JPH11176437A - Positive electrode active material for alkaline storage battery - Google Patents

Positive electrode active material for alkaline storage battery

Info

Publication number
JPH11176437A
JPH11176437A JP10246787A JP24678798A JPH11176437A JP H11176437 A JPH11176437 A JP H11176437A JP 10246787 A JP10246787 A JP 10246787A JP 24678798 A JP24678798 A JP 24678798A JP H11176437 A JPH11176437 A JP H11176437A
Authority
JP
Japan
Prior art keywords
solid solution
positive electrode
active material
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10246787A
Other languages
Japanese (ja)
Other versions
JP4366729B2 (en
Inventor
Hidekatsu Izumi
秀勝 泉
Hiroyuki Sakamoto
弘之 坂本
Hirokazu Kimiya
宏和 木宮
Yoichi Izumi
陽一 和泉
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24678798A priority Critical patent/JP4366729B2/en
Publication of JPH11176437A publication Critical patent/JPH11176437A/en
Application granted granted Critical
Publication of JP4366729B2 publication Critical patent/JP4366729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material having high capacity density, high discharge voltage and high-rate discharging characteristic by arranging an α similar type Ni(OH)2 layer, containing Al in an eutectic state and/or a solid state near a surface layer of the oxide or hydroxide of plural metal elements. SOLUTION: Quantity of Al existing in an α similar type Ni(OH)2 layer in an eutectic state and/or a solid state is set at on the basis of a metal element ratio in the α similar type Ni(OH)2 Ni:Al=1-x:x, where 0.10<=x<=0.40. Furthermore besides Ni, Al, at least one element (Me) selected from among Ca, Cr, Y, Ti and Co exists in the eutectic condition and/or the solid condition in the αsimilar type Ni(OH)2 layer near the surface layer of the oxide powder or the hydroxide powder of the plural metal elements. When metallic atom ratio in the α similar type Ni(OH)2 layer is expressed by a formula Ni+Al:Me=1-y: y, (y) is such that 0.01<=y<=0.20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
正極活物質の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode active material for an alkaline storage battery.

【0002】[0002]

【従来の技術】アルカリ蓄電池、特にその小型密閉式電
池は、他の電池系と比べて充放電特性、サイクル寿命お
よび安全性・信頼性にバランス良く優れることから、移
動体通信機器、パーソナルコンピューターなどに代表さ
れる各種ポータブル機器用主電源として普及が著しい。
また、大型電源としても充放電特性や信頼性にきわめて
優れることから、電気自動車などの移動用主電源として
も注目されている。アルカリ蓄電池を代表する電池系
は、長い歴史を持つニッケル・カドミウム蓄電池であっ
たが、カドミウム負極の代わりに水素吸蔵合金負極を用
いたニッケル・水素蓄電池が工業化され、高エネルギー
密度化が図られた。また、電極支持体においても焼結式
電極に代わり、高多孔度(95%以上)の3次元発泡ニ
ッケル多孔体にニッケル酸化物を高密度充填した電極
(Sponge Metal Nickel Elec
trode:SME)が工業化され、高エネルギー密度
化が図られた。このように、これまでアルカリ蓄電池で
は、特に電池の小型化・軽量化・高エネルギー密度化に
注力されてきた。
2. Description of the Related Art Alkaline storage batteries, especially small sealed batteries, have better balance of charge / discharge characteristics, cycle life and safety / reliability than other battery systems. The main power supply for various portable devices represented by the above is widely spread.
Also, since it is extremely excellent in charge / discharge characteristics and reliability even as a large power supply, it is attracting attention as a main power supply for electric vehicles and the like. The battery system that represents alkaline storage batteries was a nickel-cadmium storage battery with a long history.However, nickel-hydrogen storage batteries using hydrogen storage alloy anodes instead of cadmium anodes were industrialized, and higher energy density was achieved. . Also in the electrode support, instead of the sintered electrode, an electrode (Sponge Metal Nickel Elec) in which a three-dimensional foamed nickel porous body having a high porosity (95% or more) is densely filled with nickel oxide.
trade: SME) has been industrialized to achieve high energy density. As described above, the alkaline storage battery has been focused on the miniaturization, weight reduction, and high energy density of the battery.

【0003】一方、アルカリ蓄電池の電気自動車・電動
工具等への利用を考えた場合、電池の高出力化、つまり
高率放電時における作動電圧の向上が重要な課題とな
る。また、各種ポータブル機器も定電力放電で作動する
ものが多く、放電電圧が低下する放電末期には高率放電
状態となり、一層の放電電圧の低下が生じる。したがっ
て、小型密閉アルカリ蓄電池においても作動電圧の向上
が重要な課題である。
On the other hand, when considering the use of an alkaline storage battery in an electric vehicle, a power tool, or the like, it is important to increase the output of the battery, that is, to improve the operating voltage during high-rate discharge. In addition, many portable devices also operate with constant power discharge. At the end of discharge when the discharge voltage decreases, a high-rate discharge state occurs, and the discharge voltage further decreases. Therefore, it is an important issue to improve the operating voltage even in a small sealed alkaline storage battery.

【0004】この課題の解決策として、例えば特開平5
−174867号公報では、アルカリ電解液中に水酸化
ルビジウムおよび水酸化セシウムのうち少なくとも1種
の水酸化物を0.3規定〜3.5規定添加することによ
って、電解液の導電性が向上し、かつルビジウムイオン
およびセシウムイオンが触媒として作用するため、高率
放電時において作動電圧を高めることができることが記
載されている。しかし、ルビジウムおよびセシウムとい
った高価な材料を実際の電池へ使用することは困難であ
り、実用化されていない。
As a solution to this problem, for example, Japanese Unexamined Patent Application Publication No.
In JP-A-174867, the conductivity of the electrolytic solution is improved by adding at least one hydroxide of rubidium hydroxide and cesium hydroxide to the alkaline electrolyte in a range of 0.3N to 3.5N. Further, it is described that since the rubidium ion and the cesium ion act as catalysts, the operating voltage can be increased during high-rate discharge. However, it is difficult to use expensive materials such as rubidium and cesium for actual batteries, and they have not been put to practical use.

【0005】一方、米国特許5567549号(199
6)には、Ni(OH)2へAlを固溶させたアルカリ
蓄電池用正極活物質について記載されている。その内溶
は、Ni(OH)2へAlを固溶させることによりα−
Ni(OH)2相が安定化され、このα相を含有する多
相Al固溶Ni(OH)2は高次反応を行なうため、電
池の高容量化が実現できるというものである。
On the other hand, US Pat. No. 5,567,549 (199)
6) describes a positive electrode active material for alkaline storage batteries in which Al is dissolved in Ni (OH) 2 . The internal solution is formed by dissolving Al in Ni (OH) 2 to form α-
The Ni (OH) 2 phase is stabilized, and the multi-phase Al solid solution Ni (OH) 2 containing the α-phase performs a higher-order reaction, so that a higher capacity of the battery can be realized.

【0006】我々も、Ni(OH)2へのAl添加の効
果について研究を行なったところ、Alを共晶状態およ
び/または固溶状態でNi(OH)2に添加する(以
下、Al固溶Ni(OH)2と略する)ことにより、前
記米国特許5567549号記載の効果の他にも、放電
電圧向上、高率放電特性向上の効果が得られることが分
かった。特に、X線回折パターンにおいてα−Ni(O
H)2に帰属する回折線を示すAl固溶Ni(OH)
2(以下、α類似型Al固溶Ni(OH)2と略する)に
おいて顕著な効果が得られることが分かった。
[0006] We also, was carried out a study on the effect of Al addition to the Ni (OH) 2, Al is added to the Ni (OH) 2 in a eutectic state and / or solid-solution state (hereinafter, Al solid solution Ni (OH) 2 ) has the effect of improving the discharge voltage and improving the high-rate discharge characteristics in addition to the effects described in US Pat. No. 5,567,549. In particular, in the X-ray diffraction pattern, α-Ni (O
H) Al solid solution Ni (OH) showing diffraction lines belonging to 2 )
2 (hereinafter abbreviated as α-similar type Al solid solution Ni (OH) 2 ) was found to have a remarkable effect.

【0007】ところでα類似型Ni(OH)2について
は、Ni(OH)2のNiの一部を酸化数の高い金属原
子(例えばCo(III)、Mn(III)、Fe(III)な
ど)で置換することで得られることが報告されており
(Solid State Ionics 32/3
3, p.104 (1989)、J. Power
Sources, 35, p.249 (1991)
など)、酸化数の高い金属原子が固溶したために結晶構
造中のニッケルプレート層が正に帯電し、電荷補償とし
て層間にアニオン種(例えばPO4 3-、SO4 2-、CO3
2-、NO3 -など)が入り込み、層間が広がった構造を持
つと考えられている(J. Power Source
s, 36, p.113 (1991)、Mater
ials Science Forum, 152−1
53, p.201 (1994)など)。したがっ
て、α類似型Ni(OH)2は嵩高く、高密度充填が困
難であると考えられるが、我々が検討を行なったα類似
型Al固溶Ni(OH)2に関しても、放電電圧、高率
放電特性、利用率は顕著に向上するものの、充填密度が
きわめて低く、アルカリ蓄電池用正極活物質として使用
できるものではなかった。
[0007] The way α similar type Ni (OH) 2 is, Ni (OH) 2 in part a high oxidation number metal atoms of Ni (e.g., Co (III), Mn (III ), Fe (III) , etc.) (Solid State Ionics 32/3).
3, p. 104 (1989); Power
Sources, 35, p. 249 (1991)
), And the nickel plate layer in the crystal structure is positively charged due to solid solution of metal atoms having a high oxidation number, and anion species (for example, PO 4 3− , SO 4 2− , CO 3
2-, NO 3 -, etc.) enters, it is believed to have the interlayer is widened structure (J. Power Source
s, 36, p. 113 (1991), Mater
ials Science Forum, 152-1
53, p. 201 (1994)). Therefore, it is considered that α-like Ni (OH) 2 is bulky and difficult to fill at high density. However, with regard to α-like Al solid solution Ni (OH) 2 which we studied, the discharge voltage and high Although the rate-discharge characteristics and the utilization factor were remarkably improved, the packing density was extremely low and could not be used as a positive electrode active material for an alkaline storage battery.

【0008】また、正極活物質の傾斜機能化による特性
改善についても、これまでに多数報告されている。例え
ば特開平9−17428号公報では、Ni(OH)2
たはNi(OH)2を主成分とする粒子表面をCoおよ
び/もしくはNi添加物で被覆することによって、利用
率を向上させ、放電容量を増大できることが報告されて
いる。また、特開平8−287907号公報では、Ni
(OH)2またはNi(OH)2を主成分とする粒子表面
をII族元素の化合物を主成分とする第1化合物で被覆
し、さらにその表面をCo化合物を主成分とする第2化
合物層で被覆した正極活物質を用いることによって、高
容量、かつ長寿命のアルカリ蓄電池を提供できることが
報告されている。さらに特開平8−329943号公報
では、CaをNi(OH)2粒子に固溶させると同時
に、含有Caの少なくとも一部を、Ca(OH)2とし
てNi(OH)2粒子の表面および細孔内部に被覆、含
浸させた正極活物質を用いることによって、利用率、特
に高温における利用率を高めたアルカリ蓄電池を提供で
きることが報告されている。しかしながら、正極活物質
の傾斜機能化による放電電圧、高率放電特性の改善に関
しては、これまでに何等報告されていない。
[0008] Also, many reports have been made on the improvement of the characteristics of the positive electrode active material by functionalizing the positive electrode. For example, in Japanese Patent Application Laid-Open No. Hei 9-17428, the utilization rate is improved by coating the surface of particles containing Ni (OH) 2 or Ni (OH) 2 as a main component with a Co and / or Ni additive to improve the discharge capacity. Can be increased. In Japanese Patent Application Laid-Open No. 8-287907, Ni
A particle surface mainly composed of (OH) 2 or Ni (OH) 2 is coated with a first compound mainly composed of a compound of a group II element, and the surface is further coated with a second compound layer mainly composed of a Co compound. It has been reported that the use of a positive electrode active material coated with an alkaline storage battery can provide a high-capacity and long-life alkaline storage battery. Further, in Japanese Patent Application Laid-Open No. 8-329943, at the same time that Ca is dissolved in Ni (OH) 2 particles, at least a part of the contained Ca is converted into Ca (OH) 2 and the surface and pores of the Ni (OH) 2 particles are reduced. It is reported that by using a positive electrode active material coated and impregnated in the inside, an alkaline storage battery having an increased utilization factor, particularly a utilization factor at a high temperature, can be provided. However, there is no report on the improvement of the discharge voltage and the high-rate discharge characteristics by making the positive electrode active material have a gradient function.

【0009】[0009]

【発明が解決しようとする課題】本発明は、高容量密度
かつ放電電圧、高率放電特性に優れたアルカリ蓄電池用
正極活物質を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode active material for an alkaline storage battery having a high capacity density, excellent discharge voltage and high rate discharge characteristics.

【0010】[0010]

【課題を解決するための手段】Niを主たる金属元素と
する複数金属元素の酸化物(または水酸化物)を主材料
とするアルカリ蓄電池用正極に使用する活物質粉末にお
いて、前記複数金属元素の酸化物(または水酸化物)粉
末の表面層付近に、Alが共晶状態および/または固溶
状態で存在するα類似型Ni(OH)2層を配する。こ
のα類似型Al固溶Ni(OH)2層は放電電圧、高率
放電特性を向上させる作用を有する。本来、α類似型A
l固溶Ni(OH)2は嵩高く、高密度充填が困難であ
るが、表面層付近にのみ配するため充填密度の低下は抑
止でき、高容量密度を維持できる。さらに、上記α類似
型Al固溶Ni(OH)2被覆層にCa,Cr,Y,T
i,Coから選ばれる少なくとも一種の元素を共晶状態
および/または固溶状態で添加することにより、放電電
圧、高率放電特性、高密度充填に優れ、かつ高温充電効
率および/または充放電特性にも優れたアルカリ蓄電池
用正極活物質が得られる。また、上記α類似型Al固溶
Ni(OH)2被覆正極活物質粉末の表面をさらにCo
酸化物層で被覆することにより、放電電圧、高率放電特
性、高密度充填に優れ、かつ充放電特性にも優れたアル
カリ蓄電池用正極活物質が得られる。
According to the present invention, there is provided an active material powder for use in a positive electrode for an alkaline storage battery mainly comprising an oxide (or hydroxide) of a plurality of metal elements mainly composed of Ni. An α-like Ni (OH) 2 layer in which Al exists in a eutectic state and / or a solid solution state is disposed near the surface layer of the oxide (or hydroxide) powder. The α-like Al solid solution Ni (OH) 2 layer has the function of improving the discharge voltage and the high-rate discharge characteristics. Originally, α-similar type A
Although l-dissolved Ni (OH) 2 is bulky and difficult to pack at high density, since it is arranged only near the surface layer, a decrease in packing density can be suppressed and high capacity density can be maintained. Further, Ca, Cr, Y, T is added to the α-similar Al solid solution Ni (OH) 2 coating layer.
By adding at least one element selected from i and Co in a eutectic state and / or a solid solution state, it is excellent in discharge voltage, high-rate discharge characteristics, high-density filling, and high-temperature charge efficiency and / or charge-discharge characteristics. Thus, an excellent positive electrode active material for an alkaline storage battery can be obtained. Further, the surface of the α-similar Al solid solution Ni (OH) 2 -coated positive electrode active material powder is further coated with Co.
By coating with an oxide layer, a positive electrode active material for an alkaline storage battery having excellent discharge voltage, high-rate discharge characteristics, high-density filling, and excellent charge-discharge characteristics can be obtained.

【0011】ここで本発明は、α類似型Al固溶Ni
(OH)2が正極活物質粒子内部に存在する(米国特許
5567549号(1996))のではなく、正極活物
質粒子表面に配されていることに特徴を有する。このよ
うな構成とすることにより、正極活物質の高密度充填が
可能となる。また、正極活物質粒子への異種金属元素固
溶に関しても、正極活物質粒子内部および/または正極
活物質粒子表面に配する(特開平9−17428号公
報、特開平8−329943号公報など)のではなく、
正極活物質粒子表面に配されたα類似型Al固溶Ni
(OH)2被覆層に添加することに特徴を有する。この
ような構成とすることにより、放電電圧、高率放電特性
を向上させ、かつその他の特性が改善された正極活物質
が可能となる。さらに、正極活物質粒子とその表面のC
o酸化物被覆層との間にα類似型Al固溶Ni(OH)
2層を配することに特徴を有する。このような構成とす
ることにより、放電電圧、高率放電特性を向上させ、か
つ充放電特性が改善された正極活物質が可能となる。
Here, the present invention relates to an α-like Al solid solution Ni
It is characterized in that (OH) 2 is not present inside the positive electrode active material particles (US Pat. No. 5,567,549 (1996)) but is disposed on the surface of the positive electrode active material particles. With such a configuration, high-density filling of the positive electrode active material is possible. Further, regarding the dissolution of a different metal element in the positive electrode active material particles, the dissolution is disposed inside the positive electrode active material particles and / or on the surface of the positive electrode active material particles (JP-A-9-17428, JP-A-8-329943, etc.). rather than,
Α-like Al solid solution Ni on the surface of positive electrode active material particles
It is characterized in that it is added to the (OH) 2 coating layer. With such a configuration, a positive electrode active material having improved discharge voltage and high-rate discharge characteristics and improved other characteristics can be obtained. Further, the positive electrode active material particles and the C
αAl-type solid solution Ni (OH) between oxide coating layer
It is characterized by two layers. With such a configuration, a positive electrode active material having improved discharge voltage, high-rate discharge characteristics, and improved charge / discharge characteristics can be obtained.

【0012】[0012]

【発明の実施の形態】本発明はNiを主たる金属元素と
する複数金属元素の酸化物または水酸化物を主材料とす
るアルカリ蓄電池用正極活物質粉末において、前記複数
金属元素の酸化物または水酸化物粉末の表面層付近に、
Alが共晶状態および/または固溶状態で存在するα類
似型Ni(OH)2層を配したことを特徴とする。ここ
で、α類似型Ni(OH)2被覆層中に共晶状態および
/または固溶状態で存在するAl量は、α類似型Ni
(OH)2被覆層中の金属原子比をNi:Al=1−
x:xと表した場合、0.10≦x≦0.40であるこ
とを特徴とする。これにより、高容量密度かつ放電電
圧、高率放電特性に優れたアルカリ蓄電池用正極活物質
が提供できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a positive electrode active material powder for an alkaline storage battery mainly composed of an oxide or hydroxide of a plurality of metal elements containing Ni as a main metal element. Near the surface layer of the oxide powder,
An alpha-like Ni (OH) 2 layer in which Al exists in a eutectic state and / or a solid solution state is provided. Here, the amount of Al existing in the eutectic state and / or in the solid solution state in the α-like Ni (OH) 2 coating layer is the α-like Ni
The metal atomic ratio in the (OH) 2 coating layer was Ni: Al = 1−
x: when expressed as x, 0.10 ≦ x ≦ 0.40. This can provide a positive electrode active material for an alkaline storage battery having a high capacity density and excellent discharge voltage and high rate discharge characteristics.

【0013】さらに本発明は、前記複数金属元素の酸化
物または水酸化物粉末の表面層付近に配された前記α類
似型Ni(OH)2層中に、Ni,Alの他に、Ca,
Cr,Y,Ti,Coから選ばれる少なくとも一種の元
素が共晶状態および/または固溶状態で存在することを
特徴とする。ここで、Ca,Cr,Y,Ti,Coから
選ばれる少なくとも一種の元素をMeと表した時、α類
似型Ni(OH)2層中に共晶状態および/または固溶
状態で存在するMe量は、α類似型Ni(OH)2被覆
層中の金属原子比をNi+Al:Me=1−y:yと表
した場合、0.01≦y≦0.20であることを特徴と
する。これにより、容量密度、放電電圧、高率放電特性
に優れ、かつ高温充電効率および/または充放電特性に
優れたアルカリ蓄電池用正極活物質が提供できる。
Further, the present invention provides the α-like Ni (OH) 2 layer disposed near the surface layer of the oxide or hydroxide powder of a plurality of metal elements, in addition to Ni and Al, Ca,
At least one element selected from Cr, Y, Ti, and Co exists in a eutectic state and / or a solid solution state. Here, when at least one element selected from Ca, Cr, Y, Ti, and Co is represented by Me, Me present in a eutectic state and / or a solid solution state in the α-like Ni (OH) 2 layer The amount is characterized by 0.01 ≦ y ≦ 0.20 when the metal atom ratio in the α-like Ni (OH) 2 coating layer is represented by Ni + Al: Me = 1−y: y. Thereby, it is possible to provide a positive electrode active material for an alkaline storage battery having excellent capacity density, discharge voltage, high rate discharge characteristics, and high temperature charging efficiency and / or charge / discharge characteristics.

【0014】さらに本発明は、前記α類似型Ni(O
H)2層を表面層付近に配した前記粉末の表面に、さら
にCo酸化物層を配したことを特徴とする。これによ
り、容量密度、放電電圧、高率放電特性に優れ、かつ充
放電特性に優れたアルカリ蓄電池用正極活物質が提供で
きる。
Further, the present invention relates to the above-mentioned α-like Ni (O
H) A Co oxide layer is further provided on the surface of the powder in which two layers are provided near the surface layer. Thereby, it is possible to provide a positive electrode active material for an alkaline storage battery having excellent capacity density, discharge voltage, high rate discharge characteristics, and excellent charge / discharge characteristics.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0016】(実施例1)まず、正極活物質表面へのα
類似型Al固溶Ni(OH)2被覆の効果について調べ
た。 (1)NiSO4水溶液、NaOH水溶液、NH3水溶液
を一定流量で連続的に反応槽中に供給し、槽内温度を3
0℃、槽内溶液のpH値を約11に保った状態で撹拌・
混合を行ない、Ni(OH)2粒子を成長させた。採取
したNi(OH)2粒子を水洗・乾燥し、従来Ni(O
H)2粉末Αとした。 (2)Ni(NO32,Co(NO32およびCd(N
32の混合水溶液(Ni:Co:Cd=0.94:
0.03:0.03(原子比))を用い、上記と同様の
合成・処理を行ない、従来Co,Cd固溶Ni(OH)
2粉末Bとした。 (3)従来Ni(OH)2粉末Αを反応槽中に投入し、
NiSO4およびAl2(SO43の混合水溶液(Ni:
Al=0.80:0.20(原子比))、NaOH水溶
液、NH3水溶液を一定流量で連続的に反応槽中に供給
し、槽内温度を30℃、槽内溶液のpH値を約11に保
った状態で撹拌混合を行ない、Ni(OH)2粒子表面
にAl固溶Ni(OH)2を析出させ被覆を行なった。
採取した粒子を水洗・乾燥し、Al固溶Ni(OH)2
被覆Ni(OH)2粉末Cとした。 (4)従来Co,Cd固溶Ni(OH)2粉末Bについ
て上記と同様の被覆処理を行ない、Al固溶Ni(O
H)2被覆Co,Cd固溶Ni(OH)2粉末Dとした。
Example 1 First, α was applied to the surface of the positive electrode active material.
The effect of similar type Al solid solution Ni (OH) 2 coating was investigated. (1) A NiSO 4 aqueous solution, a NaOH aqueous solution, and an NH 3 aqueous solution are continuously supplied at a constant flow rate into the reaction tank, and the temperature in the tank is set to 3
Stir at 0 ° C with the pH value of the solution in the tank kept at about 11.
Mixing was performed to grow Ni (OH) 2 particles. The collected Ni (OH) 2 particles are washed with water and dried to obtain a Ni (O) 2 particle.
H) 2 powderΑ. (2) Ni (NO 3 ) 2 , Co (NO 3 ) 2 and Cd (N
O 3 ) 2 mixed aqueous solution (Ni: Co: Cd = 0.94:
0.03: 0.03 (atomic ratio), the same synthesis and processing as described above were performed, and the conventional Co, Cd solid solution Ni (OH)
2 Powder B was obtained. (3) Conventional Ni (OH) 2 powder Α is charged into the reaction vessel,
A mixed aqueous solution of NiSO 4 and Al 2 (SO 4 ) 3 (Ni:
Al = 0.80: 0.20 (atomic ratio), an aqueous solution of NaOH and an aqueous solution of NH 3 are continuously supplied into the reaction vessel at a constant flow rate, the temperature in the vessel is 30 ° C., and the pH value of the solution in the vessel is about While keeping the temperature at 11, stirring and mixing were carried out to deposit Al-dissolved Ni (OH) 2 on the surface of the Ni (OH) 2 particles, and coating was performed.
The collected particles are washed with water and dried to obtain a solid solution of Ni (OH) 2
A coated Ni (OH) 2 powder C was obtained. (4) The same coating treatment as described above was performed on the conventional Co, Cd solid solution Ni (OH) 2 powder B to obtain the Al solid solution Ni (O
H) 2 coated Co, Cd solid solution Ni (OH) 2 powder D.

【0017】以上の粉末の被覆層は粉末断面のAl特性
X線像にてAlの存在を確認した。また、粉末A,Bの
X線回折パターンにはβ−Ni(OH)2に帰属する回
折線のみが現れるのに対し、被覆処理粉末C,DのX線
回折パターンには新たにα−Ni(OH)2に帰属する
回折線が現れることより、被覆層がα類似型Al固溶N
i(OH)2相を含むことを確認した。被覆粉末のタッ
プ密度は1.9g/cc〜2.0g/ccと良好であっ
た。
The presence of Al in the powder coating layer was confirmed by an Al characteristic X-ray image of the powder cross section. Further, while only the diffraction lines belonging to β-Ni (OH) 2 appear in the X-ray diffraction patterns of powders A and B, the α-Ni Since the diffraction line belonging to (OH) 2 appears, the coating layer is made of α-like Al solid solution N
It was confirmed to contain i (OH) 2 phase. The tap density of the coated powder was as good as 1.9 g / cc to 2.0 g / cc.

【0018】合成粉末100gに10gのCo(OH)
2粉末、0.5gのポリテトラフルオロエチレン(PT
FE)粉末、42gの水を加え混練しペースト状にし
た。これを多孔度95%の発泡ニッケル基板に充填し、
乾燥後加圧成形し、厚さ0.7mm、容量密度約630
mAh/ccのニッケル正極板を得た。このようにして
得られた正極板を39×75mmに切断し、基板中にあ
らかじめ設けたリード接続部に電極リードをスポット溶
接し、理論容量1300mAhのニッケル正極とした。
ここで理論容量はNiのみが充放電に寄与すると仮定
し、かつNiに対し1電子反応をするとして算定したも
のである。
10 g of Co (OH) is added to 100 g of the synthetic powder.
2 powder, 0.5 g of polytetrafluoroethylene (PT
FE) Powder and 42 g of water were added and kneaded to form a paste. This is filled into a 95% porosity nickel foam substrate,
After drying, press molding, thickness 0.7mm, capacity density about 630
A mAh / cc nickel positive electrode plate was obtained. The positive electrode plate thus obtained was cut into a size of 39 × 75 mm, and an electrode lead was spot-welded to a lead connection portion provided in advance on the substrate to obtain a nickel positive electrode having a theoretical capacity of 1300 mAh.
Here, the theoretical capacity is calculated by assuming that only Ni contributes to charge and discharge and assuming a one-electron reaction with Ni.

【0019】一方負極には正極に対しその容量が十分大
きい水素吸蔵合金負極(MmNi3. 8Co0.5Mn0.4
0.3)を用いた。使用した水素吸蔵合金は所望の割合
で混合したMm,Ni,Co,Mn,Alをアーク溶解
炉にて溶解することによって得た。この合金塊を不活性
雰囲気中でボールミルにて粉砕し、平均粒径30μmの
粉末とした。これに結着剤としてカルボキシメチルセル
ロース(CMC)を加えた後混練し、電極支持体に加圧
充填し、厚さ0.45mm、容量密度1350mAh/
ccの水素吸蔵負極板を得た。この負極板を39×10
0mmに切断し理論容量2400mAhの負極とした。
Meanwhile its capacity to the positive electrode to the negative electrode is sufficiently large hydrogen storage alloy negative electrode (MmNi 3. 8 Co 0.5 Mn 0.4 A
l 0.3 ) was used. The used hydrogen storage alloy was obtained by melting Mm, Ni, Co, Mn, and Al mixed in a desired ratio in an arc melting furnace. This alloy lump was pulverized by a ball mill in an inert atmosphere to obtain a powder having an average particle diameter of 30 μm. After adding carboxymethylcellulose (CMC) as a binder to the mixture and kneading the mixture, the mixture was pressure-filled into an electrode support, and had a thickness of 0.45 mm and a capacity density of 1350 mAh /
cc of the hydrogen storage negative electrode plate was obtained. 39 × 10
It was cut into 0 mm to obtain a negative electrode having a theoretical capacity of 2400 mAh.

【0020】この正極と負極を厚さ0.15mmのスル
フォン化ポリプロピレン不織布からなるセパレーターを
間に介して渦巻状の電極群に構成し、この電極群を外装
缶内に挿入した。電解液として7.2mol/lKOH
+1.0mol/lLiOH混合アルカリ水溶液を前記
電極群を挿入した外装缶内に注入後、作動弁圧が20kg
f/cm2の安全弁を持つ封口体により密閉し、公称容量が
1300mAhであるAAサイズの円筒密閉形ニッケル
・水素蓄電池を作製した。
The positive and negative electrodes were formed into a spiral electrode group with a separator made of a sulfonated polypropylene nonwoven fabric having a thickness of 0.15 mm therebetween, and this electrode group was inserted into an outer can. 7.2 mol / l KOH as electrolyte
After injecting +1.0 mol / l LiOH mixed alkaline aqueous solution into the outer can into which the electrode group was inserted, the operating valve pressure was reduced to 20 kg.
The container was sealed with a sealing member having a safety valve of f / cm 2 to produce an AA-size cylindrical sealed nickel-metal hydride storage battery having a nominal capacity of 1300 mAh.

【0021】この電池を充放電試験によって評価した。
充電を0.1Cで15時間、放電は1.0Cで終止電圧
1.0Vまで、雰囲気温度は20℃とした。なお、電池
の活性化が終了するまで数サイクル要するため、10サ
イクルめの平均放電電圧、利用率を比較値とした。ここ
で利用率は、上記正極の理論容量に対する1.0Cの測
定容量の比率を%で表したものである。その結果を表1
に示す。
This battery was evaluated by a charge / discharge test.
The charging was performed at 0.1 C for 15 hours, the discharging was performed at 1.0 C to a final voltage of 1.0 V, and the ambient temperature was set at 20 ° C. Since several cycles are required until the activation of the battery is completed, the average discharge voltage and utilization rate at the tenth cycle were used as comparative values. Here, the utilization rate represents a ratio of the measured capacity of 1.0 C to the theoretical capacity of the positive electrode in%. Table 1 shows the results.
Shown in

【0022】[0022]

【表1】 [Table 1]

【0023】α類似型Al固溶Ni(OH)2被覆処理
を施したNi(OH)2粉末Cにおいて、処理前の従来
Ni(OH)2粉末Αに比べ、40mVの放電電圧の向
上が確認された。また、α類似型Al固溶Ni(OH)
2被覆処理を施したCo,Cd固溶Ni(OH)2粉末D
においても、処理前の従来Co,Cd固溶Ni(OH)
2粉末Bに比べ、40mVの放電電圧の向上が確認され
た。以上の結果から、α類似型Al固溶Ni(OH)2
被覆処理により、放電電圧向上が可能であることが明ら
かである。
It has been confirmed that the Ni (OH) 2 powder C coated with α-similar type Al solid solution Ni (OH) 2 has an improved discharge voltage of 40 mV compared to the conventional Ni (OH) 2 powder before the treatment. Was done. Also, α-similar type Al solid solution Ni (OH)
2 Co, Cd solid solution Ni (OH) 2 powder D
Also, the conventional Co, Cd solid solution Ni (OH)
(2 ) An improvement in discharge voltage of 40 mV as compared with Powder B was confirmed. From the above results, α-similar type Al solid solution Ni (OH) 2
It is clear that the coating treatment can improve the discharge voltage.

【0024】また、粉末A,Bを比較した場合、Co,
Cdを固溶させた粉末Bの利用率が高く、充放電特性が
優れている。Ni(OH)2へのCo,Cd固溶による
充放電特性向上については日本国特許1827639号
(1984)および特開平3−50384号公報に記載
されている。α類似型Al固溶Ni(OH)2被覆処理
を施した粉末C,Dを比較した場合にも同様の効果が認
められることから、α類似型Al固溶Ni(OH)2
覆処理は、内部粒子の特性を損なうことなく、放電電圧
向上が可能であることが明らかである。
When powders A and B were compared, Co,
The utilization rate of the powder B in which Cd is dissolved is high, and the charge and discharge characteristics are excellent. Improvement of charge / discharge characteristics by dissolving Co and Cd in Ni (OH) 2 is described in Japanese Patent No. 1827639 (1984) and Japanese Patent Application Laid-Open No. H3-50384. alpha similar type Al solid solution Ni (OH) powder C was subjected to 2 coated processing, since the observed similar effects when compared to D, alpha similar type Al solid solution Ni (OH) 2 coating process, It is clear that the discharge voltage can be improved without impairing the characteristics of the internal particles.

【0025】(実施例2)次に、α類似型Al固溶Ni
(OH)2被覆層中のAl固溶量の適切値を求めるため
に、実施例1で用いた従来Ni(OH)2粉末Αを反応
槽中に投入し、種々のNiSO4およびAl2(SO43
の混合水溶液(Ni:Al=1−x:x,x=0.0
5,0.10,0.30,0.40,0.45(原子
比))を用い、実施例1と同様の被覆処理を行ない、A
l固溶Ni(OH)2被覆Ni(OH)2粉末Ε〜Iとし
た。被覆粉末のタップ密度は1.8g/cc〜2.0g
/ccと良好であった。得られた粉末Ε〜Iを用い、実
施例1と同様の製法で電池を作製し、同様の方法で充放
電試験により評価した。得られた結果を表2に示す。
(Example 2) Next, α-like Al solid solution Ni
To obtain an appropriate value of the amount of solid solution of Al in the (OH) 2 coating layer, the conventional Ni (OH) 2 powder used in Example 1 was charged into a reaction vessel, and various NiSO 4 and Al 2 ( SO 4 ) 3
(Ni: Al = 1-x: x, x = 0.0
5, 0.10, 0.30, 0.40, 0.45 (atomic ratio)), and the same coating treatment as in Example 1 was performed.
1 Solid solution Ni (OH) 2 coated Ni (OH) 2 powder Tap density of coated powder is 1.8g / cc-2.0g
/ Cc, which was good. Using the obtained powders I to I, a battery was produced in the same manner as in Example 1, and evaluated by a charge / discharge test in the same manner. Table 2 shows the obtained results.

【0026】[0026]

【表2】 [Table 2]

【0027】放電電圧向上の効果は、被覆層のAl固溶
比が0.10〜0.45の場合に確認されたが、0.0
5の場合には確認されなかった。被覆粉末C,F〜Iの
X線回折パターンにはα−Ni(OH)2に帰属する回
折線が現れるのに対し、被覆粉末EのX線回折パターン
にはα−Ni(OH)2に帰属する回折線が現れなかっ
た。すなわち、被覆粉末C,F〜Iの被覆層はα類似型
Al固溶Ni(OH) 2相を含むため放電電圧が向上す
るが、被覆粉末Eの被覆層はα類似型Al固溶Ni(O
H)2相を含まないため放電電圧向上の効果が現れない
と推察される。しかし、Al固溶比が0.45の被覆粉
末Iでは利用率の低下が確認され、容量密度の点で問題
である。
The effect of improving the discharge voltage is as follows.
It was confirmed when the ratio was 0.10 to 0.45, but 0.0
In the case of 5, it was not confirmed. Of coated powders C, FI
Α-Ni (OH) for X-ray diffraction patternTwoTimes belonging to
X-ray diffraction pattern of the coated powder E
Contains α-Ni (OH)TwoNo diffraction line attributed to
Was. That is, the coating layers of the coating powders C and F to I are α-similar types.
Al solid solution Ni (OH) TwoIncludes phases to improve discharge voltage
However, the coating layer of the coating powder E is α-like Al solid solution Ni (O
H)TwoNo effect of improving discharge voltage because no phase is included
It is inferred. However, a coating powder having an Al solid solution ratio of 0.45
At the end I, a decrease in the utilization rate was confirmed, and there was a problem with the
It is.

【0028】以上より、放電電圧向上の効果はα類似型
Al固溶Ni(OH)2被覆処理で得られ、その場合の
Al固溶比は被覆層中のNiとAlの総原子数に対し
0.10〜0.40である。
From the above, the effect of improving the discharge voltage can be obtained by the α-like Al solid solution Ni (OH) 2 coating treatment. In this case, the Al solid solution ratio is based on the total number of atoms of Ni and Al in the coating layer. 0.10 to 0.40.

【0029】(実施例3)次に、α類似型Al固溶Ni
2(OH)2被覆層中への異種金属固溶効果について調べ
た。 (1)従来Ni(OH)2粉末Αを反応槽中に投入し、
Ni(NO32,Al(NO33およびCa(NO32
の混合水溶液(Ni:Al:Ca=0.75:0.2
0:0.05(原子比))を用い、実施例1と同様の被
覆処理を行ない、Al,Ca固溶Ni(OH)2被覆N
i(OH)2粉末Jとした。 (2)従来Ni(OH)2粉末Αを反応槽中に投入し、
Ni(NO32,Al(NO33およびCr(NO33
の混合水溶液(Ni:Al:Cr=0.75:0.2
0:0.05(原子比))を用い、実施例1と同様の被
覆処理を行ない、Al,Cr固溶Ni(OH)2被覆N
i(OH)2粉末Kとした。 (3)従来Ni(OH)2粉末Αを反応槽中に投入し、
Ni(NO32,Al(NO33およびY(NO33
混合水溶液(Ni:Al:Y=0.75:0.20:
0.05(原子比))を用い、実施例1と同様の被覆処
理を行ない、Al,Y固溶Ni(OH)2被覆Ni(O
H)2粉末Lとした。 (4)従来Ni(OH)2粉末Αを反応槽中に投入し、
NiCl2,AlCl3およびTiCl3の混合水溶液
(Ni:Al:Ti=0.75:0.20:0.05
(原子比))を用い、実施例1と同様の被覆処理を行な
い、Al,Ti固溶Ni(OH)2被覆Ni(OH)2
末Mとした。 (5)従来Ni(OH)2粉末Αを反応槽中に投入し、
NiSO4,Al2(SO43およびCoSO4の混合水
溶液(Ni:Al:Co=0.75:0.20:0.0
5(原子比))を用い、実施例1と同様の被覆処理を行
ない、Al,Co固溶Ni(OH)2被覆Ni(OH)2
粉末Nとした。 (6)従来Co,Cd固溶Ni(OH)2粉末Bを反応
槽中に投入し、Ni(NO32,Al(NO33および
Ca(NO33の混合水溶液(Ni:Al:Ca=0.
75:0.20:0.05(原子比))を用い、実施例
1と同様の被覆処理を行ない、Al,Ca固溶Ni(O
H)2被覆Co,Cd固溶Ni(OH)2粉末Oとした。 (7)従来Ni(OH)2粉末Αを反応槽中に投入し、
Ni(NO32,Al(NO33,Ca(NO32およ
びCo(NO32の混合水溶液(Ni:Al:Ca:C
o=0.74:0.20:0.03:0.03(原子
比))を用い、実施例1と同様の被覆処理を行ない、A
l,Ca,Co固溶Ni(OH)2被覆Ni(OH)2
末Pとした。 (8)従来Co,Cd固溶Ni(OH)2粉末Bを反応
槽中に投入し、Ni(NO32,Al(NO33,Cr
(NO33およびCo(NO32の混合水溶液(Ni:
Al:Cr:Co=0.74:0.20:0.03:
0.03(原子比))を用い、実施例1と同様の被覆処
理を行ない、Al,Cr,Co固溶Ni(OH)2被覆
Co,Cd固溶Ni(OH)2粉末Qとした。
Example 3 Next, α-like Al solid solution Ni
The effect of dissolving dissimilar metals in the 2 (OH) 2 coating layer was investigated. (1) Conventional Ni (OH) 2 powder Α is charged into a reaction vessel,
Ni (NO 3 ) 2 , Al (NO 3 ) 3 and Ca (NO 3 ) 2
(Ni: Al: Ca = 0.75: 0.2)
0: 0.05 with (atomic ratio)) performs the same coating treatment as in Example 1, Al, Ca solid solution Ni (OH) 2-coated N
i (OH) 2 powder J. (2) Conventional Ni (OH) 2 powder Α is charged into a reaction vessel,
Ni (NO 3 ) 2 , Al (NO 3 ) 3 and Cr (NO 3 ) 3
(Ni: Al: Cr = 0.75: 0.2)
0: 0.05 (atomic ratio), and the same coating treatment as in Example 1 was performed to form a Ni (OH) 2 coated N
i (OH) 2 powder K was used. (3) Conventional Ni (OH) 2 powder Α is charged into the reaction vessel,
A mixed aqueous solution of Ni (NO 3 ) 2 , Al (NO 3 ) 3 and Y (NO 3 ) 3 (Ni: Al: Y = 0.75: 0.20:
0.05 (atomic ratio), the same coating treatment as in Example 1 was performed, and the Al, Y solid solution Ni (OH) 2 coated Ni (O
H) 2 powder L. (4) Conventional Ni (OH) 2 powder Α is charged into a reaction vessel,
A mixed aqueous solution of NiCl 2 , AlCl 3 and TiCl 3 (Ni: Al: Ti = 0.75: 0.20: 0.05
(Atomic ratio)) was used, performs the same coating treatment as in Example 1 was Al, and Ti solid solution Ni (OH) 2-coated Ni (OH) 2 powder M. (5) Conventional Ni (OH) 2 powder Α is charged into the reaction vessel,
A mixed aqueous solution of NiSO 4 , Al 2 (SO 4 ) 3 and CoSO 4 (Ni: Al: Co = 0.75: 0.20: 0.0)
5 (atomic ratio)), and the same coating treatment as in Example 1 was performed to form a Ni (OH) 2 coated Ni (OH) 2 solid solution of Al and Co.
Powder N was obtained. (6) Conventionally, Co and Cd solid solution Ni (OH) 2 powder B is charged into a reaction tank, and a mixed aqueous solution of Ni (NO 3 ) 2 , Al (NO 3 ) 3 and Ca (NO 3 ) 3 (Ni: Al: Ca = 0.
75: 0.20: 0.05 (atomic ratio), and the same coating treatment as in Example 1 was performed.
H) 2 coated Co, Cd solid solution Ni (OH) 2 powder O. (7) Conventional Ni (OH) 2 powder Α is charged into a reaction vessel,
A mixed aqueous solution of Ni (NO 3 ) 2 , Al (NO 3 ) 3 , Ca (NO 3 ) 2 and Co (NO 3 ) 2 (Ni: Al: Ca: C
o = 0.74: 0.20: 0.03: 0.03 (atomic ratio), and the same coating treatment as in Example 1 was performed.
The Ni (OH) 2 powder P coated with 1, Ca, Co solid solution Ni (OH) 2 was obtained. (8) Conventionally, a Co, Cd solid solution Ni (OH) 2 powder B is charged into a reaction tank, and Ni (NO 3 ) 2 , Al (NO 3 ) 3 , Cr
(NO 3 ) 3 and Co (NO 3 ) 2 mixed aqueous solution (Ni:
Al: Cr: Co = 0.74: 0.20: 0.03:
0.03 (atomic ratio), and the same coating treatment as in Example 1 was performed to obtain Al, Cr, Co solid solution Ni (OH) 2 coated Co, Cd solid solution Ni (OH) 2 powder Q.

【0030】これらすべての被覆粉末のX線回折パター
ンにα−Ni(OH)2に帰属する回折線が現れること
より、被覆層がα類似型Al,異種金属固溶Ni(O
H)2相を含むことを確認した。被覆粉末のタップ密度
は1.9g/cc〜2.0g/ccと良好であった。
The diffraction layer belonging to α-Ni (OH) 2 appears in the X-ray diffraction patterns of all of these coating powders.
H) It was confirmed that two phases were contained. The tap density of the coated powder was as good as 1.9 g / cc to 2.0 g / cc.

【0031】得られた粉末J〜Qを用い、実施例1と同
様の製法で電池を作製し、同様の方法で充放電試験によ
り評価した。さらに、雰囲気温度45℃にて、充電を
0.1Cで15時間行ない、引き続き雰囲気温度20℃
にて、放電を1.0Cで終止電圧1.0Vまで行なうこ
とにより、高温充電効率の評価を実施した。得られた結
果を表3に示す。
Using the obtained powders J to Q, a battery was produced in the same manner as in Example 1, and evaluated by a charge / discharge test in the same manner. Further, at an ambient temperature of 45 ° C., charging was performed at 0.1 C for 15 hours, and subsequently, an ambient temperature of 20 ° C.
, The high-temperature charging efficiency was evaluated by performing discharge at 1.0 C to a final voltage of 1.0 V. Table 3 shows the obtained results.

【0032】[0032]

【表3】 [Table 3]

【0033】これらすべての被覆粉末において放電電圧
向上の効果が確認された。また、α類似型Al固溶Ni
(OH)2被覆層にCa,Cr,Y,Tiを固溶させた
粉末J,K,L,M,Oにおいて、未固溶のα類似型A
l固溶Ni(OH)2粉末C,Dに比べ、高温充電効率
の向上が確認された。
The effect of improving the discharge voltage was confirmed in all of these coated powders. Also, α-similar Al solid solution Ni
In powders J, K, L, M, and O in which Ca, Cr, Y, and Ti are dissolved in the (OH) 2 coating layer, α-like A
1) It was confirmed that the high-temperature charging efficiency was improved as compared with the solid solution Ni (OH) 2 powders C and D.

【0034】さらに、α類似型Al固溶Ni(OH)2
被覆層にCoを固溶させた粉末Nにおいて、未固溶のα
類似型Al固溶Ni(OH)2粉末Cに比べ、利用率の
向上が確認された。
Further, α-like Al solid solution Ni (OH) 2
In powder N in which Co is dissolved in the coating layer, undissolved α
The improvement of the utilization rate was confirmed as compared with the similar type Al solid solution Ni (OH) 2 powder C.

【0035】また、α類似型Al固溶Ni(OH)2
覆層にCa,CoまたはCr,Coを固溶させた粉末
P,Qにおいて、未固溶のα類似型Al固溶Ni(O
H)2被覆粉末C,Dに比べ、高温充電効率と利用率の
向上が確認された。
Further, in powders P and Q in which Ca, Co or Cr, Co are dissolved in the α-like Al solid solution Ni (OH) 2 coating layer, α-similar Al solid solution Ni (O
H) It was confirmed that the high-temperature charging efficiency and the utilization were improved as compared with the powders C and D coated with 2 ).

【0036】以上の結果から、上記異種金属元素を固溶
させたα類似型Al固溶Ni(OH)2をNi(OH)2
粒子に被覆することにより、放電電圧が向上し、かつそ
の他の特性改善も可能であることが明らかである。
From the above results, the α-like Al solid solution Ni (OH) 2 in which the above-mentioned dissimilar metal elements are dissolved is converted to Ni (OH) 2
It is clear that by coating the particles, the discharge voltage is improved, and other characteristics can be improved.

【0037】(実施例4)次に、α類似型Al固溶Ni
(OH)2被覆層中の異種金属固溶量の適切値を求める
ために、実施例1で用いた従来Ni(OH)2粉末Αを
反応槽中に投入し、種々のNi(NO32,Al(NO
33およびCa(NO32の混合水溶液(Ni:Al:
Ca=1−y:0.20:y , y=0.01,0.
05,0.10,0.20,0.25(原子比))を用
い、実施例1と同様の被覆処理を行ない、Al,Ca固
溶Ni(OH)2被覆Ni(OH)2粉末R〜Uとした。
Example 4 Next, α-like Al solid solution Ni
In order to determine an appropriate value of the amount of dissimilar metal solid solution in the (OH) 2 coating layer, the conventional Ni (OH) 2 powder used in Example 1 was charged into the reaction tank, and various Ni (NO 3 ) 2 , Al (NO
3 ) A mixed aqueous solution of 3 and Ca (NO 3 ) 2 (Ni: Al:
Ca = 1-y: 0.20: y, y = 0.01, 0.
05, 0.10, 0.20, 0.25 (atomic ratio), and the same coating treatment as in Example 1 was performed to obtain a Ni (OH) 2 coated Ni (OH) 2 powder R To U.

【0038】これらすべての被覆粉末のX線回折パター
ンにα−Ni(OH)2に帰属する回折線が現れること
より、被覆層がα類似型Al,Ca固溶Ni(OH)2
相を含むことを確認した。被覆粉末のタップ密度は1.
8g/cc〜1.9g/ccと良好であった。
Since the X-ray diffraction patterns of all of these coating powders show diffraction lines belonging to α-Ni (OH) 2 , the coating layer is made of α-like Al, Ca solid solution Ni (OH) 2.
Phase. The tap density of the coated powder was 1.
It was as good as 8 g / cc to 1.9 g / cc.

【0039】得られた粉末R〜Uを用い、実施例1と同
様の製法で電池を作製し、実施例3と同様の方法で充放
電試験により評価した。得られた結果を表4に示す。
Using the obtained powders RU, a battery was produced in the same manner as in Example 1 and evaluated by a charge / discharge test in the same manner as in Example 3. Table 4 shows the obtained results.

【0040】[0040]

【表4】 [Table 4]

【0041】α類似型Al,Ca固溶Ni(OH)2
覆層のCa固溶比が0.01〜0.20の場合に高温充
電効率の向上が確認された。しかし、被覆層のCa固溶
比が0.25の場合には放電電圧、高温充電効率ともに
効果が認められなかった。被覆層にα類似型Al,Ca
固溶Ni(OH)2相を含むにも関わらず、放電電圧が
向上しない原因は明らかではないが、実施例3でα類似
型Al固溶Ni(OH)2層に固溶させたすべての異種
金属において同様の結果が得られ、0.01〜0.20
の固溶比の範囲で特性改善の効果が確認された。
It was confirmed that the high-temperature charging efficiency was improved when the Ca-dissolved ratio of the α-like Al, Ca-dissolved Ni (OH) 2 coating layer was 0.01 to 0.20. However, when the Ca solid solution ratio of the coating layer was 0.25, no effect was observed in both the discharge voltage and the high-temperature charging efficiency. Α-like Al, Ca
Although it is not clear why the discharge voltage is not improved in spite of the inclusion of the solid solution Ni (OH) 2 phase, all the solid solutions in the α-like Al solid solution Ni (OH) 2 layer in Example 3 were dissolved. Similar results are obtained with dissimilar metals, from 0.01 to 0.20
The effect of improving characteristics was confirmed within the range of the solid solution ratio.

【0042】以上の結果から、α類似型Al固溶Ni
(OH)2被覆層に異種金属元素を0.01〜0.20
の固溶比の範囲で固溶させた場合、放電電圧が向上し、
かつその他の特性改善が可能であることが明らかであ
る。
From the above results, it can be seen that α-similar Al solid solution Ni
(OH) 2 A different metal element is added to the coating layer in an amount of 0.01 to 0.20.
When the solid solution is dissolved within the range of the solid solution ratio, the discharge voltage is improved,
It is clear that other property improvements are possible.

【0043】(実施例5)次に、α類似型Al固溶Ni
(OH)2被覆正極活物質表面へのCo酸化物被覆の効
果について調べた。
Example 5 Next, α-similar Al solid solution Ni
The effect of Co oxide coating on the (OH) 2 -coated positive electrode active material surface was examined.

【0044】α類似型Al固溶Ni(OH)2被覆粉末
C,D,J,Oを反応槽中に投入し、CoSO4水溶
液、NaOH水溶液、NH3水溶液を一定流量で連続的
に反応槽中に供給し、槽内温度を30℃、槽内溶液のp
H値を約11に保った状態で撹拌混合を行ない、粒子表
面にCo(OH)2を析出させ被覆を行なった。採取し
た粒子を水洗・乾燥し、粉末V〜Yとした。
The α-similar Al-dissolved Ni (OH) 2 -coated powder C, D, J, and O are charged into a reaction tank, and a CoSO 4 aqueous solution, an NaOH aqueous solution, and an NH 3 aqueous solution are continuously fed at a constant flow rate into the reaction tank. Into the tank, the temperature in the tank is 30 ° C.,
While the H value was kept at about 11, stirring and mixing were carried out, and Co (OH) 2 was deposited on the particle surface to perform coating. The collected particles were washed and dried to obtain powders V to Y.

【0045】以上の粉末の被覆層は粉末断面のCo特性
X線像にてCoの存在を確認した。被覆粉末のタップ密
度は1.8g/cc〜2.0g/ccと良好であった。
The presence of Co in the powder coating layer was confirmed by a Co characteristic X-ray image of the powder cross section. The tap density of the coated powder was as good as 1.8 g / cc to 2.0 g / cc.

【0046】このようにして得られた粉末V〜Yを用
い、実施例1と同様の製法で電池を作製し、同様の方法
で充放電試験により評価した。得られた結果を表5に示
す。
Using the powders V to Y obtained as described above, a battery was produced in the same manner as in Example 1, and evaluated by a charge / discharge test in the same manner. Table 5 shows the obtained results.

【0047】[0047]

【表5】 [Table 5]

【0048】Co(OH)2被覆粉末V〜Yにおいて、
未処理粉末C,D,J,Oと比較して利用率の向上が確
認された。放電電圧はわずかに低下するが、未被覆処理
粉末A,Bと比較すると放電電圧は向上しており、α類
似型Al固溶Ni(OH)2被覆処理による放電電圧向
上の効果が確認された。
In the Co (OH) 2 coated powders V to Y,
It was confirmed that the utilization rate was improved as compared with the untreated powders C, D, J and O. Although the discharge voltage slightly decreased, the discharge voltage was improved as compared with the uncoated powders A and B, and the effect of improving the discharge voltage by the α-like Al solid solution Ni (OH) 2 coating treatment was confirmed. .

【0049】Ni(OH)2またはNi(OH)2を主成
分とする粒子表面をCo化合物で被覆することにより、
利用率を向上できることは特開昭62−222566号
公報および特開昭62−234867号公報に記載され
ている。
By coating Ni (OH) 2 or the particle surface mainly composed of Ni (OH) 2 with a Co compound,
The ability to improve the utilization factor is described in JP-A-62-222566 and JP-A-62-234867.

【0050】本実施例の結果から、正極活物質粒子とそ
の表面のCo酸化物層との間にα類似型Al固溶Ni
(OH)2層を配することによって、利用率を向上さ
せ、さらに放電電圧を向上できることが明らかである。
From the results of this example, it can be seen that α-like Al solid solution Ni is present between the positive electrode active material particles and the Co oxide layer on the surface thereof.
It is clear that the use of two (OH) layers can improve the utilization factor and further increase the discharge voltage.

【0051】なお本発明は、アルカリ蓄電池の正極活物
質の改良に関する技術であるため、実施例に記載した以
外の組成の水素吸蔵合金を用いるニッケル・水素蓄電池
においても同等の効果が得られる。さらにニッケル酸化
物をベースにした正極活物質を用いるすべてのアルカリ
蓄電池(例えば、ニッケル・カドミウム蓄電池、ニッケ
ル・鉄蓄電池、ニッケル・亜鉛蓄電池等)においても同
等の効果が得られる。また、電極支持体、活物質添加物
およびセパレータ等が異なる場合についても同等の効果
が得られる。また、AAサイズの円筒密閉電池について
のみ記載したが他のサイズの円筒密閉電池、角型密閉電
池、据え置き型蓄電池、大型蓄電池、中型蓄電池あるい
は開放型電池等についても同等の効果が得られる。さら
に、焼結式正極を用いるアルカリ蓄電池においても、正
極表面に同様の被覆処理を施した場合に同等の効果が得
られる。
Since the present invention relates to a technique for improving a positive electrode active material of an alkaline storage battery, the same effect can be obtained in a nickel-hydrogen storage battery using a hydrogen storage alloy having a composition other than that described in the embodiment. Further, the same effect can be obtained in all alkaline storage batteries using a positive electrode active material based on nickel oxide (for example, nickel-cadmium storage battery, nickel-iron storage battery, nickel-zinc storage battery, etc.). The same effect can be obtained when the electrode support, the active material additive, the separator, and the like are different. Although only the AA size cylindrical sealed battery is described, the same effect can be obtained for other sizes of cylindrical sealed battery, square sealed battery, stationary storage battery, large storage battery, medium storage battery, open battery, and the like. Further, even in an alkaline storage battery using a sintered positive electrode, the same effect can be obtained when the same coating treatment is performed on the positive electrode surface.

【0052】[0052]

【発明の効果】正極活物質粉末の表面をα類似型Al固
溶Ni(OH)2で被覆することにより、容量密度、放
電電圧、高率放電特性に優れたアルカリ蓄電池用正極活
物質が提供できる。また、上記α類似型Al固溶Ni
(OH)2被覆層中にCa,Cr,Y,Ti,Coから
選ばれる少なくとも一種の異種金属元素を固溶させるこ
とにより、容量密度、放電電圧、高率放電特性に優れ、
かつ高温充電効率および/または充放電特性に優れたア
ルカリ蓄電池用正極活物質が提供できる。さらに、上記
α類似型Al固溶Ni(OH)2被覆正極活物質粉末の
表面をCo酸化物で被覆させることにより、容量密度、
放電電圧、高率放電特性に優れ、かつ充放電特性に優れ
たアルカリ蓄電池用正極活物質が提供できる。
According to the present invention, a positive electrode active material for an alkaline storage battery having excellent capacity density, discharge voltage, and high rate discharge characteristics is provided by coating the surface of the positive electrode active material powder with α-like Al solid solution Ni (OH) 2. it can. In addition, the α-similar Al solid solution Ni
By dissolving at least one dissimilar metal element selected from Ca, Cr, Y, Ti, and Co in the (OH) 2 coating layer, it is excellent in capacity density, discharge voltage, and high-rate discharge characteristics,
In addition, a positive electrode active material for an alkaline storage battery having excellent high-temperature charging efficiency and / or charge / discharge characteristics can be provided. Further, by coating the surface of the α-like Al solid solution Ni (OH) 2 -coated positive electrode active material powder with a Co oxide, the capacity density,
A positive electrode active material for an alkaline storage battery having excellent discharge voltage and high-rate discharge characteristics and excellent charge / discharge characteristics can be provided.

フロントページの続き (72)発明者 和泉 陽一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuing on the front page (72) Inventor Yoichi Izumi 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Niを主たる金属元素とする複数金属元
素の酸化物または水酸化物を主材料とするアルカリ蓄電
池用正極に使用する活物質粉末であって、前記複数金属
元素の酸化物または水酸化物粉末の表面層付近に、Al
が共晶状態および/または固溶状態で存在するα類似型
Ni(OH)2層を配したことを特徴とするアルカリ蓄
電池用正極活物質。
1. An active material powder for use in a positive electrode for an alkaline storage battery mainly composed of an oxide or hydroxide of a plurality of metal elements mainly composed of Ni, wherein the oxide or water of the plurality of metal elements is used. Al near the surface layer of the oxide powder
Characterized in that an α-like Ni (OH) 2 layer is present in a eutectic state and / or a solid solution state.
【請求項2】 α類似型Ni(OH)2層中に共晶状態
および/または固溶状態で存在するAl量は、前記α類
似型Ni(OH)2層中の金属原子比をNi:Al=1
−x:xと表したとき、0.10≦x≦0.40である
ことを特徴とする請求項1記載のアルカリ蓄電池用正極
活物質。
Wherein α similar type Ni (OH) Al content present in eutectic conditions and / or solid solution in two layers in the said α similar type Ni (OH) metal atomic ratio of 2 layer Ni: Al = 1
The positive electrode active material for an alkaline storage battery according to claim 1, wherein, when expressed as -x: x, 0.10? X? 0.40.
【請求項3】 複数金属元素の酸化物または水酸化物粉
末の表面層付近に配されたα類似型Ni(OH)2層中
には、Ni,Alの他にCa,Cr,Y,Ti,Coか
ら選ばれた少なくとも一種の元素が共晶状態および/ま
たは固溶状態で存在することを特徴とする請求項1記載
のアルカリ蓄電池用正極活物質。
3. An α-like Ni (OH) 2 layer disposed near a surface layer of an oxide or hydroxide powder of a plurality of metal elements includes Ca, Cr, Y, Ti in addition to Ni and Al. The positive electrode active material for an alkaline storage battery according to claim 1, wherein at least one element selected from the group consisting of, and Co is present in a eutectic state and / or a solid solution state.
【請求項4】 α類似型Ni(OH)2層中に共晶状態
および/または固溶状態で存在するCa,Cr,Y,T
i,Coから選ばれる少なくとも一種の元素をMeと表
した時、そのMe量は前記α類似型Ni(OH)2層中
の金属原子比をNi+Al:Me=1−y:yと表した
場合、0.01≦y≦0.20であることを特徴とする
請求項3記載のアルカリ蓄電池用正極活物質。
4. Ca, Cr, Y, T existing in a eutectic state and / or a solid solution state in an α-like Ni (OH) 2 layer
When at least one element selected from i and Co is represented by Me, the amount of Me is based on the case where the metal atomic ratio in the α-like Ni (OH) 2 layer is represented by Ni + Al: Me = 1-y: y. 4. The positive electrode active material for an alkaline storage battery according to claim 3, wherein 0.01 ≦ y ≦ 0.20.
【請求項5】 α類似型Ni(OH)2層を表面層付近
に配した活物質粉末の表面に、さらにCo酸化物層を配
したことを特徴とする請求項1から4のいずれかに記載
のアルカリ蓄電池用正極活物質。
5. The method according to claim 1, wherein a Co oxide layer is further disposed on the surface of the active material powder having the α-like Ni (OH) 2 layer disposed near the surface layer. The positive electrode active material for an alkaline storage battery according to the above.
JP24678798A 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery Expired - Fee Related JP4366729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24678798A JP4366729B2 (en) 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27237197 1997-10-06
JP9-272371 1997-10-06
JP24678798A JP4366729B2 (en) 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH11176437A true JPH11176437A (en) 1999-07-02
JP4366729B2 JP4366729B2 (en) 2009-11-18

Family

ID=26537910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24678798A Expired - Fee Related JP4366729B2 (en) 1997-10-06 1998-09-01 Cathode active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4366729B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478481B2 (en) 2003-11-18 2013-07-02 Hino Motors, Ltd. Fuel-saving management system

Also Published As

Publication number Publication date
JP4366729B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4384095B2 (en) High performance nickel hydroxide cathode material for alkaline rechargeable electrochemical cells
US6156455A (en) Method for producing positive electrodes of alkaline storage batteries
JP3489960B2 (en) Alkaline storage battery
US5506070A (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP4347907B2 (en) Nickel battery electrode containing multi-component nickel hydroxide active material
US5489314A (en) Manufacturing method of nickel plate and manufacturing method of alkaline battery
US6042753A (en) Active materials for the positive electrode in alkaline storage batteries
JP3518975B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery
JP3661045B2 (en) Alkaline storage battery
CN101027802A (en) Hydrogen storage electrode and nickel hydrogen battery
US6156456A (en) Positive electrode active material for alkaline storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP2000003706A (en) Positive electrode for alkaline storage battery and positive electrode active material
EP0607806A2 (en) Alkaline storage battery and method for producing the same
JP2007518244A (en) Positive electrode active material for nickel electrodes
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JP4366729B2 (en) Cathode active material for alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP5309479B2 (en) Alkaline storage battery
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP2000149938A (en) Nickel positive electrode active material
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2000223147A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees