測定における積算値が10%、50%、90%に相当する粒子径をD10,D50,D90としたときに、(D90―D10)/D50の値を指す。 The span of the SiO x powder is preferably 1.1 to 2.3. In particular, SiO x powder having a span of 1.3 to 1.4 is preferable. The span is defined as (D 90 -D 10 ), where the particle diameter corresponding to 10%, 50%, 90% in integrated value in particle size distribution measurement by laser diffraction method is D 10 , D 50 , D 90. / D 50 points.
 SiO粉末のスパンが1.1~2.3であることは、粒度分布の幅が狭く、粒径のばらつきが小さいことを意味する。SiO粉末の粒径のばらつきが小さいと、SiOx粉末はそのD50と比べて極端に小さい粒子径を有するものや極端に大きな粒子径を有するものを含まない。D50よりも極端に小さな粒子径を有するSiOx粉末が含まれると、SiOx粉末の表面積が大きくなり、SiOx粉末と電解質との接触面が多くなって、電解質の分解が進んでしまい、リチウムイオン二次電池のサイクル特性が悪くなる。またD50よりも極端に大きな粒子径を有するSiOx粉末が含まれると、SiOx粉末は緩衝材である黒鉛粉末の形成する空隙に充填されないかもしれない。 If the span of the SiO x powder is 1.1 to 2.3, it means that the width of the particle size distribution is narrow and the variation of the particle diameter is small. When the variation of the particle size of the SiO x powder is small, SiO x powder does not include those having a large particle size as or extremely having extremely small particle diameter as compared with the D 50. When the SiO x powder having a particle diameter extremely smaller than D 50 is contained, the surface area of the SiO x powder is increased, the contact surface between the SiO x powder and the electrolyte is increased, and the decomposition of the electrolyte progresses. The cycle characteristics of the lithium ion secondary battery deteriorate. Also, if SiO x powder having a particle diameter extremely larger than D 50 is included, the SiO x powder may not be filled in the void formed by the buffer material graphite powder.
 SiOx粉末として、所望のD50を有する市販のSiOx粉末を用いることができる。またSiOx粉末のD50を調整するためには、一般的によく知られた粉砕方法や粉砕機を用いることができる。例えばボールミル、ローラミル、ジェットミル、ハンマーミルなどを用いることができる。またこの粉砕は、湿式、乾式のどちらで行ってもよいが、ヘキサンなどの有機溶媒を共存させた湿式粉砕を用いると、粉砕時の酸化珪素の表面酸化を防止できる。不活性なSiOの割合が大きくなることを防止できるため、有機溶媒を用いた湿式粉砕が望ましい。 As SiO x powder, it can be a commercially available SiO x powder with desired D 50. In order to adjust the D 50 of the SiO x powder, generally known grinding methods and grinders can be used. For example, a ball mill, a roller mill, a jet mill, a hammer mill or the like can be used. The pulverization may be performed either wet or dry, but the use of wet pulverization in the presence of an organic solvent such as hexane can prevent the surface oxidation of silicon oxide during pulverization. Wet grinding using an organic solvent is desirable because it can prevent the proportion of inert SiO 2 from increasing.
 SiO粉末のD50は、緩衝材である黒鉛粉末のD50の1/4~1/2である。上記黒鉛粉末とSiO粉末のD50の関係が上記範囲にあれば、黒鉛粉末が形成する空隙にSiO粉末が配置される。 D 50 of the SiO x powder is 1 / 4-1 / 2 of the D 50 of the graphite powder is a cushioning material. If the the above range relation of the graphite powder and SiO x powder D 50, graphite powder SiO x powder is placed in the gap to form.
 SiO粉末の含有量は、活物質層全体の質量を100質量%とした時に、32質量%以上52質量%以下となることが好ましい。SiO粉末の含有量が32質量%より小さいと黒鉛の量が相対的に増えることになりバインダーの接着が不十分でリチウムイオン二次電池のサイクル特性が悪くなる。SiO粉末の含有量が52質量%より大きいとSiO粉末が凝集しリチウムイオン二次電池のサイクル特性が悪くなる。 The content of the SiO x powder is preferably 32% by mass or more and 52% by mass or less when the mass of the entire active material layer is 100% by mass. When the content of the SiO x powder is less than 32% by mass, the amount of graphite relatively increases, the adhesion of the binder is insufficient, and the cycle characteristics of the lithium ion secondary battery are deteriorated. Cycle characteristics of the content of 52 wt% greater than the SiO x powder agglomerated lithium ion secondary battery of the SiO x powder is deteriorated.
 バインダーは、活物質及び緩衝材を集電体に固定するための結着剤として用いられる。バインダーはなるべく少ない量で活物質等を結着させることが求められる。本発明の場合、活物質層全体の質量を100質量%とした時に、バインダーの含有量が5質量%~25質量%である。バインダーの含有量は、8質量%~15質量%であることがより好ましい。 The binder is used as a binder for fixing the active material and the buffer material to the current collector. The binder is required to bind the active material and the like in an amount as small as possible. In the case of the present invention, when the mass of the entire active material layer is 100% by mass, the content of the binder is 5% by mass to 25% by mass. The content of the binder is more preferably 8% by mass to 15% by mass.
 バインダーは第1の実施形態と同様のものが使用できる。 As the binder, the same one as in the first embodiment can be used.
 活物質層には、導電助剤が、電極層の導電性を高めるために必要に応じて添加される。導電助剤は第1の実施形態と同様のものが使用できる。導電助剤の使用量については、特に限定的ではないが、例えば、活物質100質量%に対して、2質量%~10質量%程度とすることができる。 A conductive support agent is added to the active material layer as needed to enhance the conductivity of the electrode layer. The same conductive aid as that of the first embodiment can be used. The amount of the conductive aid used is not particularly limited, but can be, for example, about 2% by mass to 10% by mass with respect to 100% by mass of the active material.
 緩衝材は黒鉛粉末からなる。黒鉛は、黒鉛構造(炭素原子が構成する六角網平面が規則性を持って積層した構造)を有する。従って黒鉛は層状構造を有し、各層と各層は弱いファンデルワールス力で結合している。そのため圧力をかけられた黒鉛粉末は、各層の層間距離を小さくすることによってその圧力を吸収することができる。また黒鉛はその層状構造のため、層間すべりを起こしやすく、黒鉛粉末にかかった圧力は、層間がすべることによっても吸収される。つまり、黒鉛粉末はSiOの膨張の一部を黒鉛粉末が内部で弾性変形することによって吸収することができる。 The buffer material is made of graphite powder. Graphite has a graphite structure (a structure in which hexagonal network planes formed by carbon atoms are regularly stacked). Therefore, graphite has a layered structure, and each layer and each layer are bound by a weak van der Waals force. Therefore, the pressurized graphite powder can absorb the pressure by reducing the distance between the layers. Graphite is also prone to interlayer slippage because of its layered structure, and the pressure applied to the graphite powder is also absorbed by the interlayer slippage. That is, the graphite powder can absorb part of the expansion of SiO x by the elastic deformation of the graphite powder inside.
 黒鉛粉末としては、天然黒鉛粉末、人造黒鉛粉末、球晶黒鉛粉末(黒鉛化メソフェーズカーボン小球体)、グラファイト系炭素材料粉末などを用いることができる。グラファイト系炭素材料としては、ピッチ、コークスなどの縮合多環炭化水素化合物の熱分解物などを用いることができる。このような黒鉛粉末は、黒鉛構造が非常に発達しており、例えば粉末X線回折法で求められる(002)面の平均面間隔d002が0.336nm以下である。 As the graphite powder, natural graphite powder, artificial graphite powder, spherulite graphite powder (graphitized mesophase carbon small spheres), graphite-based carbon material powder, etc. can be used. As the graphite-based carbon material, a pyrolyzate of a condensed polycyclic hydrocarbon compound such as pitch and coke can be used. Such a graphite powder has a highly developed graphite structure, and the average interplanar spacing d 002 of the (002) plane determined by powder X-ray diffraction, for example, is 0.336 nm or less.
 黒鉛粉末のD50は、SiO粉末のD50の2倍~4倍であり、黒鉛粉末の配合量は、黒鉛粉末の質量とSiOx粉末の質量を合計したものを100質量%としたときに36質量%~61質量%である。 D 50 of the graphite powder is 2 to 4 times the D 50 of the SiO x powder, the amount of graphite powder, when the the sum of the mass of the mass and SiO x powder of the graphite powder is 100 mass% 36% by mass to 61% by mass.
 SiO粉末のD50と黒鉛粉末のD50とが上記関係にあることによって、大きな粒子径を有する黒鉛粉末が形成する空隙に小さい粒子径を有するSiO粉末が充填される。黒鉛粉末として、D50が4μm~30μmであるものを用いることが好ましい。特に黒鉛粉末はD50が5μm~25μmであるものが好ましく、D50が8μm~20μmであることがより望ましい。 By the D 50 D 50 of the graphite powder SiO x powder is in the above relationship, SiO x powder having a small particle diameter voids graphite powder form having a large particle diameter are filled. As the graphite powder, it is preferable to use a D 50 is 4 [mu] m ~ 30 [mu] m. In particular graphite powder preferably has a D 50 is 5 [mu] m ~ 25 [mu] m, and more preferably D 50 is 8 [mu] m ~ 20 [mu] m.
 黒鉛粉末のD50が小さくなると、活物質層における黒鉛粉末の充填率は下がる。これは粉末をある体積の容器につめる場合に、タップ回数及びタップ圧力によって程度は異なるが、同じタップ回数及びタップ圧力において、D50が小さいほうが、間に空気をかんで、充填率が下がることによる。 When D 50 of the graphite powder decreases, the filling rate of the graphite powder in the active material layer decreases. If this is packed in a container of volume in the powder, although the degree varies depending tap number and the tap pressure, in the same number of taps and the tap pressure, more D 50 is small, the chewing air filling rate falls between by.
 ここで、黒鉛粉末の活物質層における充填率は、以下の式によって求められる。
 充填率=(単位体積あたりの黒鉛の質量/黒鉛の真密度)×100
Here, the filling rate of the graphite powder in the active material layer is determined by the following equation.
Packing ratio = (mass of graphite per unit volume / true density of graphite) × 100
 黒鉛粉末の充填率が下がると、黒鉛粉末が形成する空隙に充填されるSiO粉末の充填率も必然的に下がる。SiO粉末の充填率が下がると、電極全体の電池容量が下がることになる。そのため、黒鉛粉末のD50は4μm以上とすることが好ましい。 As the packing ratio of the graphite powder decreases, the packing ratio of the SiO x powder packed in the voids formed by the graphite powder also necessarily decreases. As the filling rate of the SiO x powder decreases, the battery capacity of the entire electrode decreases. Therefore, D 50 of the graphite powder is preferably not less than 4 [mu] m.
 また黒鉛粉末のD50が30μm以下のものを用いることによってエネルギー密度と出力密度を両立することができる。エネルギー密度とは電池重量あるいは電池容積あたりの電力容量であり、出力密度とは電池重量あるいは電池容積あたりに出すことができる最大の電力量を示す。黒鉛粉末のD50が30μmより大きいと、スラリーの塗布時に黒鉛粉末の最大粒径以下の塗布厚みには出来ないため、必然的に塗膜厚みが厚くなってしまう。塗膜厚みが厚くなると、出来上がった塗膜にすじが入ることがあり、エネルギー密度があるわりには、出力密度が低下してしまう。 Also it is possible to D 50 of the graphite powder to achieve both power density and energy density by using those 30μm or less. The energy density is the battery weight or the power capacity per battery volume, and the power density is the maximum amount of power that can be provided per battery weight or battery volume. And D 50 is greater than 30μm of the graphite powder, since the time of application of the slurry can not in coating thickness under the maximum particle diameter or less of graphite powder, inevitably coating thickness becomes thick. When the thickness of the coating film is large, streaks may be formed in the finished coating film, and the power density may be reduced depending on the energy density.
 黒鉛粉末の配合量は、黒鉛粉末の質量とSiOx粉末の質量を合計したものを100質量%としたときに36質量%~61質量%である。 The blending amount of the graphite powder is 36% by mass to 61% by mass when the total of the mass of the graphite powder and the mass of the SiO x powder is 100% by mass.
 黒鉛粉末の質量が少ないと緩衝効果は見られず、黒鉛粉末の質量が多くなりSiO粉末の質量が少なくなると、電極容量が下がってしまう。電極容量と緩衝効果の両方の観点から、黒鉛粉末と、SiO粉末との配合割合は、上記範囲とすることが好ましい。さらに黒鉛粉末の配合量は、36質量%~49質量%とすることが好ましい。黒鉛粉末の配合量がこの範囲にあるとリチウムイオン二次電池のサイクル特性が劣化しにくい。 When the mass of the graphite powder is small, no buffer effect is observed, and when the mass of the graphite powder is large and the mass of the SiO x powder is small, the electrode capacity is reduced. From the viewpoint of both the electrode capacity and the buffer effect, the blending ratio of the graphite powder and the SiO x powder is preferably in the above range. Furthermore, the blending amount of the graphite powder is preferably 36% by mass to 49% by mass. When the blending amount of the graphite powder is in this range, the cycle characteristics of the lithium ion secondary battery are less likely to deteriorate.
 活物質層において、黒鉛粉末が形成する空隙内にSiO粉末が配置され、かつSiO粉末が膨張しても、SiO粉末及び黒鉛粉末が活物質層の厚み方向に膨張しないように再配置される。そのためSiO粉末が膨張しても、負極の厚み方向への体積変化は抑制される。 In the active material layer, SiO x powder is placed in the gap graphite powder form, and be SiO x powder is expanded, re-arranged so as SiO x powder and the graphite powder does not expand in the thickness direction of the active material layer Be done. Therefore, even if the SiO x powder expands, the volume change in the thickness direction of the negative electrode is suppressed.
 このような再配置できる余地が有るということを別の形で表現すると、リチウムイオン二次電池用負極は、圧縮成形工程を経て形成されたものであり、圧縮成形工程におけるプレス圧より高いプレス圧でリチウムイオン二次電池用負極を圧縮する場合、圧縮方向の活物質層の厚みは減少する。再配置できる余地がない場合、さらに高いプレス圧でリチウムイオン二次電池用負極を圧縮しても活物質層の厚みは減少できない。 Expressing in another form that there is room for such repositioning, the negative electrode for a lithium ion secondary battery is formed through a compression molding process, and has a press pressure higher than the press pressure in the compression molding process. When the negative electrode for a lithium ion secondary battery is compressed, the thickness of the active material layer in the compression direction decreases. If there is no room to rearrange, the thickness of the active material layer can not be reduced even if the negative electrode for a lithium ion secondary battery is compressed at a higher pressing pressure.
 SiO粉末が黒鉛粉末の形成する空隙の中に充填された状態となっていると、充填効率がよくなって単位体積あたりに含まれる黒鉛粉末及びSiO粉末の量が増えることになり、電極密度が高くなる。すなわちある一定のプレス圧で比較した場合に電極密度が高いということが、黒鉛粉末及びSiO粉末が上記のように黒鉛粉末が形成する空隙内にSiO粉末が配置され、かつSiO粉末が膨張しても、SiO粉末及び黒鉛粉末が再配置される状態で充填されていることを示す指標となる。また電極密度が高いものは、黒鉛粉末の活物質層における充填率も高くなる。 When the SiO x powder is in the state of being filled in the void formed by the graphite powder, the filling efficiency is improved and the amount of the graphite powder and the SiO x powder contained per unit volume is increased, and thus the electrode Density increases. That electrode density when compared with a constant pressing pressure may be referred to a higher, SiO x powder is placed in the gap graphite powder and SiO x powder form graphite powder as described above, and SiO x powder Even if it expands, it is an index showing that the SiO x powder and the graphite powder are packed in the state of being rearranged. In addition, when the electrode density is high, the filling rate of the graphite powder in the active material layer is also high.
 この電極密度は電極密度=(集電体を除いた電極の質量)/(集電体を除いた電極の体積)の式により求められる。実施例において後で説明するが、SiO粉末のD50と黒鉛粉末のD50とが上記関係にあると、電極密度が高くなることが確かめられた。また電極密度が高いため、電極の単位体積あたりの電池容量も高くなる。 The electrode density is determined by the following equation: electrode density = (mass of electrode excluding current collector) / (volume of electrode excluding current collector). Although it will be described later in Examples, when the D 50 D 50 of the graphite powder SiO x powder is in the above relationship, it was confirmed that the electrode density is increased. In addition, since the electrode density is high, the battery capacity per unit volume of the electrode is also high.
 ここで、SiO粉末が膨張しても負極の体積変化が抑制されるメカニズムを図7~図10を用いて説明する。図7は本発明のリチウムイオン二次電池用負極を説明する模式図である。図7には、SiO粉末2と、黒鉛粉末3とがバインダー4を介して集電体1上に結着され、集電体1上に活物質層5が形成されている様子が模式的に示されている。図7において、SiO粉末2のD50は黒鉛粉末3のD50の1/4~1/2であるものとして記載している。図8は本発明のリチウムイオン二次電池用負極の体積変化を説明する模式図である。図8の左図は図7と同じものであり、SiO粉末2が充電により膨張した後の配置を図8の右図に示す。 Here, the mechanism by which the volume change of the negative electrode is suppressed even if the SiO x powder is expanded will be described with reference to FIGS. FIG. 7 is a schematic view illustrating the negative electrode for a lithium ion secondary battery of the present invention. In FIG. 7, a state in which the SiO x powder 2 and the graphite powder 3 are bound on the current collector 1 via the binder 4 and the active material layer 5 is formed on the current collector 1 is schematically shown. Is shown. In FIG. 7, D 50 of the SiO x powder 2 is described as a 1 / 4-1 / 2 of the D 50 of the graphite powder 3. FIG. 8 is a schematic view for explaining the volume change of the negative electrode for a lithium ion secondary battery of the present invention. The left view of FIG. 8 is the same as FIG. 7, and the arrangement after the SiO x powder 2 is expanded by charging is shown in the right view of FIG.
 図7において、SiO粉末2は黒鉛粉末3が形成した空隙の中に配置されている。またSiO粉末2と黒鉛粉末3の配置状態は、さらに活物質層に上から圧力をかければ、活物質層5の厚みをさらに薄くすることができる余地がある。 In FIG. 7, the SiO x powder 2 is disposed in the void formed by the graphite powder 3. In the arrangement state of the SiO x powder 2 and the graphite powder 3, there is room for further reducing the thickness of the active material layer 5 if pressure is applied to the active material layer from above.
 図8の右図にSiO粉末2が膨張したときの状態を示す。図8の左図(膨張前の状態、図7と同じもの)と比較して説明する。SiO粉末2は充電によって体積が約2倍に膨張する。SiO粉末2の体積が約2倍に膨張するということは、SiO粉末2のD50が約1割増えるとして図示している。 The right side of FIG. 8 shows the state when the SiO x powder 2 is expanded. This will be described in comparison with the left view of FIG. 8 (the state before expansion, the same as FIG. 7). The SiO x powder 2 expands about twice in volume upon charging. The fact that the volume of the SiO x powder 2 expands about twice is illustrated as the D 50 of the SiO x powder 2 increases by about 10%.
 SiO粉末2は膨張することによって、近くに配置された黒鉛粉末3に接触する。黒鉛粉末3の接触表面において、黒鉛粉末3は層間すべりがおこり、SiO粉末2の膨張の一部を黒鉛粉末3の表面の弾性変形によって吸収する。 The SiO x powder 2 contacts the graphite powder 3 disposed nearby by expansion. At the contact surface of the graphite powder 3, the graphite powder 3 is slipped between layers, and part of the expansion of the SiO x powder 2 is absorbed by elastic deformation of the surface of the graphite powder 3.
 図8の右図において、SiO粉末2が膨張すると、膨張したSiO粉末2と近くに配置された黒鉛粉末3とが、活物質層5の厚み方向に膨らまないように、再配置される。そのため再度SiO粉末2は、黒鉛粉末3の形成した空隙に配置されることになり、活物質層5の厚みはほとんど変わらない。 In the right view of FIG. 8, when the SiO x powder 2 expands, the expanded SiO x powder 2 and the graphite powder 3 disposed near are rearranged so as not to expand in the thickness direction of the active material layer 5. . Therefore, the SiO x powder 2 is again disposed in the void formed by the graphite powder 3 and the thickness of the active material layer 5 hardly changes.
 図9は、SiO粉末2のD50が黒鉛粉末3のD50とほぼ同等か少し小さいものを用いたリチウムイオン二次電池用負極を説明する模式図であり、図10は、図9に記載したリチウムイオン二次電池用負極の体積変化を説明する模式図である。図10の左図は図9と同じものであり、SiO粉末2が充電により膨張した後の配置を図10の右図に示す。 Figure 9 is a schematic diagram illustrating the SiO x D 50 of the powder 2 of the graphite powder 3 D 50 substantially equal to or lithium ion secondary battery negative electrode was used slightly smaller, 10, 9 It is a schematic diagram explaining the volume change of the negative electrode for lithium ion secondary batteries described. The left view of FIG. 10 is the same as FIG. 9, and the arrangement after the SiO x powder 2 is expanded by charging is shown in the right view of FIG.
 図9において、SiO粉末2のD50は黒鉛粉末3のD50と同等より少し小さいものとして記載している。図9において、図7と同様にSiO粉末2と、黒鉛粉末3とがバインダー4を介して集電体1上に結着され、集電体1上に活物質層5が形成されている様子が模式的に示されているが、SiO粉末2のD50は黒鉛粉末3のD50とほぼ同等であるため、SiO粉末2は黒鉛粉末3とぶつかりあうように充填され、SiO粉末2と黒鉛粉末3とが積み重なって活物質層5の厚みを形成している。図9の活物質層5において、図7の活物質層5よりも多くの空隙が見られるが、その空隙にSiO粉末2が入り込むことができないため、図9の活物質層5にこれ以上、上から圧力を加えても、粉末を破壊しない限り、活物質層5の厚みを薄くすることはできない。 In Figure 9, D 50 of the SiO x powder 2 is described as a little less than the equivalent D 50 of the graphite powder 3. In FIG. 9, as in FIG. 7, SiO x powder 2 and graphite powder 3 are bound on current collector 1 via binder 4, and active material layer 5 is formed on current collector 1. Although state is shown schematically, D 50 of the SiO x powder 2 is almost equal to D 50 of the graphite powder 3, SiO x powder 2 is filled so as to collide with the graphite powder 3, SiO x The powder 2 and the graphite powder 3 are stacked to form a thickness of the active material layer 5. In the active material layer 5 of FIG. 9, more voids are found than in the active material layer 5 of FIG. 7, but since the SiO x powder 2 can not enter into the voids, the active material layer 5 of FIG. Even if pressure is applied from above, the thickness of the active material layer 5 can not be reduced unless the powder is broken.
 従って同じ圧力でプレスした場合、図7の活物質層5と比較して図9の活物質層5のほうが厚みは厚くなる。 Therefore, when pressed under the same pressure, the thickness of the active material layer 5 of FIG. 9 is larger than that of the active material layer 5 of FIG. 7.
 図10の右図と図10の左図(膨張前の状態、図9と同じもの)と比較して説明する。図10の右図において、SiO粉末2は膨張することによって、近くに配置された黒鉛粉末3に接触する。黒鉛粉末3の接触表面において、黒鉛粉末3は層間すべりがおこり、SiO粉末2の膨張の一部を黒鉛粉末3の表面の弾性変形によって吸収する。 Description will be made in comparison with the right view of FIG. 10 and the left view of FIG. 10 (state before expansion, the same as FIG. 9). In the right view of FIG. 10, the SiO x powder 2 contacts the graphite powder 3 disposed nearby by expanding. At the contact surface of the graphite powder 3, the graphite powder 3 is slipped between layers, and part of the expansion of the SiO x powder 2 is absorbed by elastic deformation of the surface of the graphite powder 3.
 また図10の活物質層5においてはSiO粉末2と黒鉛粉末3とが再配置できる余地がないため、SiO粉末2の膨張によって、黒鉛粉末3及びSiO粉末2は厚み方向に移動せざるを得ない。そのため、図10の活物質層5の厚みが厚くなる。 Further, in the active material layer 5 of FIG. 10, there is no room where the SiO x powder 2 and the graphite powder 3 can be rearranged, so the expansion of the SiO x powder 2 causes the graphite powder 3 and the SiO x powder 2 to move in the thickness direction. I have no choice. Therefore, the thickness of the active material layer 5 in FIG. 10 is increased.
 活物質層5の厚みが厚くなると、バインダー4とSiO粉末2との結着力が弱くなってSiO粉末2がバインダー4から剥離し、電極内の導電パスが破壊される。またこのような膨張・収縮が繰り返されると、SiO粉末2が集電体1から脱離したり、SiO粉末2に歪が生じて微細化して集電体1から脱離したりする。 When the thickness of the active material layer 5 is increased, the binding force between the binder 4 and the SiO x powder 2 is weakened, the SiO x powder 2 is peeled off from the binder 4, and the conductive path in the electrode is broken. Further, when such expansion and contraction are repeated, the SiO x powder 2 is detached from the current collector 1 or the SiO x powder 2 is distorted to be miniaturized and detached from the current collector 1.
 なお、SiO粉末2のD50が黒鉛粉末3のD50の1/4より小さい場合は、SiO粉末2同士の凝集が起こる。SiO粉末2同士の凝集が起こると、上記の図9及び図10で説明したSiO粉末2のD50が黒鉛粉末3のD50とほぼ同等か少し小さいものを用いたリチウムイオン二次電池用負極と同様のことが起こる。 In the case D 50 of the SiO x powder 2 is less than 1/4 of the D 50 of the graphite powder 3, aggregation of SiO x powder 2 with each other occurs. When agglomeration of SiO x powder 2 together takes place, above 9 and substantially equal to or lithium ion secondary battery using those slightly smaller SiO x powder 2 D 50 described in FIG. 10 is a D 50 of the graphite powder 3 The same thing as the negative electrode occurs.
 このようなメカニズムによって、本発明の第3の実施形態のリチウムイオン二次電池用負極は、活物質としてSiOx粉末(0.5≦x≦1.5)を含む活物質層に、緩衝材として機能しうる黒鉛粉末を所定配合量で混入し、両粉末の大きさの比を特定することにより、負極全体の体積変化を大きく抑制出来る。 By such a mechanism, the negative electrode for a lithium ion secondary battery according to the third embodiment of the present invention comprises a buffer material in an active material layer containing SiO x powder (0.5 ≦ x ≦ 1.5) as an active material. By mixing the graphite powder capable of functioning as a predetermined amount and specifying the ratio of the sizes of the two powders, it is possible to largely suppress the volume change of the entire negative electrode.
 リチウムイオン二次電池用負極は、公知の製造方法によって製造できる。例えば、第1の実施形態と同様の製造方法によって製造できる。集電体の表面に塗布されたスラリーの塗布厚みは10μm~30μmが好ましい。 The negative electrode for a lithium ion secondary battery can be manufactured by a known manufacturing method. For example, it can be manufactured by the same manufacturing method as that of the first embodiment. The coating thickness of the slurry applied to the surface of the current collector is preferably 10 μm to 30 μm.
 <リチウムイオン二次電池>
 本発明の第3の実施形態のリチウムイオン二次電池は、負極が上記第3の実施形態のリチウムイオン二次電池用負極である。負極が上記第3の実施形態のリチウムイオン二次電池用負極であることによって、充放電時の負極全体の体積変化が抑制される。負極全体の体積変化が抑制されるため、リチウムイオン二次電池の初期効率の低下を抑制することができる。
<Lithium ion secondary battery>
In the lithium ion secondary battery of the third embodiment of the present invention, the negative electrode is the negative electrode for a lithium ion secondary battery of the third embodiment. Since the negative electrode is the negative electrode for a lithium ion secondary battery according to the third embodiment, the volume change of the entire negative electrode during charge and discharge is suppressed. Since the volume change of the whole negative electrode is suppressed, the fall of the initial stage efficiency of a lithium ion secondary battery can be suppressed.
 初期効率は、電池の最初の充電容量に対する放電容量の割合である。負極において充電時にリチウムイオンが吸蔵され、放電時にリチウムイオンが放出される。充電時にリチウムイオンが吸蔵されて負極活物質が膨張して負極全体の厚みが厚くなると、負極内の導電性パスが切断され負極の導電性が低下する。負極の導電性が低下すると、放電時にリチウムイオンが放出されにくくなる。それにより、放電容量が低下して初期効率が低下する。 Initial efficiency is the ratio of the discharge capacity to the initial charge capacity of the battery. Lithium ions are stored at the negative electrode during charge and discharged at the time of discharge. When lithium ions are occluded during charging to expand the negative electrode active material and the thickness of the entire negative electrode is increased, the conductive path in the negative electrode is cut and the conductivity of the negative electrode is reduced. When the conductivity of the negative electrode decreases, lithium ions are less likely to be released during discharge. Thereby, the discharge capacity is reduced and the initial efficiency is reduced.
 本発明の第3の実施形態のリチウムイオン二次電池は、負極全体の体積変化が抑制されるため、初期効率の低下を抑制できる。また電池の初期効率の低下を抑制できることは、負極に貯蔵されたままで、放出されないリチウムイオン量が減ることでもあるので、電池の初期効率の低下を抑制できると、負極と正極間を移動するリチウムイオンの量が増え、結果的に電池の電気容量が低下するのを抑制できる。 In the lithium ion secondary battery according to the third embodiment of the present invention, since the volume change of the entire negative electrode is suppressed, the decrease in the initial efficiency can be suppressed. In addition, the ability to suppress the decrease in initial efficiency of the battery means that the amount of lithium ions not released is also reduced while being stored in the negative electrode. Therefore, if the decrease in initial efficiency of the battery can be suppressed, lithium moving between the negative electrode and the positive electrode It is possible to suppress an increase in the amount of ions and, as a result, a decrease in the electric capacity of the battery.
 また負極全体の体積変化が抑制されるため、活物質が集電体から剥離・脱落することが抑制でき、本発明の第3の実施形態のリチウムイオン二次電池はサイクル特性の劣化が抑制できる。 Moreover, since the volume change of the whole negative electrode is suppressed, it can suppress that an active material peels or drops off from a collector, and the lithium ion secondary battery of the 3rd Embodiment of this invention can suppress deterioration of cycling characteristics. .
 上記した第3の実施形態のリチウムイオン二次電池用負極を用いる第3の実施形態のリチウムイオン二次電池は、上記の第3の実施形態のリチウムイオン二次電池用負極を用いる以外は公知の電池構成要素を用いることが出来、また公知の手法により製造することができる。 The lithium ion secondary battery of the third embodiment using the above-described lithium ion secondary battery negative electrode of the third embodiment is publicly known except that the above-described lithium ion secondary battery negative electrode of the third embodiment is used. Cell components can be used and can be manufactured according to known techniques.
 すなわち、電池構成要素として、正極、負極、セパレータ、電解液を用いる。 That is, as a battery component, a positive electrode, a negative electrode, a separator, and an electrolytic solution are used.
 正極は、負極同様に集電体と、集電体の表面に結着させた活物質層を有する。活物質層は、活物質、バインダーを含み、必要に応じて導電助剤を含む。集電体、バインダー、導電助剤は負極で説明したものと同様である。 Like the negative electrode, the positive electrode has a current collector and an active material layer bonded to the surface of the current collector. The active material layer contains an active material, a binder, and, optionally, a conductive auxiliary. The current collector, the binder, and the conductive additive are the same as those described for the negative electrode.
 正極活物質としては、リチウム含有化合物が適当である。例えばリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物などのリチウム含有金属複合酸化物などを用いることが出来る。また正極活物質として他の金属化合物あるいは高分子材料を用いることも出来る。他の金属化合物としては、例えば酸化チタン、酸化バナジウムあるいは二酸化マンガンなどの酸化物、または硫化チタンあるいは硫化モリブデンなどの硫化物が挙げられる。高分子材料としては例えばポリアニリンあるいはポリチオフェンなどの導電性高分子が挙げられる。 A lithium-containing compound is suitable as the positive electrode active material. For example, lithium-containing metal composite oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide and the like can be used. Other metal compounds or polymer materials can also be used as the positive electrode active material. Other metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or sulfides such as titanium sulfide or molybdenum sulfide. Examples of the polymer material include conductive polymers such as polyaniline or polythiophene.
 正極活物質として、xLi・(1-x)LiM(0<x≦1,Mは4価のMnを必須とする一種以上の金属元素、Mは4価のMnを必須とする二種以上の金属元素)で表されるリチウムマンガン系酸化物を用いる場合、その活物質の活性化工程において、電池に4.5Vの電圧をかける。これは上記のリチウムマンガン系酸化物が、層状岩塩構造を有し、4.5Vかけないと活性化できないためである。電池に電圧を4.5Vかけると、負極活物質であるSiO粉末の膨張は、電圧を通常の4.3Vかけたものより2倍も大きくなる。本発明の負極を用いると、このような高電圧の場合でも負極全体の厚みの膨張を抑制することができる。上記のリチウムマンガン系酸化物として、LiMnO、0.5LiMnO・0.5LiNi1/3Co1/3Mn1/3を用いることができる。 As a positive electrode active material, xLi 2 M 1 O 3. (1-x) LiM 2 O 2 (0 <x ≦ 1, M 1 is one or more metal elements having a tetravalent Mn essential, M 2 is a tetravalent In the case of using a lithium manganese-based oxide represented by two or more kinds of metal elements essential for the Mn), a voltage of 4.5 V is applied to the battery in the activation process of the active material. This is because the above lithium manganese-based oxide has a layered rock salt structure and can not be activated without applying 4.5 V. When a voltage of 4.5 V is applied to the battery, the expansion of the SiO x powder, which is a negative electrode active material, is twice as large as that of a conventional 4.3 V applied voltage. When the negative electrode of the present invention is used, expansion of the entire thickness of the negative electrode can be suppressed even in the case of such a high voltage. As the lithium manganese oxide, Li 2 MnO 3, it is possible to use a 0.5Li 2 MnO 3 · 0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2.
 セパレータ及び電解液は、第1の実施形態と同様なものが使用できる。 As the separator and the electrolytic solution, the same ones as in the first embodiment can be used.
 (第4の実施形態)
 本発明の第4の実施形態のリチウムイオン二次電池用負極材料は、負極活物質と導電助剤とを含む。
Fourth Embodiment
The negative electrode material for a lithium ion secondary battery according to the fourth embodiment of the present invention contains a negative electrode active material and a conductive additive.
 負極活物質は、不均化反応によって微細なSiと、Siを覆うケイ素酸化物(SiO)とに分解したSiO(0.3≦x≦1.6)からなる。xが下限値未満であると、Si比率が高くなるため充放電時の体積変化が大きくなりすぎてリチウムイオン二次電池のサイクル特性が低下する。またxが上限値を超えると、Si比率が低下してエネルギー密度が低下するようになる。xは、0.5≦x≦1.5の範囲が好ましく、0.7≦x≦1.2の範囲がさらに望ましい。 The negative electrode active material is composed of SiO x (0.3 ≦ x ≦ 1.6) decomposed into fine Si and silicon oxide (SiO 2 ) covering Si by disproportionation reaction. When x is less than the lower limit value, the Si ratio becomes high, so that the volume change during charge and discharge becomes too large, and the cycle characteristics of the lithium ion secondary battery deteriorate. When x exceeds the upper limit value, the Si ratio is lowered and the energy density is lowered. x is preferably in the range of 0.5 ≦ x ≦ 1.5, and more preferably in the range of 0.7 ≦ x ≦ 1.2.
 負極活物質は粒子状であるのが好ましく、その粒径は特に問わない。また、負極活物質は一次粒子であっても良いし二次粒子であっても良い。さらに、負極活物質のD50は、1μm~10μmの範囲にあることが望ましい。負極活物質のD50が10μmより大きいと、リチウムイオン二次電池の充放電特性が低下する場合がある。また、負極活物質のD50が1μmより小さいと、電極製造の際に凝集して粗大な粒子となる場合があるため、同様にリチウムイオン二次電池の充放電特性が低下する場合がある。なお、ここでいうD50は、体積基準で測定したメディアン径を指す。 The negative electrode active material is preferably in the form of particles, and the particle size is not particularly limited. The negative electrode active material may be primary particles or secondary particles. Furthermore, the D 50 of the negative electrode active material is desirably in the range of 1 μm to 10 μm. And D 50 is greater than 10μm of the negative electrode active material, it may decrease the charge-discharge characteristics of the lithium ion secondary battery. Further, a D 50 of 1μm smaller than the negative electrode active material, since the aggregated during electrode fabrication it may become coarse particles, which may be similarly reduced charge and discharge characteristics of the lithium ion secondary battery. Incidentally, D 50 herein refers to a median size measured by volume.
 SiOとしては、充放電特性を考慮すると比表面積の大きいものを用いるのが好ましい。一方SiOの比表面積が過大であれば、SiOの表面に形成される表面被膜(SEI;Solid
Electrolyte Interphase)が増大するため好ましくない。これらを勘案すると、SiOの比表面積(BET値、所謂BET比表面積)は、2.5以上7.0以下であるのが好ましく、2.5以上3.5以下であるのがより好ましい。また、負極材料の負極活物質の含有量は、負極材料全体を100質量%としたときに20質量%以上40質量%以下であるのが好ましく、27質量%以上32質量%以下であるのがより好ましい。さらに、負極活物質と後述する黒鉛との含有量の和は、負極材料全体を100質量%としたときに70質量%以上90質量%以下であるのが好ましく、70質量%以上85質量%以下であるのがより好ましい。なお、バインダーの量は、負極材料全体を100質量%としたときに8質量%以上20質量%以下であるのが好ましい。負極中の負極活物質の量に関しても同様である。
As the SiO x , in view of charge and discharge characteristics, it is preferable to use one having a large specific surface area. On the other hand, if the specific surface area of SiO x is too large, the surface film formed on the surface of SiO x (SEI; Solid
It is not preferable because the Electrolyte Interphase increases. Taking these into consideration, the specific surface area (BET value, so-called BET specific surface area) of SiO x is preferably 2.5 or more and 7.0 or less, and more preferably 2.5 or more and 3.5 or less. The content of the negative electrode active material of the negative electrode material is preferably 20% by mass to 40% by mass, and 27% by mass to 32% by mass, based on 100% by mass of the entire negative electrode material. More preferable. Furthermore, the sum of the content of the negative electrode active material and the graphite described later is preferably 70% by weight or more and 90% by weight or less, and 70% by weight or more and 85% by weight or less, based on 100% by weight of the entire negative electrode material. Is more preferred. The amount of the binder is preferably 8% by mass or more and 20% by mass or less based on 100% by mass of the entire negative electrode material. The same applies to the amount of the negative electrode active material in the negative electrode.
 黒鉛は、主として充放電に伴うSiOの体積変化を緩衝するために配合する材料であり、MAG、SMG、SCMG(登録商標)等を用いるのが一般的である。これらの材料は、導電性にも優れるため、導電パスの一部を構成する場合もある。黒鉛の含有量はSiOの量に応じて設定すれば良く、SiOを100質量%としたときに120質量%以上210質量%以下であるのが好ましい。また、負極材料全体を100質量%としたときのSiOと黒鉛との和は70質量%以上90質量%以下であるのが好ましく、70質量%以上85質量%以下であるのがより好ましい。 Graphite is a material that is compounded mainly to buffer the volume change of SiO x associated with charge and discharge, and it is common to use MAG, SMG, SCMG (registered trademark) or the like. Since these materials are also excellent in conductivity, they may constitute part of the conductive path. The content of the graphite may be set according to the amount of SiO x, and when the content of SiO x is 100 mass%, it is preferably 120 mass% or more and 210 mass% or less. Further, it is preferable sum of the SiO x and the graphite when the entire negative electrode material is 100 mass% is less than 90 wt% to 70 wt%, and more preferably not more than 85 wt% to 70 wt%.
 導電助剤としては、炭素質微粒子であるカーボンブラック、カーボンブラックの一種であるアセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(VGCF;Vapor Grown Carbon Fiber)、黒鉛等を単独でまたは二種以上組み合わせて添加することができる。負極の導電性向上のために多くの導電パスを形成するためには導電助剤の配合量を多くするのが好ましいが、その一方で比表面積の大きな導電助剤は嵩高いために負極材料中に均一に分散させ難い。このため、分散性を考慮すると導電助剤としては比表面積の小さいものを用いるのが好ましく、例えばABを用いるのが望ましい。同様に、導電助剤としては粒径の小さなものを用いるのが好ましく、例えば導電助剤のD50が3nm以上300nm以下のものを用いるのが好ましく、D50が10nm以上100nm以下のものを用いるのがより好ましい。ここでいうD50もまた体積基準で測定したメディアン径を指す。 As a conductive support agent, carbon black which is a carbonaceous fine particle, acetylene black (AB) which is a type of carbon black, ketjen black (KB), vapor grown carbon fiber (VGCF; Vapor Grown Carbon Fiber), graphite and the like It can be added alone or in combination of two or more. In order to form many conductive paths to improve the conductivity of the negative electrode, it is preferable to increase the blending amount of the conductive aid, but on the other hand, the conductive aid having a large specific surface area is bulky and therefore, in the negative electrode material It is difficult to disperse evenly. Therefore, in view of dispersibility, it is preferable to use one having a small specific surface area as the conductive aid, for example, it is desirable to use AB. Similarly, to use as small a particle size as a conductive additive is preferably, for example, is preferably D 50 of the conductive additive is used as a 3nm or 300nm or less, used as D 50 is 10nm or more 100nm or less Is more preferable. D 50 here also refers to a median size measured by volume.
 上述したように、本発明の負極材料においては、負極活物質であるSiOの表面積と黒鉛の表面積の和に応じた量の導電助剤を配合する。SiOの表面積(m)とは、具体的には、SiOのBET値(m/g)にSiOの配合量(g)をかけた値である。SiOと黒鉛の表面積に応じた量の導電助剤を配合することで、導電助剤の量を、SiOの表面またはその近傍に導電パスを形成するのに充分であり、かつ、リチウムイオン二次電池の放電容量を低下させない程度の量に設定できると考えられる。本発明の第4の実施形態において、負極材料に配合する導電助剤の量は、以下の2種の演算式(導電助剤の質量を基準とした第1の式、または、導電助剤の体積を基準とした第2の式)に基づいて算出できる。 As described above, in the negative electrode material of the present invention, the conductive support agent is blended in an amount corresponding to the sum of the surface area of the negative electrode active material SiO x and the surface area of the graphite. The surface area of the SiO x (m 2), specifically, a value obtained by multiplying the amount of SiO x (g) the BET values of SiO x (m 2 / g) . By blending the conductive auxiliary agent in an amount corresponding to the surface area of SiO x and graphite, the amount of the conductive auxiliary agent is sufficient to form a conductive path on or near the surface of SiO x , and lithium ion It is considered that the discharge capacity of the secondary battery can be set to an amount that does not reduce it. In the fourth embodiment of the present invention, the amount of the conductive aid blended into the negative electrode material is the following two arithmetic expressions (the first formula based on the mass of the conductive aid, or the conductive aid It can be calculated based on the second equation based on volume.
 第1の式は、負極材料に配合する導電助剤の量として導電助剤の質量を採用した演算式であり、{(a1×b1)+(a2×b2)}/cで表される。式中a1はSiOのBET値(m/g)、a2は黒鉛のBET値(m/g)、b1は負極材料中のSiOの配合量(g)、b2は負極材料中の黒鉛の配合量(g)、cは負極材料中の導電助剤の配合量(g)である。この{(a1×b1)+(a2×b2)}/cの値が24以上65以下であれば、負極に優れた導電性を付与でき、かつ、リチウムイオン二次電池の放電容量低下を抑制できる。 The first equation is an arithmetic equation in which the mass of the conductive additive is adopted as the amount of the conductive additive to be added to the negative electrode material, and is represented by {(a1 × b1) + (a2 × b2)} / c. In the formula, a1 is the BET value of SiO x (m 2 / g), a 2 is the BET value of graphite (m 2 / g), b 1 is the compounding amount of SiO x in the negative electrode material (g), b 2 is the negative electrode material The blending amount (g) of graphite and c are the blending amount (g) of the conductive auxiliary in the negative electrode material. When the value of {(a1 × b1) + (a2 × b2)} / c is 24 or more and 65 or less, excellent conductivity can be imparted to the negative electrode, and the decrease in discharge capacity of the lithium ion secondary battery is suppressed it can.
 第2の式は、負極材料に配合する導電助剤の量として導電助剤の体積を採用した演算式であり、{(a1×b1)+(a2×b2)}/dで表される。なお、式中a1、a2、b1及びb2は上記と同様である。式中dは、負極材料中の導電助剤の配合量(cm)である。この{(a1×b1)+(a2×b2)}/dの値が43.2以上117以下であれば、負極に優れた導電性を付与でき、かつ、リチウムイオン二次電池の放電容量低下を抑制できる。 The second equation is an arithmetic equation in which the volume of the conductive additive is adopted as the amount of the conductive additive to be added to the negative electrode material, and is represented by {(a1 × b1) + (a2 × b2)} / d. In the formulas, a1, a2, b1 and b2 are the same as above. In formula, d is the compounding quantity (cm < 3 >) of the conductive support agent in negative electrode material. If the value of {(a1 × b1) + (a2 × b2)} / d is 43.2 or more and 117 or less, excellent conductivity can be imparted to the negative electrode, and the discharge capacity of the lithium ion secondary battery is lowered Can be suppressed.
 導電助剤としては、上述した炭素質微粒子のみからなるものを用いても良いし、分散剤等を含有するものを用いても良い。分散剤とは、界面活性剤の一種であり、炭素質微粒子の分散性を向上させるための添加剤である。 As a conductive support agent, what consists only of the carbonaceous fine particles mentioned above may be used, and a thing containing a dispersing agent etc. may be used. The dispersant is a type of surfactant and is an additive for improving the dispersibility of the carbonaceous fine particles.
 本発明の第4の実施形態の負極材料および負極は、上述した負極活物質、黒鉛および導電助剤以外にも、さらに、バインダー樹脂、分散剤(界面活性剤)等を含み得る。 The negative electrode material and the negative electrode according to the fourth embodiment of the present invention may further include a binder resin, a dispersant (surfactant), and the like, in addition to the negative electrode active material, the graphite, and the conductive auxiliary agent described above.
 バインダー樹脂の種類は限定的ではないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド等のイミド系ポリマー、アルコキシシリル基含有樹脂、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸などが例示される。このうち、ポリアミドイミド樹脂、ポリアミドイミドシリカハイブリッド樹脂、ポリアクリル酸から選択される少なくとも一種を用いるのが好ましい。 Although the type of binder resin is not limited, fluorine-based polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), imide-based polymers such as polyimide, alkoxysilyl Examples thereof include group-containing resins, polyacrylic acids, polymethacrylic acids and polyitaconic acids. Among these, it is preferable to use at least one selected from polyamideimide resin, polyamideimide silica hybrid resin, and polyacrylic acid.
 バインダー樹脂の量は、負極材料全体を100質量%としたときに、8質量%以上20質量%以下であるのが好ましい。バインダー樹脂の量が8質量%未満では電極の成形性が低下し、20質量%を超えると電極のエネルギー密度が低下し、抵抗が大きくなる。本発明の第4の実施形態のリチウムイオン二次電池用負極においては、これらのバインダー樹脂の少なくとも一部は熱分解等により変性した状態で含まれていても良い。なお、ポリアミドイミドシリカハイブリッド樹脂は、ポリアミドイミド樹脂の分子末端にアルコキシシランに由来する側鎖が形成されているものを指し、例えば、アルコキシ基含有シラン変性ポリアミドイミド樹脂(荒川化学工業株式会社製、商品名コンポセラン、品番H900-2)等の市販品を用いることができる。 The amount of the binder resin is preferably 8% by mass or more and 20% by mass or less, based on 100% by mass of the entire negative electrode material. When the amount of the binder resin is less than 8% by mass, the formability of the electrode decreases, and when it exceeds 20% by mass, the energy density of the electrode decreases and the resistance increases. In the negative electrode for a lithium ion secondary battery of the fourth embodiment of the present invention, at least a part of these binder resins may be contained in a denatured state by thermal decomposition or the like. In addition, the polyamide imide silica hybrid resin refers to that in which a side chain derived from alkoxysilane is formed at the molecular terminal of the polyamide imide resin, and, for example, an alkoxy group-containing silane modified polyamide imide resin (manufactured by Arakawa Chemical Co., Ltd.) It is possible to use commercially available products such as trade name COMPOCELAN, part number H900-2).
 本発明の第4の実施形態の負極は、これらの材料に有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体に塗布(積層)し、バインダー樹脂を加熱して硬化させることによって作製することができる。 The negative electrode according to the fourth embodiment of the present invention is prepared by adding organic solvents to these materials and mixing them into a slurry, such as roll coating, dip coating, doctor blade, spray coating, curtain coating, etc. It can be produced by applying (laminating) to the current collector by a method and heating and curing the binder resin.
 集電体としては、リチウムイオン二次電池の負極用集電体として一般的なものを使用すれば良い。例えば、Cu等の金属を箔、板、メッシュ等の形状に形成したものを好ましく用いることができるが、目的に応じた材質および形状であれば特に限定されない。 As a current collector, a general one may be used as a current collector for a negative electrode of a lithium ion secondary battery. For example, although what formed metals, such as Cu, in shape, such as foil, a board, and a mesh, can be used preferably, if it is the material and shape according to the object, it will not be limited in particular.
 上記した負極を用いる本発明の第4の実施形態のリチウムイオン二次電池は、特に限定されない公知の正極、電解液、セパレータを用いることが出来る。正極は、リチウムイオン二次電池で使用可能なものであれば良い。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助剤およびバインダーには、特に限定はなく、リチウムイオン二次電池で使用可能なものであれば良い。 The lithium ion secondary battery of the fourth embodiment of the present invention using the above-mentioned negative electrode can use known positive electrodes, electrolytes and separators which are not particularly limited. The positive electrode may be any one that can be used in a lithium ion secondary battery. The positive electrode has a current collector and a positive electrode active material layer bound on the current collector. The positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid. There is no limitation in particular in a positive electrode active material, a conductive support agent, and a binder, and it should just be a thing which can be used by a lithium ion secondary battery.
 正極活物質としては、金属リチウム、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、Sなどを使用できる。正極用の集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであれば良い。導電助剤は上記の負極で記載したものと同様のものを使用できる。 As the positive electrode active material, metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 2 , S or the like can be used. The current collector for the positive electrode may be any one commonly used for the positive electrode of lithium ion secondary batteries, such as aluminum, nickel, stainless steel and the like. As the conductive support agent, the same one as described for the above-mentioned negative electrode can be used.
 電解液は、有機溶媒に電解質であるLi金属塩を溶解させたものである。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、LiCFSO等の有機溶媒に可溶なLi金属塩を用いることができる。 The electrolytic solution is one in which an Li metal salt as an electrolyte is dissolved in an organic solvent. The electrolyte is not particularly limited. As an organic solvent, use is made of one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc. Can. Further, as an electrolyte to be dissolved, it is possible to use a Li metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , LiCF 3 SO 3 and the like.
 例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO、LiPF、LiBF、LiCFSO等のLi金属塩を0.5mol/l~1.7mol/l程度の濃度で溶解させた溶液を使用することが出来る。 For example, about 0.5 mol / l to 1.7 mol / l of Li metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate Solutions dissolved at concentration can be used.
 セパレータは、リチウムイオン二次電池に使用されることが出来るものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。 The separator is not particularly limited as long as it can be used for a lithium ion secondary battery. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
 (第5の実施形態)
 本発明の第5の実施形態のリチウムイオン二次電池用負極は、炭素系粒子とLi吸蔵粒子とを含む。炭素系粒子としては、天然黒鉛、人造黒鉛、コークス、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維などが例示されるが、緩衝性能に優れ、かつD50が1μm~15μmの範囲にある黒鉛が好ましい。この炭素系粒子のD50は、Li吸蔵粒子として下記のSiOを用いた場合には、1μm~10μmであることが特に望ましい。
Fifth Embodiment
The negative electrode for a lithium ion secondary battery according to the fifth embodiment of the present invention includes carbon-based particles and Li storage particles. Examples of carbon-based particles include natural graphite, artificial graphite, coke, mesophase carbon, vapor grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber and the like, but they have excellent buffer performance and have a D 50 of 1 μm to Graphite in the range of 15 μm is preferred. The D 50 of this carbon-based particle is particularly preferably 1 μm to 10 μm when the following SiO x is used as the Li storage particle.
 Li吸蔵粒子としては、第2の実施形態と同様のものが使用できる。 As the Li storage particles, those similar to the second embodiment can be used.
 炭素系粒子とLi吸蔵粒子との混合比率は、質量比で炭素系粒子:Li吸蔵粒子=55:27~45:37の範囲とするのが好ましい。質量比で炭素系粒子:Li吸蔵粒子=55:27より炭素系粒子の質量比が大きくなると容量が減少するため好ましくなく、炭素系粒子:Li吸蔵粒子=45:37より炭素系粒子の質量比が小さくなるとサイクル特性が悪化するため好ましくない。炭素系粒子とLi吸蔵粒子との混合物と、導電助剤と、バインダー樹脂とを合計した質量を100質量%とした時、炭素系粒子は40質量%以上65質量%以下の範囲で混合されていることが好ましい。炭素系粒子が40質量%未満では、リチウムイオン二次電池のサイクル特性の向上を図ることが困難となる。また炭素系粒子が65質量%を超えて混合されても、理由は不明であるが、炭素系粒子が65質量%以下の場合に比べてリチウムイオン二次電池のサイクル特性が低下する。さらに炭素系粒子の混合量は、45質量%~65質量%の範囲がより最適である。 The mixing ratio of the carbon-based particles to the Li storage particles is preferably in the range of carbon-based particles: Li storage particles = 55: 27 to 45:37 by mass ratio. It is not preferable that the mass ratio of carbon-based particles is larger than that of carbon-based particles: Li storage particles = 55: 27 in mass ratio, since the capacity decreases, and the mass ratio of carbon-based particles: carbon-based particles: Li storage particles = 45: 37 It is not preferable because the cycle characteristics deteriorate if the value of. The carbon-based particles are mixed in the range of 40% by mass or more and 65% by mass or less, where the total mass of the mixture of the carbon-based particles and the Li storage particles, the conductive auxiliary agent, and the binder resin is 100% by mass. Is preferred. If the carbon-based particles are less than 40% by mass, it is difficult to improve the cycle characteristics of the lithium ion secondary battery. Even if the carbon-based particles are mixed at more than 65% by mass, the reason is unknown, but the cycle characteristics of the lithium ion secondary battery are degraded as compared with the case where the carbon-based particles are 65% by mass or less. Furthermore, the mixing amount of the carbon-based particles is more optimally in the range of 45% by mass to 65% by mass.
 炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)は、1/2以上かつ1.3以下とする。この比がこの範囲を外れると粒径差が大きくなり、分散性が低下する。この比(D/D)は、1/2以上かつ1以下が特に好ましい。 The ratio of D 50 (D 2) of the D 50 (D 1) and Li occlusion particles of the carbon-based particles (D 1 / D 2) is a 1/2 or more and 1.3 or less. When this ratio is out of this range, the particle size difference becomes large and the dispersibility is lowered. The ratio (D 1 / D 2 ) is particularly preferably 1/2 or more and 1 or less.
 本発明の第5の実施形態のリチウムイオン二次電池の負極は、集電体と、集電体上に結着された負極活物質層と、を有する。負極活物質層は、炭素系粒子とLi吸蔵粒子との混合物と、導電助剤と、バインダー樹脂と、必要に応じ適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、プレスしてバインダー樹脂を硬化させることによって作製することができる。この負極活物質層の厚さ(t)は、従来と同様に10μm~20μmとすることができる。 The negative electrode of the lithium ion secondary battery of the fifth embodiment of the present invention has a current collector and a negative electrode active material layer bound on the current collector. The negative electrode active material layer is formed by adding a mixture of carbon-based particles and Li storage particles, a conductive additive, a binder resin, and an appropriate amount of an organic solvent as required, and mixing them to form a slurry by roll coating, dip It can manufacture by apply | coating on a collector by methods, such as a coating method, a doctor blade method, a spray coating method, a curtain coating method, and pressing and hardening binder resin. The thickness (t) of the negative electrode active material layer can be 10 μm to 20 μm as in the conventional case.
 炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は、1/4以上かつ2/3以下とする。この比(D/t)が1/4未満では、負極活物質層の電気抵抗が大きくなってリチウムイオン二次電池の充放電効率が低下し、2/3を超えると負極活物質層にクラックや剥離が生じやすくなる。この比(D/t)は、1/2以上かつ2/3以下とすることが特に望ましい。 The ratio (D 1 / t) of D 50 (D 1 ) of the carbon-based particles to the thickness (t) of the negative electrode active material layer is 1/4 or more and 2/3 or less. When this ratio (D 1 / t) is less than 1/4, the electrical resistance of the negative electrode active material layer is increased and the charge and discharge efficiency of the lithium ion secondary battery is decreased. Cracks and peeling are likely to occur. It is particularly desirable that the ratio (D 1 / t) be 1/2 or more and 2/3 or less.
 また、Li吸蔵粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は、上述した炭素系粒子のD50(D)とLi吸蔵粒子のD50(D)との比(D/D)と、炭素系粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)との関係から、1/8以上かつ13/15以下とする。 Further, the ratio (D 2 / t) of D 50 (D 2 ) of the Li storage particle to the thickness (t) of the negative electrode active material layer is the D 50 (D 1 ) of the above-mentioned carbon-based particle and Li storage particle the ratio of D 50 (D 2) of (D 1 / D 2), and the ratio of D 50 (D 1) and the anode active material layer thickness of the carbon-based particles (t) (D 1 / t ) And 1/8 or more and 13/15 or less.
 集電体は、第2の実施形態と同様のものが使用できる。 As the current collector, one similar to that of the second embodiment can be used.
 導電助剤は、第2の実施形態と同様のものが使用できる。導電助剤の使用量については、特に限定的ではないが、例えば、活物質100質量部に対して、20質量部~100質量部程度とすることができる。導電助剤の量が20質量部未満では効率のよい導電パスを形成できず、100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。なお炭素材料からなる被覆層をもつLi吸蔵粒子を用いる場合は、導電助剤の添加量を低減あるいはなしとすることができる。 The same conductive aid as that in the second embodiment can be used. The use amount of the conductive aid is not particularly limited, but can be, for example, about 20 parts by mass to 100 parts by mass with respect to 100 parts by mass of the active material. If the amount of the conductive additive is less than 20 parts by mass, efficient conductive paths can not be formed, and if it exceeds 100 parts by mass, the formability of the electrode is deteriorated and the energy density is lowered. In addition, when using Li occlusion particle | grains which have a coating layer which consists of carbon materials, the addition amount of a conductive support agent can be reduced or there is nothing.
 バインダー樹脂は、第2の実施形態と同様のものが使用できる。 As the binder resin, the same one as in the second embodiment can be used.
 本発明の第5の実施形態のリチウムイオン二次電池における負極には、リチウムがプリドーピングされていることが望ましい。負極にリチウムをドープすることについては、第2の実施形態の説明で説明したことと同じである。 It is desirable that lithium be pre-doped in the negative electrode in the lithium ion secondary battery of the fifth embodiment of the present invention. The lithium doping of the negative electrode is the same as that described in the second embodiment.
 上記した負極を用いる本発明の第5の実施形態のリチウムイオン二次電池は、特に限定されない公知の正極、電解液、セパレータを用いることができる。正極は、リチウムイオン二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助剤およびバインダーは、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。 The lithium ion secondary battery of the fifth embodiment of the present invention using the above-mentioned negative electrode can use known positive electrodes, electrolytes and separators which are not particularly limited. The positive electrode may be one that can be used in a lithium ion secondary battery. The positive electrode has a current collector and a positive electrode active material layer bound on the current collector. The positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid. The positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a lithium ion secondary battery.
 正極活物質としては、第2の実施形態で説明したものと同様のものが使用できる。 As the positive electrode active material, the same materials as those described in the second embodiment can be used.
 電解液は、第2の実施形態で説明したものと同様のものが使用できる。 The same electrolytic solution as that described in the second embodiment can be used.
 セパレータは、リチウムイオン二次電池に使用されることができるものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。 The separator is not particularly limited as long as it can be used for a lithium ion secondary battery. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
 本発明の第1~第5の実施形態のリチウムイオン二次電池は、形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。 The shape of the lithium ion secondary battery according to the first to fifth embodiments of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted. In any of the shapes, the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
 上記第1~第5の実施形態のリチウムイオン二次電池は車両に搭載することが出来る。車両は高容量で高いエネルギー密度を有するリチウムイオン二次電池を搭載でき、高性能の車両とすることが出来る。なお車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 The lithium ion secondary batteries of the first to fifth embodiments can be mounted on a vehicle. The vehicle can be equipped with a lithium ion secondary battery having high capacity and high energy density, and can be a high performance vehicle. The vehicle may be any vehicle that uses electric energy from batteries for all or part of the power source, for example, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, hybrid railway vehicles, forklifts, electric wheelchairs, electric assists There are bicycles and electric motorcycles.
 以上、本発明のリチウムイオン二次電池、リチウムイオン二次電池用負極、及びリチウムイオン二次電池用負極材料の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 The embodiments of the lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and the negative electrode material for a lithium ion secondary battery according to the present invention have been described above, but the present invention is not limited to the above embodiments. . In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
 以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 以下、一実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail by way of an example.
(実施例1~3及び比較例1)
 <正極の作製>
 正極の集電体として20μmのアルミニウム箔を用意し、正極活物質としてLiCo1/3Ni1/3Mn1/3(日亜化学社製)を用意し、正極のバインダー樹脂としてポリフッ化ビニリデン(PVDF)、正極の導電助剤としてアセチレンブラック(電気化学工業製)を準備した。
(Examples 1 to 3 and Comparative Example 1)
<Fabrication of positive electrode>
A 20 μm aluminum foil is prepared as a current collector of the positive electrode, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 (manufactured by Nichia Chemical Co., Ltd.) is prepared as a positive electrode active material, and polyfluorinated as a binder resin of the positive electrode. Vinylidene (PVDF) and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) were prepared as a conductive aid for the positive electrode.
 上記活物質、導電助剤及びバインダー樹脂を、活物質:導電助剤:バインダー樹脂=88:6:6の質量比で混合した。上記混合物に、溶媒としてN-メチルピロリドン(NMP)を適量入れて調整してスラリーとした。 The active material, the conductive auxiliary agent, and the binder resin were mixed at a mass ratio of active material: conductive auxiliary agent: binder resin = 88: 6: 6. An appropriate amount of N-methylpyrrolidone (NMP) as a solvent was added to the above mixture to prepare a slurry.
 アルミニウム箔に上記スラリ-をのせて、ドクターブレードを用いてスラリーを膜状にアルミニウム箔に塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、集電体と集電体上の塗布物を強固に密着接合させた。この時電極密度が2.37g/cm、単位面積あたりの電極重量が12.1mg/cmとなるようにした。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、厚さ50μm程度の正極とした。 The above slurry was placed on an aluminum foil, and the slurry was applied to the aluminum foil in the form of a film using a doctor blade. The obtained sheet was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector and the coated product on the current collector were firmly and closely bonded by a roll press. At this time, the electrode density was 2.37 g / cm 3 and the electrode weight per unit area was 12.1 mg / cm 2 . The joined product was heated at 120 ° C. for 6 hours in a vacuum dryer, cut into a predetermined shape (25 mm × 30 mm rectangular shape), and used as a positive electrode with a thickness of about 50 μm.
 <負極の作製>
 負極活物質として、D50が4μmのSiO(アルドリッチ社製)及び黒鉛(D50が20μmの天然黒鉛(日立化成工業株式会社製))を準備した。
<Fabrication of negative electrode>
As negative electrode active materials, SiO 2 (made by Aldrich) having a D 50 of 4 μm and graphite (natural graphite (made by Hitachi Chemical Co., Ltd.) having a D 50 of 20 μm) were prepared.
 バインダー樹脂としてアルコキシ基含有シラン変性ポリアミドイミド樹脂(荒川化学工業株式会社製、商品名コンポセラン、品番H900-2、溶剤組成:N-メチルピロリドン(NMP)/キシレン(Xyl)、硬化残分30%、粘度8000mPa・s、硬化残分中のシリカ、4質量%、硬化残分とは樹脂硬化させ揮発性成分を除いた固形分を意味する)を準備した。 Alkoxy group-containing silane-modified polyamideimide resin as a binder resin (Arakawa Chemical Industries, Ltd., trade name Compoceran, product number H900-2, solvent composition: N-methylpyrrolidone (NMP) / xylene (Xyl), cured residue 30%, A viscosity of 8000 mPa · s, silica in the curing residue, 4% by mass, and the curing residue means a solid content obtained by curing the resin and removing volatile components).
 導電助剤としてケッチェンブラックインターナショナル社製のKB(ケッチェンブラック)を準備した。 A KB (Ketjen black) manufactured by Ketchen Black International Co., Ltd. was prepared as a conduction aid.
 負極を以下のように作製した。 The negative electrode was produced as follows.
 上記活物質、導電助剤及びバインダー樹脂を、SiO:黒鉛:導電助剤:バインダー樹脂=22:60:3:15の質量比で混合した。この時、黒鉛の質量とSiOの質量を合計したものを100質量%としたときに、SiOの配合割合は27質量%である。上記混合物に、溶媒としてNMPを適量入れて調整してスラリーとした。 The active material, the conductive auxiliary agent, and the binder resin were mixed in a mass ratio of SiO: graphite: conductive auxiliary agent: binder resin = 22: 60: 3: 15. At this time, when the sum of the mass of graphite and the mass of SiO is 100% by mass, the blending ratio of SiO is 27% by mass. An appropriate amount of NMP as a solvent was added to the above mixture to prepare a slurry.
 厚さ20μmの電解銅箔に上記スラリ-をのせて、ドクターブレードを用いて電解銅箔にスラリーを膜状に塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、集電体と集電体上の塗布物を強固に密着接合させた。接合物を200℃で2時間、真空乾燥機で加熱し、所定の形状(26mm×31mmの矩形状)に切り取り、厚さ15μm程度の負極No.1とした。 The slurry was placed on an electrolytic copper foil having a thickness of 20 μm, and the slurry was applied in a film form on the electrolytic copper foil using a doctor blade. The obtained sheet was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector and the coated product on the current collector were firmly and closely bonded by a roll press. The joined product was heated at 200 ° C. for 2 hours in a vacuum dryer, and cut into a predetermined shape (26 mm × 31 mm rectangular shape). It is one.
 SiOと黒鉛の配合比を変え、後の条件は同じにして負極No.2~4を作製した。 The compounding ratio of SiO and graphite was changed, and the conditions thereafter were the same. 2 to 4 were made.
 負極No.2は、SiO:黒鉛:導電助剤:バインダー樹脂=32:50:3:15の質量比で混合した。この時、黒鉛の質量とSiOの質量を合計したものを100質量%としたときに、SiOの配合割合は39質量%であった。 Negative electrode No. 2 were mixed in a mass ratio of SiO: graphite: conductive assistant: binder resin = 32: 50: 3: 15. At this time, when the sum of the mass of graphite and the mass of SiO was taken as 100% by mass, the blending ratio of SiO was 39% by mass.
 負極No.3は、SiO:黒鉛:導電助剤:バインダー樹脂=42:40:3:15の質量比で混合した。この時、黒鉛の質量とSiOの質量を合計したものを100質量%としたときに、SiOの配合割合は51質量%であった。 Negative electrode No. 3 were mixed in a mass ratio of SiO: graphite: conductive assistant: binder resin = 42: 40: 3: 15. At this time, when the sum of the mass of graphite and the mass of SiO is 100% by mass, the blending ratio of SiO is 51% by mass.
 負極No.4は、SiO:黒鉛:導電助剤:バインダー樹脂=12:70:3:15の質量比で混合した。この時、黒鉛の質量とSiOの質量を合計したものを100質量%としたときに、SiOの配合割合は15質量%であった。 Negative electrode No. 4 were mixed in a mass ratio of SiO: graphite: conductive assistant: binder resin = 12: 70: 3: 15. At this time, when the sum of the mass of graphite and the mass of SiO is 100% by mass, the blending ratio of SiO is 15% by mass.
 <ラミネート型リチウムイオン二次電池作製>
(実施例1)
 上記正極及び上記負極No.1を用いて、実施例1のラミネート型リチウムイオン二次電池を作製した。
 正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒に1モルのLiPFを溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、正極及び負極を用いたラミネート型のリチウムイオン二次電池を得た。これを実施例1のリチウムイオン二次電池とする。
<Production of laminate type lithium ion secondary battery>
Example 1
The positive electrode and the negative electrode No. The laminate type lithium ion secondary battery of Example 1 was manufactured using No. 1.
Between the positive electrode and the negative electrode, a rectangular sheet (27 × 32 mm, 25 μm thickness) made of polypropylene resin as a separator was sandwiched to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. A solution in which 1 mole of LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in EC: DEC = 3: 7 (volume ratio) was used as an electrolytic solution. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. The positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate-type lithium ion secondary battery using the positive electrode and the negative electrode was obtained. The resulting battery is referred to as the lithium ion secondary battery of Example 1.
 (実施例2)
 負極として上記負極No.2を用いた以外は実施例1と同様にして、実施例2のラミネート型リチウムイオン二次電池を作製した。
(Example 2)
As the negative electrode, the negative electrode No. A laminate-type lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that No. 2 was used.
 (実施例3)
 負極として上記負極No.3を用いた以外は実施例1と同様にして、実施例3のラミネート型リチウムイオン二次電池を作製した。
(Example 3)
As the negative electrode, the negative electrode No. A laminate-type lithium ion secondary battery of Example 3 was produced in the same manner as in Example 1 except that No. 3 was used.
 (比較例1)
 負極として上記負極No.4を用いた以外は実施例1と同様にして、比較例1のラミネート型リチウムイオン二次電池を作製した。
(Comparative example 1)
As the negative electrode, the negative electrode No. A laminate-type lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that No. 4 was used.
 <充放電試験評価>
 実施例1、実施例2、実施例3及び比較例1のリチウムイオン二次電池について、25℃にて充放電試験を行った。
<Evaluation of charge and discharge test>
About the lithium ion secondary battery of Example 1, Example 2, Example 3, and the comparative example 1, the charging / discharging test was done at 25 degreeC.
 充放電試験は充放電電流値を正極の容量を155mAh/gとして計算した場合の0.2Cに相当する電流で、充電電位を4.2V、放電電位を3.0Vとし、これを1サイクルとして放電容量(mAh)を調べた。この時、電気容量を1時間で放電する電流を1C、5時間で放電する電流を0.2Cと表す。 The charge / discharge test is a current corresponding to 0.2 C when the charge / discharge current value is calculated assuming that the capacity of the positive electrode is 155 mAh / g, the charge potential is 4.2 V, the discharge potential is 3.0 V, and this is one cycle The discharge capacity (mAh) was examined. At this time, the current for discharging the electric capacity in one hour is represented as 1 C, and the current for discharging in 5 hours is represented as 0.2 C.
 実施例1、実施例2、実施例3及び比較例1のリチウムイオン二次電池の放電容量(mAh)と電圧(V)(VS.Li/Li)の関係を示すグラフを図1に示す。 A graph showing the relationship between the discharge capacity (mAh) and the voltage (V) (VS. Li / Li + ) of the lithium ion secondary batteries of Example 1, Example 2, Example 3 and Comparative Example 1 is shown in FIG. .
 図1より、実施例1~3及び比較例1の正極の放電電位を示す充電曲線は正極が同じものであるため、どれも重なって見えた。負極の放電電位を示す放電曲線から、放電容量を比較すると比較例1<実施例3<実施例1≒実施例2となっていた。 From FIG. 1, the charge curves showing the discharge potentials of the positive electrodes of Examples 1 to 3 and Comparative Example 1 appeared to overlap because the positive electrodes were the same. From the discharge curve showing the discharge potential of the negative electrode, when the discharge capacity is compared, Comparative Example 1 <Example 3 <Example 1 ≒ Example 2 ≒ 2.
 また図1より体積エネルギー密度を計算した。体積エネルギー密度は上記で説明した方法で求めた。具体的には放電曲線から平均電圧を求め、放電容量値と掛け合わせることによってエネルギー(Wh)を求めた。電極とセパレータとを合わせて厚みを計測し、セルの体積(L)とした。このエネルギー(Wh)を体積(L)で割って体積エネルギー密度(Wh/L)を求めた。 Also, the volumetric energy density was calculated from FIG. The volumetric energy density was determined by the method described above. Specifically, the average voltage was determined from the discharge curve, and the energy (Wh) was determined by multiplying the average value by the discharge capacity value. The thickness was measured by combining the electrode and the separator, and the volume (L) of the cell was obtained. The energy (Wh) was divided by the volume (L) to determine the volumetric energy density (Wh / L).
 図2に体積エネルギー密度(Wh/L)と黒鉛比率(wt%)を比較したグラフを示す。ここで黒鉛比率はSiO、黒鉛、導電助剤及びバインダー樹脂の全体を100質量%としたときの黒鉛の質量%である。 The graph which compared volume energy density (Wh / L) and a graphite ratio (wt%) in FIG. 2 is shown. Here, the graphite ratio is the mass% of graphite when the total of SiO, graphite, the conductive additive and the binder resin is 100 mass%.
 図2より体積エネルギー密度は実施例2が最も高く、実施例2の黒鉛比率から黒鉛比率が多くなっても少なくなっても体積エネルギー密度は下がってくることがわかった。これは黒鉛比率を上げるとSiO比率が相対的に下がり、放電容量は下がるが、黒鉛比率を上げると負極の放電電位が下がって、平均電圧は上がるためと考えられる。 From FIG. 2, it is found that the volumetric energy density is the highest in Example 2 and the volumetric energy density is lowered even if the proportion of graphite increases or decreases according to the proportion of graphite in Example 2. This is considered to be because when the graphite ratio is increased, the SiO ratio relatively decreases and the discharge capacity is decreased, but when the graphite ratio is increased, the discharge potential of the negative electrode is decreased and the average voltage is increased.
 黒鉛の含有量から考えると、体積エネルギー密度が高くなる範囲として、黒鉛比率はSiO、黒鉛、導電助剤及びバインダー樹脂の全体を100質量%としたときの黒鉛比率が40質量%~60質量%となるものがいいことがわかった。ここでSiO、黒鉛、導電助剤及びバインダー樹脂の全体を100質量%としたときの黒鉛比率が40質量%~60質量%となるものとは、SiO及び黒鉛を100質量%としたときにSiOの配合割合が27質量%~51質量%であるものにあたる。 Considering from the content of graphite, the graphite ratio is 40% by mass to 60% by mass based on 100% by mass of the total of SiO, graphite, the conductive additive and the binder resin as a range in which the volume energy density increases. It turns out that what is good is good. Here, the ratio of 40% by mass to 60% by mass when the total amount of SiO, graphite, the conductive additive and the binder resin is 100% by mass means that when SiO and graphite are 100% by mass. The composition ratio of is 27% by mass to 51% by mass.
 このように実施例1~実施例3のリチウムイオン二次電池とすることによって、高容量と高エネルギー密度を両立するリチウムイオン二次電池とすることが出来た。 As described above, by using the lithium ion secondary batteries of Examples 1 to 3, it is possible to obtain a lithium ion secondary battery having both high capacity and high energy density.
(実施例4~6及び比較例2~3)
(実施例4)
<リチウムイオン二次電池用負極の作製>
 SiO粉末を900℃で2時間熱処理し、D50が6.5μmのSiO粉末を調製した。この熱処理によって、SiとOとの比が概ね1:1の均質な固体の一酸化ケイ素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。
(Examples 4 to 6 and Comparative Examples 2 to 3)
(Example 4)
<Fabrication of negative electrode for lithium ion secondary battery>
The SiO powder was heat treated at 900 ° C. for 2 hours to prepare an SiO x powder with a D 50 of 6.5 μm. By this heat treatment, if the ratio of Si to O is a homogeneous solid silicon monoxide (SiO) of approximately 1: 1, the solid is separated into two phases of Si phase and SiO 2 phase by internal reaction. The Si phase obtained by separation is very fine.
 得られたSiO粉末32質量部と、D50が9.2μmの黒鉛粉末50質量部と、カーボンブラック8質量部と、バインダー溶液10質量部とを混合してスラリーを調製した。バインダー溶液は、ポリアミドイミド樹脂をN-メチル-2-ピロリドン(NMP)に溶解したものを用いた。このスラリーを、厚さ約20μm~30μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを真空乾燥し、負極活物質層の厚さが15μmの負極を形成した。 A slurry was prepared by mixing 32 parts by mass of the obtained SiO x powder, 50 parts by mass of a graphite powder having a D 50 of 9.2 μm, 8 parts by mass of carbon black, and 10 parts by mass of a binder solution. The binder solution was prepared by dissolving a polyamideimide resin in N-methyl-2-pyrrolidone (NMP). The slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of about 20 μm to 30 μm using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press. This was vacuum-dried to form a negative electrode having a thickness of 15 μm of the negative electrode active material layer.
 この負極において、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は1.42であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は0.61である。 In this negative electrode, the ratio of D 50 (D 2) of the D 50 (D 1) and SiO x particles of the graphite particles (D 1 / D 2) is 1.42, D 50 of the graphite particles (D 1) The ratio (D 1 / t) of the thickness to the thickness (t) of the negative electrode active material layer is 0.61.
<正極の作製>
 正極活物質としてのL333(Li[Mn1/3Ni1/3Co1/3]O)と、導電助剤としてのアセチレンブラック(AB)と、バインダー樹脂としてのポリフッ化ビニリデン(PVDF)とを混合し、スラリー状の正極合材を調製した。スラリー中の各成分(固形分)の組成比は、L333:AB:PVDF=88:6:6(質量比)であった。このスラリーを集電体に塗布し、集電体上に正極合材層を積層形成した。具体的には、ドクターブレードを用いてこのスラリーを厚さ20μmのアルミニウム箔(集電体)の表面に塗布した。
<Fabrication of positive electrode>
L333 (Li [Mn 1/3 Ni 1/3 Co 1/3 ] O 2 ) as a positive electrode active material, acetylene black (AB) as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder resin Were mixed to prepare a slurry-like positive electrode mixture. The composition ratio of each component (solid content) in the slurry was L333: AB: PVDF = 88: 6: 6 (mass ratio). The slurry was applied to a current collector, and a positive electrode mixture layer was formed on the current collector. Specifically, this slurry was applied to the surface of a 20 μm thick aluminum foil (current collector) using a doctor blade.
 その後、80℃で20分間乾燥し、正極合材中から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、電極密度を調整した。これを真空乾燥炉にて200℃で2時間加熱硬化させて、集電体の上層に厚さ50μm程度の正極合材層が積層されてなる正極を得た。 Thereafter, the resultant was dried at 80 ° C. for 20 minutes, and the organic solvent was volatilized and removed from the positive electrode mixture. After drying, the electrode density was adjusted by a roll press. The resultant was heat-cured at 200 ° C. for 2 hours in a vacuum drying furnace to obtain a positive electrode in which a positive electrode mixture layer having a thickness of about 50 μm was laminated on the upper layer of the current collector.
<リチウムイオン二次電池の作製>
 正極を30mm×25mm、負極を31mm×26mmに裁断し、ラミネートフィルムで収容した。この正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(40mm×40mm角、厚さ30μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネートセルを得た。電解液にはFEC(フルオロエチレンカーボネート)、EC(エチレンカーボネート)、MEC(メチルエチルカーボネート)、DMC(ジメチルカーボネート)=0.4:2.6:3:4(体積比)の混合溶液にLiPFを1モル/Lとなる濃度で溶解したものを用いた。正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネートセルの外側に延出した。以上の工程で、ラミネートセル(2極ポーチセル)状のリチウムイオン二次電池を得た。
<Fabrication of lithium ion secondary battery>
The positive electrode was cut into a size of 30 mm × 25 mm, and the negative electrode was cut into a size of 31 mm × 26 mm, and the laminate was housed in a laminate film. A rectangular sheet (40 mm × 40 mm square, 30 μm thick) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, and the three sides were sealed, and then the above electrolytic solution was injected into the bag-like laminate film. Then, the remaining one side was sealed, and the four sides were airtightly sealed to obtain a laminate cell in which the electrode plate group and the electrolytic solution were sealed. As electrolyte solution, LiPF is mixed with a mixed solution of FEC (fluoro ethylene carbonate), EC (ethylene carbonate), MEC (methyl ethyl carbonate), DMC (dimethyl carbonate) = 0.4: 2.6: 3: 4 (volume ratio) A solution of 6 at a concentration of 1 mol / L was used. The positive electrode and the negative electrode were provided with a tab electrically connectable to the outside, and a part of the tab extended to the outside of the laminate cell. Through the above steps, a lithium ion secondary battery in the form of a laminate cell (bipolar pouch cell) was obtained.
(実施例5)
 D50が9.2μmの黒鉛粉末に代えてD50が12.5μmの黒鉛粉末を用いたこと以外は実施例4と同様にして負極を形成した。この負極においては、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は1.92であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は0.83である。
(Example 5)
D 50 is D 50 in place of the graphite powder of 9.2μm was formed a negative electrode in the same manner as in Example 4 except for the use of graphite powder 12.5 .mu.m. In this negative electrode, the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 1.92, the graphite particles D 50 (D 1 The ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.83.
 この負極を用い、実施例4と同様にしてリチウムイオン二次電池を作成した。 Using this negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 4.
(実施例6)
 実施例4と同様のSiO粉末42質量部と、D50が9.2μmの黒鉛粉末40質量部と、カーボンブラック3質量部と、バインダー溶液15質量部とを混合してスラリーを調製した。バインダー溶液は、ポリアミドイミド樹脂をN-メチル-2-ピロリドン(NMP)に溶解したものを用いた。
(Example 6)
A slurry was prepared by mixing 42 parts by mass of the same SiO x powder as in Example 4, 40 parts by mass of a graphite powder having a D 50 of 9.2 μm, 3 parts by mass of carbon black, and 15 parts by mass of a binder solution. The binder solution was prepared by dissolving a polyamideimide resin in N-methyl-2-pyrrolidone (NMP).
 このスラリーを用いたこと以外は実施例4と同様にして負極を形成した。この負極においては、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は1.92であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は0.61である。
 この負極を用い、実施例4と同様にしてリチウムイオン二次電池を作成した。
A negative electrode was formed in the same manner as in Example 4 except that this slurry was used. In this negative electrode, the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 1.92, the graphite particles D 50 (D 1 The ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.61.
Using this negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 4.
(比較例2)
 D50が9.2μmの黒鉛粉末に代えてD50が20.0μmの黒鉛粉末を用いたこと以外は実施例4と同様にして負極を形成した。この負極においては、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は3.08であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は1.33である。
 この負極を用い、実施例4と同様にしてリチウムイオン二次電池を作成した。
(Comparative example 2)
D 50 is D 50 in place of the graphite powder of 9.2μm was formed a negative electrode in the same manner as in Example 4 except for the use of graphite powder 20.0 .mu.m. In this negative electrode, the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 3.08, the graphite particles D 50 (D 1 The ratio (D 1 / t) of (A) to the thickness (t) of the negative electrode active material layer is 1.33.
Using this negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 4.
(比較例3)
 D50が9.2μmの黒鉛粉末に代えてD50が20.0μmの黒鉛粉末を用いたこと以外は実施例6と同様にして負極を形成した。この負極においては、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は3.08であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は0.61である。この負極を用い、実施例6と同様にしてリチウムイオン二次電池を作成した。
(Comparative example 3)
D 50 is D 50 in place of the graphite powder of 9.2μm was formed a negative electrode is in the same manner as in Example 6 except for using graphite powder 20.0 .mu.m. In this negative electrode, the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 3.08, the graphite particles D 50 (D 1 The ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.61. Using this negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 6.
<試験>
 実施例5と比較例2で形成された負極の断面をSEMで観察した。そのSEM像を図3及び図4に示す。比較例2に比べて実施例5の方が小さな気孔が多く形成されていることがわかる。実施例4、5及び比較例2のリチウムイオン二次電池に対し、充放電電流密度0.2mAcm-2にて1サイクル目の定電流充放電試験を行い、2サイクル目以降は充放電電流密度0.5mAcm-2で行った。電位範囲は、リチウム基準電位で0V~3.0Vであり、試験は室温下で行った。1サイクル目以降は、負極中の活物質であるSiOのSiO相に、LiSiOを含みLiSiで表される酸化物系化合物が生成している。充放電サイクル試験中の各サイクルにおいて、放電開始から10秒後における負極の抵抗値(放電IRドロップ)をそれぞれ測定し、400サイクルまでの結果を図5に示す。
<Test>
The cross section of the negative electrode formed in Example 5 and Comparative Example 2 was observed by SEM. The SEM image is shown in FIG. 3 and FIG. It can be seen that small pores are formed more frequently in Example 5 than in Comparative Example 2. The lithium ion secondary batteries of Examples 4 and 5 and Comparative Example 2 are subjected to a constant current charge / discharge test at a charge / discharge current density of 0.2 mA cm −2 in the first cycle, and the charge / discharge current density after the second cycle. It carried out by 0.5 mAcm- 2 . The potential range was 0 V to 3.0 V at lithium reference potential and the test was performed at room temperature. After the first cycle, an oxide-based compound represented by Li x Si y O z containing Li 4 SiO 4 is formed in the SiO 2 phase of SiO x which is the active material in the negative electrode. In each cycle in the charge and discharge cycle test, the resistance value (discharge IR drop) of the negative electrode 10 seconds after the start of discharge was measured, and the results up to 400 cycles are shown in FIG.
<評価>
 図5から、実施例4及び実施例5の負極は比較例2に比べて放電IRドロップが低いことから、比(D/D)が1を超えかつ2以下とすることで導電性に優れた負極を形成できることがわかる。しかも実施例4より実施例5の方が抵抗が低いことから、黒鉛の粒径には最適範囲があることが示唆される。
<Evaluation>
From FIG. 5, since the negative electrode of Example 4 and Example 5 has a low discharge IR drop compared with Comparative Example 2, the ratio (D 1 / D 2 ) is set to be more than 1 and 2 or less. It can be seen that an excellent negative electrode can be formed. Moreover, since the resistance is lower in Example 5 than in Example 4, it is suggested that the particle diameter of the graphite has an optimum range.
 実施例6と比較例3のリチウムイオン二次電池について上記と同様の定電流充放電試験を行い、500サイクルまでの負極の抵抗値(放電IRドロップ)の測定結果を図6に示す。比較例3では、400サイクルを超えてからの抵抗値が実施例6より大きく上昇し、500サイクルに近いある時点から、大きく上下していることがわかる。これは、比較例3の負極において負極活物質層にクラックが発生したり、負極活物質層が集電体から剥離して導電性が大きく低下したことを示している。 The same constant current charge-discharge test as described above was performed on the lithium ion secondary batteries of Example 6 and Comparative Example 3, and the measurement results of the resistance value (discharge IR drop) of the negative electrode up to 500 cycles are shown in FIG. In Comparative Example 3, it can be seen that the resistance value after exceeding 400 cycles rises more than in Example 6, and increases and decreases significantly from a point near 500 cycles. This indicates that in the negative electrode of Comparative Example 3, a crack was generated in the negative electrode active material layer, or the negative electrode active material layer was peeled off from the current collector to significantly reduce the conductivity.
 (実施例7~10及び比較例4)
 <電極密度測定>
 活物質として、スパン2.0、D50が2μmのSiO(アルドリッチ社製)、スパン1.1、D50が5μmのSiO(アルドリッチ社製)、スパン1.2、D50が10μmのSiO(アルドリッチ社製)、スパン1.2、D50が15μmのSiO(アルドリッチ社製)及びスパン1.4、D50が20μmのSiO(アルドリッチ社製)を準備した。
(Examples 7 to 10 and Comparative Example 4)
<Electrode density measurement>
As an active material, span 2.0, D (manufactured by Aldrich) 50 2μm of SiO, span 1.1, D (manufactured by Aldrich) 50 5μm of SiO, span 1.2, D 50 is 10μm of SiO ( An Aldrich company, a span 1.2, a SiO 2 with a D 50 of 15 μm (manufactured by Aldrich) and a SiO 2 with a span 1.4 and a D 50 of 20 μm (manufactured by Aldrich) were prepared.
 バインダー樹脂としてアルコキシ基含有シラン変性ポリアミドイミド樹脂(荒川化学工業株式会社製、商品名コンポセラン、品番H901-2、溶剤組成:N-メチルピロリドン(NMP)/キシレン(Xyl)、硬化残分30%、粘度8000mPa・s、硬化残分中のシリカ、2質量%、硬化残分とは樹脂硬化させ揮発性成分を除いた固形分を意味する)を準備した。 Alkoxy group-containing silane-modified polyamideimide resin (Arakawa Chemical Industries, Ltd., trade name: Compoceran, product number H901-2, solvent composition: N-methylpyrrolidone (NMP) / xylene (Xyl), 30% of curing residue, as a binder resin) A viscosity of 8000 mPa · s, silica in the curing residue, 2% by mass, and the curing residue means solid content obtained by curing the resin and removing volatile components).
 緩衝材として、D50が10μmの塊状人造黒鉛“MAG(Massive
 Artificial Graphite)”(日立化成工業株式会社製)及びD50が20μmの塊状人造黒鉛“MAG(Massive Artificial Graphite)”(日立化成工業株式会社製)を準備した。
Bulk artificial graphite “MAG (Massive) with D 50 of 10 μm as buffer material
Artificial Graphite) (manufactured by Hitachi Chemical Co., Ltd.) and massive artificial graphite “MAG (Massive Artificial Graphite)” (manufactured by Hitachi Chemical Co., Ltd.) having a D 50 of 20 μm were prepared.
 導電助剤としてケッチェンブラックインターナショナル社製のKB(ケッチェンブラック)を準備した。 A KB (Ketjen black) manufactured by Ketchen Black International Co., Ltd. was prepared as a conduction aid.
 リチウムイオン二次電池用負極を以下のように作製した。 The negative electrode for lithium ion secondary batteries was produced as follows.
 上記活物質、緩衝材、導電助剤及びバインダー樹脂を、SiO粉末:黒鉛粉末:導電助剤:バインダー樹脂=40:42:3:15の質量比で混合した。黒鉛粉末の質量とSiOx粉末の質量を合計したものを100質量%としたときに、黒鉛粉末の配合量は44質量%である。上記混合物に、溶媒としてNMPを適量入れて調整してスラリーとした。 The active material, the buffer material, the conductive auxiliary agent, and the binder resin were mixed at a mass ratio of SiO powder: graphite powder: conductive auxiliary agent: binder resin = 40: 42: 3: 15. When the sum of the mass of the graphite powder and the mass of the SiO x powder is 100% by mass, the blending amount of the graphite powder is 44% by mass. An appropriate amount of NMP as a solvent was added to the above mixture to prepare a slurry.
 厚さ20μmの電解銅箔に上記スラリ-をのせて、ドクターブレードを用いて電解銅箔にスラリーを膜状に塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した後、ロ-ルプレス機により、線圧40Kg/cmで集電体と集電体上の塗布物を強固に密着接合させた。接合物を200℃で2時間、真空乾燥機で加熱し、所定の形状(26mm×31mmの矩形状)に切り取り、厚さ18μm程度の電極とした。 The slurry was placed on an electrolytic copper foil having a thickness of 20 μm, and the slurry was applied in a film form on the electrolytic copper foil using a doctor blade. The obtained sheet is dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then the current collector and the coated product on the current collector are firmly adhered and bonded with a roll press at a linear pressure of 40 kg / cm. I did. The bonded product was heated at 200 ° C. for 2 hours in a vacuum dryer, cut into a predetermined shape (26 mm × 31 mm rectangular shape), and used as an electrode having a thickness of about 18 μm.
 SiO粉末と黒鉛粉末の粒径比を変え、後の条件は同じにして試験例1~7の負極を作製し、その電極密度を測定した。電極密度は作製した各電極の質量及び体積を測定し、集電体の質量及び体積を除いて電極密度=(集電体を除いた電極の質量)/(集電体を除いた電極の体積)の式により計算で求めた。また黒鉛粉末の活物質層における充填率(%)を黒鉛充填率=(黒鉛の質量/黒鉛の真密度)/(集電体を除いた電極の体積)×100の式から求めた。結果を表1にまとめた。 The particle size ratio of the SiO powder and the graphite powder was changed, and the conditions thereafter were the same. Negative electrodes of Test Examples 1 to 7 were produced, and the electrode density was measured. The electrode density is determined by measuring the mass and volume of each of the prepared electrodes, and excluding the mass and volume of the current collector, electrode density = (mass of electrode excluding current collector) / (volume of electrode excluding current collector) Calculated by the equation of The filling factor (%) in the active material layer of the graphite powder was determined from the formula: graphite filling factor = (mass of graphite / true density of graphite) / (volume of electrode excluding current collector) × 100. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1の結果から電極密度と粒径比を比較したグラフを図11に示す。表1及び図11からわかるように、粒径比が0.25~0.5である試験例2、試験例3、試験例6は、粒径比が0.1、0.75、または1である試験例1、試験例4、試験例5及び試験例7に比べて電極密度が高くなっていることがわかった。また試験例3と試験例6は同じ粒径比であるが、電極密度は試験例3のほうが高くなった。これは試験例3と試験例6では黒鉛粒径D50が試験例6のほうが小さいため、電極が嵩高くなり、試験例6のほうが電極の体積が大きくなったためであると考えられる。 The graph which compared electrode density and particle size ratio from the result of this Table 1 is shown in FIG. As can be seen from Table 1 and FIG. 11, Test Example 2, Test Example 3 and Test Example 6 in which the particle size ratio is 0.25 to 0.5 have a particle size ratio of 0.1, 0.75, or 1 The electrode density was found to be higher than that of Test Example 1, Test Example 4, Test Example 5 and Test Example 7 that are. In addition, although the particle size ratio of Test Example 3 and Test Example 6 was the same, the electrode density was higher in Test Example 3. This is considered to be because the electrode in the test example 6 and the test example 6 is bulky because the graphite particle diameter D 50 is smaller in the test example 6 and the volume of the electrode in the test example 6 is larger.
 試験例4、試験例5及び試験例7のように粒径比が0.75または1のように大きいものは、SiO粉末が黒鉛粉末の形成する空隙に配置されず、空隙が多くなり、負極の体積が増加して電極密度が下がったと考えられる。試験例1のように粒径比が0.1と小さいものは、SiOが凝集するため負極の体積が増加して電極密度が下がると考えられる。 When the particle size ratio is as large as 0.75 or 1 as in Test Example 4, Test Example 5 and Test Example 7, the SiO powder is not disposed in the void formed by the graphite powder, and the void is increased. It is considered that the electrode density increased due to an increase in the volume of It is considered that when the particle size ratio is as small as 0.1 as in Test Example 1, the volume of the negative electrode increases and the electrode density decreases because SiO is aggregated.
 試験例1~7は、同じ線圧を用いて圧縮成形しているため、電極密度が高いものが、黒鉛粉末が形成する空隙内にSiO粉末が配置され、かつSiO粉末が膨張しても、SiO粉末及び黒鉛粉末が負極活物質層の厚み方向には膨らまないように幅方向にずれ、再度黒鉛粉末が形成する空隙内にSiO粉末が配置される状態であるとみなすことができる。 In Test Examples 1 to 7, since compression molding is performed using the same linear pressure, even if the SiO powder is disposed in the void formed by the graphite powder and the SiO powder is expanded, the electrode density is high, It can be considered that the SiO powder and the graphite powder are displaced in the width direction so as not to expand in the thickness direction of the negative electrode active material layer, and the SiO powder is disposed again in the voids formed by the graphite powder.
 また電極密度が高いものは、黒鉛充填率も高くなっており、試験例1~試験例7の結果からは、粒径比が0.25~0.5である試験例2、試験例3、試験例6は、粒径比が0.1、0.75、または1である試験例1、試験例4、試験例5及び試験例7に比べて黒鉛充填率が高く24.2%以上になっていることがわかった。 Further, in the case where the electrode density is high, the graphite filling rate is also high, and from the results of Test Example 1 to Test Example 7, Test Example 2, Test Example 3, where the particle size ratio is 0.25 to 0.5. Test Example 6 has a graphite packing ratio higher than that of Test Example 1, Test Example 4, Test Example 5 and Test Example 7 having a particle size ratio of 0.1, 0.75, or 1 of 24.2% or more. It turned out that it became.
 黒鉛粒径が20μmである試験例1と試験例2の電極密度を比較すると、試験例2のほうが0.06g/cm電極密度が高くなった。電極密度が高くなれば、電池容積あたりの電力容量であるエネルギー密度(Wh/L)も高くなる。従って試験例2のほうが試験例1に比べて約5%、エネルギー密度(すなわち電気容量)が高くなったといえる。(5(%)=0.06(電極密度差分)÷1.17(試験例1の電極密度)×100)。 Comparing the electrode densities of Test Example 1 and Test Example 2 in which the graphite particle size is 20 μm, the electrode density of 0.06 g / cm 3 in Test Example 2 is higher. As the electrode density increases, the energy density (Wh / L), which is the power capacity per battery volume, also increases. Accordingly, it can be said that the energy density (i.e., the electric capacity) of Test Example 2 is about 5% higher than that of Test Example 1. (5 (%) = 0.06 (electrode density difference) / 1.17 (electrode density of Test Example 1) x 100).
 ここで、試験例2の断面を走査型電子顕微鏡(SEM)で観察した。SEM写真を図13に示す。図13からSiO7は黒鉛6の形成する空隙に配置され、なおかつその空隙には再配置できる余地があることが観察できた。黒鉛6はその層状構造がすべって弾性変形していることが観察された。また、図13から、電解液が含浸する空間が充分確保され、かつ導電性ネットワークもしっかり形成していることが観察できた。 Here, the cross section of Test Example 2 was observed with a scanning electron microscope (SEM). The SEM photograph is shown in FIG. It was observed from FIG. 13 that SiO7 was disposed in the void formed by the graphite 6, and the void had room to be relocated. Graphite 6 was observed to be elastically deformed due to its layered structure sliding. Further, it can be observed from FIG. 13 that the space impregnated with the electrolytic solution is sufficiently secured, and the conductive network is also firmly formed.
 次に試験例2及び試験例4の負極を用いて、ラミネート型リチウムイオン二次電池を作製し、充放電を行って初期効率と電極膨張の膨張倍率を測定した。 Next, using the negative electrodes of Test Example 2 and Test Example 4, a laminate-type lithium ion secondary battery was produced, charge and discharge were performed, and the initial efficiency and the expansion ratio of electrode expansion were measured.
 <ラミネート型リチウムイオン二次電池作製>
 (実施例7)
 試験例2の電極を負極とした。正極の集電体として20μmのアルミニウム箔を用意し、正極活物質としてLiMnOを用意し、正極のバインダー樹脂としてポリフッ化ビニリデン(PVDF)を用意した。
<Production of laminate type lithium ion secondary battery>
(Example 7)
The electrode of Test Example 2 was a negative electrode. An aluminum foil of 20 μm was prepared as a current collector of the positive electrode, Li 2 MnO 3 was prepared as a positive electrode active material, and polyvinylidene fluoride (PVDF) was prepared as a binder resin of the positive electrode.
 正極活物質であるLiMnOは以下のように作製した。 Li 2 MnO 3 which is a positive electrode active material was produced as follows.
 溶融塩原料として0.20molの水酸化リチウム一水和物LiOH・HO(8.4g)と、金属化合物原料として0.02molの二酸化マンガンMnO(1.74g)と、を混合して原料混合物を調製した。このとき、目的生成物がLiMnOであることから、二酸化マンガンのMnが全てLiMnOに供給されたと仮定して、(目的生成物のLi)/(溶融塩原料のLi)は、0.04mol/0.2mol=0.2であった。 Mix 0.20 mol of lithium hydroxide monohydrate LiOH · H 2 O (8.4 g) as a molten salt raw material and 0.02 mol of manganese dioxide MnO 2 (1.74 g) as a metal compound raw material The raw material mixture was prepared. At this time, assuming that all Mn of manganese dioxide is supplied to Li 2 MnO 3 , the target product is Li 2 MnO 3 , and (Li of target product) / (Li of molten salt raw material) is And 0.04 mol / 0.2 mol = 0.2.
 原料混合物を坩堝にいれて、700℃の電気炉内に移し、真空中700℃で2時間加熱した。このとき原料混合物は融解して溶融塩となり、黒色の生成物が沈殿していた。 The raw material mixture was poured, transferred into an electric furnace at 700 ° C., and heated at 700 ° C. in vacuum for 2 hours. At this time, the raw material mixture was melted to form a molten salt, and a black product was precipitated.
 次に、溶融塩の入った坩堝を電気炉内で室温まで冷却後、電気炉から取り出した。溶融塩が十分に冷却されて固体化した後、坩堝ごと200mLのイオン交換水に浸し、攪拌することで、固体化した溶融塩を水に溶解した。黒色の生成物は水に不溶性であるため、水は黒色の懸濁液となった。黒色の懸濁液を濾過すると、透明な濾液と、濾紙上に黒色固体の濾物と、が得られた。得られた濾物をさらにアセトンを用いて十分に洗浄しながら濾過した。洗浄後の黒色固体を120℃で12時間、真空乾燥した後、乳鉢と乳棒を用いて粉砕した。 Next, the crucible containing the molten salt was cooled to room temperature in the electric furnace and then taken out of the electric furnace. After the molten salt was sufficiently cooled and solidified, it was immersed in 200 mL of ion-exchanged water with stirring, whereby the solidified molten salt was dissolved in water. The water became a black suspension because the black product was insoluble in water. The black suspension was filtered to give a clear filtrate and a filter cake of black solid on filter paper. The resulting filtrate was filtered with thorough washing with acetone. The washed black solid was vacuum dried at 120 ° C. for 12 hours and then crushed using a mortar and pestle.
 得られた黒色粉末についてCuKα線を用いたX線回折(XRD)測定を行った。XRDによれば、得られた黒色粉末は層状岩塩構造であることがわかった。また、発光分光分析(ICP)および酸化還元滴定によるMnの平均価数分析から、得られた黒色粉末の組成はLiMnOであると確認された。 The X-ray diffraction (XRD) measurement using CuK alpha ray was performed about the obtained black powder. According to XRD, it was found that the obtained black powder had a layered rock salt structure. Further, the composition of the obtained black powder was confirmed to be Li 2 MnO 3 from emission spectral analysis (ICP) and mean valence number analysis of Mn by redox titration.
 上記正極の集電体、正極活物質、正極のバインダー樹脂を用い、負極と同様な方法で正極を作成した。 Using the current collector of the positive electrode, the positive electrode active material, and the binder resin of the positive electrode, a positive electrode was prepared in the same manner as the negative electrode.
 上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合した溶媒に1モルのLiPFを溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、試験例2の電極を用いたラミネート型のリチウムイオン二次電池を得た。これを実施例7のリチウムイオン二次電池とする。 A laminated lithium ion secondary battery was manufactured using the above positive electrode and negative electrode. Specifically, a rectangular sheet (27 × 32 mm, 25 μm thick) made of polypropylene resin as a separator is sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. A solution in which 1 mole of LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in EC: DEC = 3: 7 (volume ratio) was used as an electrolytic solution. After that, the remaining one side was sealed, and the four sides were airtightly sealed, to obtain a laminate type lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. The positive electrode and the negative electrode are provided with a tab electrically connectable to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, a laminate-type lithium ion secondary battery using the electrode of Test Example 2 was obtained. The resulting battery is referred to as the lithium ion secondary battery of Example 7.
 (比較例4)
 試験例4の電極を負極とした以外は実施例7と同様にして比較例4のリチウムイオン二次電池を得た。
(Comparative example 4)
A lithium ion secondary battery of Comparative Example 4 was obtained in the same manner as Example 7 except that the electrode of Test Example 4 was changed to the negative electrode.
 <充放電試験評価>
 実施例7及び比較例4のリチウムイオン二次電池について、25℃にて充放電試験を行った。充放電試験は、0.1Cで4.5VまでCCCV充電(定電流定電圧充電)を行い正極活物質を活性化させた後、0.01Cの電流値まで4.5V一定電圧で充電を行った。放電は2Vまで1Cで行った。この時、電気容量を1時間で放電する電流を1C、5時間で放電する電流を0.2Cと表す。従って1Cの電流値は0.2Cの電流値の5倍である。
<Evaluation of charge and discharge test>
About the lithium ion secondary battery of Example 7 and Comparative Example 4, the charging / discharging test was done at 25 degreeC. In the charge and discharge test, CCCV charging (constant current constant voltage charging) is performed at 0.1 C to 4.5 V to activate the positive electrode active material, and then charging is performed at a constant voltage of 4.5 V to a current value of 0.01 C The Discharge was done at 1 C up to 2V. At this time, the current for discharging the electric capacity in one hour is represented as 1 C, and the current for discharging in 5 hours is represented as 0.2 C. Therefore, the 1C current value is five times the 0.2C current value.
 充電前の電極厚みを測定し、充電後の電極厚みを測定し、膨張倍率を計算した。この時充電後の電極厚みは、充電後に電池を分解して電極の厚みを測定したものである。また、最初の充電容量に対する放電容量の割合を初期効率として求めた。 The electrode thickness before charging was measured, the electrode thickness after charging was measured, and the expansion ratio was calculated. At this time, the thickness of the electrode after charging was obtained by decomposing the battery after charging and measuring the thickness of the electrode. Also, the ratio of the discharge capacity to the initial charge capacity was determined as the initial efficiency.
 その結果、比較例4のリチウムイオン二次電池は、初期効率が75%、電極の膨張倍率が2.1倍であったのに対し、実施例7のリチウムイオン二次電池は、初期効率が80.5%、電極の膨張倍率が1.1倍と、大幅に電極膨張を抑制でき、初期効率の劣化を抑制できた。 As a result, while the lithium ion secondary battery of Comparative Example 4 had an initial efficiency of 75% and an electrode expansion ratio of 2.1 times, the lithium ion secondary battery of Example 7 had an initial efficiency of The electrode expansion can be greatly suppressed to 80.5% and the expansion ratio of the electrode is 1.1 times, and deterioration of the initial efficiency could be suppressed.
 またこの電池は活性化時に4.5V以上の電圧をかけた、より電極が膨張する条件で行っており、電圧が低電圧においても、同様の効果が得られると考える。また試験例2の負極を用いた実施例7のリチウムイオン二次電池の結果は、試験例3及び試験例6の負極を用いても同様な結果が出ると思われる。 Further, this battery is operated under the condition that the electrode is expanded by applying a voltage of 4.5 V or more at the time of activation, and it is considered that the same effect can be obtained even at a low voltage. The results of the lithium ion secondary battery of Example 7 using the negative electrode of Test Example 2 are considered to give similar results even when using the negative electrodes of Test Example 3 and Test Example 6.
 比較例4の電極の膨張倍率2.1倍は、SiO粉末の膨張によってバインダーとSiO粉末とが剥離を起こし、そこに電解液が入り込んで、電極の厚みがさらに膨張したと考えられる。また電極の厚みは、充電後の電池を分解して電極を取り出してから測定しているので、電池内部ではこれほど膨張してはいない。 The expansion ratio of the SiO powder causes peeling of the binder and the SiO powder due to the expansion ratio of the electrode of Comparative Example 4 of 2.1 times, so that the electrolyte solution enters therein and the thickness of the electrode further expands. In addition, the thickness of the electrode is measured after disassembling the battery after charging and taking out the electrode, so the inside of the battery is not expanded so much.
 このように上記リチウムイオン二次電池用負極を用いることによって大幅に負極全体の膨張を抑制することができ、実施例7のリチウムイオン二次電池は初期効率の劣化を抑制できた。 As described above, by using the above-described negative electrode for a lithium ion secondary battery, the expansion of the entire negative electrode can be largely suppressed, and the lithium ion secondary battery of Example 7 can suppress the deterioration of the initial efficiency.
 <サイクル試験評価>
 負極のSiO粉末と黒鉛粉末の配合比率を変えた以外は実施例7と同様にして以下の実施例8~10のリチウムイオン二次電池を作製し、サイクル試験を行った。
<Cycle test evaluation>
Lithium ion secondary batteries of Examples 8 to 10 below were produced in the same manner as in Example 7 except that the compounding ratio of the SiO powder of the negative electrode and the graphite powder was changed, and the cycle test was conducted.
 (実施例8)
 負極をSiO粉末:黒鉛粉末:導電助剤:バインダー樹脂=32:50:3:15の質量比で混合して作成した以外は実施例7と同様にして、実施例8のリチウムイオン二次電池を作製した。実施例8において黒鉛粉末の質量とSiO粉末の質量を合計したものを100質量%としたときに黒鉛粉末の配合量は60.9質量%にあたる。黒鉛充填率は29.3%であった。実際の黒鉛充填率の計算方法を示す。表1の試験例2の結果から、電極密度が1.23g/cmであるので、電極体積が1cmとして計算すると、1.23g(電極重量)×50%(質量比)=0.615g、黒鉛充填率は、0.615g/1cm/(2.1g/cm)(黒鉛真密度)×100=29.3%となる。
(Example 8)
A lithium ion secondary battery of Example 8 in the same manner as Example 7 except that the negative electrode was prepared by mixing in a mass ratio of SiO powder: graphite powder: conductive auxiliary agent: binder resin = 32: 50: 3: 15. Was produced. The blending amount of the graphite powder corresponds to 60.9 mass% when the sum of the mass of the graphite powder and the mass of the SiO powder in Example 8 is 100 mass%. The graphite filling rate was 29.3%. The calculation method of the actual graphite filling rate is shown. Since the electrode density is 1.23 g / cm 3 from the results of Test Example 2 in Table 1, the electrode volume is calculated to be 1 cm 3 , 1.23 g (electrode weight) × 50% (mass ratio) = 0.615 g The graphite packing ratio is 0.615 g / 1 cm 3 /(2.1 g / cm 3 ) (graphite true density) × 100 = 29.3%.
 (実施例9)
 負極をSiO粉末:黒鉛粉末:導電助剤:バインダー樹脂=42:40:3:15の質量比で混合して作成した以外は実施例7と同様にして、実施例9のリチウムイオン二次電池を作製した。実施例9において黒鉛粉末の質量とSiO粉末の質量を合計したものを100質量%としたときに黒鉛粉末の配合量は48.8質量%にあたる。黒鉛充填率は23.4%であった。
(Example 9)
A lithium ion secondary battery of Example 9 in the same manner as Example 7 except that the negative electrode was prepared by mixing in a mass ratio of SiO powder: graphite powder: conductive auxiliary agent: binder resin = 42: 40: 3: 15. Was produced. The blending amount of the graphite powder corresponds to 48.8 mass% when the sum of the mass of the graphite powder and the mass of the SiO powder in Example 9 is 100 mass%. The graphite loading was 23.4%.
 (実施例10)
 負極をSiO粉末:黒鉛粉末:導電助剤:バインダー樹脂=52:30:3:15の質量比で混合して作成した以外は実施例7と同様にして、実施例10のリチウムイオン二次電池を作製した。実施例10において黒鉛粉末の質量とSiO粉末の質量を合計したものを100質量%としたときに黒鉛粉末の配合量は36.6質量%にあたる。黒鉛充填率は17.6%であった。
(Example 10)
The lithium ion secondary battery of Example 10 was prepared in the same manner as Example 7, except that the negative electrode was prepared by mixing in a mass ratio of SiO powder: graphite powder: conductive auxiliary agent: binder resin = 52: 30: 3: 15. Was produced. In Example 10, when the sum of the mass of the graphite powder and the mass of the SiO powder is 100% by mass, the blending amount of the graphite powder corresponds to 36.6% by mass. The graphite loading was 17.6%.
 (サイクル試験条件)
 サイクル試験は60℃の恒温槽中で充電電流2Cで4.2VまでCC充電し、10分休止後、2Cで2VまでCC放電することを1サイクルとし、150サイクル行った。サイクルごとの放電容量維持率(%)を求めた。放電電流容量維持率(%)は以下の式で求めた。
 放電電流容量維持率(%)=(各サイクルの放電電流容量/初回の放電電流容量)×100
 結果を図12に記載する。図12は実施例8~10のサイクル試験結果を示すグラフである。
(Cycle test conditions)
In the cycle test, 150 cycles of CC charging up to 4.2 V at a charge current of 2 C in a constant temperature bath at 60 ° C. and CC discharging up to 2 V at 2 C after 10 minutes of rest were carried out for 150 cycles. The discharge capacity maintenance rate (%) for each cycle was determined. The discharge current capacity retention rate (%) was determined by the following equation.
Discharge current capacity retention rate (%) = (Discharge current capacity of each cycle / Initial discharge current capacity) x 100
The results are described in FIG. FIG. 12 is a graph showing the cycle test results of Examples 8 to 10.
 実施例8~10はともにサイクル数70回程度までは、放電容量維持率が85%以上あるサイクル特性の優れたものであった。100サイクル目まで実施例8~10はともに75%以上の放電容量維持率を有していた。150サイクル目において、実施例8は放電容量維持率が50%まで落ちてしまったが、実施例9及び10は放電容量維持率を70%程度まで維持していた。従って実施例8~10はいずれも放電容量維持率が高く、ともに100サイクル目までのサイクル特性が優れているといえる。 Examples 8 to 10 were all excellent in cycle characteristics with a discharge capacity retention ratio of 85% or more up to about 70 cycles. Examples 8 to 10 had the discharge capacity retention rate of 75% or more until the 100th cycle. At the 150th cycle, the discharge capacity retention rate of Example 8 dropped to 50%, but Examples 9 and 10 maintained the discharge capacity retention rate to about 70%. Accordingly, it can be said that all of Examples 8 to 10 have high discharge capacity retention rates and excellent cycle characteristics up to the 100th cycle.
 上記の結果から、黒鉛粉末の質量とSiO粉末の質量を合計したものを100質量%としたときに黒鉛粉末の配合量が36質量%~61質量%であると、電極容量とサイクル特性の両方を兼ね備えたリチウムイオン二次電池とすることが出来た。また黒鉛粉末の配合量が36質量%~49質量%であると特にサイクル特性の劣化を抑制した電極とすることが出来た。 From the above results, when the total of the mass of the graphite powder and the mass of the SiO powder is 100% by mass, the electrode powder and the cycle characteristic both have to be 36 mass% to 61 mass% of the compounding amount of the graphite powder. It was possible to make a lithium ion secondary battery that Further, when the blending amount of the graphite powder is 36% by mass to 49% by mass, it is possible to obtain an electrode in which deterioration of cycle characteristics is particularly suppressed.
 本発明の実施例7~10のリチウムイオン二次電池は、電極厚みの膨張を抑制でき、さらに電気容量及びサイクル特性に関しても優れた結果が得られた。 The lithium ion secondary batteries of Examples 7 to 10 of the present invention were able to suppress the expansion of the electrode thickness, and also obtained excellent results regarding the electric capacity and the cycle characteristics.
 (実施例11~17及び比較例5)
 (比較例5)
 <リチウムイオン二次電池用負極の作製>
 先ずSiO粉末を900℃で2時間熱処理し、D50が6.5μmのSiO粉末を調製した。この熱処理によって、SiとOとの比が概ね1:1の均質な固体のSiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。すなわち得られたSiO粉末は、SiO粒子の集合体であり、このSiO粒子は、SiOのマトリックス中に微細なSi粒子が分散した構造となっている。
(Examples 11 to 17 and Comparative Example 5)
(Comparative example 5)
<Fabrication of negative electrode for lithium ion secondary battery>
First, the SiO powder was heat treated at 900 ° C. for 2 hours to prepare a SiO x powder having a D 50 of 6.5 μm. By this heat treatment, if the ratio of Si to O is a homogeneous solid SiO of about 1: 1, it is separated into two phases of Si phase and SiO 2 phase by internal reaction of the solid. The Si phase obtained by separation is very fine. That is, the obtained SiO x powder is an aggregate of SiO x particles, and the SiO x particles have a structure in which fine Si particles are dispersed in a matrix of SiO 2 .
 このSiO粉末と、導電助剤としてのアセチレンブラック(AB)と、天然黒鉛と、バインダー樹脂としてのポリアミドイミド(PAI)を有機溶媒であるN-メチルピロリドン(NMP)に溶解させたものと、とを混合し、スラリー状の負極材料を調製した。このとき各材料は、PAIをNMPに溶解させたものに、AB、SiO、黒鉛の順に加えた。ABとしては、真密度1.8g/cm、一次粒子径(メディアン径、D50)11~18nm、BET値180m/gのものを用いた。黒鉛としては、日立化成工業株式会社製、粒子径(メディアン径、D50)9.2μmのものを用いた。PAIとしては、荒川化学工業株式会社製、商品名コンポセランAIシリーズ、品番AI-301を用いた。負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=22:60:3:15(質量比)であった。 A solution of this SiO x powder, acetylene black (AB) as a conductive additive, natural graphite, and polyamideimide (PAI) as a binder resin in N-methylpyrrolidone (NMP) as an organic solvent, Were mixed to prepare a slurry-like negative electrode material. At this time, each material was added in the order of AB, SiO and graphite to a solution of PAI in NMP. As AB, one having a true density of 1.8 g / cm 3 , a primary particle diameter (median diameter, D 50 ) of 11 to 18 nm, and a BET value of 180 m 2 / g was used. As graphite, one having a particle diameter (median diameter, D 50 ) of 9.2 μm manufactured by Hitachi Chemical Co., Ltd. was used. As PAI, Arakawa Chemical Industries, Ltd. make, brand name Compoceran AI series, and product number AI-301 were used. The composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 22: 60: 3: 15 (mass ratio).
 なお、比較例5で用いたSiOのBET値a1は6.5574m/g、黒鉛のBET値a2は3.8162m/gであり、SiOの配合量b1は22g、黒鉛の配合量b2が60gであり、導電助剤であるABの配合量cは3gであった。したがって、{(a1×b1)+(a2×b2)}/cに各数値を代入した値、すなわち、導電助剤の質量を基準とし、負極活物質と黒鉛との表面積と導電助剤との関係を表す値は124.4であった。 The BET value a1 of SiO x used in Comparative Example 5 is 6.5574 m 2 / g, the BET value a 2 of graphite is 3.8162 m 2 / g, the blending amount b 1 of SiO x is 22 g, the blending amount of graphite The b2 was 60 g, and the compounding amount c of AB as the conduction aid was 3 g. Therefore, values obtained by substituting the respective values into {(a1 × b1) + (a2 × b2)} / c, that is, the mass of the conductive aid, and the surface area of the negative electrode active material and graphite and the conductive aid The value representing the relationship was 124.4.
 なお、比較例5で用いたABの真密度は1.8g/cmであった。この数値を基に換算したABの配合量dは3/1.8=1.67cmである。したがって、{(a1×b1)+(a2×b2)}/dに各数値を代入した値、すなわち、導電助剤の体積を基準とし、負極活物質と黒鉛との表面積の和と導電助剤との関係を表す値は223.6であった。比較例5の負極材料の組成、および、後述する実施例11~実施例17の負極材料の組成を下記の表2に示す。 The true density of AB used in Comparative Example 5 was 1.8 g / cm 3 . The blending amount d of AB converted based on this numerical value is 3 / 1.8 = 1.67 cm 3 . Therefore, the value obtained by substituting each value into {(a1 × b1) + (a2 × b2)} / d, that is, based on the volume of the conductive aid, the sum of the surface area of the negative electrode active material and graphite and the conductive aid The value representing the relationship with was 223.6. The composition of the negative electrode material of Comparative Example 5 and the compositions of the negative electrode materials of Examples 11 to 17 described later are shown in Table 2 below.
 上記の手順で得られた負極材料のスラリーを集電体に塗布し、集電体上に負極材料層を積層形成した。具体的には、ドクターブレードを用いてこのスラリーを厚さ20μmの電解銅箔(集電体)の表面に塗布した。 The slurry of the negative electrode material obtained by the above procedure was applied to a current collector, and a negative electrode material layer was formed on the current collector. Specifically, this slurry was applied to the surface of a 20 μm-thick electrolytic copper foil (current collector) using a doctor blade.
 得られた積層体を80℃で15分間乾燥し、負極材料層から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、電極密度を調整した。その後、真空乾燥炉にて200℃で2時間加熱硬化させて、集電体の上層に厚さ15μm程度の負極材料層(固形分)を形成した。その後、自然冷却する事で比較例5の負極を得た。 The resulting laminate was dried at 80 ° C. for 15 minutes to volatilize and remove the organic solvent from the negative electrode material layer. After drying, the electrode density was adjusted by a roll press. After that, heat curing was performed at 200 ° C. for 2 hours in a vacuum drying furnace to form a negative electrode material layer (solid content) having a thickness of about 15 μm on the upper layer of the current collector. After that, the negative electrode of Comparative Example 5 was obtained by natural cooling.
 <正極の作製>
 正極活物質としてのL333(Li[Mn1/3Ni1/3Co1/3]O)と、導電助剤としてのアセチレンブラック(AB)と、バインダー樹脂としてのポリフッ化ビニリデン(PVDF)と、を混合し、スラリー状の正極材料を調製した。スラリー中の各成分(固形分)の組成比は、L333:AB:PVDF=88:6:6(質量比)であった。このスラリーを集電体に塗布し、集電体上に正極材料層を積層形成した。具体的には、ドクターブレードを用いてこのスラリーを厚さ20μmのアルミニウム箔(集電体)の表面に塗布した。
<Fabrication of positive electrode>
L333 (Li 1 [Mn 1/3 Ni 1/3 Co 1/3 ] O 2 ) as a positive electrode active material, acetylene black (AB) as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder resin And were mixed to prepare a slurry-like positive electrode material. The composition ratio of each component (solid content) in the slurry was L333: AB: PVDF = 88: 6: 6 (mass ratio). The slurry was applied to a current collector, and a positive electrode material layer was laminated on the current collector. Specifically, this slurry was applied to the surface of a 20 μm thick aluminum foil (current collector) using a doctor blade.
 その後、80℃で20分間乾燥し、正極材料層から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、電極密度を調整した。これを真空乾燥炉にて200℃で2時間加熱硬化させて、集電体の上層に厚さ50μm程度の正極材料層(固形分)が積層されてなる正極を得た。 Thereafter, the resultant was dried at 80 ° C. for 20 minutes to volatilize and remove the organic solvent from the positive electrode material layer. After drying, the electrode density was adjusted by a roll press. The resultant was heat-cured at 200 ° C. for 2 hours in a vacuum drying furnace to obtain a positive electrode in which a positive electrode material layer (solid content) having a thickness of about 50 μm was laminated on the upper layer of the current collector.
 <リチウムイオン二次電池の作製>
 正極を30mm×25mm、負極を31mm×26mmに裁断し、ラミネートフィルムで収容した。この正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(40mm×40mm角、厚さ30μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネートセルを得た。電解液にはFEC(フルオロエチレンカーボネート):EC(エチレンカーボネート):EMC(エチルメチルカーボネート):DMC(ジメチルカーボネート)=0.4:2.6:3:4(体積比)の混合溶液にLiPFを1モル/Lとなる濃度で溶解したものを用いた。
<Fabrication of lithium ion secondary battery>
The positive electrode was cut into a size of 30 mm × 25 mm, and the negative electrode was cut into a size of 31 mm × 26 mm, and the laminate was housed in a laminate film. A rectangular sheet (40 mm × 40 mm square, 30 μm thick) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, and the three sides were sealed, and then the above electrolytic solution was injected into the bag-like laminate film. Then, the remaining one side was sealed, and the four sides were airtightly sealed to obtain a laminate cell in which the electrode plate group and the electrolytic solution were sealed. In the electrolyte solution, LiPF is mixed in a mixed solution of FEC (fluoroethylene carbonate): EC (ethylene carbonate): EMC (ethyl methyl carbonate): DMC (dimethyl carbonate) = 0.4: 2.6: 3: 4 (volume ratio) A solution of 6 at a concentration of 1 mol / L was used.
 正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネートセルの外側に延出した。以上の工程で、ラミネートセル(2極ポーチセル)状のリチウムイオン二次電池を得た。 The positive electrode and the negative electrode were provided with a tab electrically connectable to the outside, and a part of the tab extended to the outside of the laminate cell. Through the above steps, a lithium ion secondary battery in the form of a laminate cell (bipolar pouch cell) was obtained.
 (実施例11)
 実施例11の負極材料は、導電助剤およびバインダー樹脂の配合量以外は比較例5の負極材料と同じものである。実施例11の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=22:60:6:12(質量比)であった。実施例11の負極およびリチウムイオン二次電池は、実施例11の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例11の負極材料および負極において、a1、a2、b1、およびb2は比較例5と同様であり、導電助剤であるABの配合量cは6gであった。したがって、実施例11における{(a1×b1)+(a2×b2)}/cの値(質量基準)は62.2であった。また、ABの配合量dは6/1.8=3.33cmであり、{(a1×b1)+(a2×b2)}/dの値(体積基準)は112.1であった。
(Example 11)
The negative electrode material of Example 11 is the same as the negative electrode material of Comparative Example 5 except for the compounding amounts of the conductive additive and the binder resin. In the negative electrode material of Example 11, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 22: 60: 6: 12 (mass ratio). The negative electrode and the lithium ion secondary battery of Example 11 were manufactured using the negative electrode material of Example 11 in the same manner as in Comparative Example 5. In addition, in the negative electrode material and the negative electrode of Example 11, a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB as a conductive additive was 6 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 11 was 62.2. Further, the compounding amount d of AB was 6 / 1.8 = 3.33 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 112.1.
 (実施例12)
 実施例12の負極材料は、導電助剤およびバインダー樹脂の配合量以外は比較例5の負極材料と同じものである。実施例12の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=22:60:8:10(質量比)であった。実施例12の負極およびリチウムイオン二次電池は、実施例12の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例12の負極材料および負極において、a1、a2、b1およびb2は比較例5と同様であり、ABの配合量cは8gであった。したがって、実施例12における{(a1×b1)+(a2×b2)}/cの値(質量基準)は46.7であった。また、ABの配合量dは8/1.8=4.44cmであり、{(a1×b1)+(a2×b2)}/dの値(体積基準)は84.1であった。
(Example 12)
The negative electrode material of Example 12 is the same as the negative electrode material of Comparative Example 5 except for the blending amounts of the conductive additive and the binder resin. In the negative electrode material of Example 12, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 22: 60: 8: 10 (mass ratio). The negative electrode and the lithium ion secondary battery of Example 12 are manufactured using the negative electrode material of Example 12 in the same manner as in Comparative Example 5. In the negative electrode material and the negative electrode of Example 12, a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB was 8 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 12 was 46.7. Further, the compounding amount d of AB was 8 / 1.8 = 4.44 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 84.1.
 (実施例13)
 実施例13の負極材料は、導電助剤およびバインダー樹脂の配合量以外は比較例5の負極材料と同じものである。実施例13の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=22:60:10:8(質量比)であった。実施例13の負極およびリチウムイオン二次電池は、実施例13の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例13の負極材料および負極において、a1、a2、b1、およびb2は比較例5と同様であり、ABの配合量cは10gであった。したがって、実施例13における{(a1×b1)+(a2×b2)}/cの値(質量基準)は37.3であった。また、ABの配合量dは10/1.8=5.56cmであり{(a1×b1)+(a2×b2)}/dの値(体積基準)は67.1であった。
(Example 13)
The negative electrode material of Example 13 is the same as the negative electrode material of Comparative Example 5 except for the compounding amounts of the conductive additive and the binder resin. In the negative electrode material of Example 13, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 22: 60: 10: 8 (mass ratio). The negative electrode and the lithium ion secondary battery of Example 13 were manufactured using the negative electrode material of Example 13 in the same manner as in Comparative Example 5. In the negative electrode material and the negative electrode of Example 13, a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB was 10 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 13 was 37.3. The compounding amount d of AB was 10 / 1.8 = 5.56 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 67.1.
 (実施例14)
 実施例14の負極材料は、導電助剤およびバインダー樹脂の配合量以外は比較例5の負極材料と同じものである。実施例14の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=22:60:12:6(質量比)であった。実施例14の負極およびリチウムイオン二次電池は、実施例14の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例14の負極材料および負極において、a1、a2、b1、およびb2は比較例5と同様であり、ABの配合量cは12gであった。したがって、実施例14における{(a1×b1)+(a2×b2)}/cの値(質量基準)は31.1であった。また、ABの配合量dは12/1.8=6.67cmであり、{(a1×b1)+(a2×b2)}/dの値(体積基準)は56.0であった。
(Example 14)
The negative electrode material of Example 14 is the same as the negative electrode material of Comparative Example 5 except for the blending amounts of the conductive additive and the binder resin. In the negative electrode material of Example 14, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 22: 60: 12: 6 (mass ratio). The negative electrode and the lithium ion secondary battery of Example 14 were manufactured using the negative electrode material of Example 14 in the same manner as in Comparative Example 5. In the negative electrode material and the negative electrode of Example 14, a1, a2, b1, and b2 were the same as in Comparative Example 5, and the compounding amount c of AB was 12 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 14 was 31.1. The compounding amount d of AB was 12 / 1.8 = 6.67 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 56.0.
 (実施例15)
 実施例15の負極材料は、負極活物質および黒鉛の種類、負極活物質と人造黒鉛と導電助剤とバインダー樹脂の配合量、および、電解液の構成以外は比較例5の負極材料と同じものである。実施例15の負極材料で用いた負極活物質は、比較例5、実施例11~14とは異なるSiOであった。具体的には、実施例15の負極材料で用いたSiOは、比較例5と同様の方法で作製した、粒子径(メディアン径、D50)5.0μmものであった。黒鉛としては比較例5と同様に、日立化成工業株式会社製であり、粒子径(メディアン径、D50)9.2μmのものを用いた。
(Example 15)
The negative electrode material of Example 15 is the same as the negative electrode material of Comparative Example 5 except for the types of the negative electrode active material and graphite, the combined amount of the negative electrode active material, artificial graphite, the conductive additive and the binder resin, and the configuration of the electrolytic solution. It is. The negative electrode active material used in the negative electrode material of Example 15 was SiO X different from Comparative Example 5 and Examples 11 to 14. Specifically, SiO x used in the negative electrode material of Example 15 was a particle size (median diameter, D 50 ) of 5.0 μm manufactured by the same method as Comparative Example 5. As graphite, as in Comparative Example 5, one manufactured by Hitachi Chemical Co., Ltd. and having a particle diameter (median diameter, D 50 ) of 9.2 μm was used.
 実施例15の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=32:50:6:12であった。電解液としては、EC:EMC:DMC=3:3:4(体積比)の混合溶液にLiPFを1モル/Lとなる濃度で溶解したものを用いた。実施例15の負極およびリチウムイオン二次電池は、実施例15の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例15の負極材料および負極において、SiOのBET値a1は2.8029m/g、黒鉛のBET値a2は5.9754m/g、SiOの配合量b1は32g、黒鉛の配合量b2は50g、ABの配合量cは6gであった。したがって、実施例15における{(a1×b1)+(a2×b2)}/cの値(質量基準)は64.7であった。また、ABの配合量dは6/1.8=3.33cmであり、{(a1×b1)+(a2×b2)}/dの値(体積基準)は116.5であった。 In the negative electrode material of Example 15, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 32: 50: 6: 12. As an electrolytic solution, EC: EMC: DMC = 3 : 3: Using 4 that at a concentration of the LiPF 6 is 1 mol / L in a mixed solution (volume ratio). The negative electrode and the lithium ion secondary battery of Example 15 are manufactured using the negative electrode material of Example 15 in the same manner as in Comparative Example 5. In the negative electrode material and the negative electrode of Example 15, the BET value a1 of SiO x is 2.8029 m 2 / g, the BET value a 2 of graphite is 5.9754 m 2 / g, the blending amount b 1 of SiO x is 32 g, The compounding amount b2 was 50 g, and the compounding amount c of AB was 6 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 15 was 64.7. Further, the compounding amount d of AB was 6 / 1.8 = 3.33 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 116.5.
 (実施例16)
 実施例16の負極材料は、導電助剤およびバインダー樹脂の配合量以外は実施例15の負極材料と同じものである。実施例16の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=32:50:8:10であった。実施例16の負極およびリチウムイオン二次電池は、実施例16の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例16の負極材料および負極において、a1、a2、b1及びb2は実施例15と同じであり、ABの配合量cは8gであった。したがって、実施例16における{(a1×b1)+(a2×b2)}/cの値(質量基準)は48.6であった。また、ABの配合量dは8/1.8=4.44cmであり、{(a1×b1)+(a2×b2)}/dの値(体積基準)は87.4であった。
(Example 16)
The negative electrode material of Example 16 is the same as the negative electrode material of Example 15 except for the blending amounts of the conductive additive and the binder resin. In the negative electrode material of Example 16, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 32: 50: 8: 10. The negative electrode and the lithium ion secondary battery of Example 16 are manufactured using the negative electrode material of Example 16 in the same manner as in Comparative Example 5. In the negative electrode material and the negative electrode of Example 16, a1, a2, b1 and b2 were the same as in Example 15, and the compounding amount c of AB was 8 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 16 was 48.6. The compounding amount d of AB was 8 / 1.8 = 4.44 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 87.4.
 (実施例17)
 実施例17の負極材料は、導電助剤およびバインダー樹脂の配合量以外は実施例15の負極材料と同じものである。実施例17の負極材料において、負極材料中の各成分(固形分)の組成比は、SiO:黒鉛:AB:PAI=27:45:14:14であった。実施例17の負極およびリチウムイオン二次電池は、実施例17の負極材料を用い比較例5と同じ方法で製造したものである。なお、実施例17の負極材料および負極において、a1、a2は実施例15と同じであり、b1は27g、b2は45gであり、ABの配合量cは14gであった。したがって、実施例17における{(a1×b1)+(a2×b2)}/cの値(質量基準)は24.6であった。また、ABの配合量dは14/1.8=7.78cmであり、{(a1×b1)+(a2×b2)}/dの値(体積基準)は44.3であった。
(Example 17)
The negative electrode material of Example 17 is the same as the negative electrode material of Example 15 except for the compounding amounts of the conductive additive and the binder resin. In the negative electrode material of Example 17, the composition ratio of each component (solid content) in the negative electrode material was SiO x : graphite: AB: PAI = 27: 45: 14: 14. The negative electrode and the lithium ion secondary battery of Example 17 are manufactured using the negative electrode material of Example 17 in the same manner as in Comparative Example 5. In the negative electrode material and the negative electrode of Example 17, a1 and a2 were the same as in Example 15, b1 was 27 g, b2 was 45 g, and the blending amount c of AB was 14 g. Therefore, the value (mass standard) of {(a1 × b1) + (a2 × b2)} / c in Example 17 was 24.6. Further, the compounding amount d of AB was 14 / 1.8 = 7.78 cm 3 , and the value (volume basis) of {(a1 × b1) + (a2 × b2)} / d was 44.3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  〔充放電試験〕
 比較例5、実施例11~17のリチウムイオン二次電池について、負極活物質1cmあたり16mAとなる電流密度、放電終止電圧3V、充電終止電圧4.2V、温度25℃で繰り返し充放電をおこない、各サイクルにおけるリチウムイオン二次電池の放電容量を測定した。なお、100サイクル目から103サイクル目にかけて、負荷試験をおこなった。各リチウムイオン二次電池のサイクル特性を表すグラフを図16~19に示す。具体的には、図16および図17は、比較例5、実施例11~14のリチウムイオン二次電池のサイクル特性を表すグラフである。図18は実施例15、実施例16のリチウムイオン二次電池のサイクル特性を表すグラフである。図19は、実施例15~実施例17のリチウムイオン二次電池のサイクル特性を表すグラフである。なお、図16および図18の縦軸は放電容量(mAh)を表す。図17および図19の縦軸は放電容量維持率(%)を表す。放電容量維持率とは、1サイクル目における放電容量を100%としたときの各サイクルにおける放電容量(%)を指す。放電容量維持率(%)の低いリチウムイオン二次電池は、充放電の繰り返しに伴う放電容量の低下が大きく、サイクル特性に劣るといえる。
[Charge and discharge test]
The lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 17 are repeatedly charged and discharged at a current density of 16 mA per 1 cm 2 of the negative electrode active material, a discharge termination voltage of 3 V, a charge termination voltage of 4.2 V, and a temperature of 25 ° C. The discharge capacity of the lithium ion secondary battery in each cycle was measured. The load test was performed from the 100th cycle to the 103rd cycle. Graphs showing the cycle characteristics of each lithium ion secondary battery are shown in FIGS. Specifically, FIG. 16 and FIG. 17 are graphs showing the cycle characteristics of the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14. FIG. 18 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Examples 15 and 16. FIG. 19 is a graph showing the cycle characteristics of the lithium ion secondary batteries of Examples 15 to 17. The vertical axes in FIG. 16 and FIG. 18 represent the discharge capacity (mAh). The vertical axes in FIG. 17 and FIG. 19 represent the discharge capacity retention rate (%). The discharge capacity retention rate refers to the discharge capacity (%) in each cycle when the discharge capacity in the first cycle is 100%. A lithium ion secondary battery with a low discharge capacity retention rate (%) has a large decrease in discharge capacity due to repeated charge and discharge, and is thus inferior in cycle characteristics.
 また、比較例5、実施例11~14のリチウムイオン二次電池について、電池残量20%の時の放電開始から10秒後までの電圧変化量をΔV(単位はV)とし、I=3.4×10-3(単位はA)を用い、ΔV/I(単位はΩ)より、直流抵抗の低下量(IRドロップ)を算出した。比較例5、実施例11~14のリチウムイオン二次電池の放電IRドロップを表すグラフを図20に示す。 In addition, for the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14, assuming that the amount of voltage change from 10 seconds after the start of discharge when the battery remaining amount is 20% is ΔV (unit: V), I = 3 .4 × 10 -3 (unit: A) was used to calculate the amount of decrease in direct current resistance (IR drop) from ΔV / I (unit: Ω). A graph showing the discharge IR drop of the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14 is shown in FIG.
 図16に示すように、比較例5、実施例11~14のリチウムイオン二次電池の放電容量(mAh)は、実施例14>実施例13>実施例12>実施例11>比較例5の順で大きかった。この順序は導電助剤の量が多い順である。しかし、図17に示すように、比較例5、実施例11~14のリチウムイオン二次電池の放電容量維持率(%)は、実施例12>実施例11>実施例13>比較例5>実施例14の順に大きかった。換言すると、リチウムイオン二次電池の容量低下は、実施例12>実施例11>実施例13>比較例5>実施例14の順に抑制された。実施例14の放電容量維持率は比較例5の放電容量維持率と同程度であった。この結果から、実施例14は導電助剤を多く含みリチウムイオン二次電池の放電容量を大きく向上でき、かつ、比較例5と同程度に容量低下を抑制できると言える。 As shown in FIG. 16, the discharge capacities (mAh) of the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14 are the same as Example 14> Example 13> Example 12> Example 11> Comparative Example 5. It was big in order. This order is in descending order of the amount of conductive additive. However, as shown in FIG. 17, the discharge capacity retention ratio (%) of the lithium ion secondary batteries of Comparative Example 5 and Examples 11 to 14 is that of Example 12> Example 11> Example 13> Comparative Example 5> The sizes were larger in the order of Example 14. In other words, the capacity reduction of the lithium ion secondary battery was suppressed in the order of Example 12> Example 11> Example 13> Comparative Example 5> Example 14. The discharge capacity retention rate of Example 14 was approximately the same as the discharge capacity retention rate of Comparative Example 5. From this result, it can be said that Example 14 can largely improve the discharge capacity of the lithium ion secondary battery by containing a large amount of the conductive aid, and can suppress the capacity reduction to the same extent as Comparative Example 5.
 上述したように、{(a1×b1)+(a2×b2)}/cの値(すなわち、導電助剤の質量を基準とし、負極活物質と黒鉛との表面積の和と導電助剤との関係を表す値)は、比較例5では124.4、実施例11では62.2、実施例12では46.7、実施例13では37.3、実施例14では31.1であった。このため、放電容量維持率を考慮すると、{(a1×b1)+(a2×b2)}/cの値は、24以上65以下の範囲(すなわち、実施例11~17を含む範囲)である必要があると考えられる。また、{(a1×b1)+(a2×b2)}/cの値は、37以上65以下であるのが好ましく、37.3を超え62.2未満であるのがより好ましいといえる。 As described above, the value of {(a1 × b1) + (a2 × b2)} / c (that is, based on the mass of the conductive aid, the sum of the surface area of the negative electrode active material and graphite and the conductive aid The values representing the relationship were 124.4 in Comparative Example 5, 62.2 in Example 11, 46.7 in Example 12, 37.3 in Example 13, and 31.1 in Example 14. Therefore, considering the discharge capacity retention rate, the value of {(a1 × b1) + (a2 × b2)} / c is in the range of 24 or more and 65 or less (that is, the range including Examples 11 to 17). It is considered necessary. Further, the value of {(a1 × b1) + (a2 × b2)} / c is preferably 37 or more and 65 or less, and more preferably more than 37.3 and less than 62.2.
 また、図18に示すように、実施例15~実施例17のリチウムイオン二次電池の放電容量(mAh)は、実施例16>実施例15の順で大きいが、放電容量維持率(%)は実施例15>実施例16>実施例17の順に大きかった。換言すると、リチウムイオン二次電池の容量低下は、実施例15>実施例16>実施例17の順に抑制された。{(a1×b1)+(a2×b2)}/cの値は、実施例15では64.7、実施例16では48.6、実施例17では24.6であった。また、{(a1×b1)+(a2×b2)}/cの値が24以上65以下の範囲に含まれる実施例15~実施例17のリチウムイオン二次電池は、充分に大きな放電容量維持率(%)を示した。この結果からも、{(a1×b1)+(a2×b2)}/cの値が24以上65以下の範囲に含まれる本発明の負極材料によると、リチウムイオン二次電池における放電容量の低下を大きく抑制できるといえる。また、この結果から、放電容量維持率を向上させ得る{(a1×b1)+(a2×b2)}/cの値の範囲は、負極材料中のSiOの配合割合や電解液の組成にあまり左右されないこともわかる。 In addition, as shown in FIG. 18, the discharge capacity (mAh) of the lithium ion secondary batteries of Examples 15 to 17 is larger in the order of Example 16> Example 15, but the discharge capacity retention ratio (%) Were larger in the order of Example 15> Example 16> Example 17. In other words, the capacity reduction of the lithium ion secondary battery was suppressed in the order of Example 15> Example 16> Example 17. The value of {(a1 × b1) + (a2 × b2)} / c was 64.7 in Example 15, 48.6 in Example 16, and 24.6 in Example 17. In addition, the lithium ion secondary batteries of Examples 15 to 17 in which the value of {(a1 × b1) + (a2 × b2)} / c is included in the range of 24 or more and 65 or less maintain sufficiently large discharge capacity The rate (%) was shown. Also from this result, according to the negative electrode material of the present invention in which the value of {(a1 × b1) + (a2 × b2)} / c is included in the range of 24 or more and 65 or less, the discharge capacity decreases in the lithium ion secondary battery Can be greatly suppressed. Moreover, from this result, the range of the value of {(a1 × b1) + (a2 × b2)} / c that can improve the discharge capacity retention rate depends on the composition ratio of SiO x in the negative electrode material and the composition of the electrolyte. I also know that I am not influenced much.
 なお、実施例15および実施例16のリチウムイオン二次電池の放電容量維持率は、およそ180サイクルが経過した後にも95%程度であった。つまり、実施例15および実施例16のリチウムイオン二次電池は放電容量が特に低下し難かった。この結果から、{(a1×b1)+(a2×b2)}/cの値は37以上65以下であるのが好ましいといえる。また、SiOとしてはBET値6.5m/g以下のものを用い、黒鉛としてはBET値(m/g)3.8以上6.0以下のものを用いるのが好ましいことがわかる。なお、黒鉛のBET値については、3.5以上6.5以下であっても同様の傾向を示す。 The discharge capacity retention ratio of the lithium ion secondary batteries of Example 15 and Example 16 was about 95% even after about 180 cycles had passed. That is, in the lithium ion secondary batteries of Example 15 and Example 16, the discharge capacity was particularly difficult to reduce. From this result, it can be said that the value of {(a1 × b1) + (a2 × b2)} / c is preferably 37 or more and 65 or less. Further, it is understood that it is preferable to use SiO x having a BET value of 6.5 m 2 / g or less and graphite having a BET value (m 2 / g) of 3.8 or more and 6.0 or less. In addition, about the BET value of graphite, the same tendency is shown, even if it is 3.5 or more and 6.5 or less.
 ところで、上述したように、{(a1×b1)+(a2×b2)}/cの値は、24以上65以下の範囲(すなわち、実施例11~17を含む範囲)である必要があると考えられる。この範囲を基に、導電助剤の体積を基準とする{(a1×b1)+(a2×b2)}/dの値を算出すると、{(a1×b1)+(a2×b2)}/dの値は43以上120以下である必要があるといえる。また、{(a1×b1)+(a2×b2)}/dの値は60以上120以下であるのが好ましいといえる。 By the way, as described above, the value of {(a1 × b1) + (a2 × b2)} / c needs to be in the range of 24 to 65 (that is, the range including Examples 11 to 17). Conceivable. If the value of {(a1 × b1) + (a2 × b2)} / d is calculated based on the volume of the conductive additive based on this range, {(a1 × b1) + (a2 × b2)} / It can be said that the value of d needs to be 43 or more and 120 or less. Further, it is preferable that the value of {(a1 × b1) + (a2 × b2)} / d is 60 or more and 120 or less.
 また、図20に示すように、放電IRドロップ(Ω)は比較例5>実施例11>実施例12>実施例13>実施例14の順に大きかった。導電性が高いと放電IRドロップが小さくなるため、導電性は実施例14>実施例13>実施例12>実施例11>比較例5の順に大きいと言える。{(a1×b1)+(a2×b2)}/cの値、および{(a1×b1)+(a2×b2)}/dの値が上述した本発明の範囲に含まれる実施例11~14の負極において、放電IRドロップは7Ω以下であり十分に小さい。よって、本発明の負極材料および負極は導電性に優れるといえる。 In addition, as shown in FIG. 20, the discharge IR drop (Ω) increased in the order of Comparative Example 5> Example 11> Example 12> Example 13> Example 14. When the conductivity is high, the discharge IR drop becomes small, so the conductivity can be said to increase in the order of Example 14> Example 13> Example 12> Example 11> Comparative Example 5. Examples 11 to 11 in which the value of {(a1 × b1) + (a2 × b2)} / c and the value of {(a1 × b1) + (a2 × b2)} / d are included in the scope of the present invention described above At the negative electrode of 14, the discharge IR drop is 7 Ω or less, which is sufficiently small. Therefore, it can be said that the negative electrode material and the negative electrode of the present invention are excellent in conductivity.
 なお、本発明のリチウムイオン二次電池は、車両用バッテリとして好適である。 The lithium ion secondary battery of the present invention is suitable as a vehicle battery.
 (実施例18及び比較例6~7)
(実施例18)
<リチウムイオン二次電池用負極の作製>
 SiO粉末を900℃で2時間熱処理し、D50が10μmのSiO粉末を調製した。この熱処理によって、SiとOとの比が概ね1:1の均質な固体の一酸化ケイ素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。
(Example 18 and Comparative Examples 6 to 7)
(Example 18)
<Fabrication of negative electrode for lithium ion secondary battery>
The SiO powder was heat treated at 900 ° C. for 2 hours to prepare a SiO x powder with a D 50 of 10 μm. By this heat treatment, if the ratio of Si to O is a homogeneous solid silicon monoxide (SiO) of approximately 1: 1, the solid is separated into two phases of Si phase and SiO 2 phase by internal reaction. The Si phase obtained by separation is very fine.
 得られたSiO粉末32質量部と、D50が9.2μmの黒鉛粉末50質量部と、ケッチェンブラック8質量部と、バインダー溶液10質量部とを混合してスラリーを調製した。バインダー溶液は、ポリアミドイミド樹脂をN-メチル-2-ピロリドン(NMP)に溶解したものを用いた。このスラリーを、厚さ15μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを真空乾燥し、負極活物質層の厚さが15μmの負極を形成した。 A slurry was prepared by mixing 32 parts by mass of the obtained SiO x powder, 50 parts by mass of graphite powder having a D 50 of 9.2 μm, 8 parts by mass of ketjen black, and 10 parts by mass of a binder solution. The binder solution was prepared by dissolving a polyamideimide resin in N-methyl-2-pyrrolidone (NMP). The slurry was applied to the surface of an electrolytic copper foil (current collector) with a thickness of 15 μm using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press. This was vacuum-dried to form a negative electrode having a thickness of 15 μm of the negative electrode active material layer.
 この負極において、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は0.92であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は0.61である。 In this negative electrode, the ratio of D 50 (D 2) of the D 50 (D 1) and SiO x particles of the graphite particles (D 1 / D 2) is 0.92, D 50 of the graphite particles (D 1) The ratio (D 1 / t) of the thickness to the thickness (t) of the negative electrode active material layer is 0.61.
<正極の作製>
 正極活物質としてのL333(Li[Mn1/3Ni1/3Co1/3]O)と、導電助剤としてのアセチレンブラック(AB)と、バインダー樹脂としてのポリフッ化ビニリデン(PVDF)とを混合し、スラリー状の正極合材を調製した。スラリー中の各成分(固形分)の組成比は、L333:AB:PVDF=88:6:6(質量比)であった。このスラリーを集電体に塗布し、集電体上に正極合材層を積層形成した。具体的には、ドクターブレードを用いてこのスラリーを厚さ20μmのアルミニウム箔(集電体)の表面に塗布した。
 その後、80℃で20分間乾燥し、正極合材中から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、電極密度を調整した。これを真空乾燥炉にて200℃で2時間加熱硬化させて、集電体の上層に厚さ50μm程度の正極合材層が積層されてなる正極を得た。
<Fabrication of positive electrode>
L333 (Li [Mn 1/3 Ni 1/3 Co 1/3 ] O 2 ) as a positive electrode active material, acetylene black (AB) as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder resin Were mixed to prepare a slurry-like positive electrode mixture. The composition ratio of each component (solid content) in the slurry was L333: AB: PVDF = 88: 6: 6 (mass ratio). The slurry was applied to a current collector, and a positive electrode mixture layer was formed on the current collector. Specifically, this slurry was applied to the surface of a 20 μm thick aluminum foil (current collector) using a doctor blade.
Thereafter, the resultant was dried at 80 ° C. for 20 minutes, and the organic solvent was volatilized and removed from the positive electrode mixture. After drying, the electrode density was adjusted by a roll press. The resultant was heat-cured at 200 ° C. for 2 hours in a vacuum drying furnace to obtain a positive electrode in which a positive electrode mixture layer having a thickness of about 50 μm was laminated on the upper layer of the current collector.
<リチウムイオン二次電池の作製>
 正極を30mm×25mm、負極を31mm×26mmに裁断し、ラミネートフィルムで収容した。この正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(40mm×40mm角、厚さ30μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネートセルを得た。電解液にはFEC(フルオロエチレンカーボネート)、EC(エチレンカーボネート)、MEC(メチルエチルカーボネート)、DMC(ジメチルカーボネート)=0.3:2.7:3:4(体積比)の混合溶液にLiPFを1モル/Lとなる濃度で溶解したものを用いた。正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネートセルの外側に延出した。以上の工程で、ラミネートセル(2極ポーチセル)状のリチウムイオン二次電池を得た。
<Fabrication of lithium ion secondary battery>
The positive electrode was cut into a size of 30 mm × 25 mm, and the negative electrode was cut into a size of 31 mm × 26 mm, and the laminate was housed in a laminate film. A rectangular sheet (40 mm × 40 mm square, 30 μm thick) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, and the three sides were sealed, and then the above electrolytic solution was injected into the bag-like laminate film. Then, the remaining one side was sealed, and the four sides were airtightly sealed to obtain a laminate cell in which the electrode plate group and the electrolytic solution were sealed. As electrolyte solution, LiPF is mixed with a mixed solution of FEC (fluoro ethylene carbonate), EC (ethylene carbonate), MEC (methyl ethyl carbonate), DMC (dimethyl carbonate) = 0.3: 2.7: 3: 4 (volume ratio) A solution of 6 at a concentration of 1 mol / L was used. The positive electrode and the negative electrode were provided with a tab electrically connectable to the outside, and a part of the tab extended to the outside of the laminate cell. Through the above steps, a lithium ion secondary battery in the form of a laminate cell (bipolar pouch cell) was obtained.
(比較例6)
 D50が9.2μmの黒鉛粉末に代えてD50が20.0μmの黒鉛粉末を用いたこと以外は実施例18と同様にして負極を形成した。この負極においては、黒鉛粒子のD50(D)とSiOx粒子のD50(D)との比(D/D)は2.00であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は1.33である。
 この負極を用い、実施例18と同様にしてリチウムイオン二次電池を作成した。
(Comparative example 6)
D 50 is D 50 in place of the graphite powder of 9.2μm was formed a negative electrode is in the same manner as in Example 18 except for using graphite powder 20.0 .mu.m. In this negative electrode, the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 2.00, the graphite particles D 50 (D 1 The ratio (D 1 / t) of (A) to the thickness (t) of the negative electrode active material layer is 1.33.
Using this negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 18.
(比較例7)
 D50が9.2μmの黒鉛粉末に代えてD50が12.5μmの黒鉛粉末を用いたこと以外は実施例18と同様にして負極を形成した。この負極においては、黒鉛粒子のD50(D)とSiO粒子のD50(D)との比(D/D)は1.25であり、黒鉛粒子のD50(D)と負極活物質層の厚さ(t)との比(D/t)は0.83である。この負極を用い、実施例18と同様にしてリチウムイオン二次電池を作成した。
(Comparative example 7)
D 50 is D 50 in place of the graphite powder of 9.2μm was formed a negative electrode is in the same manner as in Example 18 except for using graphite powder 12.5 .mu.m. In this negative electrode, the ratio of the D 50 of the graphite particles (D 1) and D 50 of the SiO x particulate (D 2) (D 1 / D 2) is 1.25, the graphite particles D 50 (D 1 The ratio (D 1 / t) of the thickness of the negative electrode active material layer to the thickness (t) of the negative electrode active material layer is 0.83. Using this negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 18.
<試験>
 実施例18と比較例6で形成された負極の断面をSEMで観察した。実施例18のSEM画像と比較例6のSEM画像を比較すると、比較例6に比べて実施例18の方が各粒子の分散性が高いことがわかった。実施例18の負極の断面のSEM画像を図21に示す。図中、白っぽい粒子がSiOx粒子であり、灰色の粒子が黒鉛粒子である。
 実施例18及び比較例6、7のリチウムイオン二次電池に対し、0.3Cでの初回放電容量を測定するとともに、3C放電における初回放電IRドロップを測定した。初回放電IRドロップは、放電開始から10秒後における負極の抵抗値をそれぞれ測定した。結果を図22、図23にそれぞれ示す。
<Test>
The cross sections of the negative electrodes formed in Example 18 and Comparative Example 6 were observed by SEM. When the SEM image of Example 18 and the SEM image of Comparative Example 6 were compared, it was found that Example 18 had higher dispersibility of each particle than Comparative Example 6. The SEM image of the cross section of the negative electrode of Example 18 is shown in FIG. In the figure, whitish particles are SiO x particles and gray particles are graphite particles.
For the lithium ion secondary batteries of Example 18 and Comparative Examples 6 and 7, while measuring the first discharge capacity at 0.3 C, the first discharge IR drop in 3 C discharge was measured. The first discharge IR drop was measured for the resistance value of the negative electrode 10 seconds after the start of discharge. The results are shown in FIGS. 22 and 23, respectively.
<評価>
 図22、図23から、実施例18の負極は比較例6、比較例7に比べて同程度の放電容量を示すとともに、放電IRドロップが大きく低下し、導電性が大きく向上していることが明らかである。
<Evaluation>
From FIG. 22 and FIG. 23, the negative electrode of Example 18 exhibits comparable discharge capacity as compared with Comparative Example 6 and Comparative Example 7, and the discharge IR drop is greatly reduced, and the conductivity is largely improved. it is obvious.

Claims (37)

  1.  正極と、
     SiO(0.5≦x≦1.5)及び黒鉛を含む負極活物質を有する負極と、
    を有し、
     前記SiO及び前記黒鉛を100質量%としたときのSiOの配合割合は27質量%~51質量%であることを特徴とするリチウムイオン二次電池。
    Positive electrode,
    A negative electrode comprising a negative electrode active material comprising SiO x (0.5 ≦ x ≦ 1.5) and graphite,
    Have
    The blending ratio of SiO x when said SiO x and said graphite are 100% by mass is 27% by mass to 51% by mass.
  2.  前記正極は、一般式:
    LiCoNiMn (p+q+r=1、0<p<1、0≦q<1、0≦r<1)で表される複合金属酸化物を含む正極活物質を有する請求項1に記載のリチウムイオン二次電池。
    The positive electrode has a general formula:
    2. The positive electrode active material according to claim 1, comprising a composite metal oxide represented by LiCo p Ni q Mn r O 2 (p + q + r = 1, 0 <p <1, 0 ≦ q <1, 0 ≦ r <1). Lithium ion secondary battery as described.
  3.  前記複合金属酸化物はLiCo1/3Ni1/3Mn1/3である請求項1または2に記載のリチウムイオン二次電池 。 The lithium ion secondary battery according to claim 1, wherein the composite metal oxide is LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  4.  前記SiO及び前記黒鉛を100質量%としたときのSiOの配合割合は、27質量%~45質量%であることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池。 The mixing ratio of the SiO x when the 100 mass% the SiO x and the graphite, lithium ions according to any one of claims 1 to 3, characterized in that a 27% to 45% by weight Secondary battery.
  5.  正極と、
     リチウムと合金化可能な元素であるNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biおよび/または前記元素の化合物と、黒鉛とを含む負極活物質を有する負極とを有し、
     前記黒鉛と前記元素および/または前記元素の化合物とを100質量%としたときの前記元素および/または前記元素の化合物の配合割合は27質量%~51質量%であることを特徴とするリチウムイオン二次電池。
    Positive electrode,
    Elements which can be alloyed with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn And a negative electrode having a negative electrode active material containing a compound of Pb, Sb, Bi and / or the above element, and graphite,
    The blending ratio of the element and / or the compound of the element when the graphite and the compound of the element and / or the element are 100% by mass is 27% by mass to 51% by mass. Secondary battery.
  6.  集電体と、該集電体に形成された負極活物質層と、からなるリチウムイオン二次電池用負極であって、
     該負極活物質層には炭素系粒子と、リチウムイオンを吸蔵可能なLi吸蔵粒子と、を含み、該炭素系粒子のD50(D)と該Li吸蔵粒子のD50(D)との比(D/D)が1を超えかつ2以下であり、該炭素系粒子の該D50(D)と該負極活物質層の厚さ(t)との比(D/t)が1/4以上かつ5/6以下であることを特徴とするリチウムイオン二次電池用負極。
    A negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the current collector,
    And the carbon-based particles in the negative electrode active material layer includes a storage capable Li occluding particles lithium ions, D 50 D 50 of the carbon Motokei particles (D 1) The Li-absorbing particles (D 2) the ratio (D 1 / D 2) is at greater than and 2 below 1, the ratio of the D 50 of the carbon Motokei particles (D 1) the thickness of the negative electrode active material layer and (t) (D 1 / t) A negative electrode for a lithium ion secondary battery characterized by having at least 1/4 and at most 5/6.
  7.  前記Li吸蔵粒子はSiO系粒子である請求項6に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 6, wherein the Li storage particles are SiO-based particles.
  8.  前記炭素系粒子はD50が1~15μmの範囲にある黒鉛である請求項6又は請求項7に記載のリチウムイオン二次電池用負極。 The carbonaceous particles D 50 of claim 6 or the negative electrode for a lithium ion secondary battery according to claim 7 is graphite in the range of 1 ~ 15 [mu] m.
  9.  前記SiO系粒子はSiO相とSi相とからなり、該SiO相にはLiSiで表される酸化物系化合物が含まれている請求項7又は請求項8に記載のリチウムイオン二次電池用負極。 The SiO-based particles composed of a SiO 2 phase and the Si phase, the said SiO 2 phase according to Li x Si y O claims oxide-based compound represented by z are in claim 7 or claim 8 Negative electrode for lithium ion secondary battery.
  10.  前記負極活物質層には高結着性バインダーが含まれている請求項6~9のいずれかに記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to any one of claims 6 to 9, wherein the negative electrode active material layer contains a high binding binder.
  11.  前記高結着性バインダーはポリアミドイミド樹脂、ポリアミドイミドシリカハイブリッド及びポリアクリル酸から選ばれる少なくとも一種である請求項10に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 10, wherein the high binding binder is at least one selected from polyamideimide resin, polyamideimide silica hybrid and polyacrylic acid.
  12.  請求項6~11のいずれかに記載の負極を用いたことを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode according to any one of claims 6 to 11.
  13.  集電体と前記集電体の表面に形成された活物質層とを有するリチウムイオン二次電池用負極において、
     前記活物質層は、活物質、バインダー、及び緩衝材を含み、
     前記活物質はSiOx粉末(0.5≦x≦1.5)からなり、
     前記緩衝材は黒鉛粉末からなり、
     前記SiO粉末のD50は、前記黒鉛粉末のD50の1/4~1/2であり、
     前記黒鉛粉末の配合量は、前記黒鉛粉末の質量と前記SiOx粉末の質量を合計したものを100質量%としたときに36質量%~61質量%であり、
     前記バインダーの含有量は前記活物質層全体の質量を100質量%とした時に5質量%~25質量%であることを特徴とするリチウムイオン二次電池用負極。
    In a negative electrode for a lithium ion secondary battery having a current collector and an active material layer formed on the surface of the current collector,
    The active material layer includes an active material, a binder, and a buffer material,
    The active material comprises SiO x powder (0.5 ≦ x ≦ 1.5),
    The buffer material is made of graphite powder,
    D 50 of the SiO x powder is 1/4 to 1/2 of D 50 of the graphite powder,
    The blending amount of the graphite powder is 36% by mass to 61% by mass when the total of the mass of the graphite powder and the mass of the SiO x powder is 100% by mass,
    The content of the binder is 5% by mass to 25% by mass when the mass of the entire active material layer is 100% by mass, a negative electrode for a lithium ion secondary battery.
  14.  前記黒鉛粉末の配合量は、36質量%~49質量%である請求項13に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 13, wherein a blending amount of the graphite powder is 36% by mass to 49% by mass.
  15.  請求項13または14に記載のリチウムイオン二次電池用負極は、圧縮成形工程を経て形成されたものであり、
     該圧縮成形工程におけるプレス圧より高いプレス圧で該リチウムイオン二次電池用負極を圧縮する場合、圧縮方向の前記活物質層の厚みは減少する請求項13または14に記載のリチウムイオン二次電池用負極。
    The negative electrode for a lithium ion secondary battery according to claim 13 or 14 is formed through a compression molding process,
    The lithium ion secondary battery according to claim 13 or 14, wherein the thickness of the active material layer in the compression direction decreases when the negative electrode for lithium ion secondary battery is compressed at a press pressure higher than the press pressure in the compression molding step. Negative electrode.
  16.  請求項13~15のいずれか一項に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to any one of claims 13 to 15.
  17.  xLi・(1-x)LiM(0<x≦1,Mは4価のMnを必須とする一種以上の金属元素、Mは4価のMnを必須とする二種以上の金属元素)で表されるリチウムマンガン系酸化物を基本組成とする正極活物質を含む正極を有する請求項16に記載のリチウムイオン二次電池。 xLi 2 M 1 O 3. (1-x) LiM 2 O 2 (0 <x ≦ 1, M 1 is one or more metal elements essential for tetravalent Mn, M 2 is essentially tetravalent Mn The lithium ion secondary battery according to claim 16, comprising a positive electrode including a positive electrode active material having a lithium manganese-based oxide represented by two or more kinds of metal elements) as a basic composition.
  18.  SiO(0.3≦x≦1.6)で表されるケイ素酸化物からなる負極活物質と、黒鉛と、炭素質微粒子を含有する導電助剤と、を含むリチウムイオン二次電池用負極材料であって、
     該SiOのBET値(m/g)をa1とし、該SiOの配合量(g)をb1とし、該黒鉛のBET値(m/g)をa2とし、該黒鉛の配合量(g)をb2とし、該導電助剤の配合量(g)をcとしたときに、
     {(a1×b1)+(a2×b2)}/cの値が24以上65以下であることを特徴とするリチウムイオン二次電池用負極材料。
    A negative electrode for a lithium ion secondary battery, comprising a negative electrode active material comprising a silicon oxide represented by SiO x (0.3 ≦ x ≦ 1.6), graphite, and a conductive additive containing carbonaceous fine particles The material,
    BET value of the SiO x to (m 2 / g) and a1, the amount of the SiO x (g) was as b1, and BET value of graphite and (m 2 / g) and a2, said black amount of lead ( When g) is b2 and the amount (g) of the conductive additive is c,
    The negative electrode material for a lithium ion secondary battery, wherein the value of {(a1 × b1) + (a2 × b2)} / c is 24 or more and 65 or less.
  19.  前記SiOのBET値(m/g)は2.5以上7.0以下である請求項18に記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 18, wherein a BET value (m 2 / g) of the SiO x is 2.5 or more and 7.0 or less.
  20.  前記黒鉛のBET値(m/g)は3.5以上6.5以下である請求項18または請求項19に記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 18, wherein a BET value (m 2 / g) of the graphite is 3.5 or more and 6.5 or less.
  21.  前記負極材料全体を100質量%としたときに、前記SiOと前記黒鉛との含有量の和は70質量%以上85質量%以下である請求項18~請求項20の何れか一つに記載のリチウムイオン二次電池用負極材料。 The total content of the SiO x and the graphite is 70% by mass to 85% by mass, based on 100% by mass of the entire negative electrode material. Negative electrode material for lithium ion secondary batteries.
  22.  前記{(a1×b1)+(a2×b2)}/cの値が37以上65以下である請求項18~請求項21の何れか一つに記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to any one of claims 18 to 21, wherein a value of the {(a1 × b1) + (a2 × b2)} / c is 37 or more and 65 or less.
  23.  SiO(0.3≦x≦1.6)で表されるケイ素酸化物からなる負極活物質と、炭素(C)を含有する導電助剤と、を含むリチウムイオン二次電池用負極材料であって、
     該SiOのBET値(m/g)をa1とし、該SiOの配合量(g)をb1とし、該黒鉛のBET値(m/g)をa2とし、該黒鉛の配合量(g)をb2とし、該導電助剤の配合量(cm)をdとしたときに、
     {(a1×b1)+(a2×b2)}/dの値が43以上120以下であることを特徴とするリチウムイオン二次電池用負極材料。
    A negative electrode material for a lithium ion secondary battery, comprising a negative electrode active material comprising a silicon oxide represented by SiO x (0.3 ≦ x ≦ 1.6), and a conductive aid containing carbon (C) There,
    BET value of the SiO x to (m 2 / g) and a1, the amount of the SiO x (g) was as b1, and BET value of graphite and (m 2 / g) and a2, said black amount of lead ( When g) is b2 and the compounding amount (cm 3 ) of the conductive additive is d,
    The negative electrode material for a lithium ion secondary battery, wherein the value of {(a1 × b1) + (a2 × b2)} / d is 43 or more and 120 or less.
  24.  前記SiOのBET値(m/g)は2.5以上7.0以下である請求項23に記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 23, wherein a BET value (m 2 / g) of the SiO x is 2.5 or more and 7.0 or less.
  25.  前記黒鉛のBET値(m/g)は3.5以上6.5以下である請求項22または請求項23に記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 22 or 23, wherein a BET value (m 2 / g) of the graphite is 3.5 or more and 6.5 or less.
  26.  前記負極材料全体を100質量%としたときに、前記SiOと該黒鉛との含有量の和は70質量%以上85質量%以下である請求項23~請求項25の何れか一つに記載のリチウムイオン二次電池用負極材料。 The total content of the SiO x and the graphite is 70% by mass to 85% by mass, based on 100% by mass of the entire negative electrode material. Negative electrode material for lithium ion secondary batteries.
  27.  前記{(a1×b1)+(a2×b2)}/dの値が60以上120以下である請求項23~請求項26の何れか一つに記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to any one of claims 23 to 26, wherein a value of the {(a1 × b1) + (a2 × b2)} / d is 60 or more and 120 or less.
  28.  請求項18~請求項27の何れか一つに記載のリチウムイオン二次電池用負極材料を材料としてなることを特徴とするリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to any one of claims 18 to 27 as a material.
  29.  請求項28に記載のリチウムイオン二次電池用負極を備えることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 28.
  30.  集電体と、該集電体に形成された負極活物質層と、からなるリチウムイオン二次電池用負極であって、
     該負極活物質層には炭素系粒子と、リチウムイオンを吸蔵可能なLi吸蔵粒子と、を含み、該炭素系粒子のD50(D)と該Li吸蔵粒子のD50(D)との比(D/D)が1/2以上かつ1.3以下であり、該炭素系粒子の該D50(D)と該負極活物質層の厚さ(t)との比(D/t)が1/4以上かつ2/3以下であることを特徴とするリチウムイオン二次電池用負極。
    A negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the current collector,
    And the carbon-based particles in the negative electrode active material layer includes a storage capable Li occluding particles lithium ions, D 50 D 50 of the carbon Motokei particles (D 1) The Li-absorbing particles (D 2) the ratio (D 1 / D 2) is 1/2 or more and 1.3 or less, the ratio of the D 50 of the carbon Motokei particles (D 1) the thickness of the negative electrode active material layer and (t) ( A negative electrode for a lithium ion secondary battery, wherein D 1 / t) is at least 1/4 and at most 2/3.
  31.  前記炭素系粒子のD50(D)と前記Li吸蔵粒子のD50(D)との比(D/D)が1/2以上かつ1以下である請求項30に記載のリチウムイオン二次電池用負極。 Lithium according to D 50 (D 1) and the Li claim 30 the ratio of the D 50 of the occlusion particle (D 2) (D 1 / D 2) is 1/2 or more and 1 or less of the carbon-based particles Negative electrode for ion secondary battery.
  32.  前記Li吸蔵粒子はSiO系粒子である請求項30又は請求項31に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 30, wherein the Li storage particles are SiO-based particles.
  33.  前記炭素系粒子はD50が1~15μmの範囲にある黒鉛である請求項30~32のいずれかに記載のリチウムイオン二次電池用負極。 The carbonaceous particles a negative electrode for a lithium ion secondary battery according to any one of claims 30 ~ 32 D 50 is graphite in the range of 1 ~ 15 [mu] m.
  34.  前記SiO系粒子はSiO相とSi相とからなり、該SiO相にはLiSiで表される酸化物系化合物が含まれている請求項32又は請求項33に記載のリチウムイオン二次電池用負極。 The SiO-based particles composed of a SiO 2 phase and the Si phase, the said SiO 2 phase according to Li x Si y O claims oxide-based compound represented by z are in claim 32 or claim 33 Negative electrode for lithium ion secondary battery.
  35.  前記負極活物質層には高結着性バインダーが含まれている請求項30~34のいずれかに記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to any one of claims 30 to 34, wherein the negative electrode active material layer contains a high binding binder.
  36.  前記高結着性バインダーはポリアミドイミド樹脂、ポリアミドイミドシリカハイブリッド及びポリアクリル酸から選ばれる少なくとも一種である請求項35に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 35, wherein the high binding binder is at least one selected from a polyamideimide resin, a polyamideimide silica hybrid and a polyacrylic acid.
  37.  請求項30~36のいずれかに記載の負極を用いたことを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery using the negative electrode according to any one of claims 30 to 36.
PCT/JP2012/006177 2011-10-12 2012-09-27 Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell WO2013054481A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011224933 2011-10-12
JP2011-224933 2011-10-12
JP2011226830 2011-10-14
JP2011-226830 2011-10-14
JP2011232761 2011-10-24
JP2011-232756 2011-10-24
JP2011-232761 2011-10-24
JP2011232756 2011-10-24
JP2011255933 2011-11-24
JP2011-255933 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013054481A1 true WO2013054481A1 (en) 2013-04-18

Family

ID=48081552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006177 WO2013054481A1 (en) 2011-10-12 2012-09-27 Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell

Country Status (1)

Country Link
WO (1) WO2013054481A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198696A1 (en) * 2013-06-12 2014-12-18 Heraeus Quarzglas Gmbh & Co. Kg Lithium-ion cell for a secondary battery
WO2015045314A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2015149221A (en) * 2014-02-07 2015-08-20 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery negative electrode material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016009590A1 (en) * 2014-07-15 2016-01-21 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
JP2016143642A (en) * 2015-02-05 2016-08-08 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
CN105981202A (en) * 2014-02-07 2016-09-28 信越化学工业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
CN106797026A (en) * 2014-10-08 2017-05-31 信越化学工业株式会社 The manufacture method of rechargeable nonaqueous electrolytic battery, its negative pole, its negative electrode active material and its negative material
CN108292746A (en) * 2015-11-17 2018-07-17 信越化学工业株式会社 Negative electrode active material and its manufacturing method, mixing negative electrode active material material, secondary battery cathode, lithium rechargeable battery
CN108463910A (en) * 2016-01-07 2018-08-28 信越化学工业株式会社 Negative electrode active material and its manufacturing method, anode for nonaqueous electrolyte secondary battery, lithium rechargeable battery and its manufacturing method
US10347908B2 (en) 2014-11-27 2019-07-09 Hitachi, Ltd. Lithium ion secondary battery and manufacturing method of the lithium ion secondary battery
TWI670879B (en) * 2015-02-26 2019-09-01 日商信越化學工業股份有限公司 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
US10446837B2 (en) * 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
CN111142028A (en) * 2020-02-20 2020-05-12 广东天波信息技术股份有限公司 Method and device for measuring electric quantity of lithium battery
CN111244410A (en) * 2020-01-16 2020-06-05 兰溪致德新能源材料有限公司 Lithium battery negative electrode material and preparation method thereof
CN111430670A (en) * 2020-04-13 2020-07-17 阮弟根 Positive electrode plate, processing method thereof, application of positive electrode plate in preparation of lithium battery, and lithium battery
CN111668473A (en) * 2015-03-13 2020-09-15 三洋电机株式会社 Nonaqueous electrolyte secondary battery
CN112447972A (en) * 2019-08-27 2021-03-05 株式会社丰田自动织机 Negative electrode active material containing silicon inclusion compound II
CN112582589A (en) * 2020-11-20 2021-03-30 万华化学(四川)有限公司 Silicon-graphite composite negative electrode material, preparation method and lithium ion battery prepared from silicon-graphite composite negative electrode material
US11430980B2 (en) * 2015-11-18 2022-08-30 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, production method of negative electrode active material, and production method of lithium ion secondary battery
WO2024065255A1 (en) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 Secondary battery and electric apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004349164A (en) * 2003-05-23 2004-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005292943A (en) * 2004-03-31 2005-10-20 Saxa Inc Information notification system
JP2010205609A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electrode and battery using this
JP2010212228A (en) * 2009-02-13 2010-09-24 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2010113512A1 (en) * 2009-04-03 2010-10-07 パナソニック株式会社 Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP2011113863A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Nonaqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004349164A (en) * 2003-05-23 2004-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005292943A (en) * 2004-03-31 2005-10-20 Saxa Inc Information notification system
JP2010212228A (en) * 2009-02-13 2010-09-24 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2010205609A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electrode and battery using this
WO2010113512A1 (en) * 2009-04-03 2010-10-07 パナソニック株式会社 Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP2011113863A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Nonaqueous secondary battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879537B2 (en) 2013-06-12 2020-12-29 Heraeus Quarzglas Gmbh & Co. Kg Lithium ion cell for a secondary battery
KR102045608B1 (en) 2013-06-12 2019-11-15 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Lithium-ion cell for a secondary battery
CN105308779A (en) * 2013-06-12 2016-02-03 赫罗伊斯石英玻璃股份有限两合公司 Lithium-ion cell for a secondary battery
KR20160018767A (en) * 2013-06-12 2016-02-17 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Lithium-ion cell for a secondary battery
WO2014198696A1 (en) * 2013-06-12 2014-12-18 Heraeus Quarzglas Gmbh & Co. Kg Lithium-ion cell for a secondary battery
JP2016526755A (en) * 2013-06-12 2016-09-05 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Lithium ion cell for secondary battery
JPWO2015045314A1 (en) * 2013-09-30 2017-03-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015045314A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN105493330A (en) * 2013-09-30 2016-04-13 三洋电机株式会社 Non-aqueous electrolyte secondary battery
US10388950B2 (en) 2014-02-07 2019-08-20 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN105981202B (en) * 2014-02-07 2019-05-07 信越化学工业株式会社 Anode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20160336592A1 (en) * 2014-02-07 2016-11-17 Shin-Etsu Chemical Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN105981204A (en) * 2014-02-07 2016-09-28 信越化学工业株式会社 Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN105981204B (en) * 2014-02-07 2019-10-11 信越化学工业株式会社 Negative electrode active material, anode for nonaqueous electrolyte secondary battery electrode and the non-aqueous electrolyte secondary battery of the negative electrode material of non-aqueous electrolyte secondary battery
EP3104440A4 (en) * 2014-02-07 2017-09-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2015149221A (en) * 2014-02-07 2015-08-20 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery negative electrode material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105981202A (en) * 2014-02-07 2016-09-28 信越化学工业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JPWO2016009590A1 (en) * 2014-07-15 2017-04-27 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
WO2016009590A1 (en) * 2014-07-15 2016-01-21 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
US10529984B2 (en) 2014-07-15 2020-01-07 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
CN106797026B (en) * 2014-10-08 2020-04-17 信越化学工业株式会社 Nonaqueous electrolyte secondary battery, negative electrode thereof, negative electrode active material thereof, and method for producing negative electrode material thereof
US10396353B2 (en) * 2014-10-08 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
US20170288216A1 (en) * 2014-10-08 2017-10-05 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
CN106797026A (en) * 2014-10-08 2017-05-31 信越化学工业株式会社 The manufacture method of rechargeable nonaqueous electrolytic battery, its negative pole, its negative electrode active material and its negative material
US10347908B2 (en) 2014-11-27 2019-07-09 Hitachi, Ltd. Lithium ion secondary battery and manufacturing method of the lithium ion secondary battery
JP2016143642A (en) * 2015-02-05 2016-08-08 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
US10446837B2 (en) * 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
TWI670879B (en) * 2015-02-26 2019-09-01 日商信越化學工業股份有限公司 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
CN111668473A (en) * 2015-03-13 2020-09-15 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US10991971B2 (en) * 2015-11-17 2021-04-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and, production method of negative electrode active material
US20180287193A1 (en) * 2015-11-17 2018-10-04 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and, production method of negative electrode active material
CN108292746A (en) * 2015-11-17 2018-07-17 信越化学工业株式会社 Negative electrode active material and its manufacturing method, mixing negative electrode active material material, secondary battery cathode, lithium rechargeable battery
CN108292746B (en) * 2015-11-17 2021-02-23 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode, and secondary battery
US11430980B2 (en) * 2015-11-18 2022-08-30 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, production method of negative electrode active material, and production method of lithium ion secondary battery
CN108463910A (en) * 2016-01-07 2018-08-28 信越化学工业株式会社 Negative electrode active material and its manufacturing method, anode for nonaqueous electrolyte secondary battery, lithium rechargeable battery and its manufacturing method
CN112447972B (en) * 2019-08-27 2023-11-03 株式会社丰田自动织机 Negative electrode active material containing silicon clathrate II
CN112447972A (en) * 2019-08-27 2021-03-05 株式会社丰田自动织机 Negative electrode active material containing silicon inclusion compound II
CN111244410A (en) * 2020-01-16 2020-06-05 兰溪致德新能源材料有限公司 Lithium battery negative electrode material and preparation method thereof
CN111142028B (en) * 2020-02-20 2022-02-08 广东天波信息技术股份有限公司 Method and device for measuring electric quantity of lithium battery
CN111142028A (en) * 2020-02-20 2020-05-12 广东天波信息技术股份有限公司 Method and device for measuring electric quantity of lithium battery
CN111430670A (en) * 2020-04-13 2020-07-17 阮弟根 Positive electrode plate, processing method thereof, application of positive electrode plate in preparation of lithium battery, and lithium battery
CN112582589A (en) * 2020-11-20 2021-03-30 万华化学(四川)有限公司 Silicon-graphite composite negative electrode material, preparation method and lithium ion battery prepared from silicon-graphite composite negative electrode material
CN112582589B (en) * 2020-11-20 2023-05-30 万华化学(四川)有限公司 Silicon-graphite composite negative electrode material, preparation method and lithium ion battery prepared from silicon-graphite composite negative electrode material
WO2024065255A1 (en) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 Secondary battery and electric apparatus

Similar Documents

Publication Publication Date Title
WO2013054481A1 (en) Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell
US9527748B2 (en) Production process for nanometer-size silicon material
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP5454652B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
WO2015025443A1 (en) Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
WO2016006557A1 (en) Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery positive electrode material
JP5729482B2 (en) Negative electrode material for power storage device, negative electrode for power storage device, power storage device and vehicle
JP5476246B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode mixture
WO2012014998A1 (en) Lithium secondary battery
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2003303585A (en) Battery
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6564740B2 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of manufacturing negative electrode active material, and method of manufacturing lithium ion secondary battery
CN110495026B (en) Negative electrode material and nonaqueous electrolyte secondary battery
JP5998870B2 (en) Negative electrode material for power storage device, negative electrode for power storage device and power storage device
JP2023015403A (en) Non-aqueous electrolyte secondary battery
JP5482858B2 (en) Lithium ion secondary battery
WO2014112329A1 (en) Positive electrode for lithium ion secondary batteries and lithium ion secondary battery
WO2014007183A1 (en) Lithium ion secondary battery
JP5533972B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018101472A (en) Positive electrode for electric device and electric device using the same, and manufacturing method of positive electrode for electric device
WO2017110040A1 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, manufacturing method for negative electrode active material, and manufacturing method for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840101

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840101

Country of ref document: EP

Kind code of ref document: A1