JP4366729B2 - Cathode active material for alkaline storage battery - Google Patents

Cathode active material for alkaline storage battery Download PDF

Info

Publication number
JP4366729B2
JP4366729B2 JP24678798A JP24678798A JP4366729B2 JP 4366729 B2 JP4366729 B2 JP 4366729B2 JP 24678798 A JP24678798 A JP 24678798A JP 24678798 A JP24678798 A JP 24678798A JP 4366729 B2 JP4366729 B2 JP 4366729B2
Authority
JP
Japan
Prior art keywords
solid solution
active material
positive electrode
powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24678798A
Other languages
Japanese (ja)
Other versions
JPH11176437A (en
Inventor
秀勝 泉
弘之 坂本
宏和 木宮
陽一 和泉
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24678798A priority Critical patent/JP4366729B2/en
Publication of JPH11176437A publication Critical patent/JPH11176437A/en
Application granted granted Critical
Publication of JP4366729B2 publication Critical patent/JP4366729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ蓄電池用正極活物質の改良に関するものである。
【0002】
【従来の技術】
アルカリ蓄電池、特にその小型密閉式電池は、他の電池系と比べて充放電特性、サイクル寿命および安全性・信頼性にバランス良く優れることから、移動体通信機器、パーソナルコンピューターなどに代表される各種ポータブル機器用主電源として普及が著しい。また、大型電源としても充放電特性や信頼性にきわめて優れることから、電気自動車などの移動用主電源としても注目されている。アルカリ蓄電池を代表する電池系は、長い歴史を持つニッケル・カドミウム蓄電池であったが、カドミウム負極の代わりに水素吸蔵合金負極を用いたニッケル・水素蓄電池が工業化され、高エネルギー密度化が図られた。また、電極支持体においても焼結式電極に代わり、高多孔度(95%以上)の3次元発泡ニッケル多孔体にニッケル酸化物を高密度充填した電極(Sponge Metal Nickel Electrode:SME)が工業化され、高エネルギー密度化が図られた。このように、これまでアルカリ蓄電池では、特に電池の小型化・軽量化・高エネルギー密度化に注力されてきた。
【0003】
一方、アルカリ蓄電池の電気自動車・電動工具等への利用を考えた場合、電池の高出力化、つまり高率放電時における作動電圧の向上が重要な課題となる。また、各種ポータブル機器も定電力放電で作動するものが多く、放電電圧が低下する放電末期には高率放電状態となり、一層の放電電圧の低下が生じる。したがって、小型密閉アルカリ蓄電池においても作動電圧の向上が重要な課題である。
【0004】
この課題の解決策として、例えば特開平5−174867号公報では、アルカリ電解液中に水酸化ルビジウムおよび水酸化セシウムのうち少なくとも1種の水酸化物を0.3規定〜3.5規定添加することによって、電解液の導電性が向上し、かつルビジウムイオンおよびセシウムイオンが触媒として作用するため、高率放電時において作動電圧を高めることができることが記載されている。しかし、ルビジウムおよびセシウムといった高価な材料を実際の電池へ使用することは困難であり、実用化されていない。
【0005】
一方、米国特許5567549号(1996)には、Ni(OH)2へAlを固溶させたアルカリ蓄電池用正極活物質について記載されている。その内溶は、Ni(OH)2へAlを固溶させることによりα−Ni(OH)2相が安定化され、このα相を含有する多相Al固溶Ni(OH)2は高次反応を行なうため、電池の高容量化が実現できるというものである。
【0006】
我々も、Ni(OH)2へのAl添加の効果について研究を行なったところ、Alを共晶状態および/または固溶状態でNi(OH)2に添加する(以下、Al固溶Ni(OH)2と略する)ことにより、前記米国特許5567549号記載の効果の他にも、放電電圧向上、高率放電特性向上の効果が得られることが分かった。特に、X線回折パターンにおいてα−Ni(OH)2に帰属する回折線を示すAl固溶Ni(OH)2(以下、α類似型Al固溶Ni(OH)2と略する)において顕著な効果が得られることが分かった。
【0007】
ところでα類似型Ni(OH)2については、Ni(OH)2のNiの一部を酸化数の高い金属原子(例えばCo(III)、Mn(III)、Fe(III)など)で置換することで得られることが報告されており(Solid State Ionics 32/33, p.104 (1989)、J. Power Sources, 35, p.249 (1991)など)、酸化数の高い金属原子が固溶したために結晶構造中のニッケルプレート層が正に帯電し、電荷補償として層間にアニオン種(例えばPO4 3-、SO4 2-、CO3 2-、NO3 -など)が入り込み、層間が広がった構造を持つと考えられている(J. Power Sources, 36, p.113 (1991)、Materials Science Forum, 152−153, p.201 (1994)など)。したがって、α類似型Ni(OH)2は嵩高く、高密度充填が困難であると考えられるが、我々が検討を行なったα類似型Al固溶Ni(OH)2に関しても、放電電圧、高率放電特性、利用率は顕著に向上するものの、充填密度がきわめて低く、アルカリ蓄電池用正極活物質として使用できるものではなかった。
【0008】
また、正極活物質の傾斜機能化による特性改善についても、これまでに多数報告されている。例えば特開平9−17428号公報では、Ni(OH)2またはNi(OH)2を主成分とする粒子表面をCoおよび/もしくはNi添加物で被覆することによって、利用率を向上させ、放電容量を増大できることが報告されている。また、特開平8−287907号公報では、Ni(OH)2またはNi(OH)2を主成分とする粒子表面をII族元素の化合物を主成分とする第1化合物で被覆し、さらにその表面をCo化合物を主成分とする第2化合物層で被覆した正極活物質を用いることによって、高容量、かつ長寿命のアルカリ蓄電池を提供できることが報告されている。さらに特開平8−329943号公報では、CaをNi(OH)2粒子に固溶させると同時に、含有Caの少なくとも一部を、Ca(OH)2としてNi(OH)2粒子の表面および細孔内部に被覆、含浸させた正極活物質を用いることによって、利用率、特に高温における利用率を高めたアルカリ蓄電池を提供できることが報告されている。しかしながら、正極活物質の傾斜機能化による放電電圧、高率放電特性の改善に関しては、これまでに何等報告されていない。
【0009】
【発明が解決しようとする課題】
本発明は、高容量密度かつ放電電圧、高率放電特性に優れたアルカリ蓄電池用正極活物質を提供することを目的とする。
【0010】
【課題を解決するための手段】
Niを主たる金属元素とする複数金属元素の酸化物(または水酸化物)を主材料とするアルカリ蓄電池用正極に使用する活物質粉末において、前記複数金属元素の酸化物(または水酸化物)粉末の表面層付近に、Alが共晶状態および/または固溶状態で存在するα類似型Ni(OH)2層を配する。このα類似型Al固溶Ni(OH)2層は放電電圧、高率放電特性を向上させる作用を有する。本来、α類似型Al固溶Ni(OH)2は嵩高く、高密度充填が困難であるが、表面層付近にのみ配するため充填密度の低下は抑止でき、高容量密度を維持できる。さらに、上記α類似型Al固溶Ni(OH)2被覆層にCa,Cr,Y,Ti,Coから選ばれる少なくとも一種の元素を共晶状態および/または固溶状態で添加することにより、放電電圧、高率放電特性、高密度充填に優れ、かつ高温充電効率および/または充放電特性にも優れたアルカリ蓄電池用正極活物質が得られる。また、上記α類似型Al固溶Ni(OH)2被覆正極活物質粉末の表面をさらにCo酸化物層で被覆することにより、放電電圧、高率放電特性、高密度充填に優れ、かつ充放電特性にも優れたアルカリ蓄電池用正極活物質が得られる。
【0011】
ここで本発明は、α類似型Al固溶Ni(OH)2が正極活物質粒子内部に存在する(米国特許5567549号(1996))のではなく、正極活物質粒子表面に配されていることに特徴を有する。このような構成とすることにより、正極活物質の高密度充填が可能となる。また、正極活物質粒子への異種金属元素固溶に関しても、正極活物質粒子内部および/または正極活物質粒子表面に配する(特開平9−17428号公報、特開平8−329943号公報など)のではなく、正極活物質粒子表面に配されたα類似型Al固溶Ni(OH)2被覆層に添加することに特徴を有する。このような構成とすることにより、放電電圧、高率放電特性を向上させ、かつその他の特性が改善された正極活物質が可能となる。さらに、正極活物質粒子とその表面のCo酸化物被覆層との間にα類似型Al固溶Ni(OH)2層を配することに特徴を有する。このような構成とすることにより、放電電圧、高率放電特性を向上させ、かつ充放電特性が改善された正極活物質が可能となる。
【0012】
【発明の実施の形態】
本発明はNiを主たる金属元素とする複数金属元素の酸化物または水酸化物を主材料とするアルカリ蓄電池用正極活物質粉末において、前記複数金属元素の酸化物または水酸化物粉末の表面層付近に、Alが共晶状態および/または固溶状態で存在するα類似型Ni(OH)2層を配したことを特徴とする。ここで、α類似型Ni(OH)2被覆層中に共晶状態および/または固溶状態で存在するAl量は、α類似型Ni(OH)2被覆層中の金属原子比をNi:Al=1−x:xと表した場合、0.10≦x≦0.40であることを特徴とする。これにより、高容量密度かつ放電電圧、高率放電特性に優れたアルカリ蓄電池用正極活物質が提供できる。
【0013】
さらに本発明は、前記複数金属元素の酸化物または水酸化物粉末の表面層付近に配された前記α類似型Ni(OH)2層中に、Ni,Alの他に、Ca,Cr,Y,Ti,Coから選ばれる少なくとも一種の元素が共晶状態および/または固溶状態で存在することを特徴とする。ここで、Ca,Cr,Y,Ti,Coから選ばれる少なくとも一種の元素をMeと表した時、α類似型Ni(OH)2層中に共晶状態および/または固溶状態で存在するMe量は、α類似型Ni(OH)2被覆層中の金属原子比をNi+Al:Me=1−y:yと表した場合、0.01≦y≦0.20であることを特徴とする。これにより、容量密度、放電電圧、高率放電特性に優れ、かつ高温充電効率および/または充放電特性に優れたアルカリ蓄電池用正極活物質が提供できる。
【0014】
さらに本発明は、前記α類似型Ni(OH)2層を表面層付近に配した前記粉末の表面に、さらにCo酸化物層を配したことを特徴とする。これにより、容量密度、放電電圧、高率放電特性に優れ、かつ充放電特性に優れたアルカリ蓄電池用正極活物質が提供できる。
【0015】
【実施例】
以下、本発明の実施例を説明する。
【0016】
(実施例1)
まず、正極活物質表面へのα類似型Al固溶Ni(OH)2被覆の効果について調べた。
(1)NiSO4水溶液、NaOH水溶液、NH3水溶液を一定流量で連続的に反応槽中に供給し、槽内温度を30℃、槽内溶液のpH値を約11に保った状態で撹拌・混合を行ない、Ni(OH)2粒子を成長させた。採取したNi(OH)2粒子を水洗・乾燥し、従来Ni(OH)2粉末Αとした。
(2)Ni(NO32,Co(NO32およびCd(NO32の混合水溶液(Ni:Co:Cd=0.94:0.03:0.03(原子比))を用い、上記と同様の合成・処理を行ない、従来Co,Cd固溶Ni(OH)2粉末Bとした。
(3)従来Ni(OH)2粉末Αを反応槽中に投入し、NiSO4およびAl2(SO43の混合水溶液(Ni:Al=0.80:0.20(原子比))、NaOH水溶液、NH3水溶液を一定流量で連続的に反応槽中に供給し、槽内温度を30℃、槽内溶液のpH値を約11に保った状態で撹拌混合を行ない、Ni(OH)2粒子表面にAl固溶Ni(OH)2を析出させ被覆を行なった。採取した粒子を水洗・乾燥し、Al固溶Ni(OH)2被覆Ni(OH)2粉末Cとした。
(4)従来Co,Cd固溶Ni(OH)2粉末Bについて上記と同様の被覆処理を行ない、Al固溶Ni(OH)2被覆Co,Cd固溶Ni(OH)2粉末Dとした。
【0017】
以上の粉末の被覆層は粉末断面のAl特性X線像にてAlの存在を確認した。また、粉末A,BのX線回折パターンにはβ−Ni(OH)2に帰属する回折線のみが現れるのに対し、被覆処理粉末C,DのX線回折パターンには新たにα−Ni(OH)2に帰属する回折線が現れることより、被覆層がα類似型Al固溶Ni(OH)2相を含むことを確認した。被覆粉末のタップ密度は1.9g/cc〜2.0g/ccと良好であった。
【0018】
合成粉末100gに10gのCo(OH)2粉末、0.5gのポリテトラフルオロエチレン(PTFE)粉末、42gの水を加え混練しペースト状にした。これを多孔度95%の発泡ニッケル基板に充填し、乾燥後加圧成形し、厚さ0.7mm、容量密度約630mAh/ccのニッケル正極板を得た。このようにして得られた正極板を39×75mmに切断し、基板中にあらかじめ設けたリード接続部に電極リードをスポット溶接し、理論容量1300mAhのニッケル正極とした。ここで理論容量はNiのみが充放電に寄与すると仮定し、かつNiに対し1電子反応をするとして算定したものである。
【0019】
一方負極には正極に対しその容量が十分大きい水素吸蔵合金負極(MmNi3.8Co0.5Mn0.4Al0.3)を用いた。使用した水素吸蔵合金は所望の割合で混合したMm,Ni,Co,Mn,Alをアーク溶解炉にて溶解することによって得た。この合金塊を不活性雰囲気中でボールミルにて粉砕し、平均粒径30μmの粉末とした。これに結着剤としてカルボキシメチルセルロース(CMC)を加えた後混練し、電極支持体に加圧充填し、厚さ0.45mm、容量密度1350mAh/ccの水素吸蔵負極板を得た。この負極板を39×100mmに切断し理論容量2400mAhの負極とした。
【0020】
この正極と負極を厚さ0.15mmのスルフォン化ポリプロピレン不織布からなるセパレーターを間に介して渦巻状の電極群に構成し、この電極群を外装缶内に挿入した。電解液として7.2mol/lKOH+1.0mol/lLiOH混合アルカリ水溶液を前記電極群を挿入した外装缶内に注入後、作動弁圧が20kgf/cm2の安全弁を持つ封口体により密閉し、公称容量が1300mAhであるAAサイズの円筒密閉形ニッケル・水素蓄電池を作製した。
【0021】
この電池を充放電試験によって評価した。充電を0.1Cで15時間、放電は1.0Cで終止電圧1.0Vまで、雰囲気温度は20℃とした。なお、電池の活性化が終了するまで数サイクル要するため、10サイクルめの平均放電電圧、利用率を比較値とした。ここで利用率は、上記正極の理論容量に対する1.0Cの測定容量の比率を%で表したものである。その結果を表1に示す。
【0022】
【表1】

Figure 0004366729
【0023】
α類似型Al固溶Ni(OH)2被覆処理を施したNi(OH)2粉末Cにおいて、処理前の従来Ni(OH)2粉末Αに比べ、40mVの放電電圧の向上が確認された。また、α類似型Al固溶Ni(OH)2被覆処理を施したCo,Cd固溶Ni(OH)2粉末Dにおいても、処理前の従来Co,Cd固溶Ni(OH)2粉末Bに比べ、40mVの放電電圧の向上が確認された。以上の結果から、α類似型Al固溶Ni(OH)2被覆処理により、放電電圧向上が可能であることが明らかである。
【0024】
また、粉末A,Bを比較した場合、Co,Cdを固溶させた粉末Bの利用率が高く、充放電特性が優れている。Ni(OH)2へのCo,Cd固溶による充放電特性向上については日本国特許1827639号(1984)および特開平3−50384号公報に記載されている。α類似型Al固溶Ni(OH)2被覆処理を施した粉末C,Dを比較した場合にも同様の効果が認められることから、α類似型Al固溶Ni(OH)2被覆処理は、内部粒子の特性を損なうことなく、放電電圧向上が可能であることが明らかである。
【0025】
(実施例2)
次に、α類似型Al固溶Ni(OH)2被覆層中のAl固溶量の適切値を求めるために、実施例1で用いた従来Ni(OH)2粉末Αを反応槽中に投入し、種々のNiSO4およびAl2(SO43の混合水溶液(Ni:Al=1−x:x ,x=0.05,0.10,0.30,0.40,0.45(原子比))を用い、実施例1と同様の被覆処理を行ない、Al固溶Ni(OH)2被覆Ni(OH)2粉末Ε〜Iとした。被覆粉末のタップ密度は1.8g/cc〜2.0g/ccと良好であった。得られた粉末Ε〜Iを用い、実施例1と同様の製法で電池を作製し、同様の方法で充放電試験により評価した。得られた結果を表2に示す。
【0026】
【表2】
Figure 0004366729
【0027】
放電電圧向上の効果は、被覆層のAl固溶比が0.10〜0.45の場合に確認されたが、0.05の場合には確認されなかった。被覆粉末C,F〜IのX線回折パターンにはα−Ni(OH)2に帰属する回折線が現れるのに対し、被覆粉末EのX線回折パターンにはα−Ni(OH)2に帰属する回折線が現れなかった。すなわち、被覆粉末C,F〜Iの被覆層はα類似型Al固溶Ni(OH)2相を含むため放電電圧が向上するが、被覆粉末Eの被覆層はα類似型Al固溶Ni(OH)2相を含まないため放電電圧向上の効果が現れないと推察される。しかし、Al固溶比が0.45の被覆粉末Iでは利用率の低下が確認され、容量密度の点で問題である。
【0028】
以上より、放電電圧向上の効果はα類似型Al固溶Ni(OH)2被覆処理で得られ、その場合のAl固溶比は被覆層中のNiとAlの総原子数に対し0.10〜0.40である。
【0029】
(実施例3)
次に、α類似型Al固溶Ni2(OH)2被覆層中への異種金属固溶効果について調べた。
(1)従来Ni(OH)2粉末Αを反応槽中に投入し、Ni(NO32,Al(NO33およびCa(NO32の混合水溶液(Ni:Al:Ca=0.75:0.20:0.05(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Ca固溶Ni(OH)2被覆Ni(OH)2粉末Jとした。
(2)従来Ni(OH)2粉末Αを反応槽中に投入し、Ni(NO32,Al(NO33およびCr(NO33の混合水溶液(Ni:Al:Cr=0.75:0.20:0.05(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Cr固溶Ni(OH)2被覆Ni(OH)2粉末Kとした。
(3)従来Ni(OH)2粉末Αを反応槽中に投入し、Ni(NO32,Al(NO33およびY(NO33の混合水溶液(Ni:Al:Y=0.75:0.20:0.05(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Y固溶Ni(OH)2被覆Ni(OH)2粉末Lとした。
(4)従来Ni(OH)2粉末Αを反応槽中に投入し、NiCl2,AlCl3およびTiCl3の混合水溶液(Ni:Al:Ti=0.75:0.20:0.05(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Ti固溶Ni(OH)2被覆Ni(OH)2粉末Mとした。
(5)従来Ni(OH)2粉末Αを反応槽中に投入し、NiSO4,Al2(SO43およびCoSO4の混合水溶液(Ni:Al:Co=0.75:0.20:0.05(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Co固溶Ni(OH)2被覆Ni(OH)2粉末Nとした。
(6)従来Co,Cd固溶Ni(OH)2粉末Bを反応槽中に投入し、Ni(NO32,Al(NO33およびCa(NO33の混合水溶液(Ni:Al:Ca=0.75:0.20:0.05(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Ca固溶Ni(OH)2被覆Co,Cd固溶Ni(OH)2粉末Oとした。
(7)従来Ni(OH)2粉末Αを反応槽中に投入し、Ni(NO32,Al(NO33,Ca(NO32およびCo(NO32の混合水溶液(Ni:Al:Ca:Co=0.74:0.20:0.03:0.03(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Ca,Co固溶Ni(OH)2被覆Ni(OH)2粉末Pとした。
(8)従来Co,Cd固溶Ni(OH)2粉末Bを反応槽中に投入し、Ni(NO32,Al(NO33,Cr(NO33およびCo(NO32の混合水溶液(Ni:Al:Cr:Co=0.74:0.20:0.03:0.03(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Cr,Co固溶Ni(OH)2被覆Co,Cd固溶Ni(OH)2粉末Qとした。
【0030】
これらすべての被覆粉末のX線回折パターンにα−Ni(OH)2に帰属する回折線が現れることより、被覆層がα類似型Al,異種金属固溶Ni(OH)2相を含むことを確認した。被覆粉末のタップ密度は1.9g/cc〜2.0g/ccと良好であった。
【0031】
得られた粉末J〜Qを用い、実施例1と同様の製法で電池を作製し、同様の方法で充放電試験により評価した。さらに、雰囲気温度45℃にて、充電を0.1Cで15時間行ない、引き続き雰囲気温度20℃にて、放電を1.0Cで終止電圧1.0Vまで行なうことにより、高温充電効率の評価を実施した。得られた結果を表3に示す。
【0032】
【表3】
Figure 0004366729
【0033】
これらすべての被覆粉末において放電電圧向上の効果が確認された。また、α類似型Al固溶Ni(OH)2被覆層にCa,Cr,Y,Tiを固溶させた粉末J,K,L,M,Oにおいて、未固溶のα類似型Al固溶Ni(OH)2粉末C,Dに比べ、高温充電効率の向上が確認された。
【0034】
さらに、α類似型Al固溶Ni(OH)2被覆層にCoを固溶させた粉末Nにおいて、未固溶のα類似型Al固溶Ni(OH)2粉末Cに比べ、利用率の向上が確認された。
【0035】
また、α類似型Al固溶Ni(OH)2被覆層にCa,CoまたはCr,Coを固溶させた粉末P,Qにおいて、未固溶のα類似型Al固溶Ni(OH)2被覆粉末C,Dに比べ、高温充電効率と利用率の向上が確認された。
【0036】
以上の結果から、上記異種金属元素を固溶させたα類似型Al固溶Ni(OH)2をNi(OH)2粒子に被覆することにより、放電電圧が向上し、かつその他の特性改善も可能であることが明らかである。
【0037】
(実施例4)
次に、α類似型Al固溶Ni(OH)2被覆層中の異種金属固溶量の適切値を求めるために、実施例1で用いた従来Ni(OH)2粉末Αを反応槽中に投入し、種々のNi(NO32,Al(NO33およびCa(NO32の混合水溶液(Ni:Al:Ca=1−y:0.20:y , y=0.01,0.05,0.10,0.20,0.25(原子比))を用い、実施例1と同様の被覆処理を行ない、Al,Ca固溶Ni(OH)2被覆Ni(OH)2粉末R〜Uとした。
【0038】
これらすべての被覆粉末のX線回折パターンにα−Ni(OH)2に帰属する回折線が現れることより、被覆層がα類似型Al,Ca固溶Ni(OH)2相を含むことを確認した。被覆粉末のタップ密度は1.8g/cc〜1.9g/ccと良好であった。
【0039】
得られた粉末R〜Uを用い、実施例1と同様の製法で電池を作製し、実施例3と同様の方法で充放電試験により評価した。得られた結果を表4に示す。
【0040】
【表4】
Figure 0004366729
【0041】
α類似型Al,Ca固溶Ni(OH)2被覆層のCa固溶比が0.01〜0.20の場合に高温充電効率の向上が確認された。しかし、被覆層のCa固溶比が0.25の場合には放電電圧、高温充電効率ともに効果が認められなかった。被覆層にα類似型Al,Ca固溶Ni(OH)2相を含むにも関わらず、放電電圧が向上しない原因は明らかではないが、実施例3でα類似型Al固溶Ni(OH)2層に固溶させたすべての異種金属において同様の結果が得られ、0.01〜0.20の固溶比の範囲で特性改善の効果が確認された。
【0042】
以上の結果から、α類似型Al固溶Ni(OH)2被覆層に異種金属元素を0.01〜0.20の固溶比の範囲で固溶させた場合、放電電圧が向上し、かつその他の特性改善が可能であることが明らかである。
【0043】
(実施例5)
次に、α類似型Al固溶Ni(OH)2被覆正極活物質表面へのCo酸化物被覆の効果について調べた。
【0044】
α類似型Al固溶Ni(OH)2被覆粉末C,D,J,Oを反応槽中に投入し、CoSO4水溶液、NaOH水溶液、NH3水溶液を一定流量で連続的に反応槽中に供給し、槽内温度を30℃、槽内溶液のpH値を約11に保った状態で撹拌混合を行ない、粒子表面にCo(OH)2を析出させ被覆を行なった。採取した粒子を水洗・乾燥し、粉末V〜Yとした。
【0045】
以上の粉末の被覆層は粉末断面のCo特性X線像にてCoの存在を確認した。被覆粉末のタップ密度は1.8g/cc〜2.0g/ccと良好であった。
【0046】
このようにして得られた粉末V〜Yを用い、実施例1と同様の製法で電池を作製し、同様の方法で充放電試験により評価した。得られた結果を表5に示す。
【0047】
【表5】
Figure 0004366729
【0048】
Co(OH)2被覆粉末V〜Yにおいて、未処理粉末C,D,J,Oと比較して利用率の向上が確認された。放電電圧はわずかに低下するが、未被覆処理粉末A,Bと比較すると放電電圧は向上しており、α類似型Al固溶Ni(OH)2被覆処理による放電電圧向上の効果が確認された。
【0049】
Ni(OH)2またはNi(OH)2を主成分とする粒子表面をCo化合物で被覆することにより、利用率を向上できることは特開昭62−222566号公報および特開昭62−234867号公報に記載されている。
【0050】
本実施例の結果から、正極活物質粒子とその表面のCo酸化物層との間にα類似型Al固溶Ni(OH)2層を配することによって、利用率を向上させ、さらに放電電圧を向上できることが明らかである。
【0051】
なお本発明は、アルカリ蓄電池の正極活物質の改良に関する技術であるため、実施例に記載した以外の組成の水素吸蔵合金を用いるニッケル・水素蓄電池においても同等の効果が得られる。さらにニッケル酸化物をベースにした正極活物質を用いるすべてのアルカリ蓄電池(例えば、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池等)においても同等の効果が得られる。また、電極支持体、活物質添加物およびセパレータ等が異なる場合についても同等の効果が得られる。また、AAサイズの円筒密閉電池についてのみ記載したが他のサイズの円筒密閉電池、角型密閉電池、据え置き型蓄電池、大型蓄電池、中型蓄電池あるいは開放型電池等についても同等の効果が得られる。さらに、焼結式正極を用いるアルカリ蓄電池においても、正極表面に同様の被覆処理を施した場合に同等の効果が得られる。
【0052】
【発明の効果】
正極活物質粉末の表面をα類似型Al固溶Ni(OH)2で被覆することにより、容量密度、放電電圧、高率放電特性に優れたアルカリ蓄電池用正極活物質が提供できる。また、上記α類似型Al固溶Ni(OH)2被覆層中にCa,Cr,Y,Ti,Coから選ばれる少なくとも一種の異種金属元素を固溶させることにより、容量密度、放電電圧、高率放電特性に優れ、かつ高温充電効率および/または充放電特性に優れたアルカリ蓄電池用正極活物質が提供できる。さらに、上記α類似型Al固溶Ni(OH)2被覆正極活物質粉末の表面をCo酸化物で被覆させることにより、容量密度、放電電圧、高率放電特性に優れ、かつ充放電特性に優れたアルカリ蓄電池用正極活物質が提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a positive electrode active material for an alkaline storage battery.
[0002]
[Prior art]
Alkaline storage battery, especially its small sealed battery, has excellent balance of charge / discharge characteristics, cycle life and safety / reliability compared to other battery systems. Therefore, various types represented by mobile communication devices, personal computers, etc. It is very popular as a main power source for portable equipment. In addition, since it is extremely excellent in charge / discharge characteristics and reliability as a large-scale power source, it has been attracting attention as a main power source for mobile use such as electric vehicles. The battery system that represents the alkaline storage battery was a nickel-cadmium storage battery with a long history, but the nickel-hydrogen storage battery using a hydrogen storage alloy negative electrode instead of the cadmium negative electrode was industrialized to achieve higher energy density. . In addition, as an electrode support, instead of a sintered electrode, an electrode (Sponge Metal Nickel Electrode: SME) in which a high-porosity (95% or more) three-dimensional foamed nickel porous body is filled with nickel oxide at a high density has been industrialized. High energy density was achieved. Thus, so far, alkaline storage batteries have been particularly focused on reducing the size, weight and energy density of the batteries.
[0003]
On the other hand, when considering the use of alkaline storage batteries for electric vehicles, power tools, etc., it is an important issue to increase the output of the batteries, that is, to improve the operating voltage during high rate discharge. In addition, many portable devices operate with constant power discharge, and at the end of discharge when the discharge voltage decreases, a high-rate discharge state occurs, causing a further decrease in discharge voltage. Therefore, improvement of the operating voltage is an important issue even in a small sealed alkaline storage battery.
[0004]
As a solution to this problem, for example, in Japanese Patent Application Laid-Open No. 5-174867, at least one hydroxide of rubidium hydroxide and cesium hydroxide is added to the alkaline electrolyte at 0.3 N to 3.5 N Thus, it is described that the electroconductivity of the electrolytic solution is improved, and rubidium ions and cesium ions act as catalysts, so that the operating voltage can be increased during high rate discharge. However, it is difficult to use expensive materials such as rubidium and cesium for an actual battery, and it has not been put into practical use.
[0005]
On the other hand, US Pat. No. 5,567,549 (1996) discloses Ni (OH).2Describes a positive electrode active material for alkaline storage batteries in which Al is dissolved. Its internal dissolution is Ni (OH)2Α-Ni (OH) by dissolving Al in2Multiphase Al solid solution Ni (OH) containing the α phase is stabilized2Since a higher-order reaction is performed, the capacity of the battery can be increased.
[0006]
We also have Ni (OH)2As a result of research on the effect of Al addition to Al, Ni (OH) was dissolved in the eutectic state and / or the solid solution state.2(Hereinafter referred to as Al solid solution Ni (OH)2In addition to the effect described in US Pat. No. 5,567,549, it has been found that the effect of improving the discharge voltage and improving the high rate discharge characteristic can be obtained. In particular, α-Ni (OH) in the X-ray diffraction pattern2Al solute Ni (OH) showing diffraction lines attributed to2(Hereafter, α-similar Al solid solution Ni (OH)2It was found that a remarkable effect can be obtained.
[0007]
By the way, α-like Ni (OH)2For Ni (OH)2Has been reported to be obtained by substituting a part of Ni with a metal atom having a high oxidation number (for example, Co (III), Mn (III), Fe (III), etc.) (Solid State Ionics 32/33). , P. 104 (1989), J. Power Sources, 35, p. 249 (1991), etc.) Since the metal atom having a high oxidation number was dissolved, the nickel plate layer in the crystal structure was positively charged, and charge compensation was made. As anion species (eg POFour 3-, SOFour 2-, COThree 2-, NOThree -Etc.) and the layers are spread (J. Power Sources, 36, p. 113 (1991), Materials Science Forum, 152-153, p. 201 (1994), etc.). Therefore, α-like Ni (OH)2Is bulky and is considered to be difficult to fill with high density, but the α-like Al solid solution Ni (OH) we studied2Also, although the discharge voltage, high-rate discharge characteristics, and utilization rate are remarkably improved, the packing density is extremely low and it cannot be used as a positive electrode active material for alkaline storage batteries.
[0008]
There have been many reports on improvement in characteristics of the positive electrode active material due to the functional gradient. For example, in Japanese Patent Laid-Open No. 9-17428, Ni (OH)2Or Ni (OH)2It has been reported that the utilization rate can be improved and the discharge capacity can be increased by coating the surface of the particle mainly containing Co with a Co and / or Ni additive. Japanese Patent Laid-Open No. 8-287907 discloses Ni (OH).2Or Ni (OH)2By using a positive electrode active material in which the surface of a particle having a main component is coated with a first compound having a group II element compound as a main component and the surface is further coated with a second compound layer having a Co compound as a main component. It has been reported that an alkaline storage battery having a high capacity and a long life can be provided. Further, JP-A-8-329943 discloses Ca as Ni (OH).2At the same time as dissolving in the particles, at least part of the contained Ca is Ca (OH).2As Ni (OH)2It has been reported that by using a positive electrode active material coated and impregnated on the surface of particles and the inside of pores, it is possible to provide an alkaline storage battery with increased utilization, particularly utilization at high temperatures. However, nothing has been reported so far regarding the improvement of the discharge voltage and the high rate discharge characteristics by the functionalization of the positive electrode active material.
[0009]
[Problems to be solved by the invention]
An object of this invention is to provide the positive electrode active material for alkaline storage batteries excellent in the high capacity density, discharge voltage, and high rate discharge characteristic.
[0010]
[Means for Solving the Problems]
In an active material powder used for a positive electrode for an alkaline storage battery mainly comprising an oxide (or hydroxide) of a plurality of metal elements containing Ni as a main metal element, the oxide (or hydroxide) powder of the plurality of metal elements Al-like Ni (OH) in which Al is present in the eutectic state and / or solid solution state in the vicinity of the surface layer of2Arrange the layers. This α-like Al-solution Ni (OH)2The layer has the effect of improving the discharge voltage and high rate discharge characteristics. Originally, α-like Al solute Ni (OH)2Is bulky and high density filling is difficult, but since it is arranged only in the vicinity of the surface layer, a decrease in filling density can be suppressed, and a high capacity density can be maintained. In addition, the α-like Al solid solution Ni (OH)2By adding at least one element selected from Ca, Cr, Y, Ti and Co to the coating layer in a eutectic state and / or a solid solution state, the discharge layer is excellent in discharge voltage, high rate discharge characteristics, high density filling, and A positive electrode active material for an alkaline storage battery excellent in high-temperature charging efficiency and / or charge / discharge characteristics can be obtained. In addition, the α-like Al solid solution Ni (OH)2By coating the surface of the coated positive electrode active material powder with a Co oxide layer, a positive electrode active material for an alkaline storage battery having excellent discharge voltage, high rate discharge characteristics, high density filling, and excellent charge / discharge characteristics can be obtained. .
[0011]
Here, the present invention relates to α-like Al solid solution Ni (OH).2Is not present in the positive electrode active material particles (US Pat. No. 5,567,549 (1996)), but is disposed on the surface of the positive electrode active material particles. With such a configuration, high-density filling of the positive electrode active material becomes possible. Further, the solid solution of different metal elements in the positive electrode active material particles is also arranged in the positive electrode active material particles and / or on the surface of the positive electrode active material particles (JP-A-9-17428, JP-A-8-329943, etc.). Instead of α-like Al solid solution Ni (OH) placed on the surface of the positive electrode active material particles2It is characterized by being added to the coating layer. By adopting such a configuration, a positive electrode active material with improved discharge voltage and high rate discharge characteristics and other characteristics can be obtained. Further, between the positive electrode active material particles and the Co oxide coating layer on the surface thereof, an α-similar Al solid solution Ni (OH)2It is characterized by arranging layers. By adopting such a configuration, a positive electrode active material having improved discharge voltage and high rate discharge characteristics and improved charge / discharge characteristics can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a positive electrode active material powder for an alkaline storage battery mainly comprising an oxide or hydroxide of a plurality of metal elements containing Ni as a main metal element, in the vicinity of the surface layer of the oxide or hydroxide powder of the plurality of metal elements Α-like Ni (OH) in which Al is present in a eutectic state and / or a solid solution state2It is characterized by arranging layers. Where α-like Ni (OH)2The amount of Al present in the coating layer in the eutectic state and / or the solid solution state is α-like Ni (OH)2When the metal atomic ratio in the coating layer is expressed as Ni: Al = 1-x: x, 0.10 ≦ x ≦ 0.40. Thereby, the positive electrode active material for alkaline storage batteries excellent in high capacity density, discharge voltage, and high rate discharge characteristics can be provided.
[0013]
Furthermore, the present invention provides the α-like Ni (OH) that is disposed near the surface layer of the oxide or hydroxide powder of the plurality of metal elements.2In the layer, in addition to Ni and Al, at least one element selected from Ca, Cr, Y, Ti and Co is present in a eutectic state and / or a solid solution state. Here, when at least one element selected from Ca, Cr, Y, Ti, and Co is expressed as Me, α-like Ni (OH)2The amount of Me present in the layer in the eutectic state and / or in the solid solution state is α-like Ni (OH)2When the metal atomic ratio in the coating layer is expressed as Ni + Al: Me = 1−y: y, 0.01 ≦ y ≦ 0.20. Thereby, it is possible to provide a positive electrode active material for an alkaline storage battery that is excellent in capacity density, discharge voltage, and high rate discharge characteristics, and that is excellent in high-temperature charge efficiency and / or charge / discharge characteristics.
[0014]
Furthermore, the present invention provides the α-like Ni (OH).2A Co oxide layer is further disposed on the surface of the powder in which the layer is disposed near the surface layer. Thereby, the positive electrode active material for alkaline storage batteries excellent in capacity density, discharge voltage, and high rate discharge characteristics and excellent in charge / discharge characteristics can be provided.
[0015]
【Example】
Examples of the present invention will be described below.
[0016]
Example 1
First, α-like Al solid solution Ni (OH) on the surface of the positive electrode active material2The effect of the coating was investigated.
(1) NiSOFourAqueous solution, NaOH aqueous solution, NHThreeThe aqueous solution was continuously supplied into the reaction tank at a constant flow rate, and stirred and mixed while maintaining the temperature in the tank at 30 ° C. and the pH value of the solution in the tank at about 11, Ni (OH)2Growing the particles. Collected Ni (OH)2The particles are washed with water and dried. Conventional Ni (OH)2Powdered rice cake was used.
(2) Ni (NOThree)2, Co (NOThree)2And Cd (NOThree)2Using a mixed aqueous solution (Ni: Co: Cd = 0.94: 0.03: 0.03 (atomic ratio)), the same synthesis and treatment as described above was performed, and conventional Co and Cd solid solution Ni (OH)2It was set as powder B.
(3) Conventional Ni (OH)2Pour the powder soot into the reaction vessel and add NiSOFourAnd Al2(SOFour)ThreeAqueous solution (Ni: Al = 0.80: 0.20 (atomic ratio)), NaOH aqueous solution, NHThreeThe aqueous solution was continuously supplied into the reaction tank at a constant flow rate, and stirring and mixing were performed while maintaining the temperature in the tank at 30 ° C. and the pH value of the solution in the tank at about 11, and Ni (OH)2Al solid solution Ni (OH) on particle surface2Was deposited and coated. The collected particles are washed with water and dried, and then Al dissolved Ni (OH)2Coated Ni (OH)2It was set as powder C.
(4) Conventional Co, Cd solid solution Ni (OH)2For powder B, the same coating treatment as above was performed, and Al solid solution Ni (OH)2Coated Co, Cd solid solution Ni (OH)2It was set as powder D.
[0017]
The presence of Al in the powder coating layer was confirmed by an Al characteristic X-ray image of the powder cross section. In addition, X-ray diffraction patterns of powders A and B have β-Ni (OH)2In contrast, only X-ray diffraction patterns attributed to the X-ray diffraction patterns of the coated powders C and D appear in the α-Ni (OH).2As a result of the appearance of diffraction lines belonging to, the coating layer is an α-like Al solid solution Ni (OH)2It was confirmed to contain a phase. The tap density of the coating powder was as good as 1.9 g / cc to 2.0 g / cc.
[0018]
10g Co (OH) to 100g synthetic powder2Powder, 0.5 g of polytetrafluoroethylene (PTFE) powder, and 42 g of water were added and kneaded to obtain a paste. This was filled in a foamed nickel substrate having a porosity of 95%, dried and then pressure-molded to obtain a nickel positive electrode plate having a thickness of 0.7 mm and a capacity density of about 630 mAh / cc. The positive electrode plate thus obtained was cut to 39 × 75 mm, and electrode leads were spot welded to lead connection portions provided in advance in the substrate to obtain a nickel positive electrode having a theoretical capacity of 1300 mAh. Here, the theoretical capacity is calculated on the assumption that only Ni contributes to charging and discharging, and one electron reaction with Ni.
[0019]
On the other hand, the negative electrode is a hydrogen storage alloy negative electrode (MmNi3.8Co0.5Mn0.4Al0.3) Was used. The hydrogen storage alloy used was obtained by melting Mm, Ni, Co, Mn, and Al mixed at a desired ratio in an arc melting furnace. This alloy lump was pulverized by a ball mill in an inert atmosphere to obtain a powder having an average particle size of 30 μm. Carboxymethylcellulose (CMC) was added thereto as a binder, and then kneaded and pressure filled into an electrode support to obtain a hydrogen storage negative electrode plate having a thickness of 0.45 mm and a capacity density of 1350 mAh / cc. This negative electrode plate was cut into 39 × 100 mm to obtain a negative electrode having a theoretical capacity of 2400 mAh.
[0020]
The positive electrode and the negative electrode were formed into a spiral electrode group with a separator made of a sulfonated polypropylene nonwoven fabric having a thickness of 0.15 mm interposed therebetween, and this electrode group was inserted into an outer can. After pouring a 7.2 mol / l KOH + 1.0 mol / l LiOH mixed alkaline aqueous solution as an electrolyte into the outer can into which the electrode group was inserted, the operating valve pressure was 20 kgf / cm.2AA size cylindrical sealed nickel-hydrogen storage battery with a nominal capacity of 1300 mAh was fabricated.
[0021]
This battery was evaluated by a charge / discharge test. Charging was performed at 0.1 C for 15 hours, discharging was performed at 1.0 C up to a final voltage of 1.0 V, and the ambient temperature was 20 ° C. In addition, since several cycles are required until the activation of the battery is completed, the average discharge voltage and the utilization rate in the 10th cycle were used as comparative values. Here, the utilization factor represents the ratio of the measured capacity of 1.0 C to the theoretical capacity of the positive electrode in%. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0004366729
[0023]
α-like Al solute Ni (OH)2Ni (OH) coated2In powder C, conventional Ni (OH) before treatment2It was confirmed that the discharge voltage was improved by 40 mV compared to the powder soot. In addition, α-like Al solute Ni (OH)2Co, Cd solid solution Ni (OH) with coating treatment2Also in the powder D, conventional Co, Cd solid solution Ni (OH) before processing2Compared to powder B, an improvement in discharge voltage of 40 mV was confirmed. From the above results, α-like Al solid solution Ni (OH)2It is clear that the discharge voltage can be improved by the coating treatment.
[0024]
Moreover, when the powders A and B are compared, the utilization factor of the powder B in which Co and Cd are dissolved is high and the charge / discharge characteristics are excellent. Ni (OH)2The improvement of the charge / discharge characteristics by solid solution of Co and Cd is described in Japanese Patent No. 1827639 (1984) and JP-A-3-50384. α-like Al solute Ni (OH)2Since the same effect is observed when the powders C and D subjected to the coating treatment are compared, α-like Al solid solution Ni (OH)2It is clear that the coating treatment can improve the discharge voltage without impairing the characteristics of the internal particles.
[0025]
(Example 2)
Next, α-like Al solute Ni (OH)2Conventional Ni (OH) used in Example 1 in order to obtain an appropriate value of the Al solid solution amount in the coating layer2The powder soot is put into a reaction vessel and various NiSOFourAnd Al2(SOFour)ThreeA mixed aqueous solution (Ni: Al = 1-x: x, x = 0.05, 0.10, 0.30, 0.40, 0.45 (atomic ratio)) and the same coating as in Example 1 Processed, Al solid solution Ni (OH)2Coated Ni (OH)2It was set as powder candy ~ I. The tap density of the coating powder was as good as 1.8 g / cc to 2.0 g / cc. Using the obtained powder cakes ~ I, a battery was produced by the same production method as in Example 1, and evaluated by a charge / discharge test in the same manner. The obtained results are shown in Table 2.
[0026]
[Table 2]
Figure 0004366729
[0027]
The effect of improving the discharge voltage was confirmed when the Al solid solution ratio of the coating layer was 0.10 to 0.45, but not when 0.05. The X-ray diffraction pattern of the coating powders C and F to I is α-Ni (OH)2Diffraction lines attributed to γ appear, whereas the X-ray diffraction pattern of the coating powder E shows α-Ni (OH)2Diffraction lines attributed to did not appear. That is, the coating layer of the coating powders C and F to I is an α-like Al solid solution Ni (OH)2The discharge voltage is improved because it contains a phase, but the coating layer of the coating powder E is an α-similar type Al solid solution Ni (OH)2It is presumed that the effect of improving the discharge voltage does not appear because the phase is not included. However, in the coating powder I having an Al solid solution ratio of 0.45, a decrease in the utilization rate is confirmed, which is a problem in terms of capacity density.
[0028]
From the above, the effect of improving the discharge voltage is α-like Al solid solution Ni (OH)2The Al solid solution ratio in this case is 0.10 to 0.40 with respect to the total number of Ni and Al atoms in the coating layer.
[0029]
(Example 3)
Next, α-like Al solid solution Ni2(OH)2The effect of different metal solid solution in the coating layer was investigated.
(1) Conventional Ni (OH)2The powder cake is put into the reaction vessel and Ni (NOThree)2, Al (NOThree)ThreeAnd Ca (NOThree)2Using a mixed aqueous solution (Ni: Al: Ca = 0.75: 0.20: 0.05 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Ca solid solution Ni (OH)2Coated Ni (OH)2It was set as powder J.
(2) Conventional Ni (OH)2The powder cake is put into the reaction vessel and Ni (NOThree)2, Al (NOThree)ThreeAnd Cr (NOThree)ThreeUsing a mixed aqueous solution (Ni: Al: Cr = 0.75: 0.20: 0.05 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Cr solid solution Ni (OH)2Coated Ni (OH)2It was set as powder K.
(3) Conventional Ni (OH)2The powder cake is put into the reaction vessel and Ni (NOThree)2, Al (NOThree)ThreeAnd Y (NOThree)ThreeUsing a mixed aqueous solution (Ni: Al: Y = 0.75: 0.20: 0.05 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Y solid solution Ni (OH)2Coated Ni (OH)2It was set as powder L.
(4) Conventional Ni (OH)2Pour the powder soot into the reaction vessel and add NiCl2, AlClThreeAnd TiClThreeUsing a mixed aqueous solution (Ni: Al: Ti = 0.75: 0.20: 0.05 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Ti solid solution Ni (OH)2Coated Ni (OH)2Powder M was designated.
(5) Conventional Ni (OH)2Pour the powder soot into the reaction vessel and add NiSOFour, Al2(SOFour)ThreeAnd CoSOFourUsing a mixed aqueous solution (Ni: Al: Co = 0.75: 0.20: 0.05 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Co solid solution Ni (OH)2Coated Ni (OH)2Powder N was designated.
(6) Conventional Co, Cd solid solution Ni (OH)2Powder B is put into the reaction vessel and Ni (NOThree)2, Al (NOThree)ThreeAnd Ca (NOThree)ThreeUsing a mixed aqueous solution (Ni: Al: Ca = 0.75: 0.20: 0.05 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Ca solid solution Ni (OH)2Coated Co, Cd solid solution Ni (OH)2It was set as powder O.
(7) Conventional Ni (OH)2The powder cake is put into the reaction vessel and Ni (NOThree)2, Al (NOThree)Three, Ca (NOThree)2And Co (NOThree)2Using a mixed aqueous solution (Ni: Al: Ca: Co = 0.74: 0.20: 0.03: 0.03 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Ca, Co solid solution Ni (OH)2Coated Ni (OH)2Powder P was designated.
(8) Conventional Co, Cd solid solution Ni (OH)2Powder B is put into the reaction vessel and Ni (NOThree)2, Al (NOThree)Three, Cr (NOThree)ThreeAnd Co (NOThree)2Using a mixed aqueous solution (Ni: Al: Cr: Co = 0.74: 0.20: 0.03: 0.03 (atomic ratio)), the same coating treatment as in Example 1 was performed, and Al, Cr, Co solid solution Ni (OH)2Coated Co, Cd solid solution Ni (OH)2It was set as powder Q.
[0030]
All these coating powders have X-ray diffraction patterns with α-Ni (OH)2As a result of the appearance of diffraction lines belonging to, the coating layer is α-like Al, dissimilar metal solid solution Ni (OH)2It was confirmed to contain a phase. The tap density of the coating powder was as good as 1.9 g / cc to 2.0 g / cc.
[0031]
Using the obtained powders J to Q, a battery was produced by the same production method as in Example 1, and evaluated by a charge / discharge test in the same manner. Furthermore, charging was performed at 0.1C for 15 hours at an ambient temperature of 45 ° C, and then the discharging was performed at an ambient temperature of 20 ° C to a final voltage of 1.0V at 1.0C to evaluate high-temperature charging efficiency. did. The obtained results are shown in Table 3.
[0032]
[Table 3]
Figure 0004366729
[0033]
The effect of improving the discharge voltage was confirmed in all these coating powders. In addition, α-like Al solute Ni (OH)2In powders J, K, L, M, and O in which Ca, Cr, Y, and Ti are solid-dissolved in the coating layer, α-like Al solid solution Ni (OH) that is not dissolved yet2Compared to powders C and D, improvement in high-temperature charging efficiency was confirmed.
[0034]
Furthermore, α-like Al solid solution Ni (OH)2In powder N in which Co is solid-dissolved in the coating layer, α-like Al solid solution Ni (OH) that is not dissolved yet2Compared to powder C, an improvement in utilization rate was confirmed.
[0035]
In addition, α-like Al solute Ni (OH)2In powders P and Q in which Ca, Co or Cr, Co is dissolved in the coating layer, α-like Al solid solution Ni (OH) which is not dissolved yet2Compared with the coating powders C and D, improvement in high-temperature charging efficiency and utilization rate was confirmed.
[0036]
From the above results, α-like Al solid solution Ni (OH) in which the different metal element is dissolved.2Ni (OH)2It is clear that the discharge voltage is improved and other characteristics can be improved by coating the particles.
[0037]
(Example 4)
Next, α-like Al solute Ni (OH)2Conventional Ni (OH) used in Example 1 in order to obtain an appropriate value of the solid solution amount of dissimilar metals in the coating layer2Powder soot is put into a reaction vessel and various Ni (NO)Three)2, Al (NOThree)ThreeAnd Ca (NOThree)2And a mixed aqueous solution (Ni: Al: Ca = 1-y: 0.20: y, y = 0.01, 0.05, 0.10, 0.20, 0.25 (atomic ratio)) The same coating treatment as in Example 1 was performed, and Al and Ca solid solution Ni (OH)2Coated Ni (OH)2Powders R to U were used.
[0038]
All these coating powders have X-ray diffraction patterns with α-Ni (OH)2As a result of the appearance of diffraction lines belonging to, the coating layer is α-like Al, Ca solid solution Ni (OH)2It was confirmed to contain a phase. The tap density of the coating powder was as good as 1.8 g / cc to 1.9 g / cc.
[0039]
Using the obtained powders R to U, a battery was produced by the same production method as in Example 1, and evaluated by a charge / discharge test in the same manner as in Example 3. Table 4 shows the obtained results.
[0040]
[Table 4]
Figure 0004366729
[0041]
α-like Al, Ca solid solution Ni (OH)2Improvement of high-temperature charging efficiency was confirmed when the Ca solid solution ratio of the coating layer was 0.01 to 0.20. However, when the Ca solid solution ratio of the coating layer was 0.25, neither discharge voltage nor high temperature charging efficiency was recognized. Α-like Al, Ca solid solution Ni (OH) for coating layer2The reason why the discharge voltage is not improved despite the inclusion of the phase is not clear, but in Example 3, the α-similar Al solid solution Ni (OH)2Similar results were obtained for all the different types of metals dissolved in the layer, and the effect of improving the characteristics was confirmed within the range of the solid solution ratio of 0.01 to 0.20.
[0042]
From the above results, α-like Al solid solution Ni (OH)2It is apparent that the discharge voltage is improved and other characteristics can be improved when different metal elements are dissolved in the coating layer in the range of 0.01 to 0.20.
[0043]
(Example 5)
Next, α-like Al solute Ni (OH)2The effect of Co oxide coating on the surface of the coated positive electrode active material was investigated.
[0044]
α-like Al solute Ni (OH)2Coating powders C, D, J, and O are charged into the reaction vessel, and CoSOFourAqueous solution, NaOH aqueous solution, NHThreeThe aqueous solution was continuously supplied into the reaction tank at a constant flow rate, and stirring and mixing were performed with the temperature in the tank maintained at 30 ° C. and the pH value of the solution in the tank maintained at about 11, and Co (OH) was applied to the particle surface.2Was deposited and coated. The collected particles were washed with water and dried to obtain powders V to Y.
[0045]
The presence of Co in the powder coating layer was confirmed by a Co characteristic X-ray image of the powder cross section. The tap density of the coating powder was as good as 1.8 g / cc to 2.0 g / cc.
[0046]
Using the powders V to Y thus obtained, a battery was produced by the same production method as in Example 1, and evaluated by a charge / discharge test in the same manner. The results obtained are shown in Table 5.
[0047]
[Table 5]
Figure 0004366729
[0048]
Co (OH)2In the coating powders V to Y, improvement in utilization rate was confirmed as compared with the untreated powders C, D, J, and O. Although the discharge voltage is slightly reduced, the discharge voltage is improved as compared with the uncoated powders A and B, and α-like Al solid solution Ni (OH)2The effect of improving the discharge voltage by the coating treatment was confirmed.
[0049]
Ni (OH)2Or Ni (OH)2It has been described in JP-A-62-222566 and JP-A-62-234867 that the utilization factor can be improved by coating the surface of the particle mainly containing Co with a Co compound.
[0050]
From the results of this example, the α-like Al solid solution Ni (OH) is formed between the positive electrode active material particles and the Co oxide layer on the surface thereof.2It is clear that the utilization can be improved and the discharge voltage can be further improved by arranging the layers.
[0051]
In addition, since this invention is a technique regarding the improvement of the positive electrode active material of an alkaline storage battery, the same effect is acquired also in the nickel hydrogen storage battery using the hydrogen storage alloy of compositions other than having described in the Example. Further, the same effect can be obtained in all alkaline storage batteries (for example, nickel / cadmium storage battery, nickel / iron storage battery, nickel / zinc storage battery) using a positive electrode active material based on nickel oxide. The same effect can be obtained when the electrode support, the active material additive, the separator, and the like are different. Moreover, although only the AA size cylindrical sealed battery has been described, the same effect can be obtained for other sizes of cylindrical sealed batteries, square sealed batteries, stationary storage batteries, large storage batteries, medium storage batteries, or open batteries. Furthermore, in an alkaline storage battery using a sintered positive electrode, the same effect can be obtained when the same coating treatment is applied to the positive electrode surface.
[0052]
【The invention's effect】
The surface of the positive electrode active material powder is α-similar Al solid solution Ni (OH)2By coating with, a positive electrode active material for an alkaline storage battery excellent in capacity density, discharge voltage, and high rate discharge characteristics can be provided. In addition, the α-like Al solid solution Ni (OH)2By dissolving at least one dissimilar metal element selected from Ca, Cr, Y, Ti, and Co in the coating layer, it is excellent in capacity density, discharge voltage, and high rate discharge characteristics, and has high temperature charge efficiency and / or charge. A positive electrode active material for an alkaline storage battery having excellent discharge characteristics can be provided. In addition, the α-like Al solid solution Ni (OH)2By coating the surface of the coated positive electrode active material powder with Co oxide, it is possible to provide a positive electrode active material for an alkaline storage battery that is excellent in capacity density, discharge voltage, high rate discharge characteristics, and excellent charge / discharge characteristics.

Claims (5)

Niを主たる金属元素とする複数金属元素の酸化物または水酸化物を主材料とするアルカリ蓄電池用正極に使用する活物質粉末であって、前記複数金属元素の酸化物または水酸化物粉末の表面層付近に、Alが共晶状態および/または固溶状態で存在するα類似型Ni(OH)2層を配したことを特徴とするアルカリ蓄電池用正極活物質。An active material powder used for a positive electrode for an alkaline storage battery mainly comprising an oxide or hydroxide of a plurality of metal elements containing Ni as a main metal element, the surface of the oxide or hydroxide powder of the plurality of metal elements A positive electrode active material for an alkaline storage battery, wherein an α-like Ni (OH) 2 layer in which Al is present in a eutectic state and / or a solid solution state is disposed in the vicinity of the layer. α類似型Ni(OH)2層中に共晶状態および/または固溶状態で存在するAl量は、前記α類似型Ni(OH)2層中の金属原子比をNi:Al=1−x:xと表したとき、0.10≦x≦0.40であることを特徴とする請求項1記載のアルカリ蓄電池用正極活物質。The amount of Al present in the α-like Ni (OH) 2 layer in the eutectic state and / or the solid solution state is determined by the metal atomic ratio in the α-like Ni (OH) 2 layer as Ni: Al = 1−x. : The positive electrode active material for an alkaline storage battery according to claim 1, wherein x represents 0.10 ≦ x ≦ 0.40. 複数金属元素の酸化物または水酸化物粉末の表面層付近に配されたα類似型Ni(OH)2層中には、Ni,Alの他にCa,Cr,Y,Ti,Coから選ばれた少なくとも一種の元素が共晶状態および/または固溶状態で存在することを特徴とする請求項1記載のアルカリ蓄電池用正極活物質。The α-like Ni (OH) 2 layer arranged near the surface layer of the oxide or hydroxide powder of multiple metal elements is selected from Ca, Cr, Y, Ti and Co in addition to Ni and Al. The positive electrode active material for an alkaline storage battery according to claim 1, wherein at least one element is present in a eutectic state and / or a solid solution state. α類似型Ni(OH)2層中に共晶状態および/または固溶状態で存在するCa,Cr,Y,Ti,Coから選ばれる少なくとも一種の元素をMeと表した時、そのMe量は前記α類似型Ni(OH)2層中の金属原子比をNi+Al:Me=1−y:yと表した場合、0.01≦y≦0.20であることを特徴とする請求項3記載のアルカリ蓄電池用正極活物質。When at least one element selected from Ca, Cr, Y, Ti, Co existing in the eutectic state and / or the solid solution state in the α-like Ni (OH) 2 layer is expressed as Me, the Me amount is The metal atom ratio in the α-like Ni (OH) 2 layer is expressed as Ni + Al: Me = 1-y: y, and 0.01 ≦ y ≦ 0.20. Positive electrode active material for alkaline storage batteries. α類似型Ni(OH)2層を表面層付近に配した活物質粉末の表面に、さらにCo酸化物層を配したことを特徴とする請求項1から4のいずれかに記載のアルカリ蓄電池用正極活物質。5. The alkaline storage battery according to claim 1, wherein a Co oxide layer is further disposed on the surface of the active material powder in which an α-similar Ni (OH) 2 layer is disposed in the vicinity of the surface layer. Positive electrode active material.
JP24678798A 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery Expired - Fee Related JP4366729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24678798A JP4366729B2 (en) 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27237197 1997-10-06
JP9-272371 1997-10-06
JP24678798A JP4366729B2 (en) 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH11176437A JPH11176437A (en) 1999-07-02
JP4366729B2 true JP4366729B2 (en) 2009-11-18

Family

ID=26537910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24678798A Expired - Fee Related JP4366729B2 (en) 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4366729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478481B2 (en) 2003-11-18 2013-07-02 Hino Motors, Ltd. Fuel-saving management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478481B2 (en) 2003-11-18 2013-07-02 Hino Motors, Ltd. Fuel-saving management system

Also Published As

Publication number Publication date
JPH11176437A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP4384095B2 (en) High performance nickel hydroxide cathode material for alkaline rechargeable electrochemical cells
JP3489960B2 (en) Alkaline storage battery
US6261720B1 (en) Positive electrode active material for alkaline storage batteries
JP4347907B2 (en) Nickel battery electrode containing multi-component nickel hydroxide active material
KR100725609B1 (en) Composite positive electrode material and method for making same
CN101213691B (en) Nickel-hydrogen battery and production method thereof
US6042753A (en) Active materials for the positive electrode in alkaline storage batteries
JP3518975B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery
JP2000113904A (en) Alkaline storage battery
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
EP0607806B1 (en) Alkaline storage battery and method for producing the same
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
EP1113512A1 (en) Positive active material for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the positive active material and method for producing the same
JPH11213998A (en) Positive electrode active material for alkaline storage battery
EP1137087B1 (en) Alkaline storage battery and positive electrode used for the alkaline storage battery
JP4366729B2 (en) Cathode active material for alkaline storage battery
JP2008235173A (en) Nickel-hydrogen secondary battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
EP1139469A1 (en) Nickel positive electrode active material and nickel metal hybride storage battery
JP4511298B2 (en) Nickel metal hydride storage battery
JP3643673B2 (en) Nickel electrode active material for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2000149938A (en) Nickel positive electrode active material
JP2000223147A (en) Alkaline storage battery
JPH09320582A (en) Positive plate for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees