JPH1079247A - Surface treatment method for hydrogen storage alloy negative electrode - Google Patents

Surface treatment method for hydrogen storage alloy negative electrode

Info

Publication number
JPH1079247A
JPH1079247A JP8255477A JP25547796A JPH1079247A JP H1079247 A JPH1079247 A JP H1079247A JP 8255477 A JP8255477 A JP 8255477A JP 25547796 A JP25547796 A JP 25547796A JP H1079247 A JPH1079247 A JP H1079247A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
chromium oxide
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8255477A
Other languages
Japanese (ja)
Inventor
Yasuhito Kondo
康仁 近藤
Shinya Morishita
真也 森下
Yutaka Oya
豊 大矢
Mitsuharu Muta
光治 牟田
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Toyoda Automatic Loom Works Ltd filed Critical Toyota Central R&D Labs Inc
Priority to JP8255477A priority Critical patent/JPH1079247A/en
Publication of JPH1079247A publication Critical patent/JPH1079247A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve cycle characteristic and initial activity by surface-treating a negative electrode active material by chromium oxide. SOLUTION: An oxide layer to be formed on the surface of a negative electrode and for impeding storage and discharge of hydrogen can be dissolved and removed by bringing chromium oxide solution in contact with the front surface of a hydrogen storage alloy negative electrode. Therefore, initial activity of a battery can be enhanced. A chromium oxide coating film is formed on the surface of surface-treated hydrogen storage alloy. Accordingly, an oxide layer is not easily generated in a negative electrode during the charge and discharge cycle in the battery. Accordingly, cycle characteristic of the battery can be improved. It is desirable that the chromium oxide solution contains hexavalent chromium ion and that pH is 3 or less. Therefore, an oxide layer formed on the alloy surface is easily removed, and a chromium oxide coating film excellent in corrosion resistance can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,ニッケル−金属水素化物電池等
の各種二次電池の負極として使用される水素吸蔵合金負
極の表面処理方法に関する。
TECHNICAL FIELD The present invention relates to a surface treatment method for a hydrogen storage alloy negative electrode used as a negative electrode of various secondary batteries such as a nickel-metal hydride battery.

【0002】[0002]

【従来技術】従来,例えばLaNi5 あるいはMmNi
5 (Mmはミッシュメタルを示し,具体的にはランタ
ン,セリウム等の希土類元素の混合物をいう)を代表と
するAB5 型合金,またはZrV0.4 Ni1.6 等のTi
ZrVNi系ラーベス相合金を代表とするAB2 型合金
等よりなる水素吸蔵合金は,室温での平衡圧が1気圧前
後であるため,可逆的に水素の吸蔵・放出が可能であ
る。
Description of the Prior Art Conventionally, for example LaNi 5 or MmNi
5 (Mm represents a misch metal, lanthanum and specifically refers to a mixture of rare earth elements such as cerium) an AB 5 type alloys typified or ZrV 0.4 Ni 1.6 etc. Ti,
A hydrogen storage alloy such as an AB 2 type alloy represented by a ZrVNi-based Laves phase alloy can store and release hydrogen reversibly because the equilibrium pressure at room temperature is about 1 atm.

【0003】そのため,上記水素吸蔵合金は,充電する
ことにより操り返し使用することができる二次電池の負
極活物質として応用されている。この場合の電池におけ
る負極反応は,次のように考えられている。 M+H2 O+e- ←→M−H+OH- なお,Mは水素吸蔵合金を示し,充電時には右向きに反
応が進み,放電時には左向きに反応が進む。このような
二次電池としては,ニッケル−金属水素化物電池を挙げ
ることができる。この電池は水素吸蔵合金負極とニッケ
ル正極,両極の間に充填された電解液よりなる。なお,
上記電解液はアルカリ性水溶液である。
[0003] Therefore, the above-mentioned hydrogen storage alloy is applied as a negative electrode active material of a secondary battery which can be used repeatedly by charging. The negative electrode reaction in the battery in this case is considered as follows. M + H 2 O + e ← MH + OH M indicates a hydrogen storage alloy, and the reaction proceeds rightward during charging and proceeds leftward during discharging. Examples of such a secondary battery include a nickel-metal hydride battery. This battery comprises a hydrogen storage alloy negative electrode, a nickel positive electrode, and an electrolyte filled between the two electrodes. In addition,
The electrolyte is an alkaline aqueous solution.

【0004】しかし,上記水素吸蔵合金は,その表面に
容易に酸化物層が形成され,この酸化物層が水素の吸蔵
・放出を阻害するという問題がある。また,上記ニッケ
ル−金属水素化物電池は,初期使用段階(充放電サイク
ルの回数が少ない段階)においては電池の負極容量が大
変小さいという問題がある。
However, the above-mentioned hydrogen storage alloy has a problem that an oxide layer is easily formed on the surface thereof, and this oxide layer hinders the storage and release of hydrogen. In addition, the nickel-metal hydride battery has a problem that the negative electrode capacity of the battery is very small in an initial use stage (a stage in which the number of charge / discharge cycles is small).

【0005】即ち,このニッケル−金属水素化物電池に
おいては,充放電サイクルの回数が少ない初期使用段階
において,水素吸蔵合金負極の表面には水を電気分解
し,発生する水素を活性化する触媒層(例えばNi層)
が形成されていない。このため,上記水素吸蔵合金負極
での水素の吸蔵・放出反応が起こりにくく,負極容量が
小さい状態にある。なお,この問題を初期活性が低いと
称する。
That is, in this nickel-metal hydride battery, in the initial use stage where the number of charge / discharge cycles is small, the surface of the hydrogen-absorbing alloy negative electrode is provided with a catalyst layer for electrolyzing water and activating the generated hydrogen. (Eg Ni layer)
Is not formed. Therefore, the hydrogen storage / release reaction at the hydrogen storage alloy negative electrode hardly occurs, and the negative electrode capacity is in a small state. This problem is referred to as low initial activity.

【0006】これらの問題を解決するため,特開平5−
13077号,特開平4−137361号等には,水素
吸蔵合金の粉末を高温のアルカリ性水溶液に浸漬するこ
とによる,水素吸蔵合金負極の活性化処理方法が提案さ
れている。即ち,この方法においては該水素吸蔵合金か
らMm,Co,Al,Mn等を上記アルカリ性水溶液中
に溶出させ,表面に残存するNi金属によりNi触媒層
を形成する。
To solve these problems, Japanese Patent Laid-Open No.
No. 13077, JP-A-4-137361 and the like have proposed a method for activating a hydrogen storage alloy negative electrode by immersing a hydrogen storage alloy powder in a high-temperature alkaline aqueous solution. That is, in this method, Mm, Co, Al, Mn, and the like are eluted from the hydrogen storage alloy into the alkaline aqueous solution, and a Ni catalyst layer is formed by Ni metal remaining on the surface.

【0007】[0007]

【解決しようとする課題】しかしながら,上記活性化処
理方法においては,次の問題がある。即ち,上記アルカ
リ性水溶液中には,通常多くの酸素が溶存している。こ
のため,上記溶存酸素と上記溶出金属とが反応し,上記
水素吸蔵合金の表面に時間の経過と共に,再度多量の酸
化物層が生成されてしまう。従って,上述したニッケル
−金属水素化物電池は,充放電サイクル中において時間
の経過と共に負極容量が減少する。即ち,上記活性化処
理を施した水素吸蔵合金負極のサイクル特性は低かっ
た。
However, the above activation method has the following problems. That is, a large amount of oxygen is usually dissolved in the alkaline aqueous solution. For this reason, the dissolved oxygen and the eluted metal react with each other, and a large amount of an oxide layer is again formed on the surface of the hydrogen storage alloy with the passage of time. Therefore, in the above-described nickel-metal hydride battery, the capacity of the negative electrode decreases with time during the charge / discharge cycle. That is, the cycle characteristics of the hydrogen storage alloy negative electrode subjected to the activation treatment were low.

【0008】そこで,特開平3−49154号におい
て,上記水素吸蔵合金よりなる負極活物質にリン酸やク
ロム酸の塩を添加して,初期活性化とサイクル特性の両
者を同時に改良することが提案されている。しかしなが
ら,上述の塩を用いた場合には,高い初期活性を得るこ
とができなかった。
Therefore, Japanese Patent Application Laid-Open No. 3-49154 proposes that a salt of phosphoric acid or chromic acid is added to the negative electrode active material comprising the above-mentioned hydrogen storage alloy to simultaneously improve both the initial activation and the cycle characteristics. Have been. However, when the above-mentioned salt was used, a high initial activity could not be obtained.

【0009】本発明は,かかる問題点に鑑み,サイクル
特性に優れ,初期活性に優れた二次電池を得ることがで
きる,水素吸蔵合金負極の表面処理方法を提供しようと
するものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a surface treatment method for a hydrogen storage alloy negative electrode which can provide a secondary battery having excellent cycle characteristics and excellent initial activity.

【0010】[0010]

【課題の解決手段】請求項1の発明は,水素吸蔵合金よ
りなる負極活物質または活性化処理後の水素吸蔵合金よ
りなる負極活物質を酸化クロム溶液で表面処理すること
を特徴とする水素吸蔵合金負極の表面処理方法にある。
According to a first aspect of the present invention, a negative electrode active material comprising a hydrogen storage alloy or a negative electrode active material comprising an activated hydrogen storage alloy is subjected to a surface treatment with a chromium oxide solution. An alloy negative electrode has a surface treatment method.

【0011】上記酸化クロムとしては,Cr2 3 ,C
rO3 等があり,これらを例えば水溶液の状態で用い
る。また,上記表面処理は10分以上継続することが好
ましい。10分未満である場合には,本発明の効果を達
成することができないおそれがある。
As the chromium oxide, Cr 2 O 3 , C
There are rO 3 and the like, and these are used in the state of an aqueous solution, for example. Further, it is preferable that the surface treatment is continued for 10 minutes or more. If the time is less than 10 minutes, the effects of the present invention may not be achieved.

【0012】また,上記表面処理は,LaNi5 やMm
Ni5 (Mmはミッシュメタルを示し,具体的にはラン
タン,セリウム等の希土類元素の混合物をいう)といっ
たAB5 型合金,(Zr,Ti)(V,Ni)2 等のラ
ーベス相合金といったAB2型合金等の水素吸蔵合金に
対し適応することができる。更に,上記表面処理にかか
る具体的な操作としては,例えば粉末状の水素吸蔵合金
を酸化クロム溶液に浸漬する方法,粉末状の水素吸蔵合
金に酸化クロム溶液を噴霧する方法等を挙げることがで
きる。
Further, the surface treatment is performed by using LaNi 5 or Mm
AB 5 type alloy such as Ni 5 (Mm represents a misch metal, specifically, a mixture of rare earth elements such as lanthanum and cerium), and AB such as Laves phase alloy such as (Zr, Ti) (V, Ni) 2 Applicable to hydrogen storage alloy such as type 2 alloy. Further, specific operations relating to the surface treatment include, for example, a method of immersing a powdery hydrogen storage alloy in a chromium oxide solution, and a method of spraying a chromium oxide solution on the powdery hydrogen storage alloy. .

【0013】なお,上記活性化処理後の水素吸蔵合金
は,表面に形成されていた酸化物層が除去され,酸化物
層中に含まれていた金属Niが残存してNi触媒層が形
成されると共に,生成する酸化クロム被膜によって合金
表面の酸化物形成が抑制される。そして,上記活性化処
理を施した水素吸蔵合金を,二次電池の負極として使用
することにより,初期活性化が速やかで,サイクル特性
に優れる。二次電池を得ることができる。
In the hydrogen storage alloy after the activation treatment, the oxide layer formed on the surface is removed, and the metal Ni contained in the oxide layer remains to form a Ni catalyst layer. In addition, the formation of oxides on the alloy surface is suppressed by the chromium oxide film formed. By using the activated hydrogen storage alloy as the negative electrode of the secondary battery, the initial activation is quick and the cycle characteristics are excellent. A secondary battery can be obtained.

【0014】なお,上記水素吸蔵合金負極はニッケル−
金属水素化物電池,空気−金属水素化物電池等において
使用することができる。
The above-mentioned hydrogen storage alloy negative electrode is made of nickel-nickel.
It can be used in metal hydride batteries, air-metal hydride batteries, and the like.

【0015】本発明の作用につき,以下に説明する。本
発明にかかる表面処理方法においては,水素吸蔵合金負
極の表面に対し,上記酸化クロム溶液を接触させること
にある。これにより,水素吸蔵合金負極の表面に生成
し,水素の吸蔵・放出を阻害する酸化物層を溶解除去す
ることができる。このため,水素吸蔵合金負極を用いた
二次電池の初期活性を高めることができる。
The operation of the present invention will be described below. The surface treatment method according to the present invention is to bring the chromium oxide solution into contact with the surface of the hydrogen storage alloy negative electrode. As a result, the oxide layer formed on the surface of the hydrogen storage alloy negative electrode and inhibiting the storage and release of hydrogen can be dissolved and removed. Therefore, the initial activity of the secondary battery using the hydrogen storage alloy negative electrode can be increased.

【0016】また,上記表面処理を施した後の水素吸蔵
合金の表面には,酸化クロム被膜が形成される。このた
め,水素吸蔵合金負極を用いた二次電池において,充放
電サイクル中の負極に酸化物層が生じ難くなる。これに
より,水素吸蔵合金負極を用いた二次電池のサイクル特
性を高めることができる。
Further, a chromium oxide film is formed on the surface of the hydrogen storage alloy after the surface treatment. For this reason, in a secondary battery using a hydrogen storage alloy negative electrode, an oxide layer is less likely to be formed on the negative electrode during a charge / discharge cycle. Thereby, the cycle characteristics of the secondary battery using the hydrogen storage alloy negative electrode can be improved.

【0017】以上のように,本発明によれば,サイクル
特性に優れ,初期活性に優れた二次電池を得ることがで
きる,水素吸蔵合金負極の表面処理方法を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a surface treatment method for a hydrogen-absorbing alloy negative electrode capable of obtaining a secondary battery having excellent cycle characteristics and excellent initial activity.

【0018】次に,上記酸化クロム溶液は,酸化クロム
(VI)溶液,即ち6価のクロムイオンを含有する溶液
を用いることが好ましい。これにより,水素吸蔵合金表
面に形成されていた酸化物層が容易に除去されると共
に,耐食性に優れた酸化クロム被膜を得ることができ
る。
Next, the chromium oxide solution is preferably a chromium oxide (VI) solution, that is, a solution containing hexavalent chromium ions. Thereby, the oxide layer formed on the surface of the hydrogen storage alloy can be easily removed, and a chromium oxide film having excellent corrosion resistance can be obtained.

【0019】なお,上記酸化クロム(VI)溶液は,6
価のクロムイオンを含有し,pHが3以下である溶液で
あることが好ましい。上記pHの値が3より大きい場合
には,水素吸蔵合金表面の酸化物層が充分除去されない
という問題が発生するおそれがある。
The above chromium oxide (VI) solution contains 6
It is preferable that the solution contains a valent chromium ion and has a pH of 3 or less. If the pH value is higher than 3, a problem may occur that the oxide layer on the surface of the hydrogen storage alloy is not sufficiently removed.

【0020】また,上記酸化クロム(VI)溶液として
は,例えば,カリウム等のアルカリ金属類を含むクロム
酸塩(重クロム酸カリウム等),アンモニウムイオンを
含むクロム酸塩(重クロム酸アンモニウム)などの溶液
を使用することもできる。
Examples of the chromium (VI) oxide solution include chromates containing alkali metals such as potassium (such as potassium dichromate) and chromates containing ammonium ions (ammonium dichromate). Can also be used.

【0021】次に,上記酸化クロム(VI)溶液中にお
ける,6価のクロムの濃度は0.1〜50wt%である
ことが好ましい。これにより,より初期活性に優れた水
素吸蔵合金負極を得ることができる。上記濃度が0.1
wt%未満である場合には,合金の表面に形成される酸
化クロム被膜が薄く,酸化物層の生成を抑制することが
困難となるおそれがある。一方,上記濃度が50wt%
より濃い場合には,水素吸蔵合金表面における酸化クロ
ム被膜が厚くなりすぎ,初期活性が低下するおそれがあ
る。
Next, the concentration of hexavalent chromium in the chromium oxide (VI) solution is preferably 0.1 to 50 wt%. Thereby, a hydrogen storage alloy negative electrode having more excellent initial activity can be obtained. The above concentration is 0.1
If the amount is less than wt%, the chromium oxide film formed on the surface of the alloy is thin, and it may be difficult to suppress the formation of an oxide layer. On the other hand, when the above concentration is 50 wt%
If the concentration is higher, the chromium oxide coating on the surface of the hydrogen storage alloy becomes too thick, and the initial activity may be reduced.

【0022】なお,上記濃度の下限は,0.5wt%以
上とすることがより好ましい。これにより,上記表面処
理の処理時間を10分程度にて終了させることができ,
表面処理操作を短時間化することができる。
It is more preferable that the lower limit of the concentration be 0.5 wt% or more. As a result, the processing time of the surface treatment can be completed in about 10 minutes.
The surface treatment operation can be shortened.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例 本発明の実施形態例にかかる水素吸蔵合金負極の表面処
理方法につき,図1,図2,試料1〜3を用いて説明す
る。本例は,本発明にかかる表面処理方法を施した水素
吸蔵合金負極である試料1または2よりなる二次電池
と,上記表面処理を施さず,従来例に示したアルカリ水
溶液を用いた活性化処理のみを施した水素吸蔵合金負極
である試料3よりなる二次電池について,以下に示すご
とく比較するものである。
Embodiment A surface treatment method for a hydrogen storage alloy negative electrode according to an embodiment of the present invention will be described with reference to FIGS. In this example, a secondary battery made of a sample 1 or 2 which is a hydrogen storage alloy negative electrode subjected to the surface treatment method according to the present invention, and an activation using the alkaline aqueous solution shown in the conventional example without the above surface treatment. The comparison is made as shown below for a secondary battery made of Sample 3 which is a hydrogen storage alloy negative electrode subjected to only the treatment.

【0024】まず,各試料の作製に使用した水素吸蔵合
金について説明する。上記水素吸蔵合金は,AB5
の,MmNi3.6 Co0.7 Mn0.35 Al0.3の組成か
らなる水素吸蔵合金で,以下に示すごとく製造した。ま
ず,ミッシュメタル(Mm),ニッケル(Ni),コバ
ルト(Co),マンガン(Mn)及びアルミニウム(A
l)を準備した。なお,上記Mmはランタン(La)4
4wt%,セリウム(Ce)29wt%,プラセオジウ
ム(Pr)6wt%,ネオジウム(Nd)21wt%を
含むものである。
First, the hydrogen storage alloy used for preparing each sample will be described. The hydrogen-absorbing alloy, the AB 5 type, in the hydrogen storage alloy having a composition of MmNi 3.6 Co 0.7 Mn 0.35 Al 0.3 , were prepared as shown below. First, misch metal (Mm), nickel (Ni), cobalt (Co), manganese (Mn) and aluminum (A
1) was prepared. The above Mm is lanthanum (La) 4
4 wt%, cerium (Ce) 29 wt%, praseodymium (Pr) 6 wt%, and neodymium (Nd) 21 wt%.

【0025】ついで,これら原料を所定の割合混合し,
高周波溶解炉を使用してMmNi3.6 Co0.7 Mn0.35
Al0.3 の組成からなる水素吸蔵合金のインゴットを作
製した。このインゴットを粉砕して平均粒径50μmの
合金粉末とした。この合金粉末より上記試料1〜3を作
製した。
Next, these raw materials are mixed at a predetermined ratio,
MmNi 3.6 Co 0.7 Mn 0.35 using high frequency melting furnace
A hydrogen storage alloy ingot having a composition of Al 0.3 was produced. This ingot was pulverized to obtain an alloy powder having an average particle size of 50 μm. Samples 1 to 3 were prepared from this alloy powder.

【0026】次に,上記試料1〜3に施した表面処理ま
たは活性化処理につき説明する。上記合金粉末を濃度5
wt%の酸化クロム(VI)溶液に室温で30分間浸漬
し,その後充分に水洗いした。この処理によって水素吸
蔵合金表面に形成されていた酸化物層は溶解し,代わっ
て酸化クロム被膜が形成された。
Next, the surface treatment or the activation treatment applied to the samples 1 to 3 will be described. Concentration of 5 from above alloy powder
The substrate was immersed in a wt% chromium (VI) oxide solution at room temperature for 30 minutes, and then thoroughly washed with water. By this treatment, the oxide layer formed on the surface of the hydrogen storage alloy was dissolved, and a chromium oxide film was formed instead.

【0027】このようにして得られた合金粉末4gに対
して,濃度2wt%のメチルセルロース水溶液を1.2
g加えて混練,合金粉末ペーストを作製した。次いで,
3cm×4cm角に切断した発泡Ni(住友電工製,セ
ルメット#7)を準備し,これに厚み60μmのNi板
を端子としてスポット溶接した。上記発泡Niの空孔内
に上記合金粉末ペーストを充填した。これを乾燥した
後,プレスすることにより試料1にかかる水素吸蔵合金
負極を得た。なお,上記水素吸蔵合金負極の理論容量は
756mAhであった。
To 4 g of the thus obtained alloy powder, a 2% by weight aqueous solution of methylcellulose was added in an amount of 1.2 g.
g and kneaded to prepare an alloy powder paste. Then,
Foamed Ni (Cermet # 7, manufactured by Sumitomo Electric Industries) cut into a 3 cm × 4 cm square was prepared, and spot-welded to this using a 60 μm thick Ni plate as a terminal. The alloy powder paste was filled in the pores of the foamed Ni. After drying this, pressing was performed to obtain a hydrogen storage alloy negative electrode according to Sample 1. The theoretical capacity of the hydrogen storage alloy negative electrode was 756 mAh.

【0028】また,上述と同様に,上記合金粉末を1w
t%の酸化クロム(VI)溶液に室温で10分間浸漬し
た。このようにして得られた合金粉末を上述と同様の手
順で水素吸蔵合金負極となし,これを試料2とした。
In the same manner as described above, the above alloy powder is
It was immersed in a t% chromium oxide (VI) solution at room temperature for 10 minutes. The alloy powder thus obtained was used as a hydrogen storage alloy negative electrode in the same procedure as described above, and this was used as Sample 2.

【0029】ここに,上記試料2を作製する際に使用し
た水素吸蔵合金粉末において,上記表面処理によりどの
程度,表面の酸化物層が除去されたかについて測定し
た。この測定は,上記水素吸蔵合金に含まれる酸素量を
金属中酸素,窒素,水素分析装置(堀場,EMGA−1
300)を用いて測定することにより行った。上記測定
の結果,試料2において,表面処理前には上記水素吸蔵
合金中に0.32wt%含有されていた酸素量が,処理
後には,0.17wt%と半減しており,酸化物層の除
去効果が明瞭に確認できた。
Here, it was measured how much the oxide layer on the surface was removed by the surface treatment in the hydrogen-absorbing alloy powder used for producing the sample 2. In this measurement, the amount of oxygen contained in the hydrogen-absorbing alloy was measured using an analyzer for oxygen, nitrogen and hydrogen in metal (Horiba, EMGA-1)
300). As a result of the above measurement, in Sample 2, the amount of oxygen contained in the hydrogen storage alloy before the surface treatment was 0.32 wt%, and after the treatment, the oxygen amount was reduced by half to 0.17 wt%. The removal effect was clearly confirmed.

【0030】また,上記合金粉末を攪拌した温度110
℃の電解液(6.8MのKOH+0.8MのLiOH)
に1時間浸漬し,アルカリ処理を施した。このようにし
て得られた合金粉末を上述と同様の手順で水素吸蔵合金
負極となし,これを試料3とした。
The above alloy powder was stirred at a temperature of 110.
℃ electrolyte (6.8M KOH + 0.8M LiOH)
For 1 hour and subjected to an alkali treatment. The alloy powder thus obtained was used as a hydrogen storage alloy negative electrode in the same procedure as described above, and this was used as Sample 3.

【0031】以上,試料1〜3について,以下に示すご
とく,ニッケル正極と組み合わせ,ニッケル−金属水素
化物電池を作製した。上記ニッケル正極は,Ni−Co
−Zn系の水酸化Ni電極(理論容量=1200mA
h)を使用した。また,上記電池は,セパレータである
繊維径10μm以下のポリプロピレン−ポリエチレン不
織布により袋詰めされた上記ニッケル正極2枚で,各試
料1〜3を挟み込み,6.8MのKOH+0.8MのL
iOHよりなる電解液を注液することにより構成した。
As described above, the samples 1 to 3 were combined with a nickel positive electrode to produce a nickel-metal hydride battery as shown below. The nickel positive electrode is Ni-Co
-Zn-based nickel hydroxide electrode (theoretical capacity = 1200 mA)
h) was used. The battery was sandwiched between the two nickel positive electrodes packed in a polypropylene-polyethylene nonwoven fabric having a fiber diameter of 10 μm or less as a separator, each of the samples 1 to 3 was sandwiched, and 6.8 M KOH + 0.8 M L
It was constituted by injecting an electrolytic solution composed of iOH.

【0032】上記ニッケル−金属水素化物電池を用い,
試料1〜3にかかる水素吸蔵合金負極の放電量を測定し
た。上記測定に当たっては,上記電池を温度20℃の恒
温槽内で,0.2Cにて120%充電,休止30分,
0.2Cにて放電(打ち切り電圧=0.8V)を1サイ
クルとする充放電試験を行い,放電容量の時間変化を求
めた。そして,上記電池において使用する正極の容量が
負極容量の3倍以上であることから,上記測定により得
られた放電容量は負極容量に比例している。上記測定結
果を図1,図2に示す。なお,同図において,横軸はサ
イクル数,縦軸は水素吸蔵合金負極の理論容量に対する
測定された負極容量の比を百分率で示したものである。
Using the above nickel-metal hydride battery,
The discharge amount of the hydrogen storage alloy negative electrode according to Samples 1 to 3 was measured. In the above measurement, the battery was charged in a constant temperature bath at a temperature of 20 ° C. at a charge of 120% at 0.2 C, a pause of 30 minutes,
A charge / discharge test was performed with a discharge (discharge voltage = 0.8 V) as one cycle at 0.2 C, and the time change of the discharge capacity was determined. Since the capacity of the positive electrode used in the battery is three times or more the capacity of the negative electrode, the discharge capacity obtained by the above measurement is proportional to the capacity of the negative electrode. The above measurement results are shown in FIGS. In the figure, the horizontal axis indicates the number of cycles, and the vertical axis indicates the ratio of the measured negative electrode capacity to the theoretical capacity of the hydrogen storage alloy negative electrode in percentage.

【0033】図1は,試料1及び試料3を用いたニッケ
ル−金属水素化物電池におけるサイクル数と負極容量と
の関係である。同図によれば,試料1は300サイクル
経過後もほぼ負極容量が減少しないことが分かった。ま
た,試料3はサイクルの経過と共に,徐々に負極容量が
減少することが分かった。以上により,本発明にかかる
表面処理を施した水素吸蔵合金負極はアルカリ水溶液の
浸漬,接触に対しても酸化物層がほとんど生成せず,サ
イクル特性に優れていることが分かった。
FIG. 1 shows the relationship between the number of cycles and the anode capacity in a nickel-metal hydride battery using Samples 1 and 3. According to the figure, it was found that the negative electrode capacity of Sample 1 did not substantially decrease even after 300 cycles. In addition, it was found that the negative electrode capacity of Sample 3 gradually decreased as the cycle progressed. As described above, it was found that the hydrogen storage alloy negative electrode subjected to the surface treatment according to the present invention hardly formed an oxide layer even when immersed in or contacted with an alkaline aqueous solution, and was excellent in cycle characteristics.

【0034】図2は,試料1〜3を用いたニッケル金属
水素化物電池におけるサイクル特性と負極容量との関係
を,特にサイクル数60未満の場合に限って記したもの
である。同図によれば,試料1〜3のいずれも,20サ
イクル経過後には負極容量が100%付近に到達するこ
とが分かった。以上により,本発明にかかる表面処理を
施した水素吸蔵合金負極は初期活性について優れている
ことが分かった。
FIG. 2 shows the relationship between the cycle characteristics and the negative electrode capacity in a nickel metal hydride battery using samples 1 to 3, especially when the number of cycles is less than 60. According to the figure, it was found that the negative electrode capacity of each of Samples 1 to 3 reached about 100% after 20 cycles. From the above, it was found that the hydrogen storage alloy negative electrode subjected to the surface treatment according to the present invention was excellent in initial activity.

【0035】[0035]

【発明の効果】上記のごとく,本発明によれば,サイク
ル特性に優れ,初期活性に優れた二次電池を得ることが
できる,水素吸蔵合金負極の表面処理方法を提供するこ
とができる。
As described above, according to the present invention, it is possible to provide a surface treatment method for a hydrogen storage alloy negative electrode capable of obtaining a secondary battery having excellent cycle characteristics and excellent initial activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例にかかる,試料1,3の負極容量と
サイクル数(〜300回まで)との関係を示す線図。
FIG. 1 is a diagram showing the relationship between the negative electrode capacity of samples 1 and 3 and the number of cycles (up to 300 times) according to an embodiment.

【図2】実施形態例にかかる,試料1〜3の負極容量と
サイクル数(〜60回まで)との関係を示す線図。
FIG. 2 is a diagram showing the relationship between the negative electrode capacity of samples 1 to 3 and the number of cycles (up to 60 times) according to the embodiment.

フロントページの続き (72)発明者 森下 真也 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 大矢 豊 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 牟田 光治 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 木下 恭一 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内Continuing from the front page (72) Inventor Shinya Morishita 41, Chukumi Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. Address 1 Inside Toyota Central R & D Laboratories Co., Ltd. (72) Inventor Koji Muta 2-1-1 Toyota-cho, Kariya-shi, Aichi Prefecture Inside Toyota Industries Corporation (72) Inventor Kyoichi Kinoshita 2-Chome Toyota-cho, Kariya-shi, Aichi Prefecture No. 1 Inside Toyota Industries Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金よりなる負極活物質,また
は活性化処理後の水素吸蔵合金よりなる負極活物質を,
酸化クロム溶液で表面処理することを特徴とする水素吸
蔵合金負極の表面処理方法。
1. A negative electrode active material comprising a hydrogen storage alloy or a negative electrode active material comprising a hydrogen storage alloy having undergone an activation treatment.
A surface treatment method for a negative electrode of a hydrogen storage alloy, which comprises performing a surface treatment with a chromium oxide solution.
JP8255477A 1996-09-04 1996-09-04 Surface treatment method for hydrogen storage alloy negative electrode Pending JPH1079247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8255477A JPH1079247A (en) 1996-09-04 1996-09-04 Surface treatment method for hydrogen storage alloy negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8255477A JPH1079247A (en) 1996-09-04 1996-09-04 Surface treatment method for hydrogen storage alloy negative electrode

Publications (1)

Publication Number Publication Date
JPH1079247A true JPH1079247A (en) 1998-03-24

Family

ID=17279315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8255477A Pending JPH1079247A (en) 1996-09-04 1996-09-04 Surface treatment method for hydrogen storage alloy negative electrode

Country Status (1)

Country Link
JP (1) JPH1079247A (en)

Similar Documents

Publication Publication Date Title
US5879429A (en) Method for producing hydrogen storage alloy electrode
EP0607806A2 (en) Alkaline storage battery and method for producing the same
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JP2001076730A (en) Nickel-hydrogen secondary battery
US5814108A (en) Method for manufacturing nickel-metal-hydride battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
US6368748B1 (en) Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing
US5547784A (en) Alkaline storage battery and method for producing the same
JP4688986B2 (en) Surface treatment method of hydrogen storage alloy for battery materials
JPH1079247A (en) Surface treatment method for hydrogen storage alloy negative electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
CN100595316C (en) Method for preparing hydrogen-storing alloy powder
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JPH05121073A (en) Nickel-metal hydride storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3482478B2 (en) Nickel-metal hydride storage battery
JP4366729B2 (en) Cathode active material for alkaline storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP3330088B2 (en) Negative electrode for secondary battery