JP4081713B2 - Manufacturing method of glass base material and drawing method of glass base material - Google Patents

Manufacturing method of glass base material and drawing method of glass base material Download PDF

Info

Publication number
JP4081713B2
JP4081713B2 JP2002207336A JP2002207336A JP4081713B2 JP 4081713 B2 JP4081713 B2 JP 4081713B2 JP 2002207336 A JP2002207336 A JP 2002207336A JP 2002207336 A JP2002207336 A JP 2002207336A JP 4081713 B2 JP4081713 B2 JP 4081713B2
Authority
JP
Japan
Prior art keywords
viscosity
base material
glass base
glass
starting seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002207336A
Other languages
Japanese (ja)
Other versions
JP2004051382A (en
Inventor
慎二 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002207336A priority Critical patent/JP4081713B2/en
Publication of JP2004051382A publication Critical patent/JP2004051382A/en
Application granted granted Critical
Publication of JP4081713B2 publication Critical patent/JP4081713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、出発種棒の端部にガラス微粒子を堆積させてガラス微粒子堆積体とし、そのガラス微粒子堆積体を加熱して透明化するガラス母材の製造方法及び得られたガラス母材を延伸するガラス母材の延伸方法に関するものである。
【0002】
【従来の技術】
一般に、光ファイバを構成するコアは、ガラス微粒子堆積体を加熱して透明化処理を施したガラス母材を延伸させることにより造られる。
図5に示すように、ガラス母材1は、純石英から形成された出発種棒2にガラス微粒子を堆積させてガラス微粒子堆積体3を作製し、その後、このガラス微粒子堆積体3を加熱して透明化(焼結)することにより製造される。ガラス微粒子堆積体3には、少なくとも中心、または全体に、コアとなるべき部分を形成するために、屈折率調節用の添加剤が添加されている。また、ガラス微粒子堆積体3を透明化したものを焼結体と呼ぶ。
【0003】
そして、図6に示すように、上記のようにして製造されたガラス母材1を延伸する場合は、まず出発種棒2の対向側の焼結体4の端部にダミーガラス棒5を融着させる。ここで、焼結体4の両端部分の、出発種棒2の周囲に堆積した部分と、ダミーガラス棒5側の外形が一定でない部分とが非有効部であり、非有効部の間に形成された外形が一定の部分が、線引き後に製品として使用可能な有効部である。
次に、図7に示すように、非有効部の体積が大きな出発種棒2側を下側にして、延伸炉内のヒータ6によって焼結体4を出発種棒2側から加熱しながら引っ張る。これにより、有効部が所定外径に延伸される。
【0004】
【発明が解決しようとする課題】
ところで、上記の場合、焼結体4をヒータ6によって加熱して延伸を開始させる際に、純石英から形成された出発種棒2の粘度が焼結体4よりも高くなってしまう。このように出発種棒2の粘度が高いと、出発種棒2が焼結体4に比べて伸びにくい。そのため、出発種棒2の先端部分2aが延伸されるときに、加熱される部分が出発種棒2から焼結体4に移り変わる境界部分において、急激に粘度が低下する。この粘度変化によって、出発種棒2の先端部分2aを延伸した直後に、焼結体4の外径が急激に細く延伸されてしまう。
【0005】
ガラス母材1の延伸に際し、通常は延伸した外径が一定となるように出発種棒2を引き取る速度を制御しているが、この急激な外径変動を目標値の許容範囲内に安定させるまでにかなりの延伸長が必要となってしまう。そのため、本来は有効部である部分が外径変動して、製品として使用できなくなるため、ガラス材料の無駄を生じてしまうという問題があった。
【0006】
本発明の目的は、ガラス母材の延伸開始時にて、その延伸外径を容易にかつ迅速に安定させて材料の無駄を大幅に抑えることが可能なガラス母材の製造方法及びガラス母材の延伸方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明に係るガラス母材の製造方法は、出発種棒の端部にガラス微粒子を堆積させてガラス微粒子堆積体となし、ガラス微粒子堆積体を加熱して透明化するガラス母材の製造方法であって、前記出発種棒は石英ガラスをホスト材料として加熱時の粘度を低下させる添加剤を含有させておき、出発種棒の先端部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とする。
また、本発明に係るガラス母材の製造方法は、出発種棒のガラス微粒子によって覆われる部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、ガラス母材の2000℃における最低粘度部分の粘度以上であっても良い。
また、本発明に係るガラス母材の製造方法は、出発種棒の全体の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、ガラス母材の2000℃における最低粘度部分の粘度以上であっても良い。
【0008】
また、上記目的を達成するための本発明に係るガラス母材の延伸方法は、出発種棒の端部にガラス微粒子を堆積させてガラス微粒子堆積体となし、ガラス微粒子堆積体を加熱して透明化することでガラス母材となし、その後、ガラス母材を出発種棒との連結部分側から加熱しながら、出発種棒を軸方向へ引っ張り、ガラス母材を延伸させるガラス母材の延伸方法であって、前記出発種棒は石英ガラスをホスト材料として加熱時の粘度を低下させる添加剤を含有させておき、出発種棒の先端部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とする。
また、本発明に係るガラス母材の延伸方法は、出発種棒のガラス微粒子によって覆われる部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、ガラス母材の2000℃における最低粘度部分の粘度以上であっても良い。
また、本発明に係るガラス母材の延伸方法は、出発種棒の全体の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、ガラス母材の2000℃における最低粘度部分の粘度以上であっても良い。
【0009】
このように、出発種棒の、先端部分またはガラス微粒子によって覆われる部分もしくは全体にて、高温加熱時(2000℃)における粘度を上記のように設定することで、出発種棒の粘度がガラス微粒子堆積体の透明化した部分(焼結体)の粘度に近づく。これにより、延伸工程を開始する際に、出発種棒と焼結体との伸びの差が抑えられ、あるいはなくされて、外径の変動が大幅に低減される。
これにより、延伸開始時にて外径を容易にかつ迅速に安定させて所望の外径範囲に仕上げることができ、材料の無駄を大幅に抑えることができる。
【0010】
【発明の実施の形態】
以下、本発明に係るガラス母材の製造方法及びガラス母材の延伸方法の一実施形態を図1〜図4に基づいて説明する。
図1は、本発明に係るガラス母材の製造方法及びガラス母材の延伸方法の一実施形態を説明するガラス微粒子堆積体の側面図である。図2は、ガラス母材にダミーロッドが接合された状態を示す側面図である。図3は、図2に示したガラス母材を延伸するための延伸炉を示す概略断面図である。図4は、図3に示したガラス母材を延伸する際の要部側面図である。
なお、本実施形態では、VAD法(Vapor phase Axial Deposition:気相軸付法)によるガラス母材の製造方法を例にとって説明する。
【0011】
VAD法によってガラス母材を製造するには、まず、図1に示すように、出発種棒11を垂直に配置し、この出発種棒11を軸周りに回転させながらその下端部分にガラス微粒子を堆積体(すす付け)させてガラス微粒子堆積体12を形成する。
【0012】
ガラス微粒子は、出発種棒11に向けて固定配置されたバーナ(図示せず)によって生成される。バーナは複数のポートを有しており、それぞれのポートに酸素、水素及びガラス原料ガスを導入して、加水分解反応によりガラス微粒子を生成させ、これを出発種棒11の下端部分における周囲に堆積させる。このとき、光ファイバとしたときにコアとなるべき部分を形成するために、ガラス原料ガスに屈折率調節用の添加剤を含有させることによって、軸方向の中心部分の屈折率が周囲より高くなるように設定する。屈折率調節用の添加剤は、例えば屈折率を上昇させるゲルマニウム(Ge)を中心部に含有させても良いし、また、屈折率を下降させるフッ素(F)を周囲の部分に含有させても良い。また、任意の屈折率分布を得るために複数の添加剤を適宜含有させることが可能である。
このようにすると、出発種棒11の下端部分にガラス微粒子が堆積されてガラス微粒子堆積体12が形成される。
【0013】
ここで、出発種棒11は、石英ガラスをホスト材料として作製されるが、少なくともガラス微粒子が堆積する先端部分に、高温加熱時(例えば2000℃)の粘度を低下させる添加剤を含有させておく。これにより、出発種棒11の先端部分を低粘度部11aとしておく。例えば、添加剤として、フッ素(F)、ゲルマニウム(Ge)、塩素(Cl)、ホウ素(B)、リン(P)等を含有するものが使用できる。添加剤の含有量は、例えば2000℃の高温加熱時において、低粘度部11aの粘度が、純石英よりも低く、かつ、ガラス微粒子堆積体12を透明化して得られる焼結体の最低粘度部分の粘度以上となるように調節する。
ここで、焼結体の最低粘度部分とは、ガラス微粒子堆積体12を作製する際に添加した屈折率調節用の添加剤が多く含まれた部分であり、一般にはコアとなるべき部分の中心部である。すなわち、出発種棒11と軸方向に連続した部分が焼結体の最低粘度部分となっている。また、出発種棒の粘度は、焼結体の最低粘度と同等か、もしくはそれ以上である。したがって、焼結体の最低粘度部分は、ガラス母材の最低粘度部分となっている。
【0014】
次に、ガラス微粒子堆積体12の透明化(焼結)処理について説明する。
出発種棒11にすす付けすることによって作製されたガラス微粒子堆積体12を加熱炉内で加熱する。このようにすると、多孔質体であったガラス微粒子堆積体12が焼結体となり透明化し、線引き時に光ファイバのコアあるいはコアとクラッドの一部となるガラス母材とされる。
【0015】
次に、このガラス母材を延伸させる延伸工程について説明する。
まず、図2に示すように、出発種棒11の対向側における焼結体13の端部にダミーガラス棒14を融着させる。
次いで、このガラス母材10を、非有効部の体積が大きな出発種棒11側を下側にし、図3に示すように、延伸炉21内に設置する。
ここで、この延伸炉21は、筒状の炉体22と、この炉体22の軸方向中間部分に設けられたヒータ23とを有しており、上端側には上側駆動部24が設けられ、下端側には下側駆動部25が設けられている。上側駆動部24にはダミーガラス棒14が接続され、下側駆動部25には出発種棒11が接続される。
上側駆動部24は、ガラス母材10の軟化させる部分をヒータ23に対して所定の位置に配置するように駆動される。下側駆動部25は、出発種棒11を下側に向けて引張り、ガラス母材10の軟化した部分を下側に向けて延伸するように駆動される。
【0016】
また、この延伸炉21には、延伸されたガラス母材10の外径寸法を検出する外径測定器26が設けられており、この外径測定器26からの測定データが制御部(図示せず)へ送信されるようになっている。そして、制御部は、延伸されたガラス母材10の外径が予め設定された目標値となるように、外径測定器26の測定データに基づいて上側駆動部24及び下側駆動部25の駆動速度を制御するように構成されている。
【0017】
まず、ガラス母材10を延伸する際には、ヒータ23によってガラス母材10の出発種棒11との連結側を2000℃程度に加熱し、下側駆動部25によって下方へ引き下げる。
このようにすると、加熱されたガラス母材13がその出発種棒11側から次第に延伸される。
【0018】
ここで、出発種棒11は、その少なくとも先端部分が、上述した低粘度部11aとされているので、高温加熱時(例えば2000℃)の粘度が純石英よりも低くされており、焼結体13の粘度に近づけられている。
これにより、図4に示すように、延伸開始部分において、出発種棒11と焼結体13との伸びの差が抑えられる。また、低粘度部11aと焼結体13との粘度差が全くない場合には、出発種棒11と焼結体13との間の伸びの差が発生しない。このようにして、出発種棒11の少なくとも先端部分を低粘度部11aとしておくことによって、延伸外径の変動が大幅に低減される。
これにより、延伸開始時にて延伸外径を容易にかつ迅速に安定させて所望の外径範囲に仕上げることができ、ガラス材料の無駄を大幅に抑えることができる。
【0019】
なお、上記実施形態では、出発種棒11の先端部分を、2000℃における粘度が純石英の粘度よりも小さく、かつ、ガラス母材10の最低粘度部分の粘度以上とされた低粘度部11aとしたが、出発種棒11のガラス微粒子堆積体12によって覆われた部分を低粘度部11aとしても良く、あるいは出発種棒11の全体を低粘度部11aとしても良い。
【0020】
(実施例)
次に、本発明に係るガラス母材の製造方法及びガラス母材の延伸方法の実施例について説明する。
直径70mmのガラス母材を直径30mmに延伸する際に、純石英から形成された出発種棒を用いた場合、延伸開始部分の出発種棒の先端部分で外径が約1.0mm細くなり、その後も外径が目標値に対して±0.8mmの範囲で変動した。そして、外径変動の許容範囲である±0.3mmまで安定するまでに、約500〜1000mmの延伸長を要した。
これに対して、出発種棒11の2000℃における粘度をガラス母材10の最も低い粘度に合わせたところ、延伸開始部分の出発種棒11の先端部分での外径変動が抑えられ、許容範囲である±0.3mm以内にすることができた。
【0021】
【発明の効果】
以上説明したように、本発明のガラス母材の製造方法及びガラス母材の延伸方法によれば、出発種棒の先端部分の2000℃における粘度が、ガラス微粒子堆積体の透明化した部分(焼結体)の2000℃における粘度に近づく。これにより、延伸工程を開始する際に、出発種棒と焼結体との伸びの差が抑えられ、あるいはなくされ、外径の変動が大幅に低減される。
これにより、延伸開始時にて外径を容易にかつ迅速に安定させて所望の外径範囲に仕上げることができ、材料の無駄を大幅に抑えることができる。
【図面の簡単な説明】
【図1】本発明に係るガラス母材の製造方法及びガラス母材の延伸方法の一実施形態を説明するガラス微粒子堆積体の側面図である。
【図2】ガラス母材にダミーロッドが接合された状態を示す側面図である。
【図3】図2に示したガラス母材を延伸するための延伸炉を示す概略断面図である。
【図4】図3に示したガラス母材の延伸開始部分を示す要部側面図である。
【図5】従来のガラス母材の製造方法及びガラス母材の延伸方法に係る出発種棒に堆積されたガラス微粒子堆積体を示す側面図である。
【図6】従来のガラス母材の製造方法及びガラス母材の延伸方法に係るダミーロッドが接合されたガラス母材を示す側面図である。
【図7】従来のガラス母材の製造方法及びガラス母材の延伸方法に係るガラス母材の延伸開始部分を示す要部側面図である。
【符号の説明】
10 ガラス母材
11 出発種棒
11a 低粘度部
12 ガラス微粒子堆積体
13 焼結体
14 ダミーガラス棒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a glass base material in which glass fine particles are deposited on the end of a starting seed bar to form a glass fine particle deposit body, and the glass fine particle deposit body is heated to be transparent, and the obtained glass base material is stretched The present invention relates to a method for stretching a glass base material.
[0002]
[Prior art]
In general, the core constituting the optical fiber is manufactured by heating a glass fine particle deposit and stretching a glass base material subjected to a transparency treatment.
As shown in FIG. 5, the glass base material 1 is prepared by depositing glass fine particles on a starting seed rod 2 made of pure quartz to produce a glass fine particle deposit 3, and then heating the glass fine particle deposit 3. And made transparent (sintered). An additive for adjusting the refractive index is added to the glass fine particle deposit 3 in order to form a portion to be a core at least in the center or in the whole. The transparent glass particle deposit 3 is called a sintered body.
[0003]
As shown in FIG. 6, when the glass base material 1 manufactured as described above is stretched, the dummy glass rod 5 is first melted at the end of the sintered body 4 on the opposite side of the starting seed rod 2. Put on. Here, the portions accumulated at the periphery of the starting seed rod 2 at the both end portions of the sintered body 4 and the portions where the outer shape on the dummy glass rod 5 side is not constant are ineffective portions and formed between the ineffective portions. A portion having a constant outer shape is an effective portion that can be used as a product after drawing.
Next, as shown in FIG. 7, the sintered seed 4 is pulled while being heated from the starting seed rod 2 side by the heater 6 in the drawing furnace with the starting seed rod 2 side where the volume of the ineffective portion is large facing down. . Thereby, the effective part is extended to a predetermined outer diameter.
[0004]
[Problems to be solved by the invention]
By the way, in the above case, when the sintered body 4 is heated by the heater 6 to start stretching, the viscosity of the starting seed rod 2 made of pure quartz becomes higher than that of the sintered body 4. Thus, when the viscosity of the starting seed rod 2 is high, the starting seed rod 2 is less likely to be stretched than the sintered body 4. Therefore, when the tip portion 2a of the starting seed rod 2 is stretched, the viscosity is drastically lowered at the boundary portion where the heated portion is transferred from the starting seed rod 2 to the sintered body 4. Due to this change in viscosity, immediately after the tip portion 2a of the starting seed bar 2 is stretched, the outer diameter of the sintered body 4 is stretched sharply and thinly.
[0005]
When the glass base material 1 is stretched, the speed at which the starting seed bar 2 is drawn is normally controlled so that the stretched outer diameter is constant, but this sudden variation in the outer diameter is stabilized within the allowable range of the target value. A considerable length of stretching is required until now. For this reason, the portion that is originally an effective portion fluctuates in outer diameter and cannot be used as a product, resulting in a waste of glass material.
[0006]
It is an object of the present invention to provide a glass base material manufacturing method and a glass base material capable of stabilizing the stretched outer diameter easily and quickly at the start of stretching of the glass base material, and greatly suppressing waste of the material. It is to provide a stretching method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a glass base material according to the present invention comprises the steps of depositing glass particles on the end of a starting seed bar to form a glass particle deposit, and heating the glass particle deposit to make it transparent. A method for producing a glass base material, wherein the starting seed bar contains quartz glass as a host material and an additive that lowers the viscosity during heating, and the viscosity at 2000 ° C. of the tip part of the starting seed bar is pure. It is smaller than the viscosity of quartz at 2000 ° C. and is equal to or higher than the viscosity of the lowest viscosity portion at 2000 ° C. of the glass base material.
Further, the method for producing a glass base material according to the present invention is such that the viscosity at 2000 ° C. of the portion covered with the glass fine particles of the starting seed bar is smaller than the viscosity at 2000 ° C. of pure quartz and 2000 ° C. of the glass base material. It may be greater than or equal to the viscosity of the lowest viscosity portion.
Further, the method for producing a glass base material according to the present invention is such that the viscosity of the entire starting seed bar at 2000 ° C. is smaller than the viscosity of pure quartz at 2000 ° C., and the minimum viscosity portion of the glass base material at 2000 ° C. It may be higher than the viscosity.
[0008]
In addition, the glass base material stretching method according to the present invention for achieving the above object comprises depositing glass particles on the end of the starting seed bar to form a glass particle deposit, and heating the glass particle deposit to make it transparent The glass base material is made by forming the glass base material, and then the glass base material is drawn from the connecting portion side with the starting seed bar while the starting seed bar is pulled in the axial direction to stretch the glass base material. The starting seed rod contains quartz glass as a host material and an additive that lowers the viscosity during heating, and the viscosity of the starting seed rod at 2000 ° C. is that of pure quartz at 2000 ° C. And the viscosity is equal to or higher than the viscosity of the lowest viscosity portion at 2000 ° C. of the glass base material.
The glass base material stretching method according to the present invention is such that the viscosity at 2000 ° C. of the portion covered by the glass fine particles of the starting seed bar is smaller than the viscosity of pure quartz at 2000 ° C., and the glass base material has 2000 ° C. It may be greater than or equal to the viscosity of the lowest viscosity portion.
The glass base material stretching method according to the present invention is such that the entire viscosity of the starting seed bar at 2000 ° C. is lower than that of pure quartz at 2000 ° C., and the glass base material has a minimum viscosity portion at 2000 ° C. It may be higher than the viscosity.
[0009]
Thus, by setting the viscosity at the time of high-temperature heating (2000 ° C.) at the tip portion or the portion covered or entirely covered with the glass fine particles of the starting seed rod as described above, the viscosity of the starting seed rod becomes the glass fine particles. It approaches the viscosity of the transparent part (sintered body) of the deposit. Thereby, when starting the stretching process, the difference in elongation between the starting seed bar and the sintered body is suppressed or eliminated, and the fluctuation of the outer diameter is greatly reduced.
As a result, the outer diameter can be easily and quickly stabilized at the start of stretching and finished in a desired outer diameter range, and waste of materials can be greatly suppressed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a glass base material manufacturing method and a glass base material stretching method according to the present invention will be described with reference to FIGS.
FIG. 1 is a side view of a glass particulate deposit for explaining an embodiment of a glass base material manufacturing method and a glass base material stretching method according to the present invention. FIG. 2 is a side view showing a state in which the dummy rod is joined to the glass base material. FIG. 3 is a schematic cross-sectional view showing a drawing furnace for drawing the glass base material shown in FIG. FIG. 4 is a side view of an essential part when the glass base material shown in FIG. 3 is stretched.
In the present embodiment, a method for manufacturing a glass base material by a VAD method (Vapor phase Axial Deposition) will be described as an example.
[0011]
In order to manufacture a glass base material by the VAD method, first, as shown in FIG. 1, a starting seed bar 11 is arranged vertically, and the starting seed bar 11 is rotated around its axis while glass fine particles are applied to its lower end portion. The glass particulate deposit 12 is formed by depositing (sooting).
[0012]
The glass fine particles are generated by a burner (not shown) fixedly arranged toward the starting seed bar 11. The burner has a plurality of ports. Oxygen, hydrogen, and glass raw material gas are introduced into each port to generate glass fine particles by a hydrolysis reaction, which is deposited around the lower end portion of the starting seed rod 11. Let At this time, the refractive index of the central portion in the axial direction becomes higher than the surroundings by adding an additive for adjusting the refractive index to the glass raw material gas in order to form a portion to be a core when an optical fiber is formed. Set as follows. The additive for adjusting the refractive index may contain, for example, germanium (Ge) for increasing the refractive index in the central part, or may contain fluorine (F) for decreasing the refractive index in the surrounding part. good. Moreover, in order to obtain arbitrary refractive index distribution, it is possible to contain a some additive suitably.
In this way, glass fine particles are deposited on the lower end portion of the starting seed bar 11 to form a glass fine particle deposit 12.
[0013]
Here, the starting seed bar 11 is manufactured using quartz glass as a host material, and at least a tip portion where glass fine particles are deposited contains an additive that lowers the viscosity when heated at a high temperature (for example, 2000 ° C.). . Thereby, the front-end | tip part of the starting seed | rod 11 is made into the low-viscosity part 11a. For example, an additive containing fluorine (F), germanium (Ge), chlorine (Cl), boron (B), phosphorus (P) or the like can be used. The content of the additive is, for example, the lowest viscosity part of the sintered body obtained by making the glass fine particle deposit 12 transparent when the viscosity of the low-viscosity part 11a is lower than that of pure quartz when heated at a high temperature of 2000 ° C. The viscosity is adjusted to be equal to or higher than.
Here, the lowest viscosity portion of the sintered body is a portion containing a large amount of an additive for adjusting the refractive index added when the glass fine particle deposit 12 is produced, and is generally the center of the portion to be the core. Part. That is, the portion continuous with the starting seed rod 11 in the axial direction is the lowest viscosity portion of the sintered body. The viscosity of the starting seed bar is equal to or higher than the minimum viscosity of the sintered body. Therefore, the lowest viscosity portion of the sintered body is the lowest viscosity portion of the glass base material.
[0014]
Next, the transparency (sintering) process of the glass fine particle deposit 12 will be described.
The glass fine particle deposit 12 produced by sooting the starting seed rod 11 is heated in a heating furnace. In this way, the glass fine particle deposit 12 that was a porous body becomes a sintered body, becomes transparent, and becomes a glass base material that becomes a core of the optical fiber or a part of the core and the clad during drawing.
[0015]
Next, a stretching process for stretching the glass base material will be described.
First, as shown in FIG. 2, the dummy glass rod 14 is fused to the end of the sintered body 13 on the opposite side of the starting seed rod 11.
Next, the glass base material 10 is placed in the drawing furnace 21 as shown in FIG.
Here, the drawing furnace 21 includes a cylindrical furnace body 22 and a heater 23 provided at an intermediate portion in the axial direction of the furnace body 22, and an upper drive unit 24 is provided on the upper end side. The lower drive unit 25 is provided on the lower end side. The dummy glass rod 14 is connected to the upper drive unit 24, and the starting seed bar 11 is connected to the lower drive unit 25.
The upper drive unit 24 is driven so as to place the softened portion of the glass base material 10 at a predetermined position with respect to the heater 23. The lower drive unit 25 is driven so that the starting seed bar 11 is pulled downward and the softened portion of the glass base material 10 is extended downward.
[0016]
Further, the drawing furnace 21 is provided with an outer diameter measuring device 26 for detecting the outer diameter of the stretched glass base material 10, and measurement data from the outer diameter measuring device 26 is transmitted to a control unit (not shown). Z)). And a control part is based on the measurement data of the outer diameter measuring device 26, and the upper side drive part 24 and the lower side drive part 25 are set so that the outer diameter of the stretched glass base material 10 may become a preset target value. The driving speed is configured to be controlled.
[0017]
First, when the glass base material 10 is stretched, the connecting side of the glass base material 10 to the starting seed bar 11 is heated to about 2000 ° C. by the heater 23 and pulled down downward by the lower drive unit 25.
If it does in this way, the heated glass base material 13 will be extended | stretched gradually from the starting seed | rod 11 side.
[0018]
Here, since the starting seed bar 11 has at least the tip portion of the low-viscosity portion 11a described above, the viscosity at the time of high-temperature heating (for example, 2000 ° C.) is lower than that of pure quartz. The viscosity is close to 13.
Thereby, as shown in FIG. 4, the difference in elongation between the starting seed bar 11 and the sintered body 13 is suppressed at the stretching start portion. Further, when there is no difference in viscosity between the low viscosity portion 11 a and the sintered body 13, no difference in elongation between the starting seed bar 11 and the sintered body 13 occurs. In this way, by setting at least the tip portion of the starting seed rod 11 as the low-viscosity portion 11a, fluctuations in the stretched outer diameter are greatly reduced.
Thereby, at the start of stretching, the stretched outer diameter can be easily and quickly stabilized and finished in a desired outer diameter range, and waste of the glass material can be significantly suppressed.
[0019]
In the above-described embodiment, the tip portion of the starting seed bar 11 has a low-viscosity portion 11a whose viscosity at 2000 ° C. is smaller than that of pure quartz and equal to or higher than the viscosity of the lowest viscosity portion of the glass base material 10; However, the portion of the starting seed rod 11 covered with the glass particulate deposit 12 may be the low viscosity portion 11a, or the entire starting seed rod 11 may be the low viscosity portion 11a.
[0020]
(Example)
Next, the Example of the manufacturing method of the glass base material which concerns on this invention, and the extending | stretching method of a glass base material is demonstrated.
When a starting seed rod made of pure quartz is used to stretch a 70 mm diameter glass base material to a diameter of 30 mm, the outer diameter is reduced by about 1.0 mm at the tip of the starting seed rod at the start of stretching, Thereafter, the outer diameter fluctuated within a range of ± 0.8 mm from the target value. And it took about 500 to 1000 mm of stretching length to stabilize to ± 0.3 mm which is an allowable range of outer diameter fluctuation.
On the other hand, when the viscosity at 2000 ° C. of the starting seed rod 11 is adjusted to the lowest viscosity of the glass base material 10, fluctuations in the outer diameter at the tip portion of the starting seed rod 11 at the stretching start portion can be suppressed, and the allowable range. Can be within ± 0.3 mm.
[0021]
【The invention's effect】
As described above, according to the glass base material manufacturing method and the glass base material stretching method of the present invention, the viscosity at 2000 ° C. of the tip portion of the starting seed bar is the transparent part of the glass fine particle deposit (the sintered body). It approaches the viscosity at 2000 ° C. Thereby, when starting the stretching process, the difference in elongation between the starting seed bar and the sintered body is suppressed or eliminated, and the fluctuation of the outer diameter is greatly reduced.
As a result, the outer diameter can be easily and quickly stabilized at the start of stretching and finished in a desired outer diameter range, and waste of materials can be greatly suppressed.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a side view of a glass particulate deposit for explaining an embodiment of a glass base material manufacturing method and a glass base material stretching method according to the present invention.
FIG. 2 is a side view showing a state in which a dummy rod is joined to a glass base material.
FIG. 3 is a schematic sectional view showing a drawing furnace for drawing the glass base material shown in FIG. 2;
4 is a side view of an essential part showing a drawing start portion of the glass base material shown in FIG. 3. FIG.
FIG. 5 is a side view showing a glass fine particle deposit deposited on a starting seed bar according to a conventional glass base material manufacturing method and glass base material stretching method.
FIG. 6 is a side view showing a glass base material to which a dummy rod according to a conventional glass base material manufacturing method and glass base material stretching method is joined.
FIG. 7 is a side view of a principal part showing a drawing start portion of a glass base material according to a conventional glass base material manufacturing method and glass base material drawing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Glass base material 11 Starting seed rod 11a Low-viscosity part 12 Glass fine particle deposit body 13 Sintered body 14 Dummy glass rod

Claims (6)

出発種棒の端部にガラス微粒子を堆積させてガラス微粒子堆積体となし、前記ガラス微粒子堆積体を加熱して透明化するガラス母材の製造方法であって、
前記出発種棒は石英ガラスをホスト材料として加熱時の粘度を低下させる添加剤を含有させておき、前記出発種棒の先端部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、前記ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とするガラス母材の製造方法。
A glass base material is produced by depositing glass fine particles on the end of a starting seed bar to form a glass fine particle deposit, and heating the glass fine particle deposit to make it transparent.
The starting seed rod contains quartz glass as a host material and an additive that lowers the viscosity during heating, and the viscosity at 2000 ° C. of the tip portion of the starting seed rod is smaller than the viscosity of pure quartz at 2000 ° C. And the manufacturing method of the glass base material characterized by being more than the viscosity of the minimum viscosity part in 2000 degreeC of the said glass base material.
前記出発種棒の前記ガラス微粒子によって覆われる部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、前記ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とする請求項1に記載のガラス母材の製造方法。  The viscosity at 2000 ° C. of the portion covered by the glass fine particles of the starting seed bar is smaller than the viscosity at 2000 ° C. of pure quartz and equal to or higher than the viscosity of the lowest viscosity portion at 2000 ° C. of the glass base material. The manufacturing method of the glass base material of Claim 1 characterized by the above-mentioned. 前記出発種棒の全体の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、前記ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とする請求項1に記載のガラス母材の製造方法。  The viscosity of the entire starting seed bar at 2000 ° C is smaller than the viscosity of pure quartz at 2000 ° C and is equal to or higher than the viscosity of the lowest viscosity portion at 2000 ° C of the glass base material. The manufacturing method of the glass base material as described in 2. 出発種棒の端部にガラス微粒子を堆積させてガラス微粒子堆積体となし、前記ガラス微粒子堆積体を加熱して透明化することでガラス母材となし、その後、前記ガラス母材を前記出発種棒との連結部分側から加熱しながら、前記出発種棒を軸方向へ引っ張り、前記ガラス母材を延伸させるガラス母材の延伸方法であって、
前記出発種棒は石英ガラスをホスト材料として加熱時の粘度を低下させる添加剤を含有させておき、前記出発種棒の先端部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、前記ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とするガラス母材の延伸方法。
Glass particulates are deposited on the end of the starting seed bar to form a glass particulate deposit, and the glass particulate deposit is heated to be transparent to form a glass base, and then the glass base is converted to the starting seed. The glass base material is drawn by pulling the starting seed bar in the axial direction while heating from the connecting portion side with the bar, and stretching the glass base material,
The starting seed rod contains quartz glass as a host material and an additive that lowers the viscosity during heating, and the viscosity at 2000 ° C. of the tip portion of the starting seed rod is smaller than the viscosity of pure quartz at 2000 ° C. And the glass base material drawing method, wherein the glass base material has a viscosity of not less than the viscosity of the lowest viscosity portion at 2000 ° C. of the glass base material.
前記出発種棒の前記ガラス微粒子によって覆われる部分の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、前記ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とする請求項4に記載のガラス母材の延伸方法。  The viscosity at 2000 ° C. of the portion covered by the glass fine particles of the starting seed bar is smaller than the viscosity at 2000 ° C. of pure quartz and equal to or higher than the viscosity of the lowest viscosity portion at 2000 ° C. of the glass base material. The glass base material stretching method according to claim 4, wherein the glass base material is stretched. 前記出発種棒の全体の2000℃における粘度が、純石英の2000℃における粘度よりも小さく、かつ、前記ガラス母材の2000℃における最低粘度部分の粘度以上であることを特徴とする請求項4に記載のガラス母材の延伸方法。  The total viscosity of the starting seed bar at 2000 ° C is smaller than the viscosity of pure quartz at 2000 ° C and is equal to or higher than the viscosity of the lowest viscosity portion at 2000 ° C of the glass base material. 2. A method for stretching a glass base material according to 1.
JP2002207336A 2002-07-16 2002-07-16 Manufacturing method of glass base material and drawing method of glass base material Expired - Fee Related JP4081713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207336A JP4081713B2 (en) 2002-07-16 2002-07-16 Manufacturing method of glass base material and drawing method of glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207336A JP4081713B2 (en) 2002-07-16 2002-07-16 Manufacturing method of glass base material and drawing method of glass base material

Publications (2)

Publication Number Publication Date
JP2004051382A JP2004051382A (en) 2004-02-19
JP4081713B2 true JP4081713B2 (en) 2008-04-30

Family

ID=31931827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207336A Expired - Fee Related JP4081713B2 (en) 2002-07-16 2002-07-16 Manufacturing method of glass base material and drawing method of glass base material

Country Status (1)

Country Link
JP (1) JP4081713B2 (en)

Also Published As

Publication number Publication date
JP2004051382A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US20040237595A1 (en) Method for producing an optical fiber preform
JPH0948629A (en) Optical fiber and its production
KR101426158B1 (en) Apparatus for fabricating optical fiber preform
JP4081713B2 (en) Manufacturing method of glass base material and drawing method of glass base material
EP1383714B1 (en) Method for producing an optical fiber preform
US5281248A (en) VAd process improvements
JPH0764578B2 (en) Manufacturing method of base material for single mode optical fiber
JP3576873B2 (en) Manufacturing method of optical fiber preform
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
JP7115095B2 (en) Manufacturing method of preform for optical fiber
JP2003261336A (en) Method for manufacturing transparent glass preform
JP3567636B2 (en) Base material for optical fiber and method of manufacturing the same
JP4271125B2 (en) Optical fiber preform drawing method
JPH08333129A (en) Method for drying and sintering porous glass optical waveguide preform
JP7024489B2 (en) Manufacturing method of base material for optical fiber
JP3825204B2 (en) GI type optical fiber preform manufacturing method and GI type optical fiber preform manufactured by this method
JPS6054936A (en) Manufacture of preform rod
JPH09100132A (en) Preform for optical fiber
JP3675581B2 (en) Method for synthesizing optical fiber base material and method for adjusting synthesis condition
JP2003321238A (en) Method and apparatus for producing optical fiber preform
JP4252871B2 (en) Optical fiber preform manufacturing method
JPS6128612B2 (en)
JP4404214B2 (en) Manufacturing method of glass preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JP2002274878A (en) Method for producing glass preform for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

R150 Certificate of patent or registration of utility model

Ref document number: 4081713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees