JP2002117835A - Negative electrode for lithium ion secondary battery - Google Patents

Negative electrode for lithium ion secondary battery

Info

Publication number
JP2002117835A
JP2002117835A JP2000310012A JP2000310012A JP2002117835A JP 2002117835 A JP2002117835 A JP 2002117835A JP 2000310012 A JP2000310012 A JP 2000310012A JP 2000310012 A JP2000310012 A JP 2000310012A JP 2002117835 A JP2002117835 A JP 2002117835A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
ion secondary
lithium ion
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000310012A
Other languages
Japanese (ja)
Other versions
JP4503807B2 (en
Inventor
Hidehiko Nozaki
秀彦 野崎
Toshiaki Sogabe
敏明 曽我部
Naoto Ota
直人 太田
Katsuhide Nagaoka
勝秀 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2000310012A priority Critical patent/JP4503807B2/en
Publication of JP2002117835A publication Critical patent/JP2002117835A/en
Application granted granted Critical
Publication of JP4503807B2 publication Critical patent/JP4503807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium ion secondary battery wherein a downsizing and light-weight of the lithium ion secondary battery used for a portable apparatus is realized and wherein a battery capacity can be made to have a high capacity. SOLUTION: This is made to be the negative electrode using a composite material containing carbon powder, tin oxide and silicon oxide, and using polyimide resin as a binder. A (110) surface crystallite size of tin oxide in this composite material is made to be 4 to 40 nm, and an amount of silicon oxide is made to be in the range of tin/silicon=1/0.1 to 1 as the molar ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、携帯電
話、パソコンに搭載されるようなリチウムイオン二次電
池のリチウムイオン二次電池用負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium ion secondary battery of a lithium ion secondary battery mounted on, for example, a mobile phone or a personal computer.

【0002】[0002]

【従来の技術】近年、電子機器、特に携帯電話やノート
パソコン等の携帯機器では小型化、軽量化の傾向がめざ
ましく、これに伴いこれらを駆動させる二次電池が非常
に重要な部品となっている。これら二次電池の中でもリ
チウムイオン二次電池は軽量でエネルギー密度が高いこ
とからこれら携帯機器の駆動用電源として研究・工業化
が進んでいる。
2. Description of the Related Art In recent years, electronic devices, particularly portable devices such as cellular phones and notebook computers, have been remarkably reduced in size and weight, and accordingly, secondary batteries for driving them have become very important components. I have. Among these secondary batteries, lithium ion secondary batteries are lightweight and have a high energy density, and are being researched and industrialized as power sources for driving these portable devices.

【0003】このリチウムイオン二次電池用負極には安
全性の点等から黒鉛を含む炭素材の活物質が主に使用さ
れている。この黒鉛を含む炭素材を負極活物質として用
いた場合の理論容量は372mAh/gであるが、前述
のように、携帯機器のめざましい進歩により、小型化、
軽量化に加え、理論容量が372mAh/gを越える高
容量な電池が要望されるようになってきた。
The negative electrode for a lithium ion secondary battery mainly uses a carbon-containing active material including graphite from the viewpoint of safety and the like. The theoretical capacity when this carbon material containing graphite is used as a negative electrode active material is 372 mAh / g. However, as described above, due to the remarkable progress of portable devices, miniaturization,
In addition to weight reduction, high-capacity batteries having a theoretical capacity exceeding 372 mAh / g have been demanded.

【0004】[0004]

【発明が解決しようとする課題】こういった要望に応え
るために、400mAh/gを越える容量の電池の開発
が盛んに行われている。この種の電池としては、例え
ば、スズ、アルミニウム、カドミウム、鉛、ケイ素等の
リチウムとの合金化反応を利用する金属系材料が使用さ
れる場合がある。これら、合金化反応には、体積の膨
張、収縮を伴うために充放電サイクルを重ねるたびに、
微細化及び金属との集電体等との密着性が低下し、容量
の低下という問題がある。
In order to meet such demands, batteries having a capacity exceeding 400 mAh / g have been actively developed. As this type of battery, for example, a metal material utilizing an alloying reaction with lithium, such as tin, aluminum, cadmium, lead, or silicon, may be used. These alloying reactions involve volume expansion and contraction, so each time charge and discharge cycles are repeated,
There is a problem that the miniaturization and the adhesion between the metal and the current collector and the like are reduced, and the capacity is reduced.

【0005】この問題を解決するために、例えば、特開
平11−288712号公報では、2価のスズを中心と
し、少なくとも3種以上の元素を含む複合酸化物の使用
が検討され、特に構造を非晶質化させることによりサイ
クル劣化を防止できることが示されている。
[0005] In order to solve this problem, for example, Japanese Patent Application Laid-Open No. H11-288712 discloses the use of a composite oxide containing divalent tin as a center and containing at least three or more elements. It is shown that cycle deterioration can be prevented by amorphization.

【0006】また、特開平10−308207号公報で
は、リチウムと合金化反応する金属と反応しない金属を
混合したものを使用することにより充放電サイクル特性
に優れた非水電解液リチウム二次電池について開示され
ている。
Japanese Patent Application Laid-Open No. 10-308207 discloses a non-aqueous electrolyte lithium secondary battery having excellent charge / discharge cycle characteristics by using a mixture of a metal which reacts with lithium and a metal which does not react. It has been disclosed.

【0007】しかしながら、これらは黒鉛材を負極活物
質に使用した場合に比べ、高容量な電池が得られるもの
の、サイクル性を付与させるために比較的多量の充放電
に寄与しない元素を導入する必要がある。これは、単位
体積当たりの電池容量を考えた場合、容量が低下する方
向であり、近年の携帯機器の小型化、軽量化という要望
を満足するものではない。
[0007] However, these can provide a battery having a higher capacity as compared with the case where a graphite material is used as a negative electrode active material, but it is necessary to introduce a relatively large amount of elements that do not contribute to charge and discharge in order to impart cyclability. There is. This tends to decrease the capacity in consideration of the battery capacity per unit volume, and does not satisfy the recent demand for smaller and lighter portable devices.

【0008】本発明は、前記問題を解決するためになさ
れたものであり、携帯機器に用いられるリチウムイオン
二次電池の小型化、軽量化とともに、電池容量を高容量
化することが可能なリチウムイオン二次電池用負極を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has been made to reduce the size and weight of a lithium ion secondary battery used in a portable device and to increase the battery capacity of a lithium ion secondary battery. An object is to provide a negative electrode for an ion secondary battery.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明者らは鋭意研究の結果、溶液プロセスを用い
て微細なスズ酸化物を炭素に分散させるとともに、非晶
質性の高いケイ素酸化物を複合、焼成処理することによ
り得られる炭素とスズ酸化物とケイ素酸化物からなる複
合材(以下、C−SnO2 −SiO2 複合材という。)
が、スズ酸化物の結晶子サイズがケイ素酸化物を複合さ
せない場合に比べて小さくなり、充放電試験におけるサ
イクル安定性に優れたものとなることを見出した。ま
た、このC−SnO2 −SiO2 複合材にバインダーと
してポリイミド樹脂を含むことによって、バインダー自
身に容量を持たせ、高容量とすることができるリチウム
イオン二次電池用負極となることを見出し、本発明を完
成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and found that fine tin oxide is dispersed in carbon using a solution process, and that a highly amorphous material is obtained. A composite material composed of carbon, tin oxide, and silicon oxide obtained by compounding and firing a silicon oxide (hereinafter, referred to as a C-SnO 2 —SiO 2 composite material).
However, it was found that the crystallite size of the tin oxide was smaller than that in the case where the silicon oxide was not combined, and the cycle stability in the charge / discharge test was excellent. Also, by including a polyimide resin as a binder in the C-SnO 2 —SiO 2 composite material, the binder itself has a capacity, and it has been found that a negative electrode for a lithium ion secondary battery that can have a high capacity is obtained. The present invention has been completed.

【0010】すなわち、本発明のリチウムイオン二次電
池用負極は、炭素粉末、スズ酸化物、ケイ素酸化物を含
む複合材料と、樹脂からなるバインダーを用いることを
特徴とする。また、前記スズ酸化物が、SnO2 で、前
記ケイ素酸化物がSiO2 であることが好ましい。ま
た、前記スズ酸化物の(110)面結晶子サイズが4〜
40nmで、前記ケイ素酸化物の量がmol比で、スズ
/ケイ素=1/0.1〜1の範囲で存在していることが
好ましい。また、前記バインダーがポリイミド樹脂を含
むものであることが好ましい。
That is, the negative electrode for a lithium ion secondary battery of the present invention is characterized by using a composite material containing carbon powder, tin oxide and silicon oxide, and a binder made of a resin. Preferably, the tin oxide is SnO 2 and the silicon oxide is SiO 2 . Further, the (110) plane crystallite size of the tin oxide is 4 to 4.
At 40 nm, it is preferable that the amount of the silicon oxide is present in a molar ratio of tin / silicon = 1 / 0.1 to 1. Preferably, the binder contains a polyimide resin.

【0011】本発明で使用されるC−SnO2 −SiO
2 複合材は、溶液プロセスの一種であるゾルゲル法によ
って形成したものであることが好ましい。このC−Sn
2−SiO2 複合材を構成する炭素は、天然黒鉛、人
造黒鉛、樹脂炭、天然物の炭化物、石油コークス、石炭
コークス、ピッチコークス、メソカーボンマイクロビー
ズのいずれか1つ若しくは2つ以上の組み合わせたもの
使用することができる。
C-SnO 2 -SiO used in the present invention
(2) The composite material is preferably formed by a sol-gel method, which is a type of solution process. This C-Sn
The carbon constituting the O 2 —SiO 2 composite material is one or more of natural graphite, artificial graphite, resin charcoal, natural carbide, petroleum coke, coal coke, pitch coke, and mesocarbon microbeads. Combinations can be used.

【0012】また、この際にSnO2 となる前駆体とし
ては、SnCl2 、Sn2 2 7、SnSO4 等の無
機塩の他、Sn(OC2 5 4 等のスズアルコキサイ
ドを使用することができる。
In addition, as precursors to be SnO 2 at this time, in addition to inorganic salts such as SnCl 2 , Sn 2 P 2 O 7 and SnSO 4 , tin alkoxides such as Sn (OC 2 H 5 ) 4 Can be used.

【0013】また、SiO2 となる前駆体としては、S
i(OC2 5 4 等のケイ素アルコキサイドやSiC
4 を使用することができる。
Further, as a precursor for forming SiO 2 , S
silicon alkoxide such as i (OC 2 H 5 ) 4 or SiC
it is possible to use the l 4.

【0014】以上の材料から構成されるC−SnO2
SiO2 複合材は、SnO2 の(110)面結晶子サイ
ズが4〜40nmであり、SiO2 の量がmol比で、
Sn/Si=1/0.1〜1の範囲、好ましくはSn/
Si=1/0.5〜0.7で存在しているものである。
また、ゾルゲル法の際に安定性をより向上させるため
に、少量の塩素やフッ素などハロゲン元素の他、硫黄、
リンなどの無機物、リチウム等のアルカリ金属元素を含
有してもよい。ここで、Sn/Si=1/0.1よりも
小さい場合は、SnO2 の結晶子サイズが焼成処理温度
により大きく変化しやすく、安定した充放電挙動が望め
ない。また、Sn/Si=1/1よりも大きい場合は、
サイクル劣化しやすい傾向となるため好ましくない。
C-SnO 2 -composed of the above materials
In the SiO 2 composite, the (110) plane crystallite size of SnO 2 is 4 to 40 nm, and the amount of SiO 2 is expressed in a molar ratio.
Sn / Si = 1 / 0.1 to 1, preferably Sn / Si
Si exists at 1 / 0.5 to 0.7.
In addition, in order to further improve the stability during the sol-gel method, a small amount of halogen elements such as chlorine and fluorine, sulfur,
It may contain an inorganic substance such as phosphorus or an alkali metal element such as lithium. Here, when Sn / Si = 1 / 0.1, the crystallite size of SnO 2 tends to change greatly depending on the firing temperature, and stable charge / discharge behavior cannot be expected. When Sn / Si is larger than 1/1,
This is not preferable because the cycle tends to deteriorate.

【0015】このC−SnO2 −SiO2 複合材のバイ
ンダーとしては、バインダー自身が充放電に寄与するポ
リイミド、ポリアミド、ポリアミドイミド等や、ポリビ
ニリデンフロライドが好ましい。また、電子移動を容易
に起こさせる芳香族基を含む芳香族ポリイミド、芳香族
ポリアミドイミド、芳香族ポリアミド等も使用すること
ができる。
As the binder of the C-SnO 2 —SiO 2 composite material, polyimide, polyamide, polyamide imide or the like, which itself contributes to charge and discharge, and polyvinylidene fluoride are preferable. In addition, an aromatic polyimide, an aromatic polyamideimide, an aromatic polyamide, or the like containing an aromatic group that easily causes electron transfer can be used.

【0016】これらポリイミド、ポリアミドイミド、ポ
リアミド等は公知の方法、例えば第4版実験化学講座2
8「高分子合成」(日本化学編、丸善株式会社発行、1
992)に記載の方法を用いることができる。中でも、
低温重縮合法を用いるのが好ましい。
These polyimides, polyamide imides, polyamides and the like can be produced by a known method, for example,
8 "Polymer Synthesis" (published by Maruzen Co., Ltd.
992). Among them,
It is preferable to use a low-temperature polycondensation method.

【0017】低温重縮合法においては、テトラカルボン
酸二無水物、酸クロライドとジアミンとを反応させてポ
リイミド、ポリアミドイミド、ポリアミドを合成するこ
とができる。ここで、用いるテトラカルボン酸二無水物
としては、ピロメリツト酸二無水物、3,3′,4,
4′−ジフェニルテトラカルボン酸二無水物、2,
2′,3,3′−ジフェニルテトラカルボン酸二無水
物、3,4,9,10−ペリレンテトラカルボン酸二無
水物、ビス(3,4−ジカルボキシフェニル)エーテル
二無水物、ベンゼン−1,2,3,4−テトラカルボン
酸二無水物、3,4,3′,4′−ベンゾフェノンテト
ラカルボン酸二無水物、2,3,2′,3−ベンゾフェ
ノンテトラカルボン酸二無水物、2,3,3′,4′−
ベンゾフェノンテトラカルボン酸二無水物、1,2,
5,6,−ナフタレンテトラカルボン酸二無水物、2,
3,6,7,−ナフタレンテトラカルボン酸二無水物、
1,2,4,5−ナフタレン−テトラカルボン酸二無水
物、1,4,5,8−ナフタレン−テトラカルボン酸二
無水物、フエナンスレン−1,8,9,10−テトラカ
ルボン酸二無水物、ピラジン−2,3,5,6−テトラ
カルボン酸二無水物、チオフエン−2,3,4,5−テ
トラカルボン酸二無水物、2,3,3′,4′−ビフェ
ニルテトラカルボン酸二無水物、3,4,3′,4′−
ビフェニルテトラカルボン酸二無水物、2,3,2′,
3′−ビフェニルテトラカルボン酸二無水物、等があ
り、2種類以上を混合して用いてもよい。
In the low-temperature polycondensation method, polyimide, polyamideimide and polyamide can be synthesized by reacting tetracarboxylic dianhydride, acid chloride and diamine. Here, as the tetracarboxylic dianhydride used, pyromellitic dianhydride, 3,3 ′, 4,
4'-diphenyltetracarboxylic dianhydride, 2,
2 ', 3,3'-diphenyltetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, benzene-1 2,2,3,4-tetracarboxylic dianhydride, 3,4,3 ', 4'-benzophenonetetracarboxylic dianhydride, 2,3,2', 3-benzophenonetetracarboxylic dianhydride, , 3,3 ', 4'-
Benzophenonetetracarboxylic dianhydride, 1,2,2
5,6-naphthalenetetracarboxylic dianhydride, 2,
3,6,7, -naphthalenetetracarboxylic dianhydride,
1,2,4,5-naphthalene-tetracarboxylic dianhydride, 1,4,5,8-naphthalene-tetracarboxylic dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride , Pyrazine-2,3,5,6-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride Anhydride, 3,4,3 ', 4'-
Biphenyltetracarboxylic dianhydride, 2,3,2 ',
There are 3'-biphenyltetracarboxylic dianhydride and the like, and two or more kinds may be used as a mixture.

【0018】酸クロライドとしては、テレフタル酸クロ
ライド、イソフタル酸クロライド、無水トリメリット酸
モノクロライド等を使用することができる。
As the acid chloride, terephthalic acid chloride, isophthalic acid chloride, trimellitic anhydride monochloride and the like can be used.

【0019】ジアミン化合物としては、3,3′−ジア
ミノジフェニルメタン、3,3′−ジアミノジフェニル
エーテル、3,3′−ジアミノジフェニルスルホン、
3,3′−ジアミノジフェニルスルフィド、p−フェニ
レンジアミン、m−フェニレンジアミン、4,4′−ジ
アミノジフェニルプロパン、4,4′−ジアミノジフェ
ニルメタン、3,3′−ジアミノベンゾフェノン、4,
4′−ジアミノジフェニルスルフィド、4,4′−ジア
ミノジフェニルスルホン、4,4′−ジアミノジフェニ
ルエーテル、3,4′−ジアミノジフェニルエーテル、
1,5−ジアミノナフタレン、等があり、2種類以上を
混合して用いてもよい。
Examples of the diamine compound include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylether, 3,3'-diaminodiphenylsulfone,
3,3'-diaminodiphenyl sulfide, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 3,3'-diaminobenzophenone, 4,
4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether,
There are 1,5-diaminonaphthalene and the like, and two or more kinds may be used as a mixture.

【0020】これらを合成する溶媒は、これら原料樹脂
及び生成する高分子が溶解するものであれば特に制限さ
れないが、反応性及び負極作製時の分散媒体の点からは
N,N−ジメチルホルムアミド、N,N−ジメチルアセ
トアミド、N−ジメチル−2−ピロリドンを用いるのが
好ましい。
The solvent for synthesizing these is not particularly limited as long as the raw material resin and the produced polymer can be dissolved, but from the viewpoint of reactivity and a dispersion medium at the time of preparing the negative electrode, N, N-dimethylformamide, It is preferable to use N, N-dimethylacetamide and N-dimethyl-2-pyrrolidone.

【0021】次に、C−SnO2 −SiO2 複合材及び
ポリイミド樹脂等のバインダーからなるリチウムイオン
二次電池用負極の製造方法について説明する。まず、炭
素粉末、SnO2 前駆体、SiO2 前駆体とを所定の配
合で混合したゾルゲル液を作製する。このゾルゲル液を
80℃で乾燥後、窒素雰囲気下で500〜1200℃で
焼成して、C−SnO2 −SiO2 複合材を形成する。
Next, a method for manufacturing a negative electrode for a lithium ion secondary battery comprising a binder such as a C-SnO 2 -SiO 2 composite material and a polyimide resin will be described. First, a sol-gel liquid is prepared by mixing a carbon powder, a SnO 2 precursor, and a SiO 2 precursor in a predetermined mixture. After drying this sol-gel liquid at 80 ° C., it is baked at 500 to 1200 ° C. in a nitrogen atmosphere to form a C—SnO 2 —SiO 2 composite material.

【0022】ここで、C−SnO2 −SiO2 複合材に
おけるSn/Siの配合比は、例えば、Sn/Siの配
合比が同一の場合、焼成温度の上昇に伴ってSnO2
結晶子のサイズが大きくなる傾向があり、各配合に応じ
た焼成温度の設定が必要である。リチウムイオン二次電
池用負極の活物質として使用する場合は、充放電に関与
しないSiO2 の比率が比較的少なく、Sn/Siの配
合比が1/0.5〜0.7のものが好ましく、焼成温度
が600〜800℃とすることが好ましい。
Here, the compounding ratio of Sn / Si in the C—SnO 2 —SiO 2 composite material is, for example, when the compounding ratio of Sn / Si is the same, the SnO 2 crystallites increase with the firing temperature. The size tends to be large, and it is necessary to set a firing temperature according to each composition. When used as an active material of a negative electrode for a lithium ion secondary battery, it is preferable that the ratio of SiO 2 not involved in charge / discharge is relatively small and the mixing ratio of Sn / Si is 1 / 0.5 to 0.7. Preferably, the firing temperature is 600 to 800 ° C.

【0023】また、非晶質性の高いSiO2 を加えるこ
とによって、SnO2 の結晶成長をある程度抑制するこ
とが可能となることによって焼成時にSnO2 (11
0)面の結晶子サイズを4〜40nmの範囲とすること
ができる。
Further, by adding SiO 2 having a high amorphous property, it is possible to suppress the crystal growth of SnO 2 to some extent, so that SnO 2 (11
The crystallite size on the 0) plane can be in the range of 4 to 40 nm.

【0024】また、炭素粉末と、SnO2 −SiO2
の配合比率に関しては、特に制限はないが、炭素の比率
を高めることで、電池としてのサイクル安定性が向上す
る。ところが、炭素の比率の高い分、電池の容量が低く
なり、高容量化という要望を満足することが難しくな
る。一方、SnO2 −SiO2 の比率を高めると、電池
の容量は大きくなるが、サイクル安定性が低下する。ま
た、炭素に比べ、比重が大きく、所定の電池容量以上の
ものにする場合、どうしても電池の小型化、軽量化とい
う要望を満足できないという問題が生じる。したがっ
て、炭素粉末と、SnO2 −SiO2 との配合比率につ
いては、所望の電池サイズ及び電池容量に併せて適宜そ
の配合比率を決定する。
There is no particular limitation on the mixing ratio of the carbon powder and SnO 2 —SiO 2 , but the cycle stability of the battery is improved by increasing the carbon ratio. However, the higher the ratio of carbon, the lower the capacity of the battery, making it difficult to satisfy the demand for higher capacity. On the other hand, when the ratio of SnO 2 —SiO 2 is increased, the capacity of the battery is increased, but the cycle stability is reduced. In addition, when the specific gravity is higher than carbon and the battery has a predetermined battery capacity or more, there arises a problem that the demand for reducing the size and weight of the battery cannot be satisfied. Therefore, regarding the mixing ratio of the carbon powder and SnO 2 —SiO 2 , the mixing ratio is appropriately determined according to the desired battery size and battery capacity.

【0025】以上のようにして形成したC−SnO2
SiO2 複合材を粉砕後、バインダーとしてポリイミド
樹脂と混合し、銅箔に所定の厚みとなるように塗布し、
リチウムイオン二次電池用負極とする。
The C-SnO 2 -formed as described above
After pulverizing the SiO 2 composite, mixed with a polyimide resin as a binder, and applied to a copper foil to a predetermined thickness,
A negative electrode for a lithium ion secondary battery.

【0026】[0026]

【実施例】以下、実施例により本発明を具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0027】(実施例1)天然黒鉛粉末10gを原子存
在比Sn/Si=1/0.5に調整したSn、Si元素
を含むゾルゲル液約30gに混合、攪拌後、80℃にて
乾燥、窒素雰囲気下600℃にて焼成を行った。得られ
た粉体の重量存在比は、C:41%,Sn:49%,S
i:10%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ14nm
の正方晶SnO2 のピークが検出された。この粉体とポ
リイミド樹脂を90/10の質量比率で混合し、厚み2
0μmの銅箔に厚み100μmとなるように塗布し、1
35℃で乾燥した。その後、エチレンカーボネート/ジ
メチルカーボネート(以下、EC/DMCという。)電
解液を使用し、露点温度−70℃のグローブボックス内
で0−1.5V半電池充放電試験を行った。
Example 1 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio of Sn / Si = 1 / 0.5, stirred, dried at 80 ° C. The firing was performed at 600 ° C. in a nitrogen atmosphere. The weight abundance ratio of the obtained powder was C: 41%, Sn: 49%, S:
i: 10%. This powder is ground in a mortar and
After sieving so as to be not more than μm, as a result of measurement by X-ray diffraction, it was found that graphite had a (110) plane crystallite size of 14 nm.
Of tetragonal SnO 2 was detected. This powder and the polyimide resin are mixed at a mass ratio of 90/10, and the thickness 2
0μm copper foil to a thickness of 100μm, 1
Dried at 35 ° C. Thereafter, using an ethylene carbonate / dimethyl carbonate (hereinafter, referred to as EC / DMC) electrolyte, a 0-1.5 V half-cell charge / discharge test was performed in a glove box having a dew point of -70 ° C.

【0028】(実施例2)天然黒鉛粉末10gを原子存
在比Sn/Si=1/0.7に調整したSn、Si元素
を含むゾルゲル液約30gに混合、攪拌後、80℃にて
乾燥、窒素雰囲気下600℃にて焼成を行った。得られ
た粉体の重量存在比は、C:38%,Sn:45%,S
i:18%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ7.5n
mの正方晶SnO2 のピークが検出された。この粉体と
ポリイミド樹脂を90/10の質量比率で混合し、厚み
20μmの銅箔に厚み100μmとなるように塗布し、
135℃で乾燥した。その後、EC/DMC電解液を使
用し、露点温度−70℃のグローブボックス内で0−
1.5V半電池充放電試験を行った。
Example 2 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio of Sn / Si = 1 / 0.7, stirred, dried at 80 ° C. The firing was performed at 600 ° C. in a nitrogen atmosphere. The weight abundance ratio of the obtained powder was C: 38%, Sn: 45%, S:
i: 18%. This powder is ground in a mortar and
After sieving so as to be not more than μm, as a result of measurement by X-ray diffraction, it was found that graphite had a (110) plane crystallite size of 7.5 n.
A peak of m tetragonal SnO 2 was detected. This powder and a polyimide resin are mixed at a mass ratio of 90/10, and applied to a copper foil having a thickness of 20 μm so as to have a thickness of 100 μm.
Dry at 135 ° C. Then, using an EC / DMC electrolytic solution, a 0-deg.
A 1.5V half-cell charge / discharge test was performed.

【0029】(実施例3)天然黒鉛粉末10gを原子存
在比Sn/Si=1/0.5に調整したSn、Si元素
を含むゾルゲル液約30gに混合、攪拌後、80℃にて
乾燥、窒素雰囲気下600℃にて焼成を行った。得られ
た粉体の重量存在比は、C:41%,Sn:49%,S
i:10%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ14nm
の正方晶SnO2 のピークが検出された。この粉体とポ
リビニリデンフロライド樹脂を90/10の質量比率で
混合し、厚み20μmの銅箔に厚み100μmとなるよ
うに塗布し、135℃で乾燥した。その後、EC/DM
C電解液を使用し、露点温度−70℃のグローブボック
ス内で0−1.5V半電池充放電試験を行った。
Example 3 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio of Sn / Si = 1 / 0.5, stirred and dried at 80 ° C. The firing was performed at 600 ° C. in a nitrogen atmosphere. The weight abundance ratio of the obtained powder was C: 41%, Sn: 49%, S:
i: 10%. This powder is ground in a mortar and
After sieving so as to be not more than μm, as a result of measurement by X-ray diffraction, it was found that graphite had a (110) plane crystallite size of 14 nm.
Of tetragonal SnO 2 was detected. This powder and polyvinylidene fluoride resin were mixed at a mass ratio of 90/10, applied to a copper foil having a thickness of 20 μm so as to have a thickness of 100 μm, and dried at 135 ° C. After that, EC / DM
Using a C electrolytic solution, a 0-1.5 V half-cell charge / discharge test was performed in a glove box having a dew point of -70 ° C.

【0030】(実施例4)天然黒鉛粉末10gを原子存
在比Sn/Si=1/0.3に調整したSn、Si元素
を含むゾルゲル液約30gに混合、攪拌後、80℃にて
乾燥、窒素雰囲気下600℃にて焼成を行った。得られ
た粉体の重量存在比は、C:45%,Sn:50%,S
i:5%であった。この粉体を乳鉢にて粉砕し、63μ
m以下となるように篩がけした後、X線回折にて測定し
た結果、黒鉛の他(110)面結晶子サイズ39nmの
正方晶SnO2 のピークが検出された。この粉体とポリ
ビニリデンフロライド樹脂を90/10の質量比率で混
合し、厚み20μmの銅箔に厚み100μmとなるよう
に塗布し、135℃で乾燥した。その後、EC/DMC
電解液を使用し、露点温度−70℃のグローブボックス
内で0−1.5V半電池充放電試験を行った。
Example 4 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio of Sn / Si = 1 / 0.3, stirred, dried at 80 ° C. The firing was performed at 600 ° C. in a nitrogen atmosphere. The weight abundance ratio of the obtained powder was C: 45%, Sn: 50%, S:
i: 5%. This powder is ground in a mortar and
After sieving so as to be not more than m, as a result of measurement by X-ray diffraction, a tetragonal SnO 2 peak having a crystallite size of 39 nm in addition to graphite was detected. This powder and polyvinylidene fluoride resin were mixed at a mass ratio of 90/10, applied to a copper foil having a thickness of 20 μm so as to have a thickness of 100 μm, and dried at 135 ° C. After that, EC / DMC
Using an electrolytic solution, a 0-1.5 V half-cell charge / discharge test was performed in a glove box having a dew point of -70 ° C.

【0031】(比較例1)SnO2 (和光純薬特級、
(110)面結晶子サイズ42nm)とポリビニリデン
フロライド樹脂を95/5の質量比率で混合し、厚み2
0μmの銅箔に厚み100μmとなるように塗布し、1
35℃で乾燥した。その後、EC/DMC電解液を使用
し、露点温度−70℃のグローブボックス内で0−1.
5V半電池充放電試験を行った。
Comparative Example 1 SnO 2 (special grade of Wako Pure Chemical Industries,
(110) plane crystallite size 42 nm) and a polyvinylidene fluoride resin in a mass ratio of 95/5,
0μm copper foil to a thickness of 100μm, 1
Dried at 35 ° C. Thereafter, using an EC / DMC electrolytic solution, a 0-1.
A 5V half-cell charge / discharge test was performed.

【0032】(比較例2)天然黒鉛粉末10gを原子存
在比Sn/Si=1/0.05に調整したSn、Si元
素を含むゾルゲル液約30gに混合、攪拌後、80℃に
て乾燥、窒素雰囲気下600℃にて焼成を行った。得ら
れた粉体の重量存在比は、C:45%,Sn:54%,
Si:1%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ38nm
の正方晶SnO2 のピークが検出された。この粉体とポ
リビニリデンフロライド樹脂を90/10の質量比率で
混合し、厚み20μmの銅箔に厚み100μmとなるよ
うに塗布し、135℃で乾燥した。その後、EC/DM
C電解液を使用し、露点温度−70℃のグローブボック
ス内で0−1.5V半電池充放電試験を行った。
Comparative Example 2 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio Sn / Si = 1 / 0.05, stirred, dried at 80 ° C. The firing was performed at 600 ° C. in a nitrogen atmosphere. The weight ratio of the obtained powder was C: 45%, Sn: 54%,
Si: 1%. This powder is ground in a mortar and
After sieving so as to be not more than μm, it was measured by X-ray diffraction.
Of tetragonal SnO 2 was detected. This powder and polyvinylidene fluoride resin were mixed at a mass ratio of 90/10, applied to a copper foil having a thickness of 20 μm so as to have a thickness of 100 μm, and dried at 135 ° C. After that, EC / DM
Using a C electrolytic solution, a 0-1.5 V half-cell charge / discharge test was performed in a glove box having a dew point of -70 ° C.

【0033】(比較例3)天然黒鉛粉末10gを原子存
在比Sn/Si=1/1.1に調整したSn、Si元素
を含むゾルゲル液約30gに混合、攪拌後、80℃にて
乾燥、窒素雰囲気下700℃にて焼成を行った。得られ
た粉体の重量存在比は、C:38%,Sn:44%,S
i:19%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ4.2n
mの正方晶SnO2 のピークが検出された。この粉体と
ポリビニリデンフロライド樹脂を90/10の質量比率
で混合し、厚み20μmの銅箔に厚み100μmとなる
ように塗布し、135℃で乾燥した。その後、EC/D
MC電解液を使用し、露点温度−70℃のグローブボッ
クス内で0−1.5V半電池充放電試験を行った。
Comparative Example 3 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio Sn / Si = 1 / 1.1, stirred, dried at 80 ° C. The firing was performed at 700 ° C. in a nitrogen atmosphere. The weight ratio of the obtained powder was as follows: C: 38%, Sn: 44%, S:
i: 19%. This powder is ground in a mortar and
After sieving so as to be not more than μm, as a result of measurement by X-ray diffraction, it was found that graphite had a (110) plane crystallite size of 4.2 n.
A peak of m tetragonal SnO 2 was detected. This powder and polyvinylidene fluoride resin were mixed at a mass ratio of 90/10, applied to a copper foil having a thickness of 20 μm so as to have a thickness of 100 μm, and dried at 135 ° C. After that, EC / D
A 0-1.5 V half-cell charge / discharge test was performed in a glove box having a dew point of -70 ° C. using an MC electrolytic solution.

【0034】(比較例4)天然黒鉛粉末10gを原子存
在比Sn/Si=1/0.3に調整したSn、Si元素
を含むゾルゲル液約30gに混合、攪拌後、80℃にて
乾燥、窒素雰囲気下1300℃にて焼成を行った。得ら
れた粉体の重量存在比は、C:45%,Sn:50%,
Si:5%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ48nm
の正方晶SnO2 のピークが検出された。この粉体とポ
リイミド樹脂を90/10の質量比率で混合し、厚み2
0μmの銅箔に厚み100μmとなるように塗布し、1
35℃で乾燥した。その後、EC/DMC電解液を使用
し、露点温度−70℃のグローブボックス内で0−1.
5V半電池充放電試験を行った。
Comparative Example 4 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements adjusted to an atomic ratio Sn / Si = 1 / 0.3, stirred, dried at 80 ° C. The firing was performed at 1300 ° C. in a nitrogen atmosphere. The weight ratio of the obtained powder was C: 45%, Sn: 50%,
Si: 5%. This powder is ground in a mortar and
After sieving so as to be not more than μm, as a result of measurement by X-ray diffraction, it was found that graphite had a (110) plane crystallite size of 48 nm.
Of tetragonal SnO 2 was detected. This powder and the polyimide resin are mixed at a mass ratio of 90/10, and the thickness 2
0μm copper foil to a thickness of 100μm, 1
Dried at 35 ° C. Thereafter, using an EC / DMC electrolytic solution, a 0-1.
A 5V half-cell charge / discharge test was performed.

【0035】(比較例5)天然黒鉛粉末10gを原子存
在比Sn/Si=1/1に調整したSn、Si元素を含
むゾルゲル液約30gに混合、攪拌後、80℃にて乾
燥、窒素雰囲気下500℃にて焼成を行った。得られた
粉体の重量存在比は、C:38%,Sn:45%,S
i:18%であった。この粉体を乳鉢にて粉砕し、63
μm以下となるように篩がけした後、X線回折にて測定
した結果、黒鉛の他(110)面結晶子サイズ3.8n
mの正方晶SnO2 のピークが検出された。この粉体と
ポリイミド樹脂を90/10の質量比率で混合し、厚み
20μmの銅箔に厚み100μmとなるように塗布し、
135℃で乾燥した。その後、EC/DMC電解液を使
用し、露点温度−70℃のグローブボックス内で0−
1.5V半電池充放電試験を行った。
(Comparative Example 5) 10 g of natural graphite powder was mixed with about 30 g of a sol-gel solution containing Sn and Si elements whose atomic abundance ratio was adjusted to Sn / Si = 1/1, stirred, dried at 80 ° C., and nitrogen atmosphere Baking was performed at 500 ° C. below. The weight abundance ratio of the obtained powder was C: 38%, Sn: 45%, S:
i: 18%. This powder is ground in a mortar and
After sieving so as to be not more than μm, as a result of measuring by X-ray diffraction, it is found that graphite has another (110) plane crystallite size of 3.8 n.
A peak of m tetragonal SnO 2 was detected. This powder and a polyimide resin are mixed at a mass ratio of 90/10, and applied to a copper foil having a thickness of 20 μm so as to have a thickness of 100 μm.
Dry at 135 ° C. Then, using an EC / DMC electrolytic solution, a 0-deg.
A 1.5V half-cell charge / discharge test was performed.

【0036】以上、実施例1乃至4及び比較例1乃至5
の0−1.5V半電池充放電試験の結果を表1及び図1
にまとめて示す。
As described above, Examples 1 to 4 and Comparative Examples 1 to 5
Table 1 and FIG. 1 show the results of the 0-1.5 V half-cell charge / discharge test.
Are shown together.

【0037】[0037]

【表1】 [Table 1]

【0038】表1及び図1より、本実施例に係る二次電
池用負極材を用いたものは、高容量であるとともに、サ
イクル安定性に優れた電池となることがわかる。なお、
SnO2 (110)面結晶子サイズは、X線回折測定結
果より半価幅データをもとに、下記のScherrer
の式から計算した。 DhkL :K・λ/βcosθ ここで、DhkL は結晶子の大きさ(nm)、λは測定X
線波長(0.15405nm)、βは結晶子の大きさに
よる回折線の拡がり(ラジアン)、θは回折線のブラッ
グ角(deg)(2θ=26.5deg、θ=13.2
5deg)、Kは定数(0.9)として計算した。
From Table 1 and FIG. 1, it can be seen that the battery using the negative electrode material for a secondary battery according to the present embodiment has a high capacity and excellent cycle stability. In addition,
The SnO 2 (110) plane crystallite size was calculated from the following Scherrer based on the half-width data from the X-ray diffraction measurement results.
It calculated from the formula of. D hkL : K · λ / βcos θ where D hkL is the crystallite size (nm) and λ is the measurement X
Line wavelength (0.15405 nm), β is the spread of the diffraction line according to the size of the crystallite (radian), θ is the Bragg angle (deg) of the diffraction line (2θ = 26.5 deg, θ = 13.2)
5 deg), and K was calculated as a constant (0.9).

【0039】これは、SiO2 を添加することによっ
て、SnO2 の(110)面結晶子を4〜40nmの範
囲とできるため、リチウムとの合金化反応時でも膨張、
収縮に伴う集電体との密着性が悪化しにくいため、充放
電サイクルの劣化が抑制されるものと考えられる。
This is because, by adding SiO 2 , the (110) plane crystallite of SnO 2 can be set in the range of 4 to 40 nm, so that it can expand even during an alloying reaction with lithium.
It is considered that the adhesion to the current collector due to the shrinkage does not easily deteriorate, so that the deterioration of the charge / discharge cycle is suppressed.

【0040】[0040]

【発明の効果】本発明は以上のように構成されており、
炭素粉末、スズ酸化物、ケイ素酸化物を含む複合材料に
バインダーとしてポリイミド樹脂を用いて、この複合材
料における、スズ酸化物の(110)面結晶子サイズが
4〜40nmであり、ケイ素酸化物の量をmol比で、
スズ/ケイ素=1/0.1〜1の範囲とすることで、リ
チウムとの合金化反応及び充放電に寄与するバインダー
を使用することによって、高容量化を実現できるととも
に、スズの添加量を抑制することができるため、小型
化、軽量化をも実現することが可能となる効果を奏す
る。
The present invention is configured as described above.
Using a polyimide resin as a binder for a composite material containing carbon powder, tin oxide and silicon oxide, the (110) plane crystallite size of the tin oxide in this composite material is 4 to 40 nm, The amount is expressed in mol ratio,
By setting the tin / silicon = 1 / 0.1 to 1 range, by using a binder that contributes to the alloying reaction with lithium and charge / discharge, a high capacity can be realized, and the amount of tin added can be reduced. Since it can be suppressed, there is an effect that it is possible to realize a reduction in size and weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係るリチウムイオン二次電池の0−
1.5V半電池充放電試験の結果をまとめた図である。
FIG. 1 is a cross-sectional view of a lithium ion secondary battery according to the present embodiment.
It is the figure which put together the result of the 1.5V half-cell charge / discharge test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 直人 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 (72)発明者 長岡 勝秀 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 Fターム(参考) 5H050 AA08 BA17 CB02 CB08 CB29 DA03 DA11 EA23 HA02 HA13 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoto Ota 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Toyo Carbon Co., Ltd. (72) Inventor Katsuhide Nagaoka 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Toyo Carbon F term (reference) 5H050 AA08 BA17 CB02 CB08 CB29 DA03 DA11 EA23 HA02 HA13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭素粉末、スズ酸化物、ケイ素酸化物を
含む複合材料と、樹脂からなるバインダーを用いること
を特徴とするリチウムイオン二次電池用負極。
1. A negative electrode for a lithium ion secondary battery, comprising: a composite material containing carbon powder, tin oxide, and silicon oxide; and a binder made of a resin.
【請求項2】 前記スズ酸化物が、SnO2 である請求
項1に記載のリチウムイオン二次電池用負極。
2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the tin oxide is SnO 2 .
【請求項3】 前記ケイ素酸化物が、SiO2 である請
求項1に記載のリチウムイオン二次電池用負極。
3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the silicon oxide is SiO 2 .
【請求項4】 前記スズ酸化物がSnO2 で、前記ケイ
素酸化物がSiO2である請求項1に記載のリチウムイ
オン二次電池用負極。
4. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the tin oxide is SnO 2 and the silicon oxide is SiO 2 .
【請求項5】 前記スズ酸化物の(110)面結晶子サ
イズが4〜40nmである請求項1〜4のいずれかに記
載のリチウムイオン二次電池用負極。
5. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the (110) plane crystallite size of the tin oxide is 4 to 40 nm.
【請求項6】 前記ケイ素酸化物の量がmol比で、ス
ズ/ケイ素=1/0.1〜1の範囲で存在している請求
項1〜4のいずれかに記載のリチウムイオン二次電池用
負極。
6. The lithium ion secondary battery according to claim 1, wherein the amount of the silicon oxide is in a molar ratio of tin / silicon = 1 / 0.1 to 1. For negative electrode.
【請求項7】 前記スズ酸化物の(110)面結晶子サ
イズが4〜40nmで、前記ケイ素酸化物の量がmol
比で、スズ/ケイ素=1/0.1〜1の範囲で存在して
いる請求項1〜4のいずれかに記載のリチウムイオン二
次電池用負極。
7. The (110) plane crystallite size of the tin oxide is 4 to 40 nm, and the amount of the silicon oxide is mol
The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein tin / silicon is present in a ratio of 1 / 0.1 to 1 in a ratio.
【請求項8】 前記バインダーがポリイミド樹脂を含む
ものである請求項1〜7のいずれかに記載のリチウムイ
オン二次電池用負極。
8. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the binder contains a polyimide resin.
JP2000310012A 2000-10-11 2000-10-11 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery Expired - Fee Related JP4503807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310012A JP4503807B2 (en) 2000-10-11 2000-10-11 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310012A JP4503807B2 (en) 2000-10-11 2000-10-11 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2002117835A true JP2002117835A (en) 2002-04-19
JP4503807B2 JP4503807B2 (en) 2010-07-14

Family

ID=18790043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310012A Expired - Fee Related JP4503807B2 (en) 2000-10-11 2000-10-11 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4503807B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2008135384A (en) * 2006-11-27 2008-06-12 Samsung Sdi Co Ltd Negative electrode active material composition for lithium secondary battery, negative electrode for lithium secondary battery manufactured by using it, and lithium secondary battery
JP2008171813A (en) * 2007-01-05 2008-07-24 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell adopting this
JP2008282550A (en) * 2007-05-08 2008-11-20 Nec Tokin Corp Anode for lithium secondary battery and lithium secondary cell using the same
US8147723B2 (en) 2008-08-26 2012-04-03 Samsung Electronics Co., Ltd. Porous anode active material, method of manufacturing the same, anode comprising the same, and lithium battery comprising the anode
WO2012115206A1 (en) * 2011-02-23 2012-08-30 日本ケミコン株式会社 Negative-electrode active material, method for producing negative-electrode active material, lithium-ion secondary battery using negative-electrode active material
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
JPWO2014073200A1 (en) * 2012-11-12 2016-09-08 株式会社豊田自動織機 Nonaqueous electrolyte secondary battery
JP2017092048A (en) * 2011-09-07 2017-05-25 国立大学法人岩手大学 Lithium secondary battery negative electrode and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713257B (en) * 2018-12-06 2021-12-10 盐城工学院 High-performance Si @ SnO2@ C composite material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192723A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH10144316A (en) * 1996-11-13 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11130539A (en) * 1997-10-29 1999-05-18 Dow Corning Asia Kk Tin-containing silicon oxycarbide ceramic material and electrode material for lithium cell using the same and their production
JPH11135106A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11312518A (en) * 1998-04-28 1999-11-09 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2000021412A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2000113885A (en) * 1998-10-02 2000-04-21 Osaka Gas Co Ltd Negative electrode for lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192723A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH10144316A (en) * 1996-11-13 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11135106A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11130539A (en) * 1997-10-29 1999-05-18 Dow Corning Asia Kk Tin-containing silicon oxycarbide ceramic material and electrode material for lithium cell using the same and their production
JPH11312518A (en) * 1998-04-28 1999-11-09 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2000021412A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2000113885A (en) * 1998-10-02 2000-04-21 Osaka Gas Co Ltd Negative electrode for lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2008135384A (en) * 2006-11-27 2008-06-12 Samsung Sdi Co Ltd Negative electrode active material composition for lithium secondary battery, negative electrode for lithium secondary battery manufactured by using it, and lithium secondary battery
JP2008171813A (en) * 2007-01-05 2008-07-24 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell adopting this
JP2008282550A (en) * 2007-05-08 2008-11-20 Nec Tokin Corp Anode for lithium secondary battery and lithium secondary cell using the same
US8147723B2 (en) 2008-08-26 2012-04-03 Samsung Electronics Co., Ltd. Porous anode active material, method of manufacturing the same, anode comprising the same, and lithium battery comprising the anode
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
JP5920217B2 (en) * 2010-09-02 2016-05-18 日本電気株式会社 Secondary battery
WO2012115206A1 (en) * 2011-02-23 2012-08-30 日本ケミコン株式会社 Negative-electrode active material, method for producing negative-electrode active material, lithium-ion secondary battery using negative-electrode active material
JPWO2012115206A1 (en) * 2011-02-23 2014-07-07 日本ケミコン株式会社 Negative electrode active material, method for producing the negative electrode active material, and lithium ion secondary battery using the negative electrode active material
JP6124784B2 (en) * 2011-02-23 2017-05-10 日本ケミコン株式会社 Negative electrode active material, method for producing the negative electrode active material, and lithium ion secondary battery using the negative electrode active material
JP2017092048A (en) * 2011-09-07 2017-05-25 国立大学法人岩手大学 Lithium secondary battery negative electrode and method for manufacturing the same
JPWO2014073200A1 (en) * 2012-11-12 2016-09-08 株式会社豊田自動織機 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4503807B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR100716881B1 (en) Lithium ion secondary battery cathode, binder for lithium ion secondary battery cathode and lithium ion secondary battery using them
CN108701820B (en) Surface-coated positive electrode active material particles and secondary battery comprising same
KR101990168B1 (en) Resin composition for lithium ion cell positive electrode
US6218050B1 (en) Cabonaceous material for negative electrode of lithium secondary battery and lithium secondary battery using same
JP5553004B2 (en) Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
JP6105826B1 (en) Compound paste for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2011045907A1 (en) Negative electrode for non-aqueous secondary battery, and process for production thereof
KR20100024903A (en) Negative electrode material for non-aqueous electrolyte secondary battery and method for preparing si-o-al composite, and negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2002117835A (en) Negative electrode for lithium ion secondary battery
KR102279820B1 (en) Aqueous polyamic acid composition
JP5715572B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2001345103A (en) Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
JP3621061B2 (en) Negative electrode for lithium ion secondary battery, binder for negative electrode for lithium ion secondary battery, and lithium ion secondary battery using them
KR102314898B1 (en) Aqueous polyamic acid composition
JP5653185B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2003173782A (en) Lithium secondary battery and positive electrode
JP5543826B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2004006267A (en) Method for manufacturing positive electrode material for nonaqueous secondary battery
JP2016027561A (en) Negative electrode binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3589321B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
WO2011071106A1 (en) Negative electrode for secondary battery and secondary battery equipped with same, and resin precursor for binder, resin precursor solution and binder composition for use in production of secondary battery
JPH10302771A (en) Negative electrode for secondary battery and secondary battery using the same
KR101711437B1 (en) Binder for negative-electrode material for secondary battery
JP5886543B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
KR101905940B1 (en) Surface coated positive electrode active particle and secondary batterty comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees