JPH1072227A - Optical fiber preform and its production - Google Patents

Optical fiber preform and its production

Info

Publication number
JPH1072227A
JPH1072227A JP22971896A JP22971896A JPH1072227A JP H1072227 A JPH1072227 A JP H1072227A JP 22971896 A JP22971896 A JP 22971896A JP 22971896 A JP22971896 A JP 22971896A JP H1072227 A JPH1072227 A JP H1072227A
Authority
JP
Japan
Prior art keywords
germanium
optical fiber
preform
core
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22971896A
Other languages
Japanese (ja)
Other versions
JP3567636B2 (en
Inventor
Sumio Hoshino
寿美夫 星野
Shinji Ishikawa
真二 石川
Futoshi Mizutani
太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22971896A priority Critical patent/JP3567636B2/en
Publication of JPH1072227A publication Critical patent/JPH1072227A/en
Application granted granted Critical
Publication of JP3567636B2 publication Critical patent/JP3567636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Abstract

PROBLEM TO BE SOLVED: To prevent cracks from being generated at the time of performing a cut-off work of a front end part of a preform by using a specific optical fiber preform which has a core that is composed of a glass contg. added germanium and a clad that is formed on the periphery of the core and is composed of glass having a lower refractive index than that of a glass of a core. SOLUTION: This preform has a core that is composed of glass contg. added germanium and a clad that is formed on the periphery of the core and is composed of glass having a lower refractive index than that of the glass of the core. In the preform, a region having a reduced added germanium content as compared with that of the central part in the axial direction of the preform is placed in a front end part in the axial direction of the preform. At this time, as the preform, an optical fiber preform having such a region which has a reduced added germanium content and the length of which in the axial direction of the preform is preferably 0.1 to 1 time of the outer diameter of the preform, is preferred.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバ用母材、
特に光ファイバ用母材の先端を切断加工する際にクラッ
クの発生のない光ファイバ用母材及びその製造方法に関
する。
The present invention relates to a preform for an optical fiber,
In particular, the present invention relates to an optical fiber preform which does not crack when cutting the tip of the optical fiber preform, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】VAD法による多孔質母材の製造方法に
おいてコアバーナとクラッドバーナとを配置し、コアバ
ーナには屈折率を上げるための添加物として四塩化ゲル
マニウムを供給することが知られている(例えば、特開
平5−193973号公報)。しかし、ゲルマニウムが
添加されたガラスは純シリカよりも熱膨張係数が大きい
ために冷却時、歪みが残り易く、加工の際クラックが入
り易い。
2. Description of the Related Art It is known that a core burner and a clad burner are arranged in a method of manufacturing a porous base material by a VAD method, and germanium tetrachloride is supplied to the core burner as an additive for increasing the refractive index ( For example, Japanese Patent Application Laid-Open No. Hei 5-193973). However, glass to which germanium has been added has a larger coefficient of thermal expansion than pure silica, so that distortion tends to remain during cooling and cracks are likely to occur during processing.

【0003】一般に、光ファイバ用母材を延伸縮径する
時、延伸機に取り付けるためのダミー棒を両端に溶着接
続する必要があるが、VAD法で製造された光ファイバ
用母材は回転する出発棒先端にゲルマニウムが添加され
たコア部とその周囲のクラッド部を軸方向に同時に合成
して得られるので、先端部はコア部が突き出した形状に
なっている。従って、ダミー棒を溶着接続しようとする
際には、先端部を切断するなどして、接続しやすいよう
に加工する必要がある。しかし、先端部はゲルマニウム
が添加されているため、切断した際にクラックが入り、
溶着接続できないといった問題がある。図3はダミー棒
を光ファイバ用母材の両端に接続する状態を工程順に示
すもので(a)はVAD法で製造された光ファイバ用母
材で先端部はコア部が突き出した状態を、(b)は加工
した状態、(c)はダミー棒を接続した状態を示す。
In general, when the optical fiber preform is drawn and reduced in diameter, it is necessary to weld and connect a dummy rod to be attached to a drawing machine at both ends, but the optical fiber preform manufactured by the VAD method rotates. Since the core portion obtained by adding germanium to the tip of the starting rod and the surrounding clad portion are simultaneously synthesized in the axial direction, the tip portion has a shape in which the core portion protrudes. Therefore, when the dummy rod is to be welded and connected, it is necessary to cut the tip end or the like so as to facilitate the connection. However, since the tip is doped with germanium, cracks occur when cut,
There is a problem that welding cannot be performed. 3A and 3B show a state in which the dummy rods are connected to both ends of the optical fiber preform in the order of steps. FIG. 3A shows an optical fiber preform manufactured by the VAD method with a tip protruding from the core. (B) shows a processed state, and (c) shows a state where a dummy bar is connected.

【0004】[0004]

【発明が解決しようとする課題】上記したように、光フ
ァイバ用母材の先端部を切断加工する際にクラックが入
り易いのはゲルマニウムが添加されているためである。
光ファイバ用母材は多孔質母材を合成し、次いでその多
孔質母材を焼結炉で加熱して透明ガラス化して得られ
る。透明ガラス化の際には1500℃程度まで加熱さ
れ、透明ガラス化が終了したら室温まで冷却される。ゲ
ルマニウムが添加されたガラスは純シリカよりも膨張係
数が大きいために冷却時、歪みが残りやすい。従って、
ゲルマニウムが添加されたコア部には歪みが残り、先端
部を切断した際にクラックが入り易くなる。そこで、本
発明は、VAD法又はOVD法において、コア部におけ
るゲルマニウムの添加を制御して母材先端を加工すると
きのクラックの発生を防止することを目的とする。
As described above, cracks are likely to be formed when cutting the tip of the optical fiber preform because germanium is added.
The optical fiber preform is obtained by synthesizing a porous preform and then heating the porous preform in a sintering furnace to form a transparent glass. During the vitrification, the glass is heated to about 1500 ° C., and when the vitrification is completed, it is cooled to room temperature. Since glass to which germanium is added has a larger expansion coefficient than pure silica, distortion tends to remain during cooling. Therefore,
Strain remains in the core portion to which germanium is added, and cracks easily occur when the tip portion is cut. Therefore, an object of the present invention is to prevent the generation of cracks when processing the base metal tip by controlling the addition of germanium in the core portion in the VAD method or the OVD method.

【0005】[0005]

【課題を解決するための手段】上記の目的は、下記の光
ファイバ用母材及び光ファイバ用母材の製造方法によっ
て達成することができる。 (1)ゲルマニウムが添加されたガラスからなるコア部
と、コア部の外周にあってコア部よりも屈折率が低いガ
ラスからなるクラッド部を持つ光ファイバ用母材であっ
て、光ファイバ用母材の軸方向端部において、コア部軸
方向中央部のゲルマニウム添加量に対して、ゲルマニウ
ム添加量が減少している領域があることを特徴とする光
ファイバ用母材。 (2)軸方向端部のゲルマニウム添加量が減少している
領域の軸方向の長さが母材外径の0.1から1倍である
ことを特徴とする上記(1)に記載の光ファイバ用母
材。 (3)軸方向端部のゲルマニウム添加量が減少している
領域において、ゲルマニウム添加量は中央部側から、端
部側にかけてゲルマニウム添加量が徐々に減少している
ことを特徴とする上記(1)又は(2)に記載の光ファ
イバ用母材。
The above objects can be achieved by the following optical fiber preform and a method of manufacturing the optical fiber preform. (1) A base material for an optical fiber having a core portion made of glass to which germanium is added, and a clad portion made of glass having a lower refractive index than the core portion at the outer periphery of the core portion, the base material for an optical fiber being provided. A preform for an optical fiber, characterized in that at an axial end of the material, there is a region where the amount of germanium added is smaller than the amount of germanium added at the center in the axial direction of the core. (2) The light according to (1), wherein the axial length of the region where the amount of germanium added at the axial end is reduced is 0.1 to 1 times the outer diameter of the base material. Base material for fiber. (3) In the region where the amount of added germanium decreases at the axial end, the amount of added germanium gradually decreases from the center to the end. ) Or the optical fiber preform according to (2).

【0006】(4)軸方向端部のゲルマニウム添加量が
減少している領域において、端部でゲルマニウム添加量
が0であることを特徴とする上記(1)ないし(3)の
いずれかに記載の光ファイバ用母材。 (5)バーナにより形成された火炎中に、少なくとも、
シリコン化合物からなるガラス原料とゲルマニウム化合
物を供給することで、ゲルマニウムが添加されたガラス
微粒子を合成し、これを回転する出発材に堆積させるこ
とにより光ファイバ用母材を合成する方法において、該
母材の軸方向端部の合成を、中央部側から端部側に向け
て、ゲルマニウム化合物の設定流量を徐々に減少させて
行うことを特徴とする光ファイバ用母材の製造方法。 (6)コア合成用バーナにより形成された火炎中に、少
なくとも、シリコン化合物からなるガラス原料とゲルマ
ニウム化合物を供給することで、ゲルマニウムが添加さ
れたガラス微粒子を合成し、これを回転する出発材の先
端に堆積させ、軸方向にコア母材を成長させるととも
に、コア母材の合成と同時にコア母材の外周にクラッド
用バーナにより形成された火炎中に、少なくとも、シリ
コン化合物からなるガラス原料を供給することによりガ
ラス微粒子を合成し、クラッド層を形成してコアクラッ
ドからなる光ファイバ用母材を製造する方法において、
該母材の成長終了端の合成を、ゲルマニウム化合物の設
定流量を徐々に減少させて行うことを特徴とする光ファ
イバ用母材の製造方法。 (7)ゲルマニウム化合物の流量を減少させるのと同時
にガラス原料の流量と水素流量のいずれか又は両方を変
化させることを特徴とする上記(5)又は(6)に記載
の光ファイバ用母材の製造方法。ゲルマニウムが添加さ
れたガラスからなるコア部と、コア部の外周にあってコ
ア部よりも屈折率が低いガラスからなるクラッド部を持
つ光ファイバ用母材であって、コア部の軸方向成長部の
先端部にゲルマニウムが添加されていない部分があるこ
とを特徴とする光ファイバ用母材、
(4) In any one of the above (1) to (3), in the region where the amount of germanium added at the end in the axial direction is reduced, the amount of germanium added is 0 at the end. Preform for optical fiber. (5) At least in the flame formed by the burner,
In a method of synthesizing a glass material containing a silicon compound and a germanium compound, synthesizing glass fine particles to which germanium is added, and depositing the glass particles on a rotating starting material to synthesize a base material for an optical fiber, A method for manufacturing a preform for an optical fiber, comprising: synthesizing an axial end portion of a material from a central portion toward an end portion while gradually decreasing a set flow rate of a germanium compound. (6) By supplying at least a glass material made of a silicon compound and a germanium compound into the flame formed by the core synthesizing burner, glass particles to which germanium is added are synthesized, and this is used as a starting material to be rotated. Deposited on the tip and growing the core base material in the axial direction, and at the same time as synthesizing the core base material, supply at least a glass raw material made of a silicon compound into the flame formed by the cladding burner around the core base material By synthesizing glass fine particles by forming a cladding layer to produce a preform for an optical fiber comprising a core clad,
A method of manufacturing an optical fiber preform, wherein the growth end of the preform is synthesized by gradually decreasing the set flow rate of the germanium compound. (7) The optical fiber preform according to the above (5) or (6), wherein the flow rate of the germanium compound is reduced and at the same time, the flow rate of the glass raw material and / or the flow rate of the hydrogen are changed. Production method. An optical fiber preform having a core portion made of glass to which germanium is added, and a cladding portion made of glass having a lower refractive index than the core portion at the outer periphery of the core portion, and an axial growth portion of the core portion An optical fiber preform, characterized in that there is a portion to which germanium is not added at the tip of

【0007】[0007]

【発明の実施の形態】上記の光ファイバ用母材(1)
は、光ファイバ用母材先端にダミー棒を溶着接続するた
め、母材先端を切断加工するときに入り易いクラックを
避けるために、該母材の軸方向端部において、コア部の
軸方向中央部のゲルマニウム添加量に対して、ゲルマニ
ウム添加量が減少している領域があることを特徴として
いる。ここでコア部の軸方向中央部のゲルマニウム添加
量に対して、ゲルマニウム添加量が減少している領域を
設けるには上記(5)〜(7)に記載のように多孔質母
材の軸方向端部の合成において、中央部側から端部側に
向けてゲルマニウム化合物の設定流量を徐々に減らす
か、該母材の成長終了端の合成を、ゲルマニウム化合物
の設定流量を徐々に減少させて行うか、又はゲルマニウ
ム化合物の流量を減少させるのと同時にガラス原料の流
量と水素流量のいずれか又は両方を変化させる。
BEST MODE FOR CARRYING OUT THE INVENTION The optical fiber preform (1)
In order to avoid cracks that are likely to enter when cutting the preform tip, a dummy rod is welded and connected to the tip of the preform for optical fiber. It is characterized in that there is a region where the amount of germanium added is reduced with respect to the amount of germanium added in the portion. Here, in order to provide a region where the amount of added germanium is reduced with respect to the amount of added germanium in the central portion in the axial direction of the core portion, as described in the above (5) to (7), In the synthesis of the end portion, the set flow rate of the germanium compound is gradually reduced from the central portion toward the end portion, or the growth end of the base material is synthesized by gradually decreasing the set flow rate of the germanium compound. Alternatively, at the same time as decreasing the flow rate of the germanium compound, one or both of the flow rate of the glass raw material and the hydrogen flow rate are changed.

【0008】図1は、VAD法で光ファイバ用多孔質母
材1を製造する概略図を示すもので、クラッドバーナ2
及びコアバーナ3に水素、酸素、四塩化珪素、四塩化ゲ
ルマニウム等のガスを供給している。多孔質母材が所定
の長さに到達する前に四塩化ゲルマニウムの供給量を設
定流量から徐々に減らし、図2のグラフに示すようにG
e濃度を減らして行きGeを含まない部分を作る。ここ
で所定の長さとは、一般的には300〜2000mmの
範囲である。本発明はVAD法だけでなくOVD法にも
ほぼ同様の条件で適用できる。上記の光ファイバ用母材
(2)は、上記のGeの添加しない領域の長さを好まし
い範囲に特定するもので、それにより先端切断時のクラ
ックの発生を防止する。そのため、該領域の軸方向の長
さを母材外径の0.1〜1倍の範囲とする。0.1倍未
満であると、クラック防止の効果が充分でなく、また1
倍を超えると、Ge添加濃度の変化する領域がクラッド
外径が定常になっている部分にまで及ぶ可能性があり、
光ファイバとして使用できる部分が短くなってしまう。
すなわち、クラッド外径がテーパ状になっている先端部
分は、コア外径とクラッド外径の比が変化しているので
光ファイバとして使用できない部分であり、Ge濃度変
化部の長さを、このクラッド外径がテーパ状になってい
る部分の長さ以下にすることで光ファイバとして使用す
る部分を同量とすることができる。
FIG. 1 is a schematic view showing a method of manufacturing a porous preform 1 for an optical fiber by a VAD method.
Further, a gas such as hydrogen, oxygen, silicon tetrachloride, germanium tetrachloride or the like is supplied to the core burner 3. Before the porous base material reaches a predetermined length, the supply amount of germanium tetrachloride is gradually reduced from the set flow rate, and as shown in the graph of FIG.
The e concentration is reduced to create a portion that does not contain Ge. Here, the predetermined length is generally in a range of 300 to 2000 mm. The present invention can be applied not only to the VAD method but also to the OVD method under almost the same conditions. The optical fiber preform (2) specifies the length of the region where Ge is not added to a preferable range, thereby preventing the occurrence of cracks at the time of cutting the tip. Therefore, the axial length of the region is set to a range of 0.1 to 1 times the outer diameter of the base material. If the ratio is less than 0.1 times, the effect of preventing cracks is not sufficient.
If it exceeds twice, the region where the Ge addition concentration changes may extend to the portion where the cladding outer diameter is steady,
The portion that can be used as an optical fiber becomes short.
That is, the tip portion where the clad outer diameter is tapered is a portion that cannot be used as an optical fiber because the ratio of the core outer diameter to the clad outer diameter has changed, and the length of the Ge concentration change portion is By setting the outer diameter of the clad to be equal to or less than the length of the tapered portion, the portion used as the optical fiber can be made equal.

【0009】上記の光ファイバ用母材(3)では、Ge
添加量を中央部側から、端部側にかけてゲルマニウム添
加量が徐々に減少していることを規定している。上記の
光ファイバ用母材(4)では、端部でGe添加量を0に
するのが好ましいこと示している。上記(5)の光ファ
イバ用母材の製造方法によると、OVD法による多孔質
母材の合成時、特に軸方向端部の合成において、ゲルマ
ニウム化合物の供給量を徐徐に減らしていき、このよう
な方法とすることでコア部先端のゲルマニウム濃度が先
端部になるに従って徐々に変化するようにする。場合に
よっては、先端部にはゲルマニウムが添加されていない
光ファイバ用母材を得ることができる。上記(6)の光
ファイバ用母材の製造方法によると、VAD法による多
孔質母材の合成時、特に多孔質母材の成長終了端の合成
時に、多孔質母材の長さが所望の長さとなる前に予め、
ゲルマニウム化合物の供給を減らしていき、このような
方法とすることでコア部先端のゲルマニウム濃度が先端
部になるに従って徐々に変化し、場合によっては、先端
部にはゲルマニウムが添加されていない光ファイバ用母
材を得ることができる。
In the above optical fiber preform (3), Ge
It defines that the amount of germanium added gradually decreases from the center to the end. In the optical fiber preform (4), it is shown that the Ge addition amount is preferably set to 0 at the end. According to the method for manufacturing a preform for an optical fiber of the above (5), the supply amount of the germanium compound is gradually reduced at the time of synthesizing the porous preform by the OVD method, particularly, at the time of synthesizing the end portion in the axial direction. With such a method, the germanium concentration at the tip of the core portion is gradually changed toward the tip portion. In some cases, it is possible to obtain a preform for an optical fiber in which germanium is not added to the tip. According to the method (6) for producing a preform for an optical fiber, when the porous preform is synthesized by the VAD method, particularly when the growth end of the porous preform is synthesized, the length of the porous preform is desired. Before becoming length,
By reducing the supply of the germanium compound, by adopting such a method, the germanium concentration at the tip of the core gradually changes as it approaches the tip, and in some cases, the optical fiber does not contain germanium at the tip. A base material for use can be obtained.

【0010】しかし、多孔質母材の製造時、ゲルマニウ
ム原料だけを減少させると、コア部の成長速度が変化
し、クラッドとの成長バランスが崩れてしまう。クラッ
ドとコアの成長バランスが崩れると、コアとクラッドの
外径比が変化してしまって最終的には光ファイバとした
ときのコア径が変わるので、特性がその部分だけ変化し
たものとなってしまう。これを防ぐため、上記の光ファ
イバ用母材の製造方法(7)ではゲルマニウム原料流量
を変化させる際に、コア部の成長速度を一定に保つた
め、ガラス原料の流量も変化させる。ガラス原料流量を
増加させると成長速度も増加し、ガラス原料流量を減少
させると成長速度も減少する。また、かさ密度がその部
分で急激に変化すると割れたりするなどの不具合が生じ
るので、水素流量を調整してかさ密度を一定に保つ。こ
の調整は、通常は非接触の温度計等を用いて表面温度を
測定し、ゲルマニウム原料流量を変化させる前と同様の
表面温度になるように水素流量を調整することによって
行う。水素流量を増加させると表面温度が上昇して嵩密
度が増加し、水素流量を減少させると表面温度が低下し
て嵩密度が減少する。ただし、水素流量を変化させる
と、成長速度も変化するので必要ならガラス原料の流量
の調整も合わせて行う必要がある。一般に、ゲルマニウ
ム原料流量を減少させると、成長速度は低下する場合が
多いが、逆に上がる場合もあるので、成長速度の変化に
応じたガラス原料、水素流量の調整が必要である。
However, when only the germanium raw material is reduced during the production of the porous base material, the growth rate of the core portion changes, and the growth balance with the clad is lost. If the growth balance between the clad and the core breaks down, the outer diameter ratio of the core and the clad will change, and ultimately the core diameter when used as an optical fiber will change, so the characteristics will change only in that part. I will. In order to prevent this, in the method (7) for manufacturing the optical fiber preform, when changing the flow rate of the germanium raw material, the flow rate of the glass raw material is also changed in order to keep the growth rate of the core portion constant. Increasing the glass material flow rate also increases the growth rate, and decreasing the glass material flow rate also decreases the growth rate. Further, if the bulk density suddenly changes in that portion, a problem such as cracking occurs, so the hydrogen density is adjusted to keep the bulk density constant. This adjustment is usually performed by measuring the surface temperature using a non-contact thermometer or the like, and adjusting the hydrogen flow rate so that the surface temperature becomes the same as before changing the germanium raw material flow rate. Increasing the hydrogen flow increases the surface temperature and increases the bulk density, and decreasing the hydrogen flow decreases the surface temperature and reduces the bulk density. However, if the flow rate of hydrogen is changed, the growth rate also changes. Therefore, it is necessary to adjust the flow rate of the glass raw material if necessary. In general, when the flow rate of the germanium raw material is reduced, the growth rate often decreases. On the contrary, the growth rate may increase. Therefore, it is necessary to adjust the glass raw material and the hydrogen flow rate according to the change in the growth rate.

【0011】[0011]

【実施例】以下本発明を実施例により更に詳細に説明す
る。 (実施例1)図1に示されるように、コアバーナとクラ
ッドバーナを設置し、コアバーナに酸素ガスと水素ガス
を供給することで形成させる火炎中にガラス原料として
四塩化珪素と四塩化ゲルマニウムを供給し、クラッドバ
ーナには酸素ガスと水素ガスを供給し、形成される火炎
中に四塩化珪素を流し、回転する出発棒の先端に軸方向
にガラス微粒子を堆積させることでゲルマニウムが添加
されたコア部と、ゲルマニウムが添加されていないクラ
ッド部からなる多孔質母材を合成した。その際、コアバ
ーナに供給する四塩化ゲルマニウムの流量を、多孔質母
材の軸方向の長さが出発棒先端から400mmとなった
ところから徐々に減少させ、440mmになったところ
で供給を完全に停止させた。その際、ゲルマニウム原料
流量を減少させる前は成長速度が70mm/H前後であ
ったが、ゲルマニウム原料流量を減少させることで次第
に低下し、ゲルマニウム原料流量を0にした際には、6
0mm/H前後となった。その後、多孔質母材が出発棒
先端より軸方向に500mm堆積したところでコアバー
ナとクラッドバーナに供給する四塩化珪素を供給停止
し、ガラス母材の堆積を停止した。得られた多孔質母材
は脱水焼結したのち、先端部を切断し、ダミー棒をガラ
ス旋盤にて溶着接続し、延伸機に取り付けて延伸加工し
た。先端部の切断時は、切断部にクラック等の異常が無
く、良好にダミー棒の溶着接続ができた。
The present invention will be described in more detail with reference to the following examples. (Example 1) As shown in FIG. 1, a core burner and a clad burner are installed, and silicon tetrachloride and germanium tetrachloride are supplied as glass raw materials into a flame formed by supplying oxygen gas and hydrogen gas to the core burner. Then, oxygen gas and hydrogen gas are supplied to the clad burner, silicon tetrachloride flows in the formed flame, and glass particles are deposited in the axial direction at the tip of the rotating starting rod to add germanium to the core. And a porous base material comprising a clad portion to which germanium was not added. At this time, the flow rate of germanium tetrachloride to be supplied to the core burner was gradually decreased from the point where the axial length of the porous base material became 400 mm from the tip of the starting rod, and the supply was completely stopped when it reached 440 mm. I let it. At that time, the growth rate was about 70 mm / H before the germanium raw material flow rate was reduced. However, the growth rate gradually decreased by reducing the germanium raw material flow rate.
It was around 0 mm / H. Thereafter, when the porous base material was deposited 500 mm in the axial direction from the tip of the starting rod, the supply of silicon tetrachloride to the core burner and the clad burner was stopped, and the deposition of the glass base material was stopped. The obtained porous base material was dehydrated and sintered, then its tip was cut, and a dummy bar was welded and connected by a glass lathe, and attached to a stretching machine for stretching. At the time of cutting the tip portion, there was no abnormality such as a crack in the cut portion, and the welding connection of the dummy rod was successfully performed.

【0012】(実施例2)実施例1と同様のバーナ構成
で多孔質母材の合成を行った。その際、四塩化ゲルマニ
ウムの供給流量を減少させると同時に、コアバーナに供
給する四塩化珪素の流量を増加させることでコア部の成
長速度を70mm/時前後で一定に保ちつつ、多孔質母
材の合成を行うことができた。 (比較例)多孔質母材の製造時、長さが400mmにな
るまで四塩化珪素と四塩化ゲルマニウムを所定量供給
し、所定の長さの多孔質母材を合成した。その際のコア
部の成長速度を70mm/時前後であった。その後、実
施例1と同様に脱水焼結、先端切断と進めたが、先端の
切断時にコア部よりクラックが発生し、ダミー棒の溶着
接続はできなかった。
(Example 2) A porous preform was synthesized with the same burner configuration as in Example 1. At this time, while decreasing the supply flow rate of germanium tetrachloride and increasing the flow rate of silicon tetrachloride supplied to the core burner, the growth rate of the core portion is kept constant at about 70 mm / h, and the porous base material is reduced. Synthesis could be performed. (Comparative Example) At the time of manufacturing a porous preform, predetermined amounts of silicon tetrachloride and germanium tetrachloride were supplied until the length became 400 mm, and a porous preform having a predetermined length was synthesized. At that time, the growth rate of the core portion was about 70 mm / hour. Thereafter, dehydration sintering and tip cutting were performed in the same manner as in Example 1. However, cracks were generated from the core portion at the time of cutting the tip, and the dummy rods could not be welded and connected.

【0013】[0013]

【発明の効果】光ファイバ用多孔質母材においてコア部
の軸方向成長部の先端部にゲルマニウムが添加されてい
ない部分を設けることにより、光ファイバ用母材先端に
ダミー棒を溶着接続するため、母材先端を切断加工する
際に、クラックが入るのを防止することができる。
According to the present invention, a dummy rod is welded to the tip of the optical fiber preform by providing a portion of the porous preform for optical fiber to which no germanium is added at the tip of the axial growth portion of the core. In addition, cracks can be prevented when cutting the base metal tip.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はVAD法で光ファイバ用多孔質母材を製
造する方法の概略図を示す。
FIG. 1 is a schematic view of a method for producing a porous preform for an optical fiber by a VAD method.

【図2】図2はGeCl4 の供給流量を所定時間経過後
に減少させる様子を示すグラフである。
FIG. 2 is a graph showing how the supply flow rate of GeCl 4 is reduced after a predetermined time has elapsed.

【図3】図3はVAD法で製造された光ファイバ用多孔
質母材にダミー棒を溶着接続する工程(a)〜(c)を
示す模式図。
FIG. 3 is a schematic view showing steps (a) to (c) of welding and connecting a dummy rod to a porous preform for an optical fiber manufactured by a VAD method.

【符号の説明】[Explanation of symbols]

1:光ファイバ用多孔質母材 2:クラッド用バーナ 3:コア用バーナ 1: Porous preform for optical fiber 2: Burner for clad 3: Burner for core

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ゲルマニウムが添加されたガラスからな
るコア部と、コア部の外周にあってコア部よりも屈折率
が低いガラスからなるクラッド部を持つ光ファイバ用母
材であって、光ファイバ用母材の軸方向端部において、
コア部軸方向中央部のゲルマニウム添加量に対して、ゲ
ルマニウム添加量が減少している領域があることを特徴
とする光ファイバ用母材。
An optical fiber preform having a core portion made of glass to which germanium is added, and a cladding portion made of glass having a lower refractive index than the core portion at the outer periphery of the core portion, At the axial end of the base material,
A preform for an optical fiber, characterized in that there is a region where the amount of germanium added is reduced with respect to the amount of germanium added at the center in the axial direction of the core.
【請求項2】 軸方向端部のゲルマニウム添加量が減少
している領域の軸方向の長さが母材外径の0.1から1
倍であることを特徴とする請求項1に記載の光ファイバ
用母材。
2. The axial length of the region where the amount of germanium added at the axial end is reduced is from 0.1 to 1 of the outer diameter of the base material.
2. The optical fiber preform according to claim 1, wherein the preform is doubled.
【請求項3】 軸方向端部のゲルマニウム添加量が減少
している領域において、ゲルマニウム添加量は中央部側
から、端部側にかけてゲルマニウム添加量が徐々に減少
していることを特徴とする請求項1又は2に記載の光フ
ァイバ用母材。
3. In a region where the amount of added germanium is reduced at the axial end, the amount of added germanium is gradually reduced from the center toward the end. Item 3. An optical fiber preform according to item 1 or 2.
【請求項4】 軸方向端部のゲルマニウム添加量が減少
している領域において、端部でゲルマニウム添加量が0
であることを特徴とする請求項1ないし3のいずれかに
記載の光ファイバ用母材。
4. In a region where the amount of added germanium is reduced at the end in the axial direction, the amount of added germanium is 0 at the end.
The optical fiber preform according to any one of claims 1 to 3, wherein:
【請求項5】 バーナにより形成された火炎中に、少な
くとも、シリコン化合物からなるガラス原料とゲルマニ
ウム化合物を供給することで、ゲルマニウムが添加され
たガラス微粒子を合成し、これを回転する出発材に堆積
させることにより光ファイバ用母材を合成する方法にお
いて、該母材の軸方向端部の合成を、中央部側から端部
側に向けて、ゲルマニウム化合物の設定流量を徐々に減
少させて行うことを特徴とする光ファイバ用母材の製造
方法。
5. At least a glass material composed of a silicon compound and a germanium compound are supplied into a flame formed by a burner, thereby synthesizing glass particles to which germanium is added, and depositing the particles on a rotating starting material. In the method of synthesizing the optical fiber preform by performing the above, the synthesis of the axial end portion of the preform is performed by gradually decreasing the set flow rate of the germanium compound from the center to the end. A method for producing a preform for an optical fiber, comprising:
【請求項6】 コア合成用バーナにより形成された火炎
中に、少なくとも、シリコン化合物からなるガラス原料
とゲルマニウム化合物を供給することで、ゲルマニウム
が添加されたガラス微粒子を合成し、これを回転する出
発材の先端に堆積させ、軸方向にコア母材を成長させる
とともに、コア母材の合成と同時にコア母材の外周にク
ラッド用バーナにより形成された火炎中に、少なくと
も、シリコン化合物からなるガラス原料を供給すること
によりガラス微粒子を合成し、クラッド層を形成してコ
アクラッドからなる光ファイバ用母材を製造する方法に
おいて、該母材の成長終了端の合成を、ゲルマニウム化
合物の設定流量を徐々に減少させて行うことを特徴とす
る光ファイバ用母材の製造方法。
6. At least a glass raw material comprising a silicon compound and a germanium compound are supplied into a flame formed by a core synthesis burner, thereby synthesizing glass particles to which germanium is added, and rotating the glass particles. At the same time as depositing on the tip of the material and growing the core material in the axial direction, at the same time as the synthesis of the core material, the flame formed by the cladding burner on the outer periphery of the core material, at least a glass material consisting of a silicon compound In the method of synthesizing glass microparticles by supplying and forming a cladding layer to produce a base material for an optical fiber comprising a core clad, the synthesis of the growth end end of the base material is performed by gradually increasing the set flow rate of the germanium compound. A method for producing a preform for an optical fiber, wherein
【請求項7】 ゲルマニウム化合物の流量を減少させる
のと同時にガラス原料の流量と水素流量のいずれか又は
両方を変化させることを特徴とする請求項5又は6に記
載の光ファイバ用母材の製造方法。
7. The optical fiber preform according to claim 5, wherein at least one of the flow rate of the glass raw material and the hydrogen flow rate is changed at the same time as the flow rate of the germanium compound is reduced. Method.
JP22971896A 1996-08-30 1996-08-30 Base material for optical fiber and method of manufacturing the same Expired - Lifetime JP3567636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22971896A JP3567636B2 (en) 1996-08-30 1996-08-30 Base material for optical fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22971896A JP3567636B2 (en) 1996-08-30 1996-08-30 Base material for optical fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1072227A true JPH1072227A (en) 1998-03-17
JP3567636B2 JP3567636B2 (en) 2004-09-22

Family

ID=16896622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22971896A Expired - Lifetime JP3567636B2 (en) 1996-08-30 1996-08-30 Base material for optical fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3567636B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096458A (en) * 2013-11-15 2015-05-21 住友電気工業株式会社 Manufacturing method for optical fiber and manufacturing method for glass preform for optical fiber
JP2017226569A (en) * 2016-06-21 2017-12-28 信越化学工業株式会社 Production method of optical fiber preform, and production method of glass fine particle deposit
CN112939447A (en) * 2021-03-22 2021-06-11 杭州金星通光纤科技有限公司 Manufacturing method for reducing production cost of optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096458A (en) * 2013-11-15 2015-05-21 住友電気工業株式会社 Manufacturing method for optical fiber and manufacturing method for glass preform for optical fiber
JP2017226569A (en) * 2016-06-21 2017-12-28 信越化学工業株式会社 Production method of optical fiber preform, and production method of glass fine particle deposit
CN112939447A (en) * 2021-03-22 2021-06-11 杭州金星通光纤科技有限公司 Manufacturing method for reducing production cost of optical fiber preform

Also Published As

Publication number Publication date
JP3567636B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US6324871B1 (en) Process for producing optical fiber preform
JPH0413299B2 (en)
JPH0948629A (en) Optical fiber and its production
US7135235B2 (en) Optical fiber preform and the method of producing the same
JP3567636B2 (en) Base material for optical fiber and method of manufacturing the same
US20070137256A1 (en) Methods for optical fiber manufacture
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP3816268B2 (en) Method for producing porous glass base material
JP3212331B2 (en) Manufacturing method of preform preform for optical fiber
JP2002274878A (en) Method for producing glass preform for optical fiber
JPS6044258B2 (en) synthesis torch
JP3675581B2 (en) Method for synthesizing optical fiber base material and method for adjusting synthesis condition
JP4081713B2 (en) Manufacturing method of glass base material and drawing method of glass base material
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS6128612B2 (en)
JP3020920B2 (en) Method for producing glass preform for optical fiber
JP2770103B2 (en) Manufacturing method of optical fiber preform
JP3587032B2 (en) Manufacturing method of optical fiber preform
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JPS5924097B2 (en) Glass body manufacturing method
JPH0710586A (en) Production of soot preform for optical fiber
JPS62162638A (en) Production of preform for optical fiber
JP2523154B2 (en) Method for manufacturing glass particulate deposit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term