JP3624663B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP3624663B2
JP3624663B2 JP35435897A JP35435897A JP3624663B2 JP 3624663 B2 JP3624663 B2 JP 3624663B2 JP 35435897 A JP35435897 A JP 35435897A JP 35435897 A JP35435897 A JP 35435897A JP 3624663 B2 JP3624663 B2 JP 3624663B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
lattice constant
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35435897A
Other languages
Japanese (ja)
Other versions
JPH10241691A (en
Inventor
享子 井川
重雄 鶴岡
正則 吉川
廉 村中
誼 小松
修子 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP35435897A priority Critical patent/JP3624663B2/en
Publication of JPH10241691A publication Critical patent/JPH10241691A/en
Application granted granted Critical
Publication of JP3624663B2 publication Critical patent/JP3624663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池に関する。
【0002】
【従来の技術】
近年、二次電池はパソコンや携帯電話などの電源として、あるいは電気自動車や電力貯蔵用の電源として、なくてはならない重要な構成要素の一つとなっている。
【0003】
携帯型コンピュータ(ペンコンピュータと呼ばれるものも含む)や携帯情報端末(Personal Digital Assistant、あるいはPersonal Intelligent Communicator、あるいはハンドヘルド・コミュニケータ)といった移動体通信(モービル・コンピューティング)が必要とされる要求として、小型化,軽量化が挙げられる。しかし、液晶表示パネルのバックライトや描画制御によって消費される電力が高いことや、二次電池の容量が現状ではまだ不十分であることなどの点から、システムのコンパクト化,軽量化が難しい状況にある。
【0004】
さらに、地球環境問題の高まりとともに排ガスや騒音を出さない電気自動車が関心を集めている。しかし、現状の電池ではエネルギ密度,出力密度が低いことから走行距離が短い,加速性が悪い,車内のスペースが狭い,車体の安定性が悪いなどの問題点が生じている。
【0005】
二次電池の中でも特に非水電解液を用いたリチウム二次電池は、電圧が高く、かつ軽量で、高いエネルギ密度が期待されることから注目されている。この二次電池の正極材料は、ポリアニリン、ポリアセン、ポリパラフェニレンなどの導電性高分子やLiCoO,LiNiO,LiMn,LiFeO, V,Cr,MnOなどの遷移金属の酸化物、TiS,MoSなどのカルコゲナイト化合物等が代表的である。特に特開昭55−136131号公報で開示されているLiCoO,LiNiO等の二次電池正極はLi金属を負極として用いた場合4V以上の起電力を有することから高エネルギ密度が期待できる。しかし、これらは現実には実際に利用しうる容量がまだ低い、あるいは寿命が短いなどの他、充放電時における過電圧,自己放電特性や高温特性などの点でまだ充分な性能とは言えない。また、過充電時に正極活物質が発熱分解し熱暴走を起こして、電池が発火,爆発するなど、安全性の面でも問題があった。
【0006】
従来、正極の高容量化,長寿命化を達成するため、さまざまな活物質組成が提案されている。例えば、サイクル特性を改善するものとしては、正極活物質に化学式LiMO(MはCo,Ni,Fe,Mnのうちから選択される1種又は2種以上の元素を表す)で示されるリチウム含有複合酸化物を用いること(特開平2−306022号)、あるいは化学式LiGe(MはCo,Ni,Mnから選ばれる1種以上の遷移金属元素、0.9≦x≦1.3,0.8≦y≦2.0,0.01≦z≦0.2,2.0≦p≦4.5)で示される複合酸化物を用いること(特開平7−29603号)が開示されている。また、サイクル特性,自己放電特性を改善するものとしては、A(Aはアルカリ金属から選ばれた少なくとも1種であり、Mは遷移金属であり、NはAl,In,Snの群から選ばれた少なくとも1種を表わし、0.05≦x≦1.10,0.85≦y≦1.00,0.001≦z≦ 0.10)で示される複合酸化物を使用することが(特開平7−176302号)、また、容量,サイクル特性を改善するものとしては、LiNi(1−x)(Mは Cu,Zn,Nb,Mo,Wの群から選ばれる少なくとも1種の元素、0<x<1,0.9≦y≦1.3)で示される複合酸化物を使用する(特開平6−283174号)ことなどが開示されている。また、サイクル特性を改善し、負荷特性を高くするものとしては、化学式LiMgCoNi1−y−z(0.95≦x≦1.05,0.02≦z≦0.15ならば、0.003<y<0.02,z<0.02ならば、0.003<y<0.05,a=2)で示される複合酸化物を用いること(特開平8−185863号)などが開示されている。
【0007】
【発明が解決しようとする課題】
正極活物質に化学式LiMO(MはCo,Ni,Fe,Mnのうちから選択される1種又は2種以上の元素を表わす)で示されるリチウム含有複合酸化物を用いる場合、サイクル寿命は改善される。しかし、容量の面では充分な特性とは言い難い。また、電圧が低下するなどの欠点を有する。A(Aはアルカリ金属から選ばれた少なくとも1種であり、Mは遷移金属であり、NはAl,In,Snの群から選ばれた少なくとも1種を表わし、0.05≦x≦1.10,0.85≦y≦1.00,0.001≦z≦0.10)で示される複合酸化物を使用する場合にも同様にサイクル寿命は改善されるが、実際に充放電に利用しうる容量は低下するため高容量化には至らない。正極活物質に化学式LiGe(MはCo,Ni,Mnから選ばれる1種以上の遷移金属元素,0.9≦x≦1.3,0.8≦y≦2.0,0.01≦z≦0.2,2.0≦p≦4.5)で示される複合酸化物を用いる場合、容量,サイクル寿命の点では改善される。しかし、過充電時の熱暴走反応を抑制することはできない。LiNi(1−x)(MはCu,Zn,Nb,Mo,Wの群から選ばれる少なくとも1種の元素、0<x<1,0.9≦y≦1.3)で示される複合酸化物を使用する場合や化学式 LiMgCoNi1−y−z(0.95≦x≦1.05,0.02≦z≦0.15ならば、0.003<y<0.02,z<0.02ならば、0.003<y<0.05,a=2)で示される複合酸化物を用いる場合にも同様である。二次電池用正極材料の高容量化,長寿命化,充放電時における過電圧の低下,レート特性や自己放電特性,高温特性,安全性の改善のあらゆる電池特性の面で有効な改善方法が望まれる。
【0008】
本発明は二次電池用正極材料のこれらの電池特性の一部又は望ましくは全部の改善を図ることを目的とする。
【0009】
【課題を解決するための手段】
本発明の電池および正極は、正極活物質を構成する元素としてLi,O,Mgを必須元素とし、かつ層状、もしくはジグザグ層状のLiMeO構造を有し、かつMeがMn,Co,Ni,Feから選ばれた少なくとも1種を含み、かつ LiMeO構造におけるLi位置にMgが存在することを特徴とする。層状構造としては、例えばα−NaFeO型で示される六方晶層状構造がある。これはα−NaFeO型の酸化物イオンの立方最密充填の垂直方向に交互に陽イオンが規則配列した構造である。ジグザグ層状構造としては、斜方晶ジグザグ層状構造がある。これは立方最密充填配列中の八面体位置の半分をMeイオンが占め、MeO八面体が稜を共有して二重鎖を形成し、この二重鎖がお互いに稜を共有してジグザグに連結した二次元面からなる層状構造をいう。Liの位置にMgが存在するかどうかを確認する方法としては、EXAFS測定,中性子回折測定,X線回折測定、及びリートベルトやFEFFなどの解析手法によって得られる。また、Mg2+のイオン半径はLiのイオン半径よりも小さく、Mn3+, Co3+,Ni3+,Fe3+のイオン半径よりも大きい。そのため、Liの位置にMgが存在していれば、格子定数、及び格子体積はMgが存在しない場合、あるいはMg量が少ない場合に比べて収縮するし、Meの位置にMgが存在していれば、格子定数、及び格子体積はMgが存在しない場合、あるいはMg量が少ない場合に比べて膨張する。これらのことから、Mgがどの位置に存在しているかを格子定数、及び格子体積の変化によって確認できる。
【0010】
Li位置にMgが存在するように合成するためには、LiとMgを直接合成する方法が好ましい。最も避けるべき方法としては、MeとMgを湿式で直接合成したMeとMgの複合原料を作製することである。この原料を使用して合成する方法では、Me位置にMgが混入しやすいため、Li位置にMgを存在させることが難しくなる。
【0011】
Mgの原料としては、硝酸マグネシウム,硫酸マグネシウム,炭酸マグネシウム,蓚酸マグネシウム,酸化マグネシウム,塩化マグネシウムから選ばれた少なくとも1種を用いることが望ましい。また、マグネシウム原料とマグネシウムを除くその他のすべての原料とを最後に混合した後、焼成、及び/または粉砕、及び/または分級することによって得られる。
【0012】
本発明の電池および正極は、正極活物質を構成する元素としてLi,O,Mgを必須元素とし、かつ層状、もしくはジグザグ層状のLiMeO構造を有し、かつMeがMn,Co,Ni,Feから選ばれた少なくとも1種を含み、かつ正極活物質の−40℃以下における電子伝導率が1S/m以上であり、好ましくは100S/m以上であることを特徴とする。従来の正極活物質では−40℃以下における電子伝導率は0.1S/m 以下と極めて小さかったのに対し、本発明の正極活物質では従来に比べて非常に大きい値を示す。
【0013】
さらに、正極活物質として、活物質の電子伝導率σの温度に対する変化率δσ/δTが、50℃から−196℃の温度範囲において0もしくは負であり、好ましくは40℃から−20℃の温度範囲において0もしくは負であることを特徴とする。従来の正極活物質では40℃以上の高温側に比べて−20℃以下の低温側ほど電子伝導率が低く、活物質の電子伝導率σの温度に対する変化率δσ/δTが正である、すなわち半導体的な伝導性を示したのに対し、本発明の正極活物質では40℃以上の高温側に比べて−20℃以下の低温側ほど電子伝導率が高い、もしくは変わらない、すなわち活物質の電子伝導率σの温度に対する変化率δσ/δTが0もしくは負であり、金属的な伝導性を示す。
【0014】
また、本発明の電池および正極は、正極活物質を構成する元素としてLi,O,Mgを必須元素とし、かつ層状、もしくはジグザグ層状のLiMeO構造を有し、かつMeがMn,Co,Ni,Feから選ばれた少なくとも1種を含み、かつ、電池容量の100%を充電した状態から、電池容量の100%を放電した状態に至るまでのc軸格子定数の最大値c1maxと最小値c1minとの変化率 (c1max−c1min)/c1minが、0.03以下であることを特徴とする。変化率(c1max−c1min)/c1minが、0.03よりも大きい場合、充放電による格子の膨張収縮のストレスが大きくなるため、粒子が崩壊してサイクル寿命が短い。
【0015】
さらに、本発明の電池および正極は、正極活物質を構成する元素としてLi,O,Mgを必須元素とし、かつ層状、もしくはジグザグ層状のLiMeO構造を有し、かつMeがMn,Co,Ni,Feから選ばれた少なくとも1種を含み、かつ、Li0.5MeOのc軸格子定数の最大値c2maxと、Li0.2MeOのc軸格子定数の最小値c2minとの変化率(c2max−c2min)/c2minが、0.01以下であることを特徴とする。Li0.5MeOでは、LiMeOに比べてLiの存在量が少ないため、O層とO層の間に斥力が働いて、c軸格子定数は膨張する。このとき、種類の異なる、あるいは反応性の異なる、あるいは結晶構造の異なる複数のLiMeO相が存在する場合には、c軸格子定数の中でも最大値を選択し、これをc2maxとする。一方、Li0.2MeOではLi0.5MeOに比べて、イオン半径の小さいMe4+がイオン半径の大きいMe3+よりも多く存在するため、c軸格子定数は先の場合とは反対に収縮する。このときも、種類の異なる、あるいは反応性の異なる、あるいは結晶構造の異なる複数のLiMeO相が存在する場合には、c軸格子定数の中でも最小値を選択し、これをc2min とする。本発明では、この2つの値から求められる変化率(c2max−c2min)/c2min が、0.01以下であることを特徴とする。0.01よりも大きい場合、充放電による格子の膨張収縮のストレスが大きくなるため、粒子の崩壊が著しく、サイクル寿命が短い。
【0016】
また、本発明の電池および正極は、正極活物質を構成する元素としてLi,O,Mgを必須元素とし、かつ層状、もしくはジグザグ層状のLiMeO構造を有し、かつMeがMn,Co,Ni,Feから選ばれた少なくとも1種を含み、かつ、Li0.5MeOのa軸格子定数a1に対するc軸格子定数c1の割合の最大値(c1/a1)max と、Li0.2MeOのa軸格子定数a2に対するc軸格子定数c2の割合の最小値(c2/a2)minとの差が、0.1 以内であることを特徴とする。a軸格子定数aに対するc軸格子定数cの割合、すなわちc/aの変化が小さいものほど、格子体積の変化が小さく、充放電反応の繰り返しによる結晶のストレスが抑制される。特にc/aの最大値と最小値の差が0.1 以内であることが望ましい。Li0.5MeOのa軸格子定数a1に対するc軸格子定数c1の割合の最大値(c1/a1)minと、Li0.2MeOのa軸格子定数a2に対するc軸格子定数c2の割合の最小値(c2/a2)minとの差が、0.1 を越える場合には充放電による格子の膨張収縮のストレスが大きくなるため、粒子の崩壊が著しく、サイクル寿命が短い。
【0017】
(1)本発明の電池および正極は、一般式LiMgNi(但しMはMn,Co,Feから選ばれた少なくとも1種であり、NはSi,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,y,zはそれぞれ0≦w≦1.2,0.001≦v≦0.02,0.5≦x<0.85,0.05≦y≦0.5,0≦z≦0.2の数を表わす)で示される複合酸化物用いることを特徴とする。望ましくはw,v,x,y,zはそれぞれ0.2≦w≦1.15,0.002≦v≦0.015,0.7≦x<0.85,0.05≦y≦0.25,0.01≦z≦0.15の範囲であり、さらに望ましくはw,v,x,y,zはそれぞれ0.2≦w≦1.05,0.008≦v≦0.012,0.75≦x≦0.82,0.05≦y≦0.15,0.05≦z≦0.15の範囲である。
【0018】
本発明の新規な正極活物質はLiの位置にMgが存在することから、wは1以上の値をとり得ないはずであるが、実際にはLiは焼成の過程で炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物を形成しやすく、その結果、化学分析によって求めたLi量は1よりも大きい値をとることがある。しかし、これら過剰のLiは正極活物質の周りを覆っているだけであり、LiMeO構造内には取り込まれてはおらず、あくまで、Liの位置にMgが存在する構造をとっている。
【0019】
本発明の新規な正極活物質は一般式LiMgNiで示されるものであって、層状構造を有する。結晶は充放電の過程で一部変化する場合もあるが、主として六方晶を維持し、α−NaFeO構造をとる。Li量を表わすwの値は充電状態,放電状態により変動し、その範囲は0≦w≦1.2 であり、望ましくは0.2≦w≦1.15の範囲であり、さらに望ましくは0.2≦w≦1.05の範囲である。即ち充電によりLiイオンのディインターカレーションが起こりwの値は小さくなり、放電によりLiイオンのインターカレーションが起こりwの値は大きくなる。Li量が1.2 より多いと焼成の過程で生成する炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物が多くなりすぎるため、これらの物質が電極を作製する際に使用する結着剤と反応して、うまく電極を作製できない。電極をうまく作製するためには、副生成物が少ないほど良く、wの値が1.2 以下であり、望ましくは1.15以下であり、さらに望ましくは1.05以下である。
【0020】
また、Mg量を表わすvの値は充電,放電により変動しないが、0.001≦v<0.02の範囲であり、望ましくは0.002≦v≦0.015 の範囲であり、さらに望ましくは0.008≦v≦0.012の範囲である。vの値が0.001 未満の場合、Mgの効果が充分発揮されず、深い充電,深い放電におけるサイクル性が悪く、容量も低下し、好ましくない。また、vの値が0.02 を越える場合には単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Mgの効果が充分発揮でき、かつ高い容量が得られる最も望ましいvの値は0.008≦v≦0.012の範囲である。
【0021】
また、Ni量を表わすxの値は0.5≦x<0.85の範囲であり、望ましくは0.7≦x<0.85の範囲であり、さらに望ましくは0.75≦x≦0.82の範囲である。xの値が0.5 未満の場合、容量は著しく低下し、好ましくない。また、xの値が0.85 以上の場合には深い充電,深い放電におけるサイクル性が悪く、好ましくない。高い容量が得られ、かつ深い充電,深い放電におけるサイクル性能が良好な最も望ましいxの値は0.75≦x≦0.82の範囲である。
【0022】
MはMn,Co,Feから選ばれた少なくとも1種で、yの値は充電状態,放電状態により変動せず、その範囲は0.05≦y≦0.5であり、望ましくは 0.05≦y≦0.25の範囲であり、さらに望ましくは0.05≦y≦0.15の範囲である。yの値が0.05 未満の場合、Mの効果が充分発揮されず、深い充電,深い放電におけるサイクル性が悪く、また熱安定性も悪く安全性に劣ることから好ましくない。また、yの値が0.5 を越える場合にも容量が低下して好ましくない。Mの効果が充分発揮でき、かつ高い容量が得られる最も望ましいyの値は0.05≦y≦0.15の範囲である。
【0023】
NはSi,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種で、好ましくはSi,Al,Ca,Cu,Sn,P,In,Bから選ばれた少なくとも1種であり、さらに好ましくはSi,Al,P,In,Bから選ばれた少なくとも1種であり、最も好ましくはSi,Al,P,Bから選ばれた少なくとも1種である。zの値は充電状態,放電状態により変動せず、その範囲は0≦z≦0.2 であり、望ましくは0.01≦z≦0.15の範囲であり、さらに望ましくは0.05≦z≦0.15の範囲である。zの値が0.2 を越える場合には充放電時における過電圧が高く、また、単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Nの効果が充分発揮でき、かつ高い容量が得られる最も望ましいzの値は0.05≦z≦0.15の範囲である。
【0024】
(2)また、本発明の電池および正極は、一般式LiMgCo(但し、NはNi,Mn,Fe,Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,zはそれぞれ0≦w≦1.2,0.001≦v<0.02,0.5≦x<0.85,0≦z≦0.5の数を表わす)で示される複合酸化物を用いることを特徴とする。望ましくはw,v,x,zはそれぞれ0.2≦w≦1.15,0.002≦v≦0.015,0.7≦x<0.85,0.01≦z≦0.15の範囲であり、さらに望ましくはw,v,x,y,zはそれぞれ0.2≦w≦1.05,0.008≦v≦0.012,0.75≦x≦0.82,0.05≦z≦0.15の範囲である。
【0025】
本発明の新規な正極活物質はLiの位置にMgが存在することから、wは1以上の値をとり得ないはずであるが、実際にはLiは焼成の過程で炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物を形成しやすく、その結果、化学分析によって求めたLi量は1よりも大きい値をとることがある。しかし、これら過剰のLiは正極活物質の周りを覆っているだけであり、LiMeO構造内には取り込まれてはおらず、あくまで、Liの位置にMgが存在する構造をとっている。
【0026】
本発明の新規な正極活物質は一般式LiMgCoで示されるものであって、層状構造を有する。結晶は充放電の過程で一部変化する場合もあるが、主として六方晶を維持し、α−NaFeO構造をとる。Li量を表わすwの値は充電状態,放電状態により変動し、その範囲は0≦w≦1.2 である。望ましくは0.2≦w≦1.15の範囲であり、さらに望ましくは0.2≦w≦1.05の範囲である。即ち充電によりLiイオンのディインターカレーションが起こりwの値は小さくなり、放電によりLiイオンのインターカレーションが起こりwの値は大きくなる。Li量が1.2 よりも多いと焼成の過程で生成する炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物量が多くなりすぎるため、これらの物質が電極を作製する際に使用する結着剤と反応して、うまく電極を作製できない。電極をうまく作製するためには、副生成物が少ないほど良く、wの値が1.2 以下であり、望ましくは1.15以下であり、さらに望ましくは1.05以下である。
【0027】
また、Mg量を表わすvの値は充電,放電により変動しないが、0.001≦v<0.02の範囲であり、望ましくは0.002≦v≦0.015 の範囲であり、さらに望ましくは0.008≦v≦0.012の範囲である。vの値が0.001 未満の場合、Mgの効果が充分発揮されず、深い充電,深い放電におけるサイクル性が悪く、容量も低下し、好ましくない。また、vの値が0.02 を越える場合には単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Mgの効果が充分発揮でき、かつ高い容量が得られる最も望ましいvの値が0.008≦v≦0.012の範囲である。
【0028】
また、Co量を表わすxの値は0.5≦x<0.85の範囲であり、望ましくは0.7≦x<0.85の範囲であり、さらに望ましくは0.75≦x≦0.82の範囲である。xの値が0.5 未満の場合、容量は著しく低下し、好ましくない。また、xの値が0.85 以上の場合には深い充電,深い放電におけるサイクル性が悪く、好ましくない。高い容量が得られ、かつ深い充電,深い放電におけるサイクル性能が良好な最も望ましいxの値は0.75≦x≦0.82の範囲である。
【0029】
NはNi,Mn,Fe,Si,Al,Ca,Cu,P,In,Sn,Mo, Nb,Y,Bi,Bから選ばれた少なくとも1種で、好ましくはNi,Mn, Fe,Si,Al,Ca,Cu,Sn,P,In,Bから選ばれた少なくとも1種であり、さらに好ましくはNi,Mn,Fe,Si,Al,P,In,Bから選ばれた少なくとも1種であり、最も好ましくはSi,Al,P,Bから選ばれた少なくとも1種である。zの値は充電状態,放電状態により変動せず、その範囲は0≦z≦0.5であり、望ましくは0.01≦z≦0.15 の範囲であり、さらに望ましくは0.05≦z≦0.15の範囲である。zの値が0.5 を越える場合には充放電時における過電圧が高く、また、単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Nの効果が充分発揮でき、かつ高い容量が得られる最も望ましいzの値は0.05≦z≦0.15の範囲である。
【0030】
(3)さらに、本発明の電池および正極は、一般式LiMgMn(但し、NはNi,Co,Fe,Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,zはそれぞれ0≦w≦1.2,0.001≦v<0.02,0.5≦x<0.85,0≦z≦0.5 の数を表わす)で示される複合酸化物を用いることを特徴とする。望ましくはw,v,x,zはそれぞれ0.2≦w≦1.15,0.002≦v≦0.015,0.7≦x<0.85,0.01≦z≦0.15の範囲であり、さらに望ましくはw,v,x,zはそれぞれ0.2≦w≦1.05,0.008≦v≦0.012,0.75≦x≦0.82,0.05≦z≦0.15の範囲である。
【0031】
本発明の新規な正極活物質はLiの位置にMgが存在することから、wは1以上の値をとり得ないはずであるが、実際にはLiは焼成の過程で炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物を形成しやすく、その結果、化学分析によって求めたLi量は1よりも大きい値をとることがある。しかし、これら過剰のLiは正極活物質の周りを覆っているだけであり、LiMeO構造内には取り込まれてはおらず、あくまで、Liの位置にMgが存在する構造をとっている。
【0032】
本発明の新規な正極活物質は一般式LiMgMnで示されるものであって、Li量を表わすwの値は充電状態,放電状態により変動し、その範囲は0≦w≦1.2 であり、望ましくは0.2≦w≦1.15の範囲であり、さらに望ましくは0.2≦w≦1.05の範囲である。即ち充電によりLiイオンのディインターカレーションが起こりwの値は小さくなり、放電によりLiイオンのインターカレーションが起こりwの値は大きくなる。Li量が1.2 よりも多いと焼成の過程で生成する炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物が多くなりすぎるため、これらの物質が電極を作製する際に使用する結着剤と反応して、うまく電極を作製できない。電極をうまく作製するためには、副生成物量が少ないほど良く、wの値が1.2以下であり、望ましくは1.15以下であり、さらに望ましくは1.05 以下である。
【0033】
また、Mg量を表わすvの値は充電,放電により変動しないが、0.001 ≦v<0.02の範囲であり、望ましくは0.002≦v≦0.015 の範囲であり、さらに望ましくは0.008≦v≦0.012の範囲である。vの値が0.001 未満の場合、Mgの効果が充分発揮されず、深い充電,深い放電におけるサイクル性が悪く、容量も低下し、好ましくない。また、vの値が0.02 を越える場合には単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Mgの効果が充分発揮でき、かつ高い容量が得られる最も望ましいvの値は0.008≦v≦0.012の範囲である。
【0034】
また、Mn量を表わすxの値は0.5≦x<0.85の範囲であり、望ましくは0.7≦x<0.85の範囲であり、さらに望ましくは0.75≦x≦0.82の範囲である。xの値が0.5 未満の場合、容量は著しく低下し、好ましくない。また、xの値が0.85 以上の場合には深い充電,深い放電におけるサイクル性が悪く、好ましくない。高い容量が得られ、かつ深い充電,深い放電におけるサイクル性能が良好な最も望ましいxの値は0.75≦x≦0.82の範囲である。
【0035】
NはNi,Co,Fe,Si,Al,Ca,Cu,P,In,Sn,Mo, Nb,Y,Bi,Bから選ばれた少なくとも1種で、好ましくはNi,Co, Fe,Si,Al,Ca,Cu,Sn,P,In,Bから選ばれた少なくとも1種であり、さらに好ましくはNi,Co,Fe,Si,Al,P,In,Bから選ばれた少なくとも1種であり、最も好ましくはSi,Al,P,Bから選ばれた少なくとも1種である。zの値は充電状態,放電状態により変動せず、その範囲は0≦z≦0.5であり、望ましくは0.01≦z≦0.15 の範囲であり、さらに望ましくは0.05≦z≦0.15の範囲である。zの値が0.5 を越える場合には充放電時における過電圧が高く、また、単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Nの効果が充分発揮でき、かつ高い容量が得られる最も望ましいzの値は0.05≦z≦0.15の範囲である。
【0036】
(4)また、本発明の電池および正極は、一般式LiMgFeNzO(但し、NはNi,Co,Mn,Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,zはそれぞれ0≦w≦1.2 ,0.001≦v<0.02,0.5≦x<0.85,0≦z≦0.5の数を表わす)で示される複合酸化物を用いることを特徴とする。望ましくはw,v,x,zはそれぞれ0.2≦w≦1.15,0.002≦v≦0.015,0.7≦x<0.85,0.01≦z≦0.15の範囲であり、さらに望ましくはw,v,x,zはそれぞれ0.2≦w≦1.05,0.008≦v≦0.012,0.75≦x≦0.82,0.05≦z≦0.15の範囲である。
【0037】
本発明の新規な正極活物質はLiの位置にMgが存在することから、wは1以上の値をとり得ないはずであるが、実際にはLiは焼成の過程で炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物を形成しやすく、その結果、化学分析によって求めたLi量は1よりも大きい値をとることがある。しかし、これら過剰のLiは正極活物質の周りを覆っているだけであり、LiMeO構造内には取り込まれてはおらず、あくまで、Liの位置にMgが存在する構造をとっている。
【0038】
本発明の新規な正極活物質は一般式LiMgFeで示されるものであってLi量を表わすwの値は充電状態,放電状態により変動し、その範囲は0≦w≦1.2 であり、望ましくは0.2≦w≦1.15の範囲であり、さらに望ましくは0.2≦w≦1.05の範囲である。即ち充電によりLiイオンのディインターカレーションが起こりwの値は小さくなり、放電によりLiイオンのインターカレーションが起こりwの値は大きくなる。Li量が1.2 よりも多いと焼成の過程で生成する炭酸リチウムや酸化リチウム,水酸化リチウムなどの副生成物量が多くなりすぎるため、これらの物質が電極を作製する際に使用する結着剤と反応して、うまく電極を作製できない。電極をうまく作製するためには、副生成物量が少ないほど良く、wの値が1.2以下であり、望ましくは1.15以下であり、さらに望ましくは1.05 以下である。
【0039】
また、Mg量を表わすvの値は充電,放電により変動しないが、0.001≦v<0.02の範囲であり、望ましまくは0.002≦v≦0.015 の範囲であり、さらに望ましくは0.008≦v≦0.012の範囲である。vの値が0.001 未満の場合、Mgの効果が充分発揮されず、深い充電,深い放電におけるサイクル性が悪く、容量も低下し、好ましくない。また、vの値が0.02 を越える場合には単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Mgの効果が充分発揮でき、かつ高い容量が得られる最も望ましいvの値は0.008≦v≦0.012の範囲である。
【0040】
また、Fe量を表わすxの値は0.5≦x<0.85の範囲であり、望ましくは0.7≦x<0.85の範囲であり、さらに望ましくは0.75≦x≦0.82の範囲である。xの値が0.5 未満の場合、容量は著しく低下し、好ましくない。また、xの値が0.85 以上の場合には深い充電,深い放電におけるサイクル性が悪く、好ましくない。高い容量が得られ、かつ深い充電,深い放電におけるサイクル性能が良好な最も望ましいxの値は0.75≦x≦0.82の範囲である。
【0041】
NはNi,Co,Mn,Si,Al,Ca,Cu,P,In,Sn,Mo, Nb,Y,Bi,Bから選ばれた少なくとも1種で、好ましくはNi,Co,Mn,Si,Al,Ca,Cu,Sn,P,In,Bから選ばれた少なくとも1種であり、さらに好ましくはNi,Co,Mn,Si,Al,P,In,Bから選ばれた少なくとも1種であり、最も好ましくはSi,Al,P,Bから選ばれた少なくとも1種である。zの値は充電状態,放電状態により変動せず、その範囲は0≦z≦0.5であり、望ましくは0.01≦z≦0.15 の範囲であり、さらに望ましくは0.05≦z≦0.15の範囲である。zの値が0.5 を越える場合には充放電時における過電圧が高く、また、単一相が得られず、容量の低い相が出現するため容量が低下して好ましくない。Nの効果が充分発揮でき、かつ高い容量が得られる最も望ましいzの値は0.05≦z≦0.15の範囲である。
【0042】
電解液は、例えばプロピレンカーボネート,プロピレンカーボネート誘導体,エチレンカーボネート,ブチレンカーボネート,ビニレンカーボネート,ガンマーブチロラクトン,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート、1,2−ジメトキシエタン,2−メチルテトラヒドロフラン,ジメチルスルフォキシド、1,3−ジオキソラン,ホルムアミド,ジメチルホルムアミド,ジオキソラン,アセトニトリル,ニトロメタン,ギサンメチル,酢酸メチル,プロピオン酸メチル,プロピオン酸エチル,リン酸トリエステル,トリメトキシメタン,ジオキソラン誘導体,ジエチルエーテル、1,3−プロパンサルトン,スルホラン、3−メチル−2−オキサゾリジン、テトラヒドロフラン,テトラヒドロフラン誘導体,ジオキソラン、1,2−ジエトキシエタン、また、これらのハロゲン化物などからなる群より選ばれた少なくとも一つ以上の非水溶媒とリチウム塩、例えばLiClO,LiBF,LiPF,LiCFSO,LiCFCO,LiAsF,LiSbF,LiB10Cl10,LiAlCl,LiCl,LiBr,LiI,低級脂肪族カルボン酸リチウム,クロロボランリチウム,四フェニルホウ酸リチウムなどからなる群より選ばれた少なくとも一つ以上の塩との混合溶液、また、これらの混合溶液とポリマ、例えばポリアクリロニトリル,ポリエチレンオキサイド,ポリフッ化ビニリデン,ポリメタクリル酸メチル,ヘキサフロロプロピレンからなる群より選ばれた少なくとも一つ以上とを混合したゲル状電解液を用いることにより、本発明の正極は良好な特性を示す。
【0043】
負極には、アルカリ金属イオンを可逆的に吸蔵放出できる物質を用いることにより、本発明の正極は良好な特性を示す。アルカリ金属イオンを可逆的に吸蔵放出できる物質では、グラフアイト,熱分解グラフアイト,炭素繊維,気相成長炭素質材料,ピッチ系炭素質材料,コークス系炭素質材料,フエノール系炭素質材料,レーヨン系炭素質材料,ポリアクリロニトリル系炭素質材料,ニードルコークス,ポリアクリロニトリル系炭素繊維,グラッシーカーボン,カーボンブラック,フルフリルアルコール系炭素質材料,ポリパラフエニレン等導電性材料からなる群より選ばれた低結晶性炭素,高結晶性炭素のうちの少なくとも一つあるいはこれらを複数個組合せた炭素材料からなる群より選ばれた少なくとも一つ以上のカーボン材料や、これらカーボン材料に、周期表IIIb ,IVb,Vb族原子を含む酸化物またはカルコゲン化合物、これらの非晶質材料を被覆、または融合させた材料からなる群より選ばれた少なくとも一つ以上の複合材料、ポリアセン,ポリパラフェニレン,ポリアニリン,ポリアセチレン,ジスルフィド化合物等導電性高分子材料,LiFe,LiFe,LiWO,周期表IIIb ,IVb,Vb族原子を含む酸化物、カルコゲン化合物、これらの非晶質材料が好ましい。
【0044】
本発明の可逆的に充放電が可能な電池の用途は、特に限定されないが、例えばノートパソコン,ペン入力パソコン,ポケットパソコン,ノート型ワープロ,ポケットワープロ,電子ブックプレーヤ,携帯電話,コードレスフォン子機,ページャ,ハンディターミナル、携帯コピー,電子手帳,電卓,液晶テレビ,電気シェーバ,電動工具,電子翻訳機,自動車電話,トランシーバ,音声入力機器,メモリカード,バックアップ電源,テープレコーダ,ラジオ,ヘッドホンステレオ,携帯プリンタ,ハンディクリーナ,ポータブルCD,ビデオムービ,ナビゲーションシステムなどの機器用の電源や、冷蔵庫,エアコン,テレビ,ステレオ,温水器,オーブン電子レンジ,食器洗い器,洗濯機,乾燥器,ゲーム機器,照明機器,玩具,ロードコンディショナ,医療機器,自動車,電気自動車,ゴルフカート,電動カート,電力貯蔵システムなどの電源として使用することができる。また、民生用の他、軍需用,宇宙用としても用いることができる。
【0045】
本発明の正極活物質を用いることにより、高容量化,長寿命化,充放電時における過電圧の低下,レート特性や自己放電特性,高温特性,安全性の改善等のあらゆる電池特性の面で高性能化を図れる。また、本発明の電極及びこれを用いた電池を種々のシステムに使用することにより、システムのコンパクト化及び軽量化が図れる。加えて、ハイレートでの充放電が必要なシステムへの適用が可能となる。
【0046】
具体的に本発明の作用を説明する。本発明の正極活物質は、リチウムの挿入,脱離が容易な層状、もしくはジグザグ層状構造であることから、大電流での充放電に優れた特性を示す。さらに、本発明の正極活物質はLiの位置にMgが置換した構造を持っている。Liは1価であるから、2価のMgがLiの位置に置換すると、Liの空格子点が生成し、そこにOから引き寄せられた電子が入り込み、Oに正孔が導入される。この正孔を使って電子が容易に移動できることから、本発明の正極活物質は電子伝導性が従来の材料よりも優れた特徴を有する。これらは、ホール効果の測定からも確認でき、ホール係数がSi並の高い値を示すことからも伝導性の高い材料であることが証明されている。
【0047】
本発明の正極活物質の電子伝導率は従来の正極活物質に比べて、10〜100倍も大きく、場合によっては、低温において電子伝導率が高くなる金属的な挙動を示す。
【0048】
本発明の正極活物質はLiの位置にMgが置換した構造であることから、充電時にLiが脱離した後にもLi層内にMgが脱離せずに存在しているため、これが柱となり大きな構造変化、もしくは格子の体積変化が起こらない(ピラー効果)。LiMeOはLiがMeの1/2の量脱離したLi0.5MeOまではLi層を挟んでいるO層とO層の間の電子密度がLiの脱離とともに増加するため、その反発力によって膨張する。Li0.5MeOよりもさらにLiが脱離すると、3価のMe量よりも電荷密度の高い4価のMe量の方が増加し、Me層とO層とが引き付けられて、先とは反対に収縮する。層状、もしくはジグザグ層状構造を持つLiMeOではこれら膨張,収縮は主としてc軸格子定数の変化に大きく現われる。また、これらはLiが脱離する充電時に起き、Liが挿入される放電時にはこれとは全く逆の変化をたどる。この膨張,収縮が充放電のたびに繰り返されると格子が崩壊して寿命となる。従来の正極活物質ではこの膨張率,収縮率が高かったために、格子に対するストレスが大きく、サイクル寿命が短かった。
【0049】
本発明の正極活物質ではLiの位置にMgを置換させることにより、Oに導入された正孔がLi層を挟んでいるO層とO層の間の電子密度を低下させてO層とO層との間の反発力を抑制させることができる。これによって、Liの脱離に伴う膨張が抑制される。さらに、Oに導入された正孔がO層の電子密度を低下させるため、電荷密度の高い4価のMeが増加したMe層とO層との引力を抑制させることができる。これによって、Li0.5MeOからLiを脱離させたときの収縮が大幅に抑制される。
【0050】
本発明の正極活物質では充電時における膨張から収縮への変化はc軸格子定数のみに現われ、格子体積の変化は極めて小さい。そのため、格子のストレスが著しく抑制され、寿命が大幅に延長する。
【0051】
本発明の正極活物質はLiの位置にMgが置換することによって結晶構造が安定化するために、特に吸湿によるLiの脱離や、Liの位置へのMeの混入が防止できる。これにより、焼成時や電極作製時の取扱い環境における湿度の高低にかかわらず、安定した合成材料、および電極性能を得ることができる。また、
Mgは焼結防止剤としての作用があるため、結晶粒の粗大化を抑制できる。粗大な結晶粒ができると、前述の充電時における膨張,収縮による構造ストレスを緩和できないために、容易に結晶粒に亀裂が生じ、寿命が短い。Mgの置換はこうした粗大粒の生成を抑制できる。
【0052】
さらに、Mn,Co,FeはNiに比べて酸化し難いため、これらのピラー効果により長寿命化が図れる。Mg,Mo,Cu,Al,Cs,Siは正極活物質の電気伝導性を高める作用があるため、充放電時における過電圧を低下させることができる。
【0053】
また、B,P,Siまイオン半径が小さいため、これらの置換により正極活物質の格子体積を収縮させ、充電時の格子体積の膨張による崩壊を抑制して寿命を延長させることができる。Ca,Y,Nb,Al,Mg,B,Siは酸素放出能が低く、酸化物として安定に存在するため、高温特性に優れ、かつ安定性を改善できる。また、Si,In,Sn,Mg,Ca,Biによる置換は結晶中で欠陥を生じやすいため、高容量化を図れるほか、レート特性の改善にも効果がある。
【0054】
【発明の実施の形態】
(比較例1)
正極材料の原料として、LiOH,Ni(OH)中に10原子%のCoを共沈させたNi0.9Co0.1(OH)を用いて、LiNi0.9Co0.1の組成となるように調製し、これらをAr雰囲気中でボールミルを使用して室温で15h混合した。これを酸素雰囲気中で150℃で1h保持し、さらに470℃で2h保持した後、720℃で50h焼成して正極材料を得た。X線回折の測定には気密チャンバー付の回転対陰極式試料水平型X線回折装置(RINT2000型,リガク社製)を使用した。試料をArグローブボックス中でガラスホルダーに取り付けて、空気との接触を避けるため表面をマイラフィルムで覆った。これを、Be窓を設けた気密チャンバー内にセットし、Heガスを流しながら、空気中の水分の影響を最小限に抑えて測定した。管電流250mA,管電圧50kV,CuKα線源を用い、2θが15〜90deg.の範囲を、ステップ幅0.01deg.,計測時間0.5sec のステップスキャンで測定した。なお、2θの測定精度を上げるため、各試料毎に測定前にはz軸のポジショニングを行った。高い精度で格子定数を得るため、測定された格子定数とcosθとの関数を最小二乗法を使って近似し、精密な格子定数を求めた。X線回折の測定結果より、得られた正極材料は六方晶で、α−NaFeO型の層状構造であることを確認した。図1にa軸格子定数,c軸格子定数,格子体積を示す。
【0055】
(比較例2)
正極材料の原料として、LiOH,Ni(OH)中に10原子%のCoと1原子%のMgを共沈させたNi0.9Co0.1Mg0.01(OH)を用いて LiNi0.89Co0.1Mg0.01の組成となるように調製し、これらをAr雰囲気中でボールミルを使用して室温で15h混合した。これを酸素雰囲気中で150℃で1h保持し、さらに470℃で2h保持した後、720℃で50h焼成して正極材料を得た。X線回折の測定には気密チャンバー付の回転対陰極式試料水平型X線回折装置(RINT2000型,リガク社製)を使用した。試料をArグローブボックス中でガラスホルダーに取り付けて、空気との接触を避けるため表面をマイラフィルムで覆った。これを、Be窓を設けた気密チャンバー内にセットし、Heガスを流しながら、空気中の水分の影響を最小限に抑えて測定した。管電流250mA,管電圧50kV,CuKα線源を用い、2θが15〜90deg.の範囲を、ステップ幅0.01deg.,計測時間0.5sec のステップスキャンで測定した。なお、2θの測定精度を上げるため、各試料毎に測定前にはz軸のポジショニングを行った。高い精度で格子定数を得るため、測定された格子定数とcosθとの関数を最小二乗法を使って近似し、精密な格子定数を求めた。X線回折の測定結果より、得られた正極材料は六方晶で、α−NaFeO型の層状構造であることを確認した。図1にa軸格子定数,c軸格子定数,格子体積を示す。比較例1と比較してa軸格子定数,c軸格子定数,格子体積いずれも大きいことから、Niの位置にMgが置換している。
【0056】
(実施例1)
正極材料の原料として、LiOH,Ni(OH)中に10原子%のCoを共沈させたNi0.9Co0.1(OH)、及びMg(NO)を用いて LiNi0.9Co0.1Mg0.01の組成となるように調製し、これらをAr雰囲気中でボールミルを使用して室温で15h混合した。これを酸素雰囲気中で150℃で1h保持し、さらに470℃で2h保持した後、720℃で50h焼成して正極材料を得た。X線回折の測定には気密チャンバー付の回転対陰極式試料水平型X線回折装置(RINT2000型,リガク社製)を使用した。試料をArグローブボックス中でガラスホルダーに取り付けて、空気との接触を避けるため表面をマイラフィルムで覆った。これを、Be窓を設けた気密チャンバー内にセットし、Heガスを流しながら、空気中の水分の影響を最小限に抑えて測定した。管電流250mA,管電圧50kV,CuKα線源を用い、2θが15〜90deg.の範囲を、ステップ幅0.01deg.,計測時間0.5sec のステップスキャンで測定した。なお、2θの測定精度を上げるため、各試料毎に測定前にはz軸のポジショニングを行った。高い精度で格子定数を得るため、測定された格子定数とcosθとの関数を最小二乗法を使って近似し、精密な格子定数を求めた。X線回折の測定結果より、得られた正極材料は六方晶で、α−NaFeO型の層状構造であることを確認した。図1にa軸格子定数,c軸格子定数,格子体積を示す。比較例1及び2と比較してa軸格子定数,c軸格子定数,格子体積いずれも大きいことから、Liの位置にMgが置換している。
【0057】
(実施例2)
正極材料の原料として、LiOH,Ni(OH)中に10原子%のCoを共沈させたNi0.9Co0.1(OH)、及びMg(SH)を用いて LiNi0.9Co0.1Mg0.01の組成となるように調製し、これらをAr雰囲気中でボールミルを使用して室温で15h混合した。これを酸素雰囲気中で150℃で1h保持し、さらに470℃で2h保持した後、720℃で50h焼成して正極材料を得た。X線回折の測定には気密チャンバー付の回転対陰極式試料水平型X線回折装置(RINT2000型,リガク社製)を使用した。試料をArグローブボックス中でガラスホルダーに取り付けて、空気との接触を避けるため表面をマイラフィルムで覆った。これを、Be窓を設けた気密チャンバー内にセットし、Heガスを流しながら、空気中の水分の影響を最小限に抑えて測定した。管電流250mA,管電圧50kV,CuKα線源を用い、2θが15〜90deg.の範囲を、ステップ幅0.01deg.,計測時間0.5sec のステップスキャンで測定した。なお、2θの測定精度を上げるため、各試料毎に測定前にはz軸のポジショニングを行った。高い精度で格子定数を得るため、測定された格子定数とcosθとの関数を最小二乗法を使って近似し、精密な格子定数を求めた。X線回折の測定結果より、得られた正極材料は六方晶で、α−NaFeO型の層状構造であることを確認した。実施例1とほぼ同じa軸格子定数,c軸格子定数,格子体積が得られたことから、Liの位置にMgが置換している。
【0058】
(比較例3)
図2に示したセルを使って以下の要領で電子伝導率を測定した。空気中の水分の影響を避けるため、湿度3%のドライルーム内で、正極活物質として比較例1及び2の材料とバインダーとしてポリフッ化ビニリデン粉末を93:7の重量比で混合し、4.7ton/cmの圧力で直径15mm,厚み0.35mmのディスク状に加圧成型した。このディスクの両面をイオンスパッター装置(E−1030型,日立社製)を用いてPt−Pdを蒸着した。Arガス圧は0.02〜0.04torrで、放電電流は20mA、放電時間は片面で15分である。ディスクの側面に付着した不要な蒸着部をエメリー紙を用いて取り除いて、正極ペレット23とした後、ディスクの両面にAgペースト22を塗布し、さらに端子21として厚さ33ミクロンの電解Cu箔を重ね合わせ、ポリエチレンフィルムの絶縁膜25で覆ったステンレス鋼板24に挟んで0.5ton/cmの圧力を加えてネジ止めした。これをポリエチレン膜でアルミ箔を被覆したラミネートフィルム26に二重にして包み、熱圧着して気密性を確保した。測定温度は50℃から液体窒素温度 (−196℃)の範囲であり、活物質内部まで均一温度となるように1時間放置後の1kHzの交流抵抗を測定した。図3に電子伝導率の温度依存性を示す。電子伝導率は低温側ほど低く、−40℃においては0.02〜0.1S/mと低い。また、電子伝導率σの温度Tに対する変化率δσ/δTが、グラフには記載していないが、50℃から−196℃の温度範囲において正であり、40℃から −20℃の温度範囲においても正である。
【0059】
(実施例3)
図2に示したセルを使って以下の要領で電子伝導率を測定した。空気中の水分の影響を避けるため、湿度3%のドライルーム内で、正極活物質として実施例1の材料とバインダーとしてポリフッ化ビニリデン粉末を93:7の重量比で混合し、4.7ton/cmの圧力で直径15mm,厚み0.35mmのディスク状に加圧成型した。このディスクの両面をイオンスパッター装置(E−1030型,日立社製)を用いてPt−Pdを蒸着した。Arガス圧は0.02〜0.04torrで、放電電流は20mA、放電時間は片面で15分である。ディスクの側面に付着した不要な蒸着部をエメリー紙を用いて取り除いて、正極ペレット23とした後、ディスクの両面にAgペースト22を塗布し、さらに端子21として厚さ33ミクロンの電解Cu箔を重ね合わせ、ポリエチレンフィルムの絶縁膜25で覆ったステンレス鋼板24に挟んで0.5ton/cmの圧力を加えてネジ止めした。これをポリエチレン膜でアルミ箔を被覆したラミネートフィルム26に二重にして包み、熱圧着して気密性を確保した。測定温度は50℃から液体窒素温度(−196℃)の範囲であり、活物質内部まで均一温度となるように1時間放置後の1kHzの交流抵抗を測定した。図3に電子伝導率の温度依存性を示す。電子伝導率は低温側ほど高く、−40℃においては1000S/m以上と高い。また、電子伝導率σの温度Tに対する変化率δσ/δTが、50℃から−196℃の温度範囲において負であり、40℃から−20℃の温度範囲においても負である。
【0060】
(実施例4)
正極活物質として実施例1の材料を使用しこれと、バインダー、及び導電剤を85:5:10の重量比で混合し、得られた合剤を厚さ20μmの硬質化処理アルミニウム箔に塗布した。導電剤には比表面積が270m/g の人造黒鉛を用いた。バインダーにはポリフッ化ビニリデンを使用し、N−メチル−2−ピロリドン(NMP)にPVDFを溶解させた溶液を用いて正極活物質と導電剤の混合物に添加した。塗布後の電極を、80℃で2時間乾燥してNMPを揮発させた後、1.5ton/cmの圧力でプレスし、真空中120℃で16時間乾燥した。電極面積は1.0cm×1.0cm で、合剤密度は2.8〜3.1g/cmの範囲であり、この時の活物質重量は約20mgである。
【0061】
充放電試験は図4に示した構成でステンレス鋼板45により両面からネジ止めされたセルをガラス容器47に設置して行った。セルは、露点が−67℃以下のArグローブボックス中で、ステンレス鋼板(SUS304)45,セパレータ(ポリエチレン製微孔膜)41,対極(Li金属)46,セパレータ41,参照極(Li金属)43,セパレータ41,正極44,セパレータ41,ステンレス鋼板45の順に積層し、ネジ止めした後、端子48を接続してガラス容器47内に収納した。セパレータ41と正極44は予め電解液42を充分に含浸させた。電解液42としては、六フッ化リン酸リチウムと体積比1:2のエチレンカーボネートとジメチルカーボネートの混合溶媒によって、LiPFの濃度が1Mの溶液となるように調製したものを使用した。電流密度0.55mA/cmの定電流で正極活物質1gに対して一定の容量(50,100,150,200,220,250mAh/g,274mAh/g)まで充電し、1時間休止後、電極を取り出して、1,2−ジメトキシエタン中で10分間洗浄後、風乾したものを使用して、X線回折を測定した。図5にc軸格子定数の変化を、図6にa軸格子定数に対するc軸格子定数(c/a)の変化を示す。
【0062】
一方、正極材料として実施例1の材料を使用し、導電剤として黒鉛を結着剤としてポリフッ化ビニリデンを重量比で88:7:5となるように秤量,らいかい機で30分混練後、厚さ20μのアルミ箔の両面に塗布した。
【0063】
負極材料として人造黒鉛を93重量%,結着剤としてポリフッ化ビニリデンを7重量%調製した合剤を用い、厚さ30μの銅箔の両面に塗布した。正負両極はプレス機で圧延成型し、端子をスポット溶接した後150℃で5時間真空乾燥した。図7に本実施例による電池構造の一例を示す。微多孔性ポリプロピレン製セパレータ71を介して正極72と負極73を積層し、これを渦巻状に捲回し、アルミ製の電池缶74に挿入した。電池缶74内部の上下にはそれぞれの電極が電池缶74あるいは電池内蓋75に接触してショートすることがないように絶縁性のフィルム(インシュレータ)78を設置してある。負極端子76は電池缶74に、正極端子77は電池内蓋75に溶接した。また、電池内蓋75には安全弁 (電流遮断弁)79が接続され、10気圧以上の内圧上昇によって安全弁(電流遮断弁)79が変形し両者の電気的接触が断たれるようになっている。電解液には1mol のLiPFを1リットルのエチレンカーボネートとジエチルカーボネートの混合溶液に溶解したものを使用し、電池缶74内に注液した。電池蓋を電池缶に取り付けて直径14mm,高さ50mmの1400mAh容量の円筒型電池を作製した。電池は1400mAで4.2V まで定電流で充電後、4.2V で3時間定電圧充電し、1400mAで2.7V まで放電する充放電を数回繰り返し行い、1400mAで4.2V まで充電し、これを電池容量の100%を充電した状態として、正極を取り出して1,2−ジメトキシエタン中で10分間洗浄後、発光分光分析法(ICP)によりLi量を求めた。さらに、1400mAで2.7Vまで放電し、これを電池容量の100%を放電した状態として、正極を取り出して1,2−ジメトキシエタン中で10分間洗浄後、発光分光分析法(ICP)によりLi量を求めた。これにより、電池作動領域を確認したところ、LiがMe1モルに対して0.87モル(Liの脱離量Xでは0.12モル)から0.19(Liの脱離量Xでは0.80モル)までの領域であった。
【0064】
図5より、電池容量の100%を充電した状態から、電池容量の100%を放電した状態に至るまでのc軸格子定数の最大値c1maxと最小値c1minとの変化率(c1max−c1min)/c1minを求めると、その値は0.02と小さい。また、Li0.5MeOのc軸格子定数の最大値c2max と、Li0.2MeOのc軸格子定数の最小値c2minとの変化率(c2max−c2min)/c2minも0.01と小さい。図6より、Li0.5MeOのa軸格子定数a1に対するc軸格子定数c1の割合の最大値(c1/a1)maxと、Li0.2MeOのa軸格子定数a2に対するc軸格子定数c2の割合の最小値(c2/a2)minとの差も0.1 の範囲内にある。
【0065】
(比較例4)
正極活物質として比較例1及び2の材料を使用し、実施例4と同様にしてX線回折を測定した。図8に比較例1の材料を使用した場合のc軸格子定数の変化を、図9にa軸格子定数に対するc軸格子定数(c/a)の変化を示す。また、図10に比較例2の材料を使用した場合のc軸格子定数の変化を、図11にa軸格子定数に対するc軸格子定数(c/a)の変化を示す。
【0066】
一方、正極材料として比較例1及び2の材料を使用し、導電剤として黒鉛を結着剤としてポリフッ化ビニリデンを重量比で88:7:5となるように秤量,らいかい機で30分混練後、厚さ20μのアルミ箔の両面に塗布した。
【0067】
負極材料として人造黒鉛を93重量%,結着剤としてポリフッ化ビニリデンを7重量%調製した合剤を用い、厚さ30μの銅箔の両面に塗布した。正負両極はプレス機で圧延成型し、端子をスポット溶接した後150℃で5時間真空乾燥した。実施例4と同様にして微多孔性ポリプロピレン製セパレータ71を介して正極72と負極73を積層し、これを渦巻状に捲回し、アルミ製の電池缶74に挿入した。負極端子76は電池缶74に正極端子77は電池内蓋75に溶接した。電解液には1mol のLiPFを1リットルのエチレンカーボネートとジエチルカーボネートの混合溶液に溶解したものを使用し、電池缶74内に注液した。電池蓋を電池缶に取り付けて実施例4と同様の直径14mm,高さ50mmの1400mAh容量の円筒型電池を作製した。電池は1400mAで4.2V まで定電流で充電後、4.2V で3時間定電圧充電し、1400mAで2.7V まで放電する充放電を数回繰り返し行い、1400mAで4.2V まで充電し、これを電池容量の100%を充電した状態として、正極を取り出して1,2−ジメトキシエタン中で10分間洗浄後、発光分光分析法(ICP)によりLi量を求めた。さらに、1400mAで2.7V まで放電し、これを電池容量の100%を放電した状態として、正極を取り出して1,2−ジメトキシエタン中で10分間洗浄後、発光分光分析法(ICP)によりLi量を求めた。これにより、電池作動領域を確認したところ、比較例1の材料ではLiがMe1モルに対して0.89 モル(Liの脱離量Xでは0.11モル)から0.22(Liの脱離量Xでは0.78モル)までの領域であり、さらに、LiがMe1モルに対して0.30モル(Liの脱離量Xでは0.70モル)よりも減少すると六方晶が2相に分離した。比較例2の材料ではLiがMe1モルに対して0.90モル(Liの脱離量Xでは0.10モル)から0.23(Liの脱離量Xでは0.77モル)までの領域であった。
【0068】
図8及び図10より、電池容量の100%を充電した状態から、電池容量の100%を放電した状態に至るまでのc軸格子定数の最大値c1maxと最小値c1minとの変化率(c1max−c1min)/c1minが、0.039〜0.050と大きい。また、Li0.5MeOのc軸格子定数の最大値c2maxと、Li0.2MeOのc軸格子定数の最小値c2minとの変化率(c2max−c2min)/c2minも 0.040〜0.058と大きい。図9及び図11より、Li0.5MeOのa軸格子定数a1に対するc軸格子定数c1の割合の最大値(c1/a1)maxと、 Li0.2MeOのa軸格子定数a2に対するc軸格子定数c2の割合の最小値 (c2/a2)minとの差も0.20〜0.27と大きい。
【0069】
(実施例5)
正極材料として表1から表8に示した組成の材料を使用し、導電剤として黒鉛を結着剤としてポリフッ化ビニリデンを重量比で88:7:5となるように秤量,らいかい機で30分混練後、厚さ20μのアルミ箔の両面に塗布した。
【0070】
負極材料として人造黒鉛を93重量%,結着剤としてポリフッ化ビニリデンを7重量%調製した合剤を用い、厚さ30μの銅箔の両面に塗布した。正負両極はプレス機で圧延成型し、端子をスポット溶接した後150℃で5時間真空乾燥した。実施例4と同様にして微多孔性ポリプロピレン製セパレータ71を介して正極72と負極73を積層し、これを渦巻状に捲回し、アルミ製の電池缶74に挿入した。負極端子76は電池缶74に、正極端子77は電池内蓋75に溶接した。電解液には1mol のLiPFを1リットルのエチレンカーボネートとジエチルカーボネートの混合溶液に溶解したものを使用し、電池缶74内に注液した。電池蓋を電池缶に取り付けて実施例4と同様の直径14mm,高さ50mmの1400mAh容量の円筒型電池を作製した。電池は1400mAで4.2V まで定電流で充電後、4.2V で3時間定電圧充電し、1400mAで2.7V まで放電する充放電を5回繰り返し、5回目の放電容量を表1に示した。サイクル寿命は5回目の放電容量を100%として70%の容量に達した時のサイクル回数を調べたものであり、同じく表1に示す。レート特性では充電条件に関しては1400mAで4.2V まで定電流で充電後、4.2V で3時間定電圧で充電し、放電条件に関しては280mAで2.7Vまで放電する0.2C放電と4200mAで2.7V まで放電する3C放電をそれぞれ行い、0.2C 放電における容量を100%として3C放電における容量比を%で表1に表示した。また、過充電試験では、2800mAの定電流で充電しつづけた場合に発火する電池の割合を%で表1に示した。釘刺し試験では1400mAで4.2V まで定電流で充電後、4.2Vで3時間定電圧充電した電池を速さ5mm/secで釘を電池に貫通させた場合に発火する電池の割合を%で表1に示した。
【0071】
【表1】

Figure 0003624663
【0072】
【表2】
Figure 0003624663
【0073】
【表3】
Figure 0003624663
【0074】
【表4】
Figure 0003624663
【0075】
【表5】
Figure 0003624663
【0076】
【表6】
Figure 0003624663
【0077】
【表7】
Figure 0003624663
【0078】
【表8】
Figure 0003624663
【0079】
(比較例5)
正極材料として前記表中に比較例5として示す材料を使用し、導電剤として黒鉛を結着剤としてポリフッ化ビニリデンを重量比で88:7:5となるように秤量,らいかい機で30分混練後、厚さ20μのアルミ箔の両面に塗布した。負極材料として人造黒鉛を93重量%,結着剤としてポリフッ化ビニリデンを7重量%調製した合剤を用い、厚さ30μの銅箔の両面に塗布した。
【0080】
実施例5と同様にして電池を作製した。容量,寿命,レート特性,過充電試験,釘刺し試験を評価した。結果を表2に示す。実施例5と比較して極端に低い特性が存在する。
【0081】
【発明の効果】
本発明によれば、二次電池用正極材料の高容量化,長寿命化,レート特性や、高温特性,安全性の改善の電池特性の一部又は全部の面で優れた特性を得ることができる。
【図面の簡単な説明】
【図1】格子体積及び格子定数の変化を示す図である。
【図2】電子伝導率測定セルの概略図である。
【図3】伝導率の温度依存性を示す図である。
【図4】充放電試験セルの概略図である。
【図5】実施例1の正極材料を用いた実施例4のc軸格子定数の変化を示す図である。
【図6】実施例1の正極材料を用いた実施例4のc軸格子定数/a軸格子定数比の変化を示す図である。
【図7】電池構造の一例を示す図である。
【図8】比較例1の正極材料を用いた比較例4のc軸格子定数の変化を示す図である。
【図9】比較例1の正極材料を用いた比較例4のc軸格子定数/a軸格子定数の変化を示す図である。
【図10】比較例2の正極材料を用いた比較例4のc軸格子定数の変化を示す図である。
【図11】比較例2の正極材料を用いた比較例4のc軸格子定数/a軸格子定数比の変化を示す図である。
【符号の説明】
21…端子、22…Agペースト、23…正極ペレット、24…ステンレス鋼板、25…ポリエチレンフィルム、26…ラミネートフィルム、41,71…セパレータ、42…電解液、43…参照極、44,72…正極、46…対極、73…負極、74…電池缶、75…電池内蓋、76…負極端子、77…正極端子、78…フィルム、79…安全弁。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery.
[0002]
[Prior art]
In recent years, secondary batteries have become one of the essential components that are indispensable as power sources for personal computers and mobile phones, and as power sources for electric vehicles and power storage.
[0003]
As a request that requires mobile communication (mobile computing) such as a portable computer (including what is called a pen computer) and a portable information terminal (Personal Digital Assistant, Personal Intelligent Communicator, or Handheld Communicator), It can be reduced in size and weight. However, it is difficult to reduce the size and weight of the system because the power consumed by the backlight and drawing control of the LCD panel is high, and the capacity of the secondary battery is still insufficient. It is in.
[0004]
Furthermore, with the growing global environmental problems, electric vehicles that emit no exhaust gas or noise are attracting attention. However, current batteries have low energy density and low power density, which causes problems such as short travel distance, poor acceleration, narrow space in the vehicle, and poor vehicle stability.
[0005]
Among secondary batteries, lithium secondary batteries using a non-aqueous electrolyte are attracting attention because they are expected to have high voltage, light weight, and high energy density. The positive electrode material of the secondary battery is made of conductive polymer such as polyaniline, polyacene, polyparaphenylene, or Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x FeO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 Transition metal oxides such as TiS 2 , MoS 2 The chalcogenite compounds such as are representative. In particular, Li disclosed in JP-A-55-136131 x CoO 2 , Li x NiO 2 Since a secondary battery positive electrode such as the above has an electromotive force of 4 V or more when Li metal is used as a negative electrode, a high energy density can be expected. However, in reality, the capacity that can actually be used is still low or the life is short, and overperformance, self-discharge characteristics and high-temperature characteristics at the time of charging / discharging are not yet sufficient. In addition, the positive electrode active material decomposes exothermically during overcharge, causing thermal runaway, and the battery ignites and explodes.
[0006]
Conventionally, various active material compositions have been proposed in order to achieve higher capacity and longer life of the positive electrode. For example, for improving the cycle characteristics, the positive electrode active material has the chemical formula Li x MO 2 (M represents one or more elements selected from Co, Ni, Fe, and Mn) (Japanese Patent Laid-Open No. 2-306022), or a chemical formula Li x M y Ge z O p (M is one or more transition metal elements selected from Co, Ni and Mn, 0.9 ≦ x ≦ 1.3, 0.8 ≦ y ≦ 2.0, 0.01 ≦ z ≦ 0.2, 2 (Japanese Patent Laid-Open No. 7-29603) has been disclosed. In order to improve cycle characteristics and self-discharge characteristics, A x M y N z O 2 (A is at least one selected from alkali metals, M is a transition metal, N represents at least one selected from the group of Al, In, and Sn, and 0.05 ≦ x ≦ 1.10. , 0.85 ≦ y ≦ 1.00, 0.001 ≦ z ≦ 0.10) (Japanese Patent Laid-Open No. 7-176302), and also improves the capacity and cycle characteristics. As a thing, Li y Ni (1-x) M x O 2 (M is at least one element selected from the group consisting of Cu, Zn, Nb, Mo and W, and a composite oxide represented by 0 <x <1, 0.9 ≦ y ≦ 1.3) is used. (Kaihei 6-283174) and the like. In addition, for improving the cycle characteristics and increasing the load characteristics, the chemical formula Li x Mg y Co z Ni 1-yz O a (If 0.95 ≦ x ≦ 1.05, 0.02 ≦ z ≦ 0.15, 0.003 <y <0.02, if z <0.02, 0.003 <y <0.05. , A = 2) (Japanese Patent Laid-Open No. 8-185863) is disclosed.
[0007]
[Problems to be solved by the invention]
Cathode active material with chemical formula Li x MO 2 When the lithium-containing composite oxide represented by (M represents one or more elements selected from Co, Ni, Fe, and Mn) is used, the cycle life is improved. However, it is difficult to say that the characteristics are sufficient in terms of capacity. In addition, there is a disadvantage that the voltage is lowered. A x M y N z O 2 (A is at least one selected from alkali metals, M is a transition metal, N represents at least one selected from the group of Al, In, and Sn, and 0.05 ≦ x ≦ 1.10. , 0.85 ≤ y ≤ 1.00, 0.001 ≤ z ≤ 0.10), the cycle life is similarly improved. Since the capacity that can be obtained decreases, the capacity cannot be increased. Cathode active material with chemical formula Li x M y Ge z O p (M is one or more transition metal elements selected from Co, Ni and Mn, 0.9 ≦ x ≦ 1.3, 0.8 ≦ y ≦ 2.0, 0.01 ≦ z ≦ 0.2, 2 When the composite oxide represented by .ltoreq..ltoreq.p.ltoreq.4.5) is used, the capacity and cycle life are improved. However, thermal runaway reaction during overcharge cannot be suppressed. Li y Ni (1-x) M x O 2 (Where M is at least one element selected from the group consisting of Cu, Zn, Nb, Mo, and W, 0 <x <1, 0.9 ≦ y ≦ 1.3). Chemical formula Li x Mg y Co z Ni 1-yz O a (If 0.95 ≦ x ≦ 1.05, 0.02 ≦ z ≦ 0.15, 0.003 <y <0.02, if z <0.02, 0.003 <y <0.05. , A = 2). It is desirable to have an effective improvement method in terms of all battery characteristics such as higher capacity, longer life, reduction of overvoltage during charge / discharge, rate characteristics, self-discharge characteristics, high temperature characteristics, and safety improvements for secondary battery positive electrode materials. It is.
[0008]
An object of the present invention is to improve part or preferably all of these battery characteristics of a positive electrode material for a secondary battery.
[0009]
[Means for Solving the Problems]
In the battery and the positive electrode of the present invention, Li, O, Mg as essential elements constituting the positive electrode active material, and a layered or zigzag layered LiMeO 2 And Me has at least one selected from Mn, Co, Ni, and Fe, and LiMeO 2 Mg is present at the Li position in the structure. As a layered structure, for example, α-NaFeO 2 There is a hexagonal layered structure indicated by the mold. This is α-NaFeO 2 In this structure, cations are regularly arranged alternately in the vertical direction of cubic close-packing of type oxide ions. The zigzag layered structure includes an orthorhombic zigzag layered structure. This is because Me ions occupy half of the octahedral positions in the cubic close packed array, 6 An octahedron shares a ridge to form a double chain, and this double chain shares a ridge with each other and is a layered structure consisting of a two-dimensional surface connected in a zigzag manner. As a method for confirming whether Mg is present at the Li position, it can be obtained by an EXAFS measurement, a neutron diffraction measurement, an X-ray diffraction measurement, and an analytical method such as a Rietveld or FEFF. Mg 2+ The ion radius of Li + Smaller than the ionic radius of Mn 3+ , Co 3+ , Ni 3+ , Fe 3+ It is larger than the ion radius. Therefore, if Mg is present at the Li position, the lattice constant and the lattice volume are contracted compared to when Mg is not present or when the amount of Mg is small, and Mg is present at the Me position. For example, the lattice constant and the lattice volume expand as compared with the case where Mg is not present or the amount of Mg is small. From these facts, the position where Mg is present can be confirmed by the change in lattice constant and lattice volume.
[0010]
In order to synthesize such that Mg is present at the Li position, a method of directly synthesizing Li and Mg is preferable. The most avoidable method is to prepare a composite material of Me and Mg obtained by directly synthesizing Me and Mg in a wet manner. In the method of synthesizing using this raw material, Mg is likely to be mixed at the Me position, so that it is difficult to make Mg present at the Li position.
[0011]
As a raw material for Mg, it is desirable to use at least one selected from magnesium nitrate, magnesium sulfate, magnesium carbonate, magnesium oxalate, magnesium oxide, and magnesium chloride. Further, it is obtained by finally mixing the magnesium raw material and all other raw materials except for magnesium, followed by firing and / or pulverization and / or classification.
[0012]
In the battery and the positive electrode of the present invention, Li, O, Mg as essential elements constituting the positive electrode active material, and a layered or zigzag layered LiMeO 2 Having a structure, Me includes at least one selected from Mn, Co, Ni, and Fe, and the positive electrode active material has an electronic conductivity of −1 ° C. or lower at −40 ° C. or lower, preferably 100 S / m It is more than m. In the conventional positive electrode active material, the electronic conductivity at −40 ° C. or less was as extremely low as 0.1 S / m 2 or less, whereas in the positive electrode active material of the present invention, an extremely large value was exhibited as compared with the conventional one.
[0013]
Further, as the positive electrode active material, the change rate δσ / δT of the active material with respect to the temperature is 0 or negative in the temperature range of 50 ° C. to −196 ° C., preferably 40 ° C. to −20 ° C. It is characterized by being 0 or negative in the range. In the conventional positive electrode active material, the electron conductivity is lower on the low temperature side of −20 ° C. or lower than the high temperature side of 40 ° C. or higher, and the change rate δσ / δT of the active material with respect to temperature is positive. In contrast to the semiconducting conductivity, the positive electrode active material of the present invention has a higher or lower electron conductivity on the low temperature side of −20 ° C. or lower than the high temperature side of 40 ° C. or higher. The rate of change δσ / δT with respect to temperature of the electronic conductivity σ is 0 or negative, indicating metallic conductivity.
[0014]
Further, the battery and the positive electrode of the present invention have Li, O, Mg as essential elements as elements constituting the positive electrode active material, and are layered or zigzag layered LiMeO. 2 From a state in which Me has at least one selected from Mn, Co, Ni, and Fe and 100% of the battery capacity is charged to a state in which 100% of the battery capacity is discharged C-axis lattice constant of c1 max And the minimum value c1 min Rate of change with (c1 max -C1 min ) / C1 min Is 0.03 or less. Rate of change (c1 max -C1 min ) / C1 min However, when it is larger than 0.03, the stress of expansion / contraction of the lattice due to charge / discharge increases, so that the particles collapse and the cycle life is short.
[0015]
Furthermore, the battery and the positive electrode of the present invention have Li, O, Mg as essential elements as elements constituting the positive electrode active material, and are layered or zigzag layered LiMeO. 2 Having a structure, Me includes at least one selected from Mn, Co, Ni, Fe, and Li 0.5 MeO 2 Maximum value of c-axis lattice constant of c2 max And Li 0.2 MeO 2 C2 lattice constant c2 min Rate of change with (c2 max -C2 min ) / C2 min Is 0.01 or less. Li 0.5 MeO 2 Then, LiMeO 2 Since the abundance of Li is small compared to, a repulsive force acts between the O layer and the O layer, and the c-axis lattice constant expands. At this time, a plurality of LiMeOs having different types, different reactivities, or different crystal structures. 2 If a phase is present, the maximum value is selected from the c-axis lattice constants, and this is c2 max And On the other hand, Li 0.2 MeO 2 Then Li 0.5 MeO 2 Compared to 4+ Has a large ion radius 3+ The c-axis lattice constant contracts in the opposite direction. Also at this time, a plurality of LiMeOs having different types, different reactivities, or different crystal structures. 2 When a phase exists, the minimum value is selected from the c-axis lattice constants, and this is expressed as c2 min And In the present invention, the rate of change (c2) determined from these two values. max -C2 min ) / C2 min Is 0.01 or less. If it is greater than 0.01, the stress of expansion and contraction of the lattice due to charge / discharge increases, so that the particle collapse is significant and the cycle life is short.
[0016]
Further, the battery and the positive electrode of the present invention have Li, O, Mg as essential elements as elements constituting the positive electrode active material, and are layered or zigzag layered LiMeO. 2 And Me has at least one selected from Mn, Co, Ni, and Fe, and Li 0.5 MeO 2 The maximum value of the ratio of the c-axis lattice constant c1 to the a-axis lattice constant a1 (c1 / a1) max And Li 0.2 MeO 2 Minimum value of the ratio of the c-axis lattice constant c2 to the a-axis lattice constant a2 (c2 / a2) min The difference is within 0.1. The smaller the ratio of the c-axis lattice constant c to the a-axis lattice constant a, that is, the smaller the change in c / a, the smaller the change in the lattice volume, and the more the crystal stress due to repeated charge / discharge reactions is suppressed. In particular, the difference between the maximum value and the minimum value of c / a is preferably within 0.1. Li 0.5 MeO 2 The maximum value of the ratio of the c-axis lattice constant c1 to the a-axis lattice constant a1 (c1 / a1) min And Li 0.2 MeO 2 Minimum value of the ratio of the c-axis lattice constant c2 to the a-axis lattice constant a2 (c2 / a2) min When the difference from the above exceeds 0.1, the stress of expansion and contraction of the lattice due to charge / discharge increases, so that the particle collapse is remarkable and the cycle life is short.
[0017]
(1) The battery and positive electrode of the present invention have the general formula Li w Mg v Ni x M y N z O 2 (However, M is at least one selected from Mn, Co, and Fe, and N is at least one selected from Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B. Represents seeds, w, v, x, y, z are 0 ≦ w ≦ 1.2, 0.001 ≦ v ≦ 0.02, 0.5 ≦ x <0.85, 0.05 ≦ y ≦ 0, respectively. .5, 0 ≦ z ≦ 0.2)). Preferably, w, v, x, y, z are 0.2 ≦ w ≦ 1.15, 0.002 ≦ v ≦ 0.015, 0.7 ≦ x <0.85, 0.05 ≦ y ≦ 0, respectively. .25, 0.01 ≦ z ≦ 0.15, and more preferably w, v, x, y, and z are 0.2 ≦ w ≦ 1.05, 0.008 ≦ v ≦ 0.012, respectively. , 0.75 ≦ x ≦ 0.82, 0.05 ≦ y ≦ 0.15, 0.05 ≦ z ≦ 0.15.
[0018]
Since the novel positive electrode active material of the present invention has Mg at the position of Li, w should not be able to take a value of 1 or more, but actually Li is lithium carbonate, lithium oxide, By-products such as lithium hydroxide are easily formed, and as a result, the amount of Li determined by chemical analysis may take a value larger than 1. However, these excess Lis only cover the positive electrode active material, and LiMeO 2 It is not incorporated in the structure, and has a structure in which Mg is present at the Li position.
[0019]
The novel positive electrode active material of the present invention has the general formula Li w Mg v Ni x M y N z O 2 It has a layered structure. The crystal may change partly in the process of charge and discharge, but mainly maintains hexagonal crystal and α-NaFeO 2 Take the structure. The value of w representing the amount of Li varies depending on the state of charge and discharge, and the range is 0 ≦ w ≦ 1.2, preferably 0.2 ≦ w ≦ 1.15, and more preferably 0. .2 ≦ w ≦ 1.05. That is, Li ion deintercalation occurs due to charging and the value of w decreases, and Li ion intercalation occurs due to discharge and the value of w increases. If the amount of Li is greater than 1.2, by-products such as lithium carbonate, lithium oxide, and lithium hydroxide generated during the firing process will increase too much, and these materials will be used in the production of electrodes. The electrode cannot be produced successfully. In order to produce an electrode successfully, the smaller the by-products, the better. The value of w is 1.2 or less, desirably 1.15 or less, and more desirably 1.05 or less.
[0020]
Further, the value of v representing the amount of Mg does not vary due to charging or discharging, but is in the range of 0.001 ≦ v <0.02, preferably in the range of 0.002 ≦ v ≦ 0.015, and more preferably Is in the range of 0.008 ≦ v ≦ 0.012. When the value of v is less than 0.001, the effect of Mg is not sufficiently exhibited, the cycleability in deep charge and deep discharge is poor, and the capacity is also unfavorable. On the other hand, when the value of v exceeds 0.02, a single phase cannot be obtained, and a low-capacity phase appears. The most desirable value of v that can sufficiently exhibit the effect of Mg and obtain a high capacity is in the range of 0.008 ≦ v ≦ 0.012.
[0021]
The value of x representing the amount of Ni is in the range of 0.5 ≦ x <0.85, preferably in the range of 0.7 ≦ x <0.85, and more preferably in the range of 0.75 ≦ x ≦ 0. .82 range. When the value of x is less than 0.5, the capacity is remarkably lowered, which is not preferable. Moreover, when the value of x is 0.85 or more, the cycle characteristics in deep charge and deep discharge are poor, which is not preferable. The most desirable value of x that provides high capacity and good cycle performance in deep charge and deep discharge is in the range of 0.75 ≦ x ≦ 0.82.
[0022]
M is at least one selected from Mn, Co and Fe, and the value of y does not vary depending on the state of charge and discharge, and the range is 0.05 ≦ y ≦ 0.5, preferably 0.05 ≦ y ≦ 0.25, more preferably 0.05 ≦ y ≦ 0.15. When the value of y is less than 0.05, the effect of M is not sufficiently exhibited, cycle characteristics in deep charge and deep discharge are poor, thermal stability is poor, and safety is inferior. Further, when the value of y exceeds 0.5, the capacity is lowered, which is not preferable. The most desirable value of y that can sufficiently exhibit the effect of M and obtain a high capacity is in the range of 0.05 ≦ y ≦ 0.15.
[0023]
N is at least one selected from Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, B, and preferably Si, Al, Ca, Cu, Sn, P, In, At least one selected from B, more preferably at least one selected from Si, Al, P, In, and B, and most preferably at least one selected from Si, Al, P, and B It is. The value of z does not vary depending on the state of charge and discharge, and the range is 0 ≦ z ≦ 0.2, preferably 0.01 ≦ z ≦ 0.15, and more preferably 0.05 ≦ z. The range is z ≦ 0.15. When the value of z exceeds 0.2, the overvoltage at the time of charging / discharging is high, a single phase cannot be obtained, and a phase with a low capacity appears, so that the capacity is lowered, which is not preferable. The most desirable value of z that can sufficiently exhibit the effect of N and obtain a high capacity is in the range of 0.05 ≦ z ≦ 0.15.
[0024]
(2) The battery and the positive electrode of the present invention have the general formula Li w Mg v Co x N z O 2 (However, N represents at least one selected from Ni, Mn, Fe, Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B, w, v, x, z represents a number of 0 ≦ w ≦ 1.2, 0.001 ≦ v <0.02, 0.5 ≦ x <0.85, 0 ≦ z ≦ 0.5). It is characterized by using. Preferably, w, v, x, and z are 0.2 ≦ w ≦ 1.15, 0.002 ≦ v ≦ 0.015, 0.7 ≦ x <0.85, 0.01 ≦ z ≦ 0.15, respectively. More preferably, w, v, x, y, and z are 0.2 ≦ w ≦ 1.05, 0.008 ≦ v ≦ 0.012, 0.75 ≦ x ≦ 0.82, 0, respectively. .05 ≦ z ≦ 0.15.
[0025]
Since the novel positive electrode active material of the present invention has Mg at the position of Li, w should not be able to take a value of 1 or more, but actually Li is lithium carbonate, lithium oxide, By-products such as lithium hydroxide are easily formed, and as a result, the amount of Li determined by chemical analysis may take a value larger than 1. However, these excess Lis only cover the positive electrode active material, and LiMeO 2 It is not incorporated in the structure, and has a structure in which Mg is present at the Li position.
[0026]
The novel positive electrode active material of the present invention has the general formula Li w Mg v Co x N z O 2 It has a layered structure. The crystal may change partly in the process of charge and discharge, but mainly maintains hexagonal crystal and α-NaFeO 2 Take the structure. The value of w representing the amount of Li varies depending on the state of charge and the state of discharge, and the range is 0 ≦ w ≦ 1.2. The range is preferably 0.2 ≦ w ≦ 1.15, and more preferably the range is 0.2 ≦ w ≦ 1.05. That is, Li ion deintercalation occurs due to charging and the value of w decreases, and Li ion intercalation occurs due to discharge and the value of w increases. If the amount of Li is greater than 1.2, the amount of by-products such as lithium carbonate, lithium oxide, and lithium hydroxide produced during the firing process will increase so much that these materials are used in the production of electrodes. The electrode cannot be successfully produced by reacting with the agent. In order to produce an electrode successfully, the smaller the by-products, the better. The value of w is 1.2 or less, desirably 1.15 or less, and more desirably 1.05 or less.
[0027]
Further, the value of v representing the amount of Mg does not vary due to charging or discharging, but is in the range of 0.001 ≦ v <0.02, preferably in the range of 0.002 ≦ v ≦ 0.015, and more preferably Is in the range of 0.008 ≦ v ≦ 0.012. When the value of v is less than 0.001, the effect of Mg is not sufficiently exhibited, the cycleability in deep charge and deep discharge is poor, and the capacity is also unfavorable. On the other hand, when the value of v exceeds 0.02, a single phase cannot be obtained, and a low-capacity phase appears. The most desirable value of v that can sufficiently exhibit the effect of Mg and obtain a high capacity is in the range of 0.008 ≦ v ≦ 0.012.
[0028]
The value of x representing the amount of Co is in the range of 0.5 ≦ x <0.85, preferably in the range of 0.7 ≦ x <0.85, and more preferably in the range of 0.75 ≦ x ≦ 0. .82 range. When the value of x is less than 0.5, the capacity is remarkably lowered, which is not preferable. Moreover, when the value of x is 0.85 or more, the cycle characteristics in deep charge and deep discharge are poor, which is not preferable. The most desirable value of x that provides high capacity and good cycle performance in deep charge and deep discharge is in the range of 0.75 ≦ x ≦ 0.82.
[0029]
N is at least one selected from Ni, Mn, Fe, Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B, preferably Ni, Mn, Fe, Si, At least one selected from Al, Ca, Cu, Sn, P, In, and B, more preferably at least one selected from Ni, Mn, Fe, Si, Al, P, In, and B Most preferably, it is at least one selected from Si, Al, P, and B. The value of z does not vary depending on the state of charge and discharge, and the range is 0 ≦ z ≦ 0.5, preferably 0.01 ≦ z ≦ 0.15, and more preferably 0.05 ≦ z. The range is z ≦ 0.15. If the value of z exceeds 0.5, the overvoltage at the time of charging / discharging is high, a single phase cannot be obtained, and a phase with a low capacity appears. The most desirable value of z that can sufficiently exhibit the effect of N and obtain a high capacity is in the range of 0.05 ≦ z ≦ 0.15.
[0030]
(3) Furthermore, the battery and the positive electrode of the present invention have the general formula Li w Mg v Mn x N z O 2 (However, N represents at least one selected from Ni, Co, Fe, Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B, w, v, x, z represents a number of 0 ≦ w ≦ 1.2, 0.001 ≦ v <0.02, 0.5 ≦ x <0.85, and 0 ≦ z ≦ 0.5, respectively. It is characterized by using. Preferably, w, v, x, and z are 0.2 ≦ w ≦ 1.15, 0.002 ≦ v ≦ 0.015, 0.7 ≦ x <0.85, 0.01 ≦ z ≦ 0.15, respectively. More preferably, w, v, x, and z are 0.2 ≦ w ≦ 1.05, 0.008 ≦ v ≦ 0.012, 0.75 ≦ x ≦ 0.82, 0.05, respectively. It is the range of ≦ z ≦ 0.15.
[0031]
Since the novel positive electrode active material of the present invention has Mg at the position of Li, w should not be able to take a value of 1 or more, but actually Li is lithium carbonate, lithium oxide, By-products such as lithium hydroxide are easily formed, and as a result, the amount of Li determined by chemical analysis may take a value larger than 1. However, these excess Lis only cover the positive electrode active material, and LiMeO 2 It is not incorporated in the structure, and has a structure in which Mg is present at the Li position.
[0032]
The novel positive electrode active material of the present invention has the general formula Li w Mg v Mn x N z O 2 The value of w representing the amount of Li varies depending on the charge state and the discharge state, and the range is 0 ≦ w ≦ 1.2, preferably 0.2 ≦ w ≦ 1.15. More preferably, the range is 0.2 ≦ w ≦ 1.05. That is, Li ion deintercalation occurs due to charging and the value of w decreases, and Li ion intercalation occurs due to discharge and the value of w increases. If the amount of Li is greater than 1.2, by-products such as lithium carbonate, lithium oxide, and lithium hydroxide generated during the firing process will increase too much, so these materials will be used in the production of electrodes. The electrode cannot be successfully produced by reacting with the agent. In order to successfully produce an electrode, the smaller the amount of by-products, the better. The value of w is 1.2 or less, desirably 1.15 or less, and more desirably 1.05 or less.
[0033]
Further, the value of v representing the amount of Mg does not vary due to charging or discharging, but is in the range of 0.001 ≦ v <0.02, preferably in the range of 0.002 ≦ v ≦ 0.015, and more desirably. Is in the range of 0.008 ≦ v ≦ 0.012. When the value of v is less than 0.001, the effect of Mg is not sufficiently exhibited, the cycleability in deep charge and deep discharge is poor, and the capacity is also unfavorable. On the other hand, when the value of v exceeds 0.02, a single phase cannot be obtained, and a low-capacity phase appears. The most desirable value of v that can sufficiently exhibit the effect of Mg and obtain a high capacity is in the range of 0.008 ≦ v ≦ 0.012.
[0034]
The value of x representing the amount of Mn is in the range of 0.5 ≦ x <0.85, preferably in the range of 0.7 ≦ x <0.85, and more preferably in the range of 0.75 ≦ x ≦ 0. .82 range. When the value of x is less than 0.5, the capacity is remarkably lowered, which is not preferable. Moreover, when the value of x is 0.85 or more, the cycle characteristics in deep charge and deep discharge are poor, which is not preferable. The most desirable value of x that provides high capacity and good cycle performance in deep charge and deep discharge is in the range of 0.75 ≦ x ≦ 0.82.
[0035]
N is at least one selected from Ni, Co, Fe, Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B, preferably Ni, Co, Fe, Si, At least one selected from Al, Ca, Cu, Sn, P, In, and B, more preferably at least one selected from Ni, Co, Fe, Si, Al, P, In, and B Most preferably, it is at least one selected from Si, Al, P, and B. The value of z does not vary depending on the state of charge and discharge, and the range is 0 ≦ z ≦ 0.5, preferably 0.01 ≦ z ≦ 0.15, and more preferably 0.05 ≦ z. The range is z ≦ 0.15. If the value of z exceeds 0.5, the overvoltage at the time of charging / discharging is high, a single phase cannot be obtained, and a phase with a low capacity appears. The most desirable value of z that can sufficiently exhibit the effect of N and obtain a high capacity is in the range of 0.05 ≦ z ≦ 0.15.
[0036]
(4) Further, the battery and the positive electrode of the present invention have the general formula Li w Mg v Fe x NzO 2 (However, N represents at least one selected from Ni, Co, Mn, Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B, w, v, x, z represents a number of 0 ≦ w ≦ 1.2, 0.001 ≦ v <0.02, 0.5 ≦ x <0.85, and 0 ≦ z ≦ 0.5). It is characterized by using. Preferably, w, v, x, and z are 0.2 ≦ w ≦ 1.15, 0.002 ≦ v ≦ 0.015, 0.7 ≦ x <0.85, 0.01 ≦ z ≦ 0.15, respectively. More preferably, w, v, x, and z are 0.2 ≦ w ≦ 1.05, 0.008 ≦ v ≦ 0.012, 0.75 ≦ x ≦ 0.82, 0.05, respectively. It is the range of ≦ z ≦ 0.15.
[0037]
Since the novel positive electrode active material of the present invention has Mg at the position of Li, w should not be able to take a value of 1 or more, but actually Li is lithium carbonate, lithium oxide, By-products such as lithium hydroxide are easily formed, and as a result, the amount of Li determined by chemical analysis may take a value larger than 1. However, these excess Lis only cover the positive electrode active material, and LiMeO 2 It is not incorporated in the structure, and has a structure in which Mg is present at the Li position.
[0038]
The novel positive electrode active material of the present invention has the general formula Li w Mg v Fe x N z O 2 The value of w representing the amount of Li varies depending on the state of charge and discharge, and the range is 0 ≦ w ≦ 1.2, preferably 0.2 ≦ w ≦ 1.15. More preferably, the range is 0.2 ≦ w ≦ 1.05. That is, Li ion deintercalation occurs due to charging and the value of w decreases, and Li ion intercalation occurs due to discharge and the value of w increases. If the amount of Li is greater than 1.2, the amount of by-products such as lithium carbonate, lithium oxide, and lithium hydroxide produced during the firing process will increase so much that these materials are used in the production of electrodes. The electrode cannot be successfully produced by reacting with the agent. In order to successfully produce an electrode, the smaller the amount of by-products, the better. The value of w is 1.2 or less, desirably 1.15 or less, and more desirably 1.05 or less.
[0039]
Further, the value of v representing the amount of Mg does not fluctuate due to charging and discharging, but is in the range of 0.001 ≦ v <0.02, and preferably in the range of 0.002 ≦ v ≦ 0.015. More desirably, the range is 0.008 ≦ v ≦ 0.012. When the value of v is less than 0.001, the effect of Mg is not sufficiently exhibited, the cycleability in deep charge and deep discharge is poor, and the capacity is also unfavorable. On the other hand, when the value of v exceeds 0.02, a single phase cannot be obtained, and a low-capacity phase appears. The most desirable value of v that can sufficiently exhibit the effect of Mg and obtain a high capacity is in the range of 0.008 ≦ v ≦ 0.012.
[0040]
The value of x representing the amount of Fe is in the range of 0.5 ≦ x <0.85, preferably in the range of 0.7 ≦ x <0.85, and more preferably in the range of 0.75 ≦ x ≦ 0. .82 range. When the value of x is less than 0.5, the capacity is remarkably lowered, which is not preferable. Moreover, when the value of x is 0.85 or more, the cycle characteristics in deep charge and deep discharge are poor, which is not preferable. The most desirable value of x that provides high capacity and good cycle performance in deep charge and deep discharge is in the range of 0.75 ≦ x ≦ 0.82.
[0041]
N is at least one selected from Ni, Co, Mn, Si, Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, and B, preferably Ni, Co, Mn, Si, At least one selected from Al, Ca, Cu, Sn, P, In, and B, and more preferably at least one selected from Ni, Co, Mn, Si, Al, P, In, and B Most preferably, it is at least one selected from Si, Al, P, and B. The value of z does not vary depending on the state of charge and discharge, and the range is 0 ≦ z ≦ 0.5, preferably 0.01 ≦ z ≦ 0.15, and more preferably 0.05 ≦ z. The range is z ≦ 0.15. If the value of z exceeds 0.5, the overvoltage at the time of charging / discharging is high, a single phase cannot be obtained, and a phase with a low capacity appears. The most desirable value of z that can sufficiently exhibit the effect of N and obtain a high capacity is in the range of 0.05 ≦ z ≦ 0.15.
[0042]
Examples of the electrolyte include propylene carbonate, propylene carbonate derivatives, ethylene carbonate, butylene carbonate, vinylene carbonate, gamma-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, dimethyl sulfoxide. 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, gisanmethyl, methyl acetate, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, diethyl ether, 1,3- Propane sultone, sulfolane, 3-methyl-2-oxazolidine, tetrahydrofuran, tetrahydrofuran Body, dioxolane, 1,2-diethoxyethane, also at least one non-aqueous solvent and a lithium salt selected from the group consisting of a these halides, such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiI, a mixed solution with at least one salt selected from the group consisting of lithium, a lower aliphatic carboxylate, lithium chloroborane, lithium tetraphenylborate, etc., and these mixed solutions and polymers, For example, by using a gel electrolyte mixed with at least one selected from the group consisting of polyacrylonitrile, polyethylene oxide, polyvinylidene fluoride, polymethyl methacrylate, and hexafluoropropylene, the positive electrode of the present invention is excellent. Show properties.
[0043]
By using a substance capable of reversibly occluding and releasing alkali metal ions for the negative electrode, the positive electrode of the present invention exhibits good characteristics. Among substances that can reversibly occlude and release alkali metal ions, graphite, pyrolytic graphite, carbon fiber, vapor-grown carbonaceous material, pitch-based carbonaceous material, coke-based carbonaceous material, phenol-based carbonaceous material, rayon Carbonaceous material, polyacrylonitrile carbonaceous material, needle coke, polyacrylonitrile carbon fiber, glassy carbon, carbon black, furfuryl alcohol carbonaceous material, polyparaphenylene, etc. At least one carbon material selected from the group consisting of at least one of low crystalline carbon and high crystalline carbon, or a combination of a plurality of these carbon materials, and these carbon materials include periodic tables IIIb and IVb. , Oxides containing chalcogen atoms or chalcogen compounds, and amorphous materials thereof At least one composite material selected from the group consisting of materials coated or fused with, conductive polymer materials such as polyacene, polyparaphenylene, polyaniline, polyacetylene, disulfide compounds, Li x Fe 2 O 3 , Li x Fe 3 O 4 , Li x WO 2 , Periodic table IIIb, IVb, oxides containing group Vb atoms, chalcogen compounds, and amorphous materials thereof are preferable.
[0044]
The use of the reversibly chargeable / dischargeable battery of the present invention is not particularly limited. For example, a notebook personal computer, pen input personal computer, pocket personal computer, notebook word processor, pocket word processor, electronic book player, mobile phone, cordless phone , Pager, handy terminal, portable copy, electronic notebook, calculator, LCD TV, electric shaver, electric tool, electronic translator, car phone, transceiver, voice input device, memory card, backup power supply, tape recorder, radio, headphone stereo, Power supplies for portable printers, handy cleaners, portable CDs, video movies, navigation systems, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, game machines, lighting Equipment, toys, roadco Conditioners, medical equipment, automobiles, electric automobiles, golf carts, electric carts, can be used as a power source such as a power storage system. It can also be used for civilian use, military use, and space use.
[0045]
By using the positive electrode active material of the present invention, high battery capacity, long life, reduction of overvoltage during charge / discharge, rate characteristics, self-discharge characteristics, high temperature characteristics, high safety, etc. Improve performance. Further, by using the electrode of the present invention and a battery using the electrode in various systems, the system can be made compact and light. In addition, it can be applied to a system that requires charging and discharging at a high rate.
[0046]
The operation of the present invention will be specifically described. Since the positive electrode active material of the present invention has a layered structure or a zigzag layered structure in which lithium can be easily inserted and extracted, it exhibits excellent characteristics for charging and discharging at a large current. Furthermore, the positive electrode active material of the present invention has a structure in which Mg is substituted at the Li position. Since Li is monovalent, when divalent Mg is substituted at the position of Li, a vacancy of Li is generated, and electrons attracted from O enter there, and holes are introduced into O. Since electrons can be easily transferred using these holes, the positive electrode active material of the present invention has a characteristic that electron conductivity is superior to that of conventional materials. These can be confirmed also from the measurement of the Hall effect, and since the Hall coefficient shows a value as high as Si, it is proved that the material is highly conductive.
[0047]
The electronic conductivity of the positive electrode active material of the present invention is 10 to 100 times larger than that of a conventional positive electrode active material, and in some cases, exhibits a metallic behavior in which the electronic conductivity increases at low temperatures.
[0048]
Since the positive electrode active material of the present invention has a structure in which Mg is substituted at the position of Li, since Mg does not desorb in the Li layer even after Li is desorbed at the time of charging, this becomes a pillar and is large. No structural change or lattice volume change (pillar effect). LiMeO 2 Li is desorbed by an amount 1/2 that of Li 0.5 MeO 2 Up to this point, the electron density between the O layer and the O layer sandwiching the Li layer increases as Li is desorbed, so that the repulsive force causes expansion. Li 0.5 MeO 2 When Li is further desorbed, the amount of tetravalent Me having a higher charge density than the amount of trivalent Me is increased, and the Me layer and the O layer are attracted and contracted in the opposite direction. LiMeO with layered or zigzag layered structure 2 Then, these expansion and contraction mainly appear in the change of the c-axis lattice constant. Moreover, these occur at the time of charging when Li is desorbed, and follow a completely opposite change at the time of discharging when Li is inserted. If this expansion and contraction are repeated each time charging / discharging, the lattice collapses and the lifetime is reached. Since the conventional positive electrode active material has a high expansion coefficient and shrinkage ratio, the stress on the lattice is large and the cycle life is short.
[0049]
In the positive electrode active material of the present invention, by replacing Mg at the position of Li, holes introduced into O reduce the electron density between the O layer and the O layer sandwiching the Li layer, thereby reducing the O layer and the O layer. The repulsive force between the layers can be suppressed. Thereby, the expansion accompanying the desorption of Li is suppressed. Furthermore, since the holes introduced into the O decrease the electron density of the O layer, the attractive force between the Me layer and the O layer in which the tetravalent Me having a high charge density is increased can be suppressed. As a result, Li 0.5 MeO 2 Shrinkage when Li is desorbed from is greatly suppressed.
[0050]
In the positive electrode active material of the present invention, the change from expansion to contraction during charging appears only in the c-axis lattice constant, and the change in lattice volume is extremely small. Therefore, the stress of the lattice is remarkably suppressed, and the lifetime is greatly extended.
[0051]
Since the positive electrode active material of the present invention stabilizes the crystal structure by substituting Mg at the Li position, it is possible to prevent Li from being desorbed due to moisture absorption and Me from being mixed into the Li position. This makes it possible to obtain a stable synthetic material and electrode performance regardless of the humidity level in the handling environment during firing or electrode fabrication. Also,
Since Mg acts as a sintering inhibitor, it is possible to suppress the coarsening of crystal grains. When coarse crystal grains are formed, the structural stress due to expansion and contraction at the time of charging cannot be relieved, so that the crystal grains are easily cracked and have a short life. The substitution of Mg can suppress the formation of such coarse particles.
[0052]
Furthermore, since Mn, Co, and Fe are less likely to oxidize than Ni, the life can be extended by these pillar effects. Since Mg, Mo, Cu, Al, Cs, and Si have the effect of increasing the electrical conductivity of the positive electrode active material, it is possible to reduce the overvoltage during charging and discharging.
[0053]
Further, since the ion radius of B, P and Si is small, the lattice volume of the positive electrode active material can be contracted by these substitutions, and the lifetime can be extended by suppressing the collapse due to the expansion of the lattice volume at the time of charging. Ca, Y, Nb, Al, Mg, B, and Si have low oxygen releasing ability and exist stably as oxides, so that they are excellent in high temperature characteristics and can improve stability. Further, substitution with Si, In, Sn, Mg, Ca, Bi is liable to cause defects in the crystal, so that the capacity can be increased and the rate characteristics can be improved.
[0054]
DETAILED DESCRIPTION OF THE INVENTION
(Comparative Example 1)
LiOH, Ni (OH) as raw material for positive electrode material 2 Ni co-precipitated with 10 atomic% Co 0.9 Co 0.1 (OH) 2 LiNi 0.9 Co 0.1 O 2 These were prepared for 15 hours at room temperature using a ball mill in an Ar atmosphere. This was held at 150 ° C. for 1 h in an oxygen atmosphere, further held at 470 ° C. for 2 h, and then fired at 720 ° C. for 50 h to obtain a positive electrode material. For measurement of X-ray diffraction, a rotating counter-cathode sample horizontal X-ray diffractometer (RINT2000, manufactured by Rigaku Corporation) with an airtight chamber was used. The sample was attached to a glass holder in an Ar glove box and the surface was covered with mylar film to avoid contact with air. This was set in an airtight chamber provided with a Be window, and measured while minimizing the influence of moisture in the air while flowing He gas. Using a tube current of 250 mA, a tube voltage of 50 kV, and a CuKα radiation source, 2θ is 15 to 90 deg. Of step width 0.01 deg. , Measured by step scan with a measurement time of 0.5 sec. In order to increase the measurement accuracy of 2θ, the z-axis was positioned for each sample before measurement. In order to obtain the lattice constant with high accuracy, the measured lattice constant and cos 2 The function with θ was approximated using the method of least squares, and a precise lattice constant was obtained. From the measurement result of X-ray diffraction, the obtained positive electrode material is hexagonal and α-NaFeO. 2 The mold was confirmed to have a layered structure. FIG. 1 shows the a-axis lattice constant, the c-axis lattice constant, and the lattice volume.
[0055]
(Comparative Example 2)
LiOH, Ni (OH) as raw material for positive electrode material 2 Ni co-precipitated with 10 atomic% Co and 1 atomic% Mg 0.9 Co 0.1 Mg 0.01 (OH) 2 Using LiNi 0.89 Co 0.1 Mg 0.01 O 2 These were prepared for 15 hours at room temperature using a ball mill in an Ar atmosphere. This was held at 150 ° C. for 1 h in an oxygen atmosphere, further held at 470 ° C. for 2 h, and then fired at 720 ° C. for 50 h to obtain a positive electrode material. For measurement of X-ray diffraction, a rotating counter-cathode sample horizontal X-ray diffractometer (RINT2000, manufactured by Rigaku Corporation) with an airtight chamber was used. The sample was attached to a glass holder in an Ar glove box and the surface was covered with mylar film to avoid contact with air. This was set in an airtight chamber provided with a Be window, and measured while minimizing the influence of moisture in the air while flowing He gas. Using a tube current of 250 mA, a tube voltage of 50 kV, and a CuKα radiation source, 2θ is 15 to 90 deg. Of step width 0.01 deg. , Measured by step scan with a measurement time of 0.5 sec. In order to increase the measurement accuracy of 2θ, the z-axis was positioned for each sample before measurement. In order to obtain the lattice constant with high accuracy, the measured lattice constant and cos 2 The function with θ was approximated using the method of least squares, and a precise lattice constant was obtained. From the measurement result of X-ray diffraction, the obtained positive electrode material is hexagonal and α-NaFeO. 2 The mold was confirmed to have a layered structure. FIG. 1 shows the a-axis lattice constant, the c-axis lattice constant, and the lattice volume. Since all of the a-axis lattice constant, the c-axis lattice constant, and the lattice volume are larger than those of Comparative Example 1, Mg is substituted at the Ni position.
[0056]
(Example 1)
LiOH, Ni (OH) as raw material for positive electrode material 2 Ni co-precipitated with 10 atomic% Co 0.9 Co 0.1 (OH) 2 And Mg (NO) 3 Using LiNi 0.9 Co 0.1 Mg 0.01 O 2 These were prepared for 15 hours at room temperature using a ball mill in an Ar atmosphere. This was held at 150 ° C. for 1 h in an oxygen atmosphere, further held at 470 ° C. for 2 h, and then fired at 720 ° C. for 50 h to obtain a positive electrode material. For measurement of X-ray diffraction, a rotating counter-cathode sample horizontal X-ray diffractometer (RINT2000, manufactured by Rigaku Corporation) with an airtight chamber was used. The sample was attached to a glass holder in an Ar glove box and the surface was covered with mylar film to avoid contact with air. This was set in an airtight chamber provided with a Be window, and measured while minimizing the influence of moisture in the air while flowing He gas. Using a tube current of 250 mA, a tube voltage of 50 kV, and a CuKα radiation source, 2θ is 15 to 90 deg. Of step width 0.01 deg. , Measured by step scan with a measurement time of 0.5 sec. In order to increase the measurement accuracy of 2θ, the z-axis was positioned for each sample before measurement. In order to obtain the lattice constant with high accuracy, the measured lattice constant and cos 2 The function with θ was approximated using the method of least squares, and a precise lattice constant was obtained. From the measurement result of X-ray diffraction, the obtained positive electrode material is hexagonal and α-NaFeO. 2 The mold was confirmed to have a layered structure. FIG. 1 shows the a-axis lattice constant, the c-axis lattice constant, and the lattice volume. Since all of the a-axis lattice constant, the c-axis lattice constant, and the lattice volume are larger than those of Comparative Examples 1 and 2, Mg is substituted at the Li position.
[0057]
(Example 2)
LiOH, Ni (OH) as raw material for positive electrode material 2 Ni co-precipitated with 10 atomic% Co 0.9 Co 0.1 (OH) 2 , And Mg (SH) 4 Using LiNi 0.9 Co 0.1 Mg 0.01 O 2 These were prepared for 15 hours at room temperature using a ball mill in an Ar atmosphere. This was held at 150 ° C. for 1 h in an oxygen atmosphere, further held at 470 ° C. for 2 h, and then fired at 720 ° C. for 50 h to obtain a positive electrode material. For measurement of X-ray diffraction, a rotating counter-cathode sample horizontal X-ray diffractometer (RINT2000, manufactured by Rigaku Corporation) with an airtight chamber was used. The sample was attached to a glass holder in an Ar glove box and the surface was covered with mylar film to avoid contact with air. This was set in an airtight chamber provided with a Be window, and measured while minimizing the influence of moisture in the air while flowing He gas. Using a tube current of 250 mA, a tube voltage of 50 kV, and a CuKα radiation source, 2θ is 15 to 90 deg. Of step width 0.01 deg. , Measured by step scan with a measurement time of 0.5 sec. In order to increase the measurement accuracy of 2θ, the z-axis was positioned for each sample before measurement. In order to obtain the lattice constant with high accuracy, the measured lattice constant and cos 2 The function with θ was approximated using the method of least squares, and a precise lattice constant was obtained. From the measurement result of X-ray diffraction, the obtained positive electrode material is hexagonal and α-NaFeO. 2 The mold was confirmed to have a layered structure. Since substantially the same a-axis lattice constant, c-axis lattice constant, and lattice volume as in Example 1 were obtained, Mg was substituted at the Li position.
[0058]
(Comparative Example 3)
Using the cell shown in FIG. 2, the electron conductivity was measured as follows. 3. In order to avoid the influence of moisture in the air, a material of Comparative Examples 1 and 2 as a positive electrode active material and polyvinylidene fluoride powder as a binder are mixed at a weight ratio of 93: 7 in a dry room of 3% humidity. 7ton / cm 2 Was pressed into a disk shape having a diameter of 15 mm and a thickness of 0.35 mm. Pt-Pd was vapor-deposited on both sides of this disk using an ion sputtering apparatus (E-1030 type, manufactured by Hitachi). The Ar gas pressure is 0.02 to 0.04 torr, the discharge current is 20 mA, and the discharge time is 15 minutes on one side. Unnecessary vapor deposition part adhering to the side surface of the disk was removed using emery paper to form a positive electrode pellet 23, and then Ag paste 22 was applied to both sides of the disk, and electrolytic Cu foil having a thickness of 33 microns was further formed as a terminal 21. 0.5 ton / cm sandwiched between stainless steel plates 24 that are overlapped and covered with an insulating film 25 of polyethylene film 2 The pressure of was applied and screwed. This was wrapped in a laminate film 26 covered with aluminum foil with a polyethylene film and thermocompression bonded to ensure airtightness. The measurement temperature was in the range of 50 ° C. to liquid nitrogen temperature (−196 ° C.), and the 1 kHz AC resistance after being allowed to stand for 1 hour was measured so that the temperature inside the active material was uniform. FIG. 3 shows the temperature dependence of the electronic conductivity. The electron conductivity is lower at the lower temperature side and as low as 0.02 to 0.1 S / m at -40 ° C. Further, although the rate of change δσ / δT of the electron conductivity σ with respect to the temperature T is not shown in the graph, it is positive in the temperature range of 50 ° C. to −196 ° C. Is also positive.
[0059]
(Example 3)
Using the cell shown in FIG. 2, the electron conductivity was measured as follows. In order to avoid the influence of moisture in the air, the material of Example 1 as a positive electrode active material and polyvinylidene fluoride powder as a binder were mixed at a weight ratio of 93: 7 in a dry room with a humidity of 3%. cm 2 Was pressed into a disk shape having a diameter of 15 mm and a thickness of 0.35 mm. Pt-Pd was vapor-deposited on both sides of this disk using an ion sputtering apparatus (E-1030 type, manufactured by Hitachi). The Ar gas pressure is 0.02 to 0.04 torr, the discharge current is 20 mA, and the discharge time is 15 minutes on one side. Unnecessary vapor deposition part adhering to the side surface of the disk was removed using emery paper to form a positive electrode pellet 23, and then Ag paste 22 was applied to both sides of the disk, and electrolytic Cu foil having a thickness of 33 microns was further formed as a terminal 21. 0.5 ton / cm sandwiched between stainless steel plates 24 that are overlapped and covered with an insulating film 25 of polyethylene film 2 The pressure of was applied and screwed. This was wrapped in a laminate film 26 covered with aluminum foil with a polyethylene film and thermocompression bonded to ensure airtightness. The measurement temperature was in the range of 50 ° C. to liquid nitrogen temperature (−196 ° C.), and the 1 kHz AC resistance after standing for 1 hour was measured so that the temperature inside the active material was uniform. FIG. 3 shows the temperature dependence of the electronic conductivity. The electron conductivity is higher at the lower temperature side and as high as 1000 S / m or higher at -40 ° C. Further, the rate of change δσ / δT of the electron conductivity σ with respect to the temperature T is negative in the temperature range of 50 ° C. to −196 ° C. and negative in the temperature range of 40 ° C. to −20 ° C.
[0060]
(Example 4)
The material of Example 1 was used as a positive electrode active material, and a binder and a conductive agent were mixed at a weight ratio of 85: 5: 10, and the resultant mixture was applied to a hardened aluminum foil having a thickness of 20 μm. did. Conductive agent has a specific surface area of 270m 2 / G of artificial graphite was used. Polyvinylidene fluoride was used as a binder, and a solution obtained by dissolving PVDF in N-methyl-2-pyrrolidone (NMP) was added to the mixture of the positive electrode active material and the conductive agent. The coated electrode was dried at 80 ° C. for 2 hours to volatilize NMP, and then 1.5 ton / cm. 2 And dried at 120 ° C. for 16 hours in a vacuum. The electrode area is 1.0 cm × 1.0 cm 2, and the mixture density is 2.8 to 3.1 g / cm. 3 The active material weight at this time is about 20 mg.
[0061]
The charge / discharge test was carried out by installing a cell screwed from both sides with a stainless steel plate 45 in the configuration shown in FIG. The cell is a stainless steel plate (SUS304) 45, a separator (polyethylene microporous film) 41, a counter electrode (Li metal) 46, a separator 41, a reference electrode (Li metal) 43 in an Ar glove box having a dew point of −67 ° C. or less. The separator 41, the positive electrode 44, the separator 41, and the stainless steel plate 45 were laminated in this order and screwed, and then the terminal 48 was connected and housed in the glass container 47. The separator 41 and the positive electrode 44 were sufficiently impregnated with the electrolytic solution 42 in advance. As the electrolytic solution 42, a mixed solvent of lithium hexafluorophosphate and ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 2 is used. 6 What was prepared so that the density | concentration of 1M might become a 1M solution was used. Current density 0.55mA / cm 2 The positive electrode active material is charged to a constant capacity (50, 100, 150, 200, 220, 250 mAh / g, 274 mAh / g) with respect to 1 g of the positive electrode active material. -X-ray diffraction was measured using 10 minutes of washing in dimethoxyethane followed by air drying. FIG. 5 shows changes in the c-axis lattice constant, and FIG. 6 shows changes in the c-axis lattice constant (c / a) with respect to the a-axis lattice constant.
[0062]
On the other hand, the material of Example 1 was used as the positive electrode material, and the polyvinylidene fluoride was weighed in a weight ratio of 88: 7: 5 using graphite as a conductive agent, and kneaded for 30 minutes with a cracking machine. It apply | coated on both surfaces of the 20-micrometer-thick aluminum foil.
[0063]
Using a mixture prepared by preparing 93% by weight of artificial graphite as a negative electrode material and 7% by weight of polyvinylidene fluoride as a binder, it was applied to both surfaces of a copper foil having a thickness of 30 μm. The positive and negative electrodes were rolled and formed with a press machine, the terminals were spot welded, and then vacuum dried at 150 ° C. for 5 hours. FIG. 7 shows an example of a battery structure according to this example. A positive electrode 72 and a negative electrode 73 were laminated via a microporous polypropylene separator 71, wound in a spiral shape, and inserted into an aluminum battery can 74. Insulating films (insulators) 78 are provided on the upper and lower sides of the battery can 74 so that the respective electrodes do not contact the battery can 74 or the battery inner lid 75 to cause a short circuit. The negative terminal 76 was welded to the battery can 74, and the positive terminal 77 was welded to the battery inner lid 75. In addition, a safety valve (current cutoff valve) 79 is connected to the battery inner lid 75, and the safety valve (current cutoff valve) 79 is deformed by an increase in internal pressure of 10 atmospheres or more, so that the electrical contact between them is cut off. . The electrolyte contains 1 mol LiPF 6 Was dissolved in 1 liter of a mixed solution of ethylene carbonate and diethyl carbonate and poured into the battery can 74. A battery lid was attached to the battery can to produce a cylindrical battery having a diameter of 14 mm and a height of 50 mm and a capacity of 1400 mAh. The battery is charged at a constant current of up to 4.2V at 1400mA, charged at a constant voltage of 4.2V for 3 hours, repeatedly discharged and discharged to 2.7V at 1400mA several times, charged to 4.2V at 1400mA, Taking this as a state where 100% of the battery capacity was charged, the positive electrode was taken out, washed in 1,2-dimethoxyethane for 10 minutes, and the amount of Li was determined by emission spectral analysis (ICP). Further, the battery was discharged at 1400 mA to 2.7 V, and 100% of the battery capacity was discharged. The positive electrode was taken out, washed in 1,2-dimethoxyethane for 10 minutes, and then subjected to Li spectroscopy by emission spectroscopy (ICP). The amount was determined. Thus, when the battery operating region was confirmed, Li was 0.87 mol (0.12 mol for Li desorption amount X) to 0.19 (0.80 for Li desorption amount X) with respect to 1 mol of Me. Mol).
[0064]
From FIG. 5, the maximum value c1 of the c-axis lattice constant from the state in which 100% of the battery capacity is charged to the state in which 100% of the battery capacity is discharged. max And the minimum value c1 min Rate of change (c1 max -C1 min ) / C1 min Is as small as 0.02. Li 0.5 MeO 2 Maximum value of c-axis lattice constant of c2 max And Li 0.2 MeO 2 C2 lattice constant c2 min Rate of change with (c2 max -C2 min ) / C2 min Is as small as 0.01. From FIG. 6, Li 0.5 MeO 2 The maximum value of the ratio of the c-axis lattice constant c1 to the a-axis lattice constant a1 (c1 / a1) max And Li 0.2 MeO 2 Minimum value of the ratio of the c-axis lattice constant c2 to the a-axis lattice constant a2 (c2 / a2) min And the difference is within the range of 0.1.
[0065]
(Comparative Example 4)
Using the materials of Comparative Examples 1 and 2 as the positive electrode active material, X-ray diffraction was measured in the same manner as in Example 4. FIG. 8 shows the change of the c-axis lattice constant when the material of Comparative Example 1 is used, and FIG. 9 shows the change of the c-axis lattice constant (c / a) with respect to the a-axis lattice constant. FIG. 10 shows the change of the c-axis lattice constant when the material of Comparative Example 2 is used, and FIG. 11 shows the change of the c-axis lattice constant (c / a) with respect to the a-axis lattice constant.
[0066]
On the other hand, the materials of Comparative Examples 1 and 2 were used as the positive electrode material, and the polyvinylidene fluoride was weighed in a weight ratio of 88: 7: 5 using graphite as a conductive agent and kneaded for 30 minutes with a large machine. Then, it apply | coated on both surfaces of the 20-micrometer-thick aluminum foil.
[0067]
Using a mixture prepared by preparing 93% by weight of artificial graphite as a negative electrode material and 7% by weight of polyvinylidene fluoride as a binder, it was applied to both surfaces of a copper foil having a thickness of 30 μm. The positive and negative electrodes were rolled and formed with a press machine, the terminals were spot welded, and then vacuum dried at 150 ° C. for 5 hours. In the same manner as in Example 4, a positive electrode 72 and a negative electrode 73 were laminated via a microporous polypropylene separator 71, wound in a spiral shape, and inserted into an aluminum battery can 74. The negative electrode terminal 76 was welded to the battery can 74 and the positive electrode terminal 77 was welded to the battery inner lid 75. The electrolyte contains 1 mol LiPF 6 Was dissolved in 1 liter of a mixed solution of ethylene carbonate and diethyl carbonate and poured into the battery can 74. A battery lid was attached to the battery can to produce a cylindrical battery having a diameter of 14 mm and a height of 50 mm, which was the same as in Example 4, and having a capacity of 1400 mAh. The battery is charged at a constant current of up to 4.2V at 1400mA, charged at a constant voltage of 4.2V for 3 hours, repeatedly discharged and discharged to 2.7V at 1400mA several times, charged to 4.2V at 1400mA, Taking this as a state where 100% of the battery capacity was charged, the positive electrode was taken out, washed in 1,2-dimethoxyethane for 10 minutes, and the amount of Li was determined by emission spectral analysis (ICP). Furthermore, the battery was discharged at 1400 mA to 2.7 V, and 100% of the battery capacity was discharged. The positive electrode was taken out, washed in 1,2-dimethoxyethane for 10 minutes, and then subjected to Li spectroscopy by emission spectroscopy (ICP). The amount was determined. As a result, when the battery operating region was confirmed, in the material of Comparative Example 1, Li was 0.89 mol (0.11 mol in Li desorption amount X) to 0.22 (Li desorption) with respect to Me1 mol. When the amount of Li is less than 0.30 mol (0.70 mol for Li desorption amount X) with respect to 1 mol of Me, the hexagonal crystal becomes two-phase. separated. In the material of Comparative Example 2, Li is in a range from 0.90 mol (0.10 mol for Li desorption amount X) to 0.23 (0.77 mol for Li desorption amount X) with respect to 1 mol of Me. Met.
[0068]
8 and 10, the maximum value c1 of the c-axis lattice constant from the state in which 100% of the battery capacity is charged to the state in which 100% of the battery capacity is discharged. max And the minimum value c1 min Rate of change (c1 max -C1 min ) / C1 min Is as large as 0.039 to 0.050. Li 0.5 MeO 2 Maximum value of c-axis lattice constant of c2 max And Li 0.2 MeO 2 C2 lattice constant c2 min Rate of change with (c2 max -C2 min ) / C2 min Is as large as 0.040 to 0.058. From FIG. 9 and FIG. 0.5 MeO 2 The maximum value of the ratio of the c-axis lattice constant c1 to the a-axis lattice constant a1 (c1 / a1) max And Li 0.2 MeO 2 Minimum value of the ratio of the c-axis lattice constant c2 to the a-axis lattice constant a2 (c2 / a2) min The difference is also as large as 0.20 to 0.27.
[0069]
(Example 5)
A material having the composition shown in Table 1 to Table 8 is used as the positive electrode material, and graphite is used as the conductive agent and polyvinylidene fluoride is weighed to a weight ratio of 88: 7: 5, and 30 by a large machine. After partial kneading, it was applied to both sides of a 20 μm thick aluminum foil.
[0070]
Using a mixture prepared by preparing 93% by weight of artificial graphite as a negative electrode material and 7% by weight of polyvinylidene fluoride as a binder, it was applied to both surfaces of a copper foil having a thickness of 30 μm. The positive and negative electrodes were rolled and formed with a press machine, the terminals were spot welded, and then vacuum dried at 150 ° C. for 5 hours. In the same manner as in Example 4, a positive electrode 72 and a negative electrode 73 were laminated via a microporous polypropylene separator 71, wound in a spiral shape, and inserted into an aluminum battery can 74. The negative terminal 76 was welded to the battery can 74, and the positive terminal 77 was welded to the battery inner lid 75. The electrolyte contains 1 mol LiPF 6 Was dissolved in 1 liter of a mixed solution of ethylene carbonate and diethyl carbonate and poured into the battery can 74. A battery lid was attached to the battery can to produce a cylindrical battery having a diameter of 14 mm and a height of 50 mm, which was the same as in Example 4, and having a capacity of 1400 mAh. The battery was charged at a constant current of up to 4.2V at 1400mA, charged at a constant voltage of 4.2V for 3 hours, and charged and discharged 5 times at 1400mA to 2.7V. The discharge capacity for the fifth time is shown in Table 1. It was. The cycle life was obtained by examining the number of cycles when the capacity reached 70% when the discharge capacity at the fifth time was 100%, and is also shown in Table 1. In the rate characteristics, the charging condition is 1400 mA at a constant current up to 4.2 V, then the battery is charged at a constant voltage of 4.2 V for 3 hours, and the discharging condition is 0.2 C discharge at 280 mA to 2.7 V and 4200 mA. Each of the 3C discharges discharged to 2.7 V was performed, and the capacity ratio in 3C discharge was shown in Table 1 in%, assuming that the capacity in 0.2C discharge was 100%. In the overcharge test, Table 1 shows the percentage of batteries that ignite when charging is continued at a constant current of 2800 mA. In the nail penetration test, the percentage of batteries that ignite when a battery charged at a constant current of 4.2V at 1400mA and charged at a constant voltage of 4.2V for 3 hours was pierced through the battery at a speed of 5mm / sec. Table 1 shows.
[0071]
[Table 1]
Figure 0003624663
[0072]
[Table 2]
Figure 0003624663
[0073]
[Table 3]
Figure 0003624663
[0074]
[Table 4]
Figure 0003624663
[0075]
[Table 5]
Figure 0003624663
[0076]
[Table 6]
Figure 0003624663
[0077]
[Table 7]
Figure 0003624663
[0078]
[Table 8]
Figure 0003624663
[0079]
(Comparative Example 5)
As the positive electrode material, the material shown as Comparative Example 5 in the above table was used, and graphite was used as a conductive agent, and polyvinylidene fluoride was weighed in a weight ratio of 88: 7: 5, and 30 minutes by a large machine. After kneading, it was applied to both sides of a 20 μm thick aluminum foil. Using a mixture prepared by preparing 93% by weight of artificial graphite as a negative electrode material and 7% by weight of polyvinylidene fluoride as a binder, it was applied to both surfaces of a copper foil having a thickness of 30 μm.
[0080]
A battery was produced in the same manner as in Example 5. Capacity, life, rate characteristics, overcharge test and nail penetration test were evaluated. The results are shown in Table 2. There are extremely low characteristics compared to Example 5.
[0081]
【The invention's effect】
According to the present invention, it is possible to obtain characteristics that are excellent in part or all of battery characteristics such as higher capacity, longer life, rate characteristics, high temperature characteristics, and improved safety of the positive electrode material for secondary batteries. it can.
[Brief description of the drawings]
FIG. 1 is a diagram showing changes in lattice volume and lattice constant.
FIG. 2 is a schematic view of an electron conductivity measurement cell.
FIG. 3 is a graph showing the temperature dependence of conductivity.
FIG. 4 is a schematic view of a charge / discharge test cell.
5 is a graph showing changes in c-axis lattice constant of Example 4 using the positive electrode material of Example 1. FIG.
6 is a graph showing changes in c-axis lattice constant / a-axis lattice constant ratio of Example 4 using the positive electrode material of Example 1. FIG.
FIG. 7 is a diagram showing an example of a battery structure.
8 is a graph showing a change in c-axis lattice constant of Comparative Example 4 using the positive electrode material of Comparative Example 1. FIG.
9 is a graph showing changes in c-axis lattice constant / a-axis lattice constant of Comparative Example 4 using the positive electrode material of Comparative Example 1. FIG.
10 is a graph showing a change in c-axis lattice constant of Comparative Example 4 using the positive electrode material of Comparative Example 2. FIG.
11 is a graph showing changes in the c-axis lattice constant / a-axis lattice constant ratio of Comparative Example 4 using the positive electrode material of Comparative Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 ... Terminal, 22 ... Ag paste, 23 ... Positive electrode pellet, 24 ... Stainless steel plate, 25 ... Polyethylene film, 26 ... Laminate film, 41, 71 ... Separator, 42 ... Electrolyte, 43 ... Reference electrode, 44, 72 ... Positive electrode 46 ... Counter electrode, 73 ... Negative electrode, 74 ... Battery can, 75 ... Battery inner lid, 76 ... Negative electrode terminal, 77 ... Positive electrode terminal, 78 ... Film, 79 ... Safety valve.

Claims (7)

正極活物質として、層状もしくはジグザグ層状構造のLiMeO 2 を有する一般式
LiwMgvNixyz2(但し、Mは、MnCo,Feから選ばれた少なくとも1種を、Nは、Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,y,zは、それぞれ、0≦w≦1.2,0.001≦v≦0.02,0.5≦x<0.85,0.05≦y≦0.5,0≦z≦0.2を表わす。)で示されたLi位置にMgが存在する複合酸化物を用い、リチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。
LiMeO 2 having a layered structure or a zigzag layered structure as a positive electrode active material Formula Li w Mg v Ni x M y N z O 2 ( where having, M is, MnCo, at least one selected from Fe, N is, Si, Al, Ca, Cu , P, In, Sn , Mo, Nb, Y, Bi, and B, w, v, x, y, and z are 0 ≦ w ≦ 1.2, 0.001 ≦ v ≦ 0.02, 0, respectively. 0.5 ≦ x <0.85, 0.05 ≦ y ≦ 0.5, and 0 ≦ z ≦ 0.2.) Using a composite oxide in which Mg is present at the Li position. A battery that includes a nonaqueous electrolyte and that can be reversibly charged and discharged a plurality of times.
正極活物質として、層状もしくはジグザグ層状構造のLiMeO 2 を有する一般式
LiwMgvCoxz2(但し、Nは、Ni,Mn,Fe,Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,zは、それぞれ、0≦w≦1.2,0.001≦v<0.02 ,0.5≦x<0.85,0≦z≦0.5を表わす。)で示されたLi位置にMgが存在する複合酸化物を用い、リチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。
LiMeO 2 having a layered structure or a zigzag layered structure as a positive electrode active material The general formula Li w Mg v Co x N z O 2 with (where, N is the, Ni, Mn, Fe, Si , Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, from B Represents at least one selected, and w, v, x, and z are 0 ≦ w ≦ 1.2, 0.001 ≦ v <0.02, 0.5 ≦ x <0.85, 0 ≦, respectively. z ≦ 0.5 is represented.) A battery capable of reversibly charging and discharging a plurality of times using a composite oxide in which Mg is present at the Li position represented by z) and having a nonaqueous electrolyte containing a lithium salt.
正極活物質として、層状もしくはジグザグ層状構造のLiMeO 2 を有する一般式
LiwMgvMnxz2(但し、Nは、Ni,Co,Fe,Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,zは、それぞれ、0≦w≦1.2,0.001≦v<0.02 ,0.5≦x<0.85,0.01≦z≦0.5 を表わす。)で示されたLi位置にMgが存在する複合酸化物を用い、リチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。
LiMeO 2 having a layered structure or a zigzag layered structure as a positive electrode active material The general formula Li w Mg v Mn x N z O 2 with (where, N is the, Ni, Co, Fe, Si , Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, from B Represents at least one selected, and w, v, x, and z are 0 ≦ w ≦ 1.2, 0.001 ≦ v <0.02, 0.5 ≦ x <0.85, and 0.0, respectively. 01 ≦ z ≦ 0.5.) A battery capable of being reversibly charged and discharged a plurality of times using a composite oxide in which Mg is present at the Li position represented by (1) and having a nonaqueous electrolyte containing a lithium salt.
正極活物質として、層状もしくはジグザグ層状構造のLiMeO 2 を有する一般式
LiwMgvFexz2(但し、Nは、Ni,Co,Mn,Si,Al,Ca,Cu,P,In,Sn,Mo,Nb,Y,Bi,Bから選ばれた少なくとも1種を表わし、w,v,x,zは、それぞれ、0≦w≦1.2,0.001≦v<0.02 ,0.5≦x<0.85,0≦z≦0.5を表わす。)で示されたLi位置にMgが存在する複合酸化物を用い、リチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。
LiMeO 2 having a layered structure or a zigzag layered structure as a positive electrode active material The general formula Li w Mg v Fe x N z O 2 with (where, N is the, Ni, Co, Mn, Si , Al, Ca, Cu, P, In, Sn, Mo, Nb, Y, Bi, from B Represents at least one selected, and w, v, x, and z are 0 ≦ w ≦ 1.2, 0.001 ≦ v <0.02, 0.5 ≦ x <0.85, 0 ≦, respectively. z ≦ 0.5 is represented.) A battery capable of reversibly charging and discharging a plurality of times using a composite oxide in which Mg is present at the Li position represented by z) and having a nonaqueous electrolyte containing a lithium salt.
正極活物質として、Li,O,Mgを必須元素とし、層状もしくはジグザグ層状構造のLiMeO2 構造を有し、Meが、Mn,Co,Ni,Feから選ばれた少なくとも1種を含み、Li位置にMgが存在する複合酸化物を用い、前記正極活物質は、電池容量の100%を充電した状態から電池容量の100%を放電した状態に至るまでのc軸格子定数の最大値c1maxと最小値c1minとの変化率((c1max−c1min)/c1min)が、0.03 以下であるリチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。As a positive electrode active material, Li, O, Mg is an essential element, it has a layered or zigzag layered LiMeO 2 structure, Me contains at least one selected from Mn, Co, Ni, Fe, Li A composite oxide having Mg at a position is used, and the positive electrode active material has a maximum value c1 max of c-axis lattice constant from a state where 100% of the battery capacity is charged to a state where 100% of the battery capacity is discharged. And a rechargeable battery having a non-aqueous electrolyte containing a lithium salt having a change rate ((c1 max −c1 min ) / c1 min ) of 0.03 or less with respect to the minimum value c1 min . 正極活物質として、Li,O,Mgを必須元素とし、層状もしくはジグザグ層状構造のLiMeO2 構造を有し、Meが、Mn,Co,Ni,Feから選ばれた少なくとも1種を含み、Li位置にMgが存在する複合酸化物を用い、前記正極活物質は、Li0.5MeO2のc軸格子定数の最大値c2maxとLi0.2MeO2のc軸格子定数の最小値c2minとの変化率((c2max−c2min)/c2min)が、0.01以下であるリチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。As a positive electrode active material, Li, O, Mg is an essential element, it has a layered or zigzag layered LiMeO 2 structure, Me contains at least one selected from Mn, Co, Ni, Fe, Li A composite oxide in which Mg is present at a position is used, and the positive electrode active material changes between the maximum value c2 max of the c-axis lattice constant of Li 0.5 MeO 2 and the minimum value c2 min of the c-axis lattice constant of Li 0.2 MeO 2 A battery having a non-aqueous electrolyte containing a lithium salt having a rate ((c2 max −c2 min ) / c2 min ) of 0.01 or less and capable of being reversibly charged and discharged a plurality of times. 正極活物質として、Li,O,Mgを必須元素とし、層状もしくはジグザグ層状構造のLiMeO2 構造を有し、Meが、Mn,Co,Ni,Feから選ばれた少なくとも1種を含み、Li位置にMgが存在する複合酸化物を用い、前記正極活物質は、Li0.5MeO2のa軸格子定数a1に対するc軸格子定数c1の割合の最大値((c1/a1)max)と、Li0.2MeO2 のa軸格子定数a2に対するc軸格子定数c2の割合の最小値((c2/a2)min)との差が、0.1以内であるリチウム塩を含む非水電解質を有する可逆的に複数回の充放電が可能な電池。As a positive electrode active material, Li, O, Mg is an essential element, it has a layered or zigzag layered LiMeO 2 structure, Me contains at least one selected from Mn, Co, Ni, Fe, Li A composite oxide having Mg in the position is used, and the positive electrode active material has a maximum value ((c1 / a1) max ) of the ratio of the c-axis lattice constant c1 to the a-axis lattice constant a1 of Li 0.5 MeO 2 , and Li Reversible with a non-aqueous electrolyte containing a lithium salt whose difference from the minimum value of the c-axis lattice constant c2 to the a-axis lattice constant a2 of 0.2 MeO 2 ((c2 / a2) min ) is within 0.1 A battery that can be charged and discharged multiple times.
JP35435897A 1996-12-24 1997-12-24 battery Expired - Fee Related JP3624663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35435897A JP3624663B2 (en) 1996-12-24 1997-12-24 battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34304196 1996-12-24
JP8-343041 1996-12-24
JP35435897A JP3624663B2 (en) 1996-12-24 1997-12-24 battery

Publications (2)

Publication Number Publication Date
JPH10241691A JPH10241691A (en) 1998-09-11
JP3624663B2 true JP3624663B2 (en) 2005-03-02

Family

ID=26577407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35435897A Expired - Fee Related JP3624663B2 (en) 1996-12-24 1997-12-24 battery

Country Status (1)

Country Link
JP (1) JP3624663B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102703A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
FR2784233B1 (en) * 1998-10-01 2000-12-15 Cit Alcatel CATHODE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE ELECTROCHEMICAL GENERATOR
TW438721B (en) 1998-11-20 2001-06-07 Fmc Corp Multiple doped lithium manganese oxide compounds and methods of preparing same
JP4650774B2 (en) * 1999-06-07 2011-03-16 株式会社豊田中央研究所 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
US6686093B1 (en) 1999-06-14 2004-02-03 Kabushiki Kaisha Toshiba Positive electrode active material for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery therewith
US6964830B2 (en) 1999-07-30 2005-11-15 Ngk Insulators, Ltd. Lithium secondary battery
JP4524821B2 (en) * 1999-10-27 2010-08-18 堺化学工業株式会社 Lithium manganese composite oxide particulate composition, method for producing the same, and secondary battery
US6998069B1 (en) * 1999-12-03 2006-02-14 Ferro Gmbh Electrode material for positive electrodes of rechargeable lithium batteries
JP3611190B2 (en) * 2000-03-03 2005-01-19 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4592931B2 (en) * 2000-11-30 2010-12-08 Jx日鉱日石金属株式会社 Positive electrode material for lithium secondary battery and method for producing the same
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
JP4325112B2 (en) * 2000-12-28 2009-09-02 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP4839431B2 (en) * 2001-05-21 2011-12-21 独立行政法人産業技術総合研究所 Precise crystal structure evaluation method of cathode material for lithium battery using neutron diffraction method and magnetic measurement method
US6855461B2 (en) * 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
JP4951824B2 (en) * 2001-07-27 2012-06-13 三菱化学株式会社 Electrode active material-containing composition, and electrode and lithium secondary battery using the same
JP3873717B2 (en) * 2001-11-09 2007-01-24 ソニー株式会社 Positive electrode material and battery using the same
JP4152618B2 (en) * 2001-11-12 2008-09-17 日本電信電話株式会社 Method for producing positive electrode active material for layered oxide battery
JP2003346797A (en) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery using nickel- lithium compound oxide
JP2004119172A (en) * 2002-09-26 2004-04-15 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte rechargeable battery, its manufacturing method, and nonaqueous electrolyte rechargeable battery
JP4404564B2 (en) 2003-03-25 2010-01-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery, positive electrode active material
FR2860922B1 (en) * 2003-10-10 2009-07-31 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE ELECTROCHEMICAL ELECTROCHEMICAL GENERATOR POSITIVE ELECTRODE
US7238450B2 (en) * 2003-12-23 2007-07-03 Tronox Llc High voltage laminar cathode materials for lithium rechargeable batteries, and process for making the same
JP4841116B2 (en) * 2004-05-28 2011-12-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4679112B2 (en) 2004-10-29 2011-04-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2008078695A1 (en) * 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
JP2011040281A (en) * 2009-08-11 2011-02-24 Samsung Electronics Co Ltd All-solid secondary battery
JP5421865B2 (en) * 2010-06-30 2014-02-19 株式会社日立製作所 Lithium ion secondary battery
CN105431970B (en) 2013-08-19 2019-08-02 株式会社Lg 化学 Lithium-cobalt composite oxides with excellent lifetime characteristic and the cathode active material for secondary battery comprising it
JP6249269B2 (en) * 2013-08-23 2017-12-20 日本電気株式会社 Lithium iron manganese composite oxide and lithium ion secondary battery using the same
JP6246109B2 (en) * 2014-01-20 2017-12-13 マクセルホールディングス株式会社 Lithium / cobalt-containing composite oxide and method for producing the same, electrode for non-aqueous secondary battery using the lithium / cobalt-containing composite oxide, and non-aqueous secondary battery using the same
JP6414589B2 (en) * 2014-03-11 2018-10-31 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6766322B2 (en) * 2015-04-28 2020-10-14 住友金属鉱山株式会社 Aluminum-coated nickel-cobalt composite hydroxide particles and their manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP6569703B2 (en) * 2017-06-20 2019-09-04 マツダ株式会社 Method for analyzing electrode material of lithium ion battery
WO2019044204A1 (en) * 2017-08-30 2019-03-07 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
KR102005513B1 (en) * 2017-10-20 2019-07-30 울산과학기술원 positive active material for rechargeable lithium battery, method for preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
JP7099286B2 (en) * 2018-11-29 2022-07-12 株式会社豊田自動織機 Lithium Nickel Cobalt Molybdenum Oxide
CN114024034B (en) * 2021-10-25 2022-08-30 珠海冠宇电池股份有限公司 Battery with improved battery capacity

Also Published As

Publication number Publication date
JPH10241691A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3624663B2 (en) battery
JP3913941B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP5035834B2 (en) Lithium manganese composite oxide
JP5382025B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
KR20160110155A (en) Active material, nonaqueous electrolyte battery, battery pack and assembled battery
JP2006202702A (en) Nonaqueous electrolyte secondary battery
JP2006012433A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
KR20140048456A (en) Positive active material, method for preparation thereof and lithium battery comprising the same
KR102175578B1 (en) Positive active material, method of manufacturing the same and rechargeable lithium battery incluidng the same
JP3856015B2 (en) Positive electrode secondary active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US6656638B1 (en) Non-aqueous electrolyte battery having a lithium manganese oxide electrode
JPH09213305A (en) Nonaqueous electrolyte secondary cell
JPH10261415A (en) Nonaqueous electrolyte secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
KR102224039B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2004241242A (en) Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP3497420B2 (en) Lithium secondary battery
KR20210088494A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
JP4765254B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
KR101134566B1 (en) Novel cathode active material for lithium secondary battery and method of fabricating a cathode thin film for lithium secondary battery using the same
KR101575476B1 (en) Metal oxide composite, preparation method thereof and secondary battery containing the same
JP2004172108A (en) CATHODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUfACTURING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees