JP7024489B2 - Manufacturing method of base material for optical fiber - Google Patents

Manufacturing method of base material for optical fiber Download PDF

Info

Publication number
JP7024489B2
JP7024489B2 JP2018028919A JP2018028919A JP7024489B2 JP 7024489 B2 JP7024489 B2 JP 7024489B2 JP 2018028919 A JP2018028919 A JP 2018028919A JP 2018028919 A JP2018028919 A JP 2018028919A JP 7024489 B2 JP7024489 B2 JP 7024489B2
Authority
JP
Japan
Prior art keywords
base material
region
temperature
porous base
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028919A
Other languages
Japanese (ja)
Other versions
JP2019142746A (en
Inventor
達也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018028919A priority Critical patent/JP7024489B2/en
Priority to CN201910126212.7A priority patent/CN110171925B/en
Publication of JP2019142746A publication Critical patent/JP2019142746A/en
Application granted granted Critical
Publication of JP7024489B2 publication Critical patent/JP7024489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Description

本発明は、光ファイバ用母材の製造方法に関する。 The present invention relates to a method for manufacturing a base material for an optical fiber.

特許文献1は、ガラス微粒子を堆積してなる多孔質母材を脱水・透明ガラス化して光ファイバ母材用コア部材を製造し、所望のコア/クラッド比とするために該コア部材を延伸した後にクラッド部を付加する光ファイバ母材の製造方法を開示している。特許文献1においては、光ファイバ母材の下端から上端にかけて脱水および透明化を行っている。
特許文献2は、光ファイバ母材の製造方法に関し、光ファイバ用のスート母材を加熱炉内でトラバースさせて脱水する工程において、スート母材を2回以上トラバースさせ、各トラバースの間に待機ステップを設けることが開示されている。
特許文献3は、光ファイバ母材の多孔質スート体のガラス化方法に関し、炉心管内の電気ヒータのガラス化領域に対する多孔質スート体の位置に応じて、電気ヒータのガラス化温度を制御することが開示されている。具体的には、多孔質スート体の上端側が電気ヒータのガラス化領域にある場合は、多孔質スート体の上端側がガラス化領域にある場合よりもガラス化温度を下げることが記載されている。
In Patent Document 1, a porous base material formed by depositing glass fine particles is dehydrated and transparently vitrified to produce a core member for an optical fiber base material, and the core member is stretched to obtain a desired core / clad ratio. A method for manufacturing an optical fiber base material to which a clad portion is added later is disclosed. In Patent Document 1, dehydration and transparency are performed from the lower end to the upper end of the optical fiber base material.
Patent Document 2 relates to a method for manufacturing an optical fiber base material, in which the soot base material is traversed twice or more and waits between each traverse in a step of traversing the soot base material for optical fiber in a heating furnace to dehydrate the soot base material. It is disclosed to provide a step.
Patent Document 3 relates to a method for vitrifying a porous soot body of an optical fiber base material, and controls the vitrification temperature of the electric heater according to the position of the porous soot body with respect to the vitrified region of the electric heater in the core tube. Is disclosed. Specifically, it is described that when the upper end side of the porous soot body is in the vitrification region of the electric heater, the vitrification temperature is lowered as compared with the case where the upper end side of the porous soot body is in the vitrification region.

特開2007-284302号公報Japanese Unexamined Patent Publication No. 2007-284302 特開2003-277094号公報Japanese Unexamined Patent Application Publication No. 2003-277094 特開2003-81657号公報Japanese Patent Application Laid-Open No. 2003-81657

上記の特許文献1~3に示すように、脱水の際の温度を光ファイバ用母材の長手方向で一定にする、上端側で温度を上げる、あるいは上端側でトラバース速度を下げる方法が知られているが、これらの方法では光ファイバ用母材の上端側での脱水が十分ではなく、当該上端側で残留したOH基による伝送損失が増加し、歩留まり低下を招くおそれがある。 As shown in the above Patent Documents 1 to 3, a method of making the temperature at the time of dehydration constant in the longitudinal direction of the optical fiber base material, raising the temperature on the upper end side, or lowering the traverse speed on the upper end side is known. However, in these methods, dehydration on the upper end side of the optical fiber base material is not sufficient, and transmission loss due to the OH group remaining on the upper end side increases, which may lead to a decrease in yield.

そこで、本発明は、光ファイバ用母材の長手方向の全長にわたって安定して低い伝送損失を実現可能な光ファイバ用母材の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing an optical fiber base material that can stably realize a low transmission loss over the entire length in the longitudinal direction of the optical fiber base material.

本発明の一態様に係る光ファイバ用母材の製造方法は、
シリカ粒子を堆積させて製造した多孔質母材を加熱炉に挿入し、前記加熱炉内の加熱ゾーンに前記多孔質母材を順次送り込むことで脱水し焼結する光ファイバ用母材の製造方法であって、
前記多孔質母材は、その長手方向において、第一の領域と、前記多孔質母材の上端部を含む第二の領域とを含み、
前記加熱ゾーンの温度を、前記第二の領域を脱水する際に前記第一の領域を脱水する場合よりも低くする。
The method for producing a base material for an optical fiber according to one aspect of the present invention is as follows.
A method for producing a base material for an optical fiber, which is obtained by inserting a porous base material produced by depositing silica particles into a heating furnace and sequentially feeding the porous base material into a heating zone in the heating furnace to dehydrate and sinter. And
The porous base material includes a first region and a second region including the upper end portion of the porous base material in the longitudinal direction thereof.
The temperature of the heating zone is set lower when dehydrating the second region than when dehydrating the first region.

上記発明によれば、光ファイバ用母材の長手方向の全長にわたって安定して低い伝送損失を実現することができる。 According to the above invention, it is possible to stably realize a low transmission loss over the entire length in the longitudinal direction of the base material for an optical fiber.

光ファイバ用母材の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the base material for an optical fiber. 多孔質母材の構成を説明する図である。It is a figure explaining the structure of a porous base material. 本実施形態に係る製造方法によって製造された光ファイバ用母材の改善結果を説明する図である。It is a figure explaining the improvement result of the base material for an optical fiber manufactured by the manufacturing method which concerns on this embodiment.

(本発明の実施形態の説明)
最初に本発明の実施態様を列記して説明する。
本発明の一態様に係る光ファイバ用母材の製造方法は、
(1)シリカ粒子を堆積させて製造した多孔質母材を加熱炉に挿入し、前記加熱炉内の加熱ゾーンに前記多孔質母材を順次送り込むことで脱水し焼結する光ファイバ用母材の製造方法であって、
前記多孔質母材は、その長手方向において、第一の領域と、前記多孔質母材の上端部を含む第二の領域とを含み、
前記加熱ゾーンの温度を、前記第二の領域を脱水する際に前記第一の領域を脱水する場合よりも低くする。
上記方法によれば、光ファイバ用母材の長手方向の全長にわたって安定して低い伝送損失を実現することができる。
(Explanation of Embodiment of this invention)
First, embodiments of the present invention will be listed and described.
The method for producing a base material for an optical fiber according to one aspect of the present invention is as follows.
(1) A base material for an optical fiber that is dehydrated and sintered by inserting a porous base material produced by depositing silica particles into a heating furnace and sequentially feeding the porous base material into a heating zone in the heating furnace. It is a manufacturing method of
The porous base material includes a first region and a second region including the upper end portion of the porous base material in the longitudinal direction thereof.
The temperature of the heating zone is set lower when dehydrating the second region than when dehydrating the first region.
According to the above method, it is possible to stably realize a low transmission loss over the entire length in the longitudinal direction of the base material for an optical fiber.

(2)前記第一の領域を脱水する際の前記加熱ゾーンの温度が1200℃以上1300℃以下の範囲内であっても良い。
上記範囲内のように脱水時に多孔質母材が収縮する程度の温度領域で脱水する場合に、本願の方法を適用することがより好ましい。
(2) The temperature of the heating zone when dehydrating the first region may be in the range of 1200 ° C. or higher and 1300 ° C. or lower.
It is more preferable to apply the method of the present application in the case of dehydration in a temperature range where the porous base material shrinks at the time of dehydration as in the above range.

(3)前記第二の領域における脱水前の前記多孔質母材の外径に対する脱水後の前記多孔質母材の外径の比が、前記第一の領域における前記比よりも大きくても良い。
上記方法によれば、多孔質母材の第二の領域における脱水後の収縮を第一の領域における脱水後の収縮よりも抑えることで、上端部側も良好に脱水することができる。
(3) The ratio of the outer diameter of the porous base material after dehydration to the outer diameter of the porous base material before dehydration in the second region may be larger than the ratio in the first region. ..
According to the above method, by suppressing the shrinkage after dehydration in the second region of the porous base material more than the shrinkage after dehydration in the first region, the upper end side can also be satisfactorily dehydrated.

(4)前記第一の領域では、脱水前の前記外径に対する脱水後の前記外径の比を0.85倍以上0.95倍以下の範囲とし、前記第二の領域では、脱水前の前記外径に対する脱水後の前記外径の比を0.90倍以上1.00倍以下の範囲としても良い。
多孔質母材の上端部側を良好に脱水するために、上記範囲内の収縮比とすることがより好ましい。
(4) In the first region, the ratio of the outer diameter after dehydration to the outer diameter before dehydration is in the range of 0.85 times or more and 0.95 times or less, and in the second region, before dehydration. The ratio of the outer diameter after dehydration to the outer diameter may be in the range of 0.90 times or more and 1.00 times or less.
In order to satisfactorily dehydrate the upper end side of the porous base material, it is more preferable to set the shrinkage ratio within the above range.

(本発明の実施形態の詳細)
本発明の実施形態に係る光ファイバ用母材の製造方法の具体例を、以下に図面を参照しつつ説明する。
なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(Details of Embodiment of the present invention)
A specific example of the method for manufacturing the base material for an optical fiber according to the embodiment of the present invention will be described below with reference to the drawings.
It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

図1は、光ファイバ用母材の製造方法に用いられる加熱装置の一例を示す。
図1に示すように、加熱装置1は、加熱対象物である多孔質母材10を加熱処理するための加熱炉2を備えている。加熱炉2は、多孔質母材10が挿入される炉心管21を有している。炉心管21の下部には、炉心管21内にヘリウムガス等の不活性ガスや、塩素、フッ化物ガス等の腐食性ガスを導入するためのガス導入部22が設けられている。炉心管21の上部には、不要となったガスを炉心管21から排出するための排気部23が設けられている。
FIG. 1 shows an example of a heating device used in a method for manufacturing a base material for an optical fiber.
As shown in FIG. 1, the heating device 1 includes a heating furnace 2 for heat-treating the porous base material 10 which is an object to be heated. The heating furnace 2 has a core tube 21 into which the porous base material 10 is inserted. Below the core tube 21, a gas introduction section 22 for introducing an inert gas such as helium gas or a corrosive gas such as chlorine or fluoride gas is provided in the core tube 21. An exhaust unit 23 for discharging unnecessary gas from the core pipe 21 is provided in the upper part of the core pipe 21.

炉心管21の外周には、炉心管21と同心円状に配置されたヒータ24が設けられている。ヒータ24は、炉心管21の内部における加熱ゾーン25を中心に加熱するように設計されている。このため、多孔質母材10の加熱処理は、主に加熱ゾーン25内で行われる。ヒータ24の近傍にはヒータ24によって加熱された加熱ゾーン25の温度を測定するための温度計26が設けられている。 A heater 24 arranged concentrically with the core tube 21 is provided on the outer periphery of the core tube 21. The heater 24 is designed to heat around the heating zone 25 inside the core tube 21. Therefore, the heat treatment of the porous base material 10 is mainly performed in the heating zone 25. A thermometer 26 for measuring the temperature of the heating zone 25 heated by the heater 24 is provided in the vicinity of the heater 24.

また、加熱装置1は、各部の動作を制御する加熱制御部3を備えている。加熱制御部3は、ヒータ24および温度計26と電気的に接続されている。加熱制御部3は、例えば温度計26により測定された加熱ゾーン25の温度に基づいて、加熱ゾーン25の温度が所定の温度となるようにヒータ24の出力を制御する。 Further, the heating device 1 includes a heating control unit 3 that controls the operation of each unit. The heating control unit 3 is electrically connected to the heater 24 and the thermometer 26. The heating control unit 3 controls the output of the heater 24 so that the temperature of the heating zone 25 becomes a predetermined temperature based on, for example, the temperature of the heating zone 25 measured by the thermometer 26.

また、加熱装置1は、炉心管21内における多孔質母材10の位置を長手方向へトラバースさせるトラバース機構4を備えている。トラバース機構4は、加熱制御部3と電気的に接続されている。トラバース機構4は、シード棒41によって吊り下げられた多孔質母材10を、炉心管21内で加熱ゾーン25を通過させるために、加熱制御部3の制御に従って矢印42a,42bに示す上下方向へトラバースさせる。 Further, the heating device 1 includes a traverse mechanism 4 for traversing the position of the porous base material 10 in the core tube 21 in the longitudinal direction. The traverse mechanism 4 is electrically connected to the heating control unit 3. In order for the porous base material 10 suspended by the seed rod 41 to pass through the heating zone 25 in the core tube 21, the traverse mechanism 4 follows the control of the heating control unit 3 in the vertical direction indicated by arrows 42a and 42b. Traverse.

さらに、加熱装置1は、多孔質母材10までの距離を計測する変位センサ5を備えている。変位センサ5は、計測した距離に基づいて多孔質母材10の外径の変位を算出する。変位センサ5は、加熱制御部3と電気的に接続されている。変位センサ5で算出された変位データは、加熱制御部3に送信される。 Further, the heating device 1 includes a displacement sensor 5 that measures the distance to the porous base material 10. The displacement sensor 5 calculates the displacement of the outer diameter of the porous base material 10 based on the measured distance. The displacement sensor 5 is electrically connected to the heating control unit 3. The displacement data calculated by the displacement sensor 5 is transmitted to the heating control unit 3.

図2は、上記炉心管21内に挿入される多孔質母材10の一例を示す。多孔質母材10は、例えばVAD法あるいはOVD法等によってシリカ(石英)粒子を堆積させて合成された母材である。多孔質母材10は、炉心管21内で脱水および焼結されて透明な光ファイバ用母材(コア母材)となる。 FIG. 2 shows an example of the porous base material 10 inserted into the core tube 21. The porous base material 10 is a base material synthesized by depositing silica (quartz) particles by, for example, a VAD method or an OVD method. The porous base material 10 is dehydrated and sintered in the core tube 21 to become a transparent base material for optical fibers (core base material).

図2に示すように、多孔質母材10は、その長手方向(図2の上下方向)において、シード棒41に接続されている側(上側)に設けられた第二の領域11と、第二の領域の下側に第二の領域に連続して設けられた第一の領域12とを有している。 As shown in FIG. 2, the porous base material 10 has a second region 11 provided on the side (upper side) connected to the seed rod 41 in the longitudinal direction (vertical direction of FIG. 2) and a second region. It has a first region 12 continuously provided in the second region below the second region.

第二の領域11には、多孔質母材10の堆積開始点である上端13から多孔質母材10の径が安定する位置14までの領域(径が変化している領域)である上端部11aと、径が安定している定常部の最初のある程度の区間領域11bとが含まれている。 The second region 11 is an upper end portion (a region where the diameter is changing) from the upper end 13 which is the deposition start point of the porous base material 10 to the position 14 where the diameter of the porous base material 10 is stable. 11a and the first to some extent section region 11b of the stationary portion having a stable diameter are included.

第一の領域12には、上記区間領域11bに連続する定常部である定常領域12aと、定常領域12aに連続する領域で径が変化している下端部12bとが含まれている。 The first region 12 includes a stationary region 12a which is a stationary portion continuous with the section region 11b, and a lower end portion 12b whose diameter changes in the region continuous with the stationary region 12a.

なお、多孔質母材10の大きさとしては、例えば定常部の径が180mm以上の太さであることが好ましい。 The size of the porous base material 10 is preferably such that the diameter of the stationary portion is 180 mm or more.

次に、加熱装置1を用いて製造される光ファイバ用母材の製造方法について説明する。
ガス導入部22から所定量の不活性ガスおよび腐食性ガスを導入するとともに、排気部23から不要なガスを排出して、炉心管21内の圧力が大気圧よりも減圧された状態となるように制御する。また、ヒータ24を加熱させて炉心管21内の温度を上昇させる。
Next, a method of manufacturing a base material for an optical fiber manufactured by using the heating device 1 will be described.
A predetermined amount of inert gas and corrosive gas are introduced from the gas introduction unit 22, and unnecessary gas is discharged from the exhaust unit 23 so that the pressure in the core tube 21 becomes lower than the atmospheric pressure. To control. Further, the heater 24 is heated to raise the temperature inside the core tube 21.

多孔質母材10をトラバース機構4で上下方向へトラバースさせながら、加熱ゾーン25に順次送り込むことで、多孔質母材10の全体を脱水処理する。 The entire porous base material 10 is dehydrated by sequentially feeding the porous base material 10 into the heating zone 25 while traversing the porous base material 10 in the vertical direction by the traverse mechanism 4.

脱水処理する際の加熱ゾーン25の温度は、加熱対象物である多孔質母材10の部位毎に、所定の温度とするように設定されている。多孔質母材10の第二の領域11を脱水する際の加熱ゾーン25の温度は、第一の領域12を脱水する際の加熱ゾーン25の温度よりも低くするように設定されている。例えば第一の領域12を脱水する際の加熱ゾーン25の温度は、1200℃以上1300℃以下の範囲内とするように設定されている。また、第二の領域11を脱水する際の加熱ゾーン25の温度は、例えば1140℃~1200℃の範囲内とするように設定されている。 The temperature of the heating zone 25 during the dehydration treatment is set to a predetermined temperature for each part of the porous base material 10 which is the object to be heated. The temperature of the heating zone 25 when dehydrating the second region 11 of the porous base material 10 is set to be lower than the temperature of the heating zone 25 when dehydrating the first region 12. For example, the temperature of the heating zone 25 when dehydrating the first region 12 is set to be within the range of 1200 ° C. or higher and 1300 ° C. or lower. Further, the temperature of the heating zone 25 when dehydrating the second region 11 is set to be in the range of, for example, 1140 ° C to 1200 ° C.

具体的には、第一の領域12と第二の領域11とにおける脱水前後の多孔質母材10の外径の変化が以下の関係となるように設定されている。
第一の領域12における脱水前の多孔質母材10の外径をR1、脱水後の外径をr1とし、第二の領域11における脱水前の多孔質母材10の外径をR2、脱水後の外径をr2としたとき、(r2/R2)の方が(r1/R1)よりも大きくなるよう設定されている。
Specifically, the change in the outer diameter of the porous base material 10 before and after dehydration in the first region 12 and the second region 11 is set to have the following relationship.
The outer diameter of the porous base material 10 before dehydration in the first region 12 is R1, the outer diameter after dehydration is r1, and the outer diameter of the porous base material 10 before dehydration in the second region 11 is R2, dehydrated. When the latter outer diameter is r2, (r2 / R2) is set to be larger than (r1 / R1).

例えば、第一の領域12では、脱水前の外径R1に対する脱水後の外径r1の比r1/R1が0.85倍以上0.95倍以下の範囲となるように設定されている。第二の領域11では、脱水前の外径R2に対する脱水後の外径r2の比r2/R2が0.90倍以上1.00倍以下の範囲となるように設定されている。
すなわち、第二の領域11における脱水後の収縮を、第一の領域12における脱水後の収縮よりも抑制することができるように、上記加熱ゾーン25の各温度が設定されている。
For example, in the first region 12, the ratio r1 / R1 of the outer diameter r1 after dehydration to the outer diameter R1 before dehydration is set to be in the range of 0.85 times or more and 0.95 times or less. In the second region 11, the ratio r2 / R2 of the outer diameter r2 after dehydration to the outer diameter R2 before dehydration is set to be in the range of 0.90 times or more and 1.00 times or less.
That is, each temperature of the heating zone 25 is set so that the shrinkage after dehydration in the second region 11 can be suppressed more than the shrinkage after dehydration in the first region 12.

加熱ゾーン25の温度は、ヒータ24の出力を制御することにより調整されている。温度計26で加熱ゾーン25の温度を測定しながら、加熱ゾーン25の温度が予め設定されている上記加熱温度となるように、加熱制御部3によってヒータ24の出力が制御される。多孔質母材10のトラバース中において、加熱ゾーン25の温度を第一の領域12を脱水する温度から第二の領域11を脱水する温度へ移行させる場合には、例えば階段状(傾斜状)に温度が変化(下降)するようにヒータ24の出力が制御される。加熱ゾーン25の温度を第二の領域11を脱水する温度から第一の領域12を脱水する温度へ移行させる場合も同様に階段状に温度が変化(上昇)するように制御される。 The temperature of the heating zone 25 is adjusted by controlling the output of the heater 24. While measuring the temperature of the heating zone 25 with the thermometer 26, the output of the heater 24 is controlled by the heating control unit 3 so that the temperature of the heating zone 25 becomes the preset heating temperature. In the traverse of the porous base material 10, when the temperature of the heating zone 25 is shifted from the temperature at which the first region 12 is dehydrated to the temperature at which the second region 11 is dehydrated, for example, in a stepped shape (inclined shape). The output of the heater 24 is controlled so that the temperature changes (decreases). Similarly, when the temperature of the heating zone 25 is shifted from the temperature at which the second region 11 is dehydrated to the temperature at which the first region 12 is dehydrated, the temperature is controlled to change (rise) in a stepwise manner.

処理中における多孔質母材10の外径の変位、すなわち多孔質母材10の収縮率は、変位センサ5によって計測され、変位センサ5から加熱制御部3に送信される。加熱制御部3は、受信した変位データに基づいて、ヒータ24の出力制御、あるいはトラバース機構4のトラバース速度の制御等を調整するようにしてもよい。 The displacement of the outer diameter of the porous base material 10 during the treatment, that is, the shrinkage rate of the porous base material 10, is measured by the displacement sensor 5 and transmitted from the displacement sensor 5 to the heating control unit 3. The heating control unit 3 may adjust the output control of the heater 24, the control of the traverse speed of the traverse mechanism 4, and the like based on the received displacement data.

このようにして脱水処理された多孔質母材10は、続いて焼結処理が施されて、透明化した光ファイバ用母材となる。 The porous base material 10 dehydrated in this way is subsequently subjected to a sintering treatment to become a transparent base material for an optical fiber.

ところで、従来、外径が太い(例えば180mm以上の)光ファイバ用母材(以下、大型コアと称する)は、通常の太さ(例えば150mm)のもの(以下、通常コアと称する)に比べて、OH基ロス(残留したOH基)による伝送損失が高い傾向にあった。特に、光ファイバ用母材の種付部側(上端側)における伝送損失が高く、その原因究明と改善が望まれていた。 By the way, conventionally, a base material for an optical fiber having a large outer diameter (for example, 180 mm or more) (hereinafter referred to as a large core) is compared with a material having a normal thickness (for example, 150 mm) (hereinafter referred to as a normal core). , The transmission loss due to the OH group loss (remaining OH group) tended to be high. In particular, the transmission loss on the seeded portion side (upper end side) of the base material for optical fiber is high, and it has been desired to investigate the cause and improve it.

本発明者がこの原因を検討したところ、従来の製造方法で製造した場合、大型コアは、通常コアに比べて、脱水前後における多孔質母材の収縮が大きいことが分かった。また、大型コアは、通常コアに比べて、一般的に高い温度で多孔質母材が脱水処理されていることが分かった。そして、多孔質母材を高い加熱温度で脱水処理した場合、その高熱により多孔質母材の表面層が収縮して固まってしまい、その結果、水分が多孔質母材の内部に溜まって外部に排出されなくなり脱水不足になってしまうことがOH基ロスの原因の一つであることを見い出した。 When the present inventor investigated the cause of this, it was found that when manufactured by the conventional manufacturing method, the large core shrinks more before and after dehydration than the normal core. It was also found that in the large core, the porous base material was generally dehydrated at a higher temperature than in the normal core. When the porous base material is dehydrated at a high heating temperature, the surface layer of the porous base material shrinks and hardens due to the high heat, and as a result, water accumulates inside the porous base material and goes to the outside. It was found that one of the causes of OH group loss is that it is not discharged and dehydration is insufficient.

例えば、大型コア用の多孔質母材を従来の製造方法で脱水処理した場合、図3の(a)に示すように、脱水後の多孔質母材(実線51で示す)は、脱水前の多孔質母材(破線52で示す)と比べて収縮しており、特に上端側の第二の領域11における収縮量が大きい。その収縮率は、図3の(c)において折れ線71に示すように、多孔質母材の第一の領域12で平均77.6%、第二の領域11で平均67.3%であった。なお、ここでいう脱水処理前後での多孔質母材の「収縮率」は、脱水前の多孔質母材の外径をR、脱水後の多孔質母材の外径をrとすると、収縮率(%)=r/R×100で算出されたものである。また、その脱水温度は、図3の(b)において折れ線61で示される1280℃であった。なお、通常コアの脱水温度は、例えば1210℃程度である。 For example, when the porous base material for a large core is dehydrated by a conventional manufacturing method, the porous base material after dehydration (shown by the solid line 51) is before dehydration, as shown in FIG. 3 (a). It is shrunk as compared with the porous base material (indicated by the broken line 52), and the amount of shrinkage is particularly large in the second region 11 on the upper end side. As shown by the polygonal line 71 in FIG. 3C, the shrinkage ratio was 77.6% on average in the first region 12 of the porous base material and 67.3% on average in the second region 11. .. The "shrinkage rate" of the porous base material before and after the dehydration treatment is assumed to be R when the outer diameter of the porous base material before dehydration is R and r when the outer diameter of the porous base material after dehydration is r. It is calculated by the rate (%) = r / R × 100. The dehydration temperature was 1280 ° C., which is shown by the polygonal line 61 in FIG. 3 (b). The dehydration temperature of the core is usually about 1210 ° C.

そこで、先ず、本発明者は、脱水温度に着目し、図3の(b)において折れ線62に示すように、脱水温度を1220℃に低減して大型コアの脱水処理を行った。その結果、収縮率は、図3の(c)において折れ線72に示すように、多孔質母材の第一の領域12で平均86.9%、第二の領域11で平均80.4%に改善することができた。 Therefore, first, the present inventor paid attention to the dehydration temperature, and as shown in the broken line 62 in FIG. 3 (b), the dehydration temperature was reduced to 1220 ° C. to perform the dehydration treatment of the large core. As a result, the shrinkage rate averaged 86.9% in the first region 12 and 80.4% in the second region 11 of the porous base material, as shown by the polygonal line 72 in FIG. 3 (c). I was able to improve.

次に、第二の領域11における収縮をさらに抑制させるために、第二の領域11の脱水温度を、図3の(b)において折れ線63に示すように、さらに低減させた。折れ線63では、第一の領域12の端部から第二の領域11に向かって、脱水温度(1220℃)を徐々に低下させて、1160℃に達したところで一定に維持させている。このように変化させた脱水温度で脱水処理を行った結果、図3の(c)において折れ線73に示すように、多孔質母材の第二の領域11で、さらに大きく収縮を抑制することができた。その結果、大型コアの全体の収縮を、図3の(c)において折れ線74に示す通常コアの全体の収縮(収縮率平均91.8%)と同等まで抑制することができた。
これにより、光ファイバ用母材の本数ベースでのOH基ロスによる不良率を、従来の16.3%から、5.2%に低減することができた。
Next, in order to further suppress the shrinkage in the second region 11, the dehydration temperature of the second region 11 was further reduced as shown by the polygonal line 63 in FIG. 3 (b). In the polygonal line 63, the dehydration temperature (1220 ° C.) is gradually lowered from the end of the first region 12 toward the second region 11, and is maintained constant when the temperature reaches 1160 ° C. As a result of the dehydration treatment at the dehydration temperature changed in this way, as shown by the polygonal line 73 in FIG. 3 (c), the shrinkage can be further suppressed in the second region 11 of the porous base material. did it. As a result, the total shrinkage of the large core could be suppressed to the same level as the total shrinkage of the normal core (contract rate average 91.8%) shown in the polygonal line 74 in FIG. 3 (c).
As a result, the defect rate due to OH group loss on the basis of the number of base materials for optical fibers could be reduced from the conventional 16.3% to 5.2%.

このように、本例の光ファイバ用母材の製造方法によれば、第二の領域11を脱水する際の加熱ゾーン25の温度が第一の領域12を脱水する際の加熱ゾーン25の温度よりも低くなるように制御されている。このため、脱水時における光ファイバ用母材の長手方向の全長にわたって収縮を抑制することができ、安定して低い伝送損失を実現することができる。 As described above, according to the method for manufacturing the base material for optical fiber of this example, the temperature of the heating zone 25 when dehydrating the second region 11 is the temperature of the heating zone 25 when dehydrating the first region 12. It is controlled to be lower than. Therefore, shrinkage can be suppressed over the entire length of the optical fiber base material in the longitudinal direction during dehydration, and stable and low transmission loss can be realized.

また、本製造方法によれば、第一の領域12を脱水する際の加熱ゾーン25の温度が1200℃以上1300℃以下の範囲内となるように制御されている。このように脱水時に多孔質母材10が収縮する程度の温度領域で脱水する場合に、本製造方法を適用することがより好ましい。本製造方法は、例えば180mm以上の太径を有する多孔質母材10を脱水する場合に適している。 Further, according to the present manufacturing method, the temperature of the heating zone 25 when dehydrating the first region 12 is controlled to be within the range of 1200 ° C. or higher and 1300 ° C. or lower. It is more preferable to apply this production method when dehydration is performed in a temperature range in which the porous base material 10 shrinks during dehydration. This manufacturing method is suitable for dehydrating a porous base material 10 having a large diameter of, for example, 180 mm or more.

また、本製造方法によれば、第二の領域11における脱水前後に多孔質母材10の外径の比が、第一の領域12における脱水前後の外径の比よりも大きくなるように制御されている。このように、多孔質母材10の第二の領域11における脱水後の収縮を第一の領域12における脱水後の収縮よりも抑えることで、多孔質母材10の上端部側も良好に脱水することができる。例えば、第一の領域12では脱水前後の外径の比を0.85倍以上0.95倍以下の範囲とし、第二の領域11では上記外径の比を0.90倍以上1.00倍以下の範囲とすることで、多孔質母材10の上端部側を良好に脱水することができる。 Further, according to the present manufacturing method, the ratio of the outer diameter of the porous base material 10 before and after dehydration in the second region 11 is controlled to be larger than the ratio of the outer diameter before and after dehydration in the first region 12. Has been done. In this way, by suppressing the shrinkage after dehydration in the second region 11 of the porous base material 10 more than the shrinkage after dehydration in the first region 12, the upper end side of the porous base material 10 is also satisfactorily dehydrated. can do. For example, in the first region 12, the ratio of the outer diameter before and after dehydration is in the range of 0.85 times or more and 0.95 times or less, and in the second region 11, the ratio of the outer diameter is 0.90 times or more and 1.00 times. By setting the range to twice or less, the upper end side of the porous base material 10 can be satisfactorily dehydrated.

以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Further, the number, position, shape and the like of the constituent members described above are not limited to the above-described embodiment, and can be changed to a number, position, shape and the like suitable for carrying out the present invention.

1:加熱装置
2:加熱炉
3:加熱制御部
4:トラバース機構
5:変位センサ
10:多孔質母材
11:第二の領域
12:第一の領域
11a:上端部
11b:区間領域
12a:定常領域
21:炉心管
24:ヒータ
25:加熱ゾーン
1: Heating device 2: Heating reactor 3: Heating control unit 4: Traverse mechanism 5: Displacement sensor 10: Porous base material 11: Second region 12: First region 11a: Upper end 11b: Section region 12a: Steady Area 21: Core tube 24: Heater 25: Heating zone

Claims (3)

シリカ粒子を堆積させて製造した多孔質母材を加熱炉に挿入し、前記加熱炉内の加熱ゾーンに前記多孔質母材を順次送り込むことで脱水し焼結する光ファイバ用母材の製造方法であって、
前記多孔質母材は、その長手方向において、第一の領域と、前記多孔質母材の上端部を含む第二の領域とを含み、
前記加熱ゾーンの温度を、前記第二の領域を脱水する際に前記第一の領域を脱水する場合よりも低く
前記多孔質母材のトラバース中において、前記加熱ゾーンの温度を前記第一の領域を脱水する温度から前記第二の領域を脱水する温度へ移行させる場合は、傾斜状に温度が下降するように前記加熱ゾーンの温度が制御され、
前記多孔質母材のトラバース中において、前記加熱ゾーンの温度を前記第二の領域を脱水する温度から前記第一の領域を脱水する温度へ移行させる場合は、傾斜状に温度が上昇するように前記加熱ゾーンの温度を制御し、
前記第二の領域は脱水する温度が一定に維持される領域を含み、
前記第二の領域における脱水前の前記多孔質母材の外径に対する脱水後の前記多孔質母材の外径の比が、前記第一の領域における前記比よりも大きい、光ファイバ用母材の製造方法。
A method for producing a base material for an optical fiber, which is obtained by inserting a porous base material produced by depositing silica particles into a heating furnace and sequentially feeding the porous base material into a heating zone in the heating furnace to dehydrate and sinter. And
The porous base material includes a first region and a second region including the upper end portion of the porous base material in the longitudinal direction thereof.
The temperature of the heating zone is set lower when dehydrating the second region than when dehydrating the first region.
In the traverse of the porous base material, when the temperature of the heating zone is shifted from the temperature at which the first region is dehydrated to the temperature at which the second region is dehydrated, the temperature is lowered in an inclined manner. The temperature of the heating zone is controlled
In the traverse of the porous base material, when the temperature of the heating zone is shifted from the temperature at which the second region is dehydrated to the temperature at which the first region is dehydrated, the temperature is increased in an inclined manner. By controlling the temperature of the heating zone,
The second region includes a region in which the dehydration temperature is maintained constant.
The ratio of the outer diameter of the porous base material after dehydration to the outer diameter of the porous base material before dehydration in the second region is larger than the ratio in the first region, the base material for optical fiber. Manufacturing method.
前記第一の領域を脱水する際の前記加熱ゾーンの温度が1200℃以上1300℃以下の範囲内である、請求項1に記載の光ファイバ用母材の製造方法。 The method for producing an optical fiber base material according to claim 1, wherein the temperature of the heating zone when dehydrating the first region is within the range of 1200 ° C. or higher and 1300 ° C. or lower. 前記第一の領域では、脱水前の前記外径に対する脱水後の前記外径の比を0.85倍以上0.95倍以下の範囲とし、前記第二の領域では、脱水前の前記外径に対する脱水後の前記外径の比を0.90倍以上1.00倍以下の範囲とする、請求項1または請求項2に記載の光ファイバ用母材の製造方法。 In the first region, the ratio of the outer diameter after dehydration to the outer diameter before dehydration is in the range of 0.85 times or more and 0.95 times or less, and in the second region, the outer diameter before dehydration. The method for producing a base material for an optical fiber according to claim 1 or 2 , wherein the ratio of the outer diameter after dehydration to the above is in the range of 0.90 times or more and 1.00 times or less.
JP2018028919A 2018-02-21 2018-02-21 Manufacturing method of base material for optical fiber Active JP7024489B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018028919A JP7024489B2 (en) 2018-02-21 2018-02-21 Manufacturing method of base material for optical fiber
CN201910126212.7A CN110171925B (en) 2018-02-21 2019-02-20 Method for manufacturing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028919A JP7024489B2 (en) 2018-02-21 2018-02-21 Manufacturing method of base material for optical fiber

Publications (2)

Publication Number Publication Date
JP2019142746A JP2019142746A (en) 2019-08-29
JP7024489B2 true JP7024489B2 (en) 2022-02-24

Family

ID=67689129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028919A Active JP7024489B2 (en) 2018-02-21 2018-02-21 Manufacturing method of base material for optical fiber

Country Status (2)

Country Link
JP (1) JP7024489B2 (en)
CN (1) CN110171925B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277094A (en) 2002-03-20 2003-10-02 Fujikura Ltd Method for manufacturing optical fiber preform
JP2005320197A (en) 2004-05-10 2005-11-17 Fujikura Ltd Apparatus for manufacturing optical fiber preform, and method of manufacturing optical fiber preform
JP2014162689A (en) 2013-02-26 2014-09-08 Sumitomo Electric Ind Ltd Method for manufacturing glass preform

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260436A (en) * 1984-06-08 1985-12-23 Sumitomo Electric Ind Ltd Manufacture of glass base material for optical fiber
JPH0699163B2 (en) * 1985-07-30 1994-12-07 古河電気工業株式会社 Vitrification method of optical fiber base material
JPH08225337A (en) * 1995-02-22 1996-09-03 Sumitomo Electric Ind Ltd Production of optical fiber preformed material
JPH11322356A (en) * 1998-05-11 1999-11-24 Furukawa Electric Co Ltd:The Dehydration and making transparent glass of optical fiber porous preform and apparatus therefor
KR100521958B1 (en) * 2002-09-18 2005-10-14 엘에스전선 주식회사 method and apparatus for fabricating of optical fiber preform with double torch in MCVD
KR100640438B1 (en) * 2004-11-26 2006-10-30 삼성전자주식회사 Apparatus and method for heating porous preform
JP4789689B2 (en) * 2006-04-18 2011-10-12 信越化学工業株式会社 Low loss optical fiber preform manufacturing method
JP6545925B2 (en) * 2013-10-04 2019-07-17 住友電気工業株式会社 Method of manufacturing glass base material for optical fiber
JP2016088821A (en) * 2014-11-10 2016-05-23 信越化学工業株式会社 Sintering device and sintering method of porous glass preform for optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277094A (en) 2002-03-20 2003-10-02 Fujikura Ltd Method for manufacturing optical fiber preform
JP2005320197A (en) 2004-05-10 2005-11-17 Fujikura Ltd Apparatus for manufacturing optical fiber preform, and method of manufacturing optical fiber preform
JP2014162689A (en) 2013-02-26 2014-09-08 Sumitomo Electric Ind Ltd Method for manufacturing glass preform

Also Published As

Publication number Publication date
CN110171925B (en) 2022-11-29
CN110171925A (en) 2019-08-27
JP2019142746A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP4022769B2 (en) Glass pipe processing method
JP3988088B2 (en) Method for drying and sintering a porous glass optical waveguide preform
JP5603024B2 (en) Optical fiber preform manufacturing method
JPH0948629A (en) Optical fiber and its production
JP5572022B2 (en) Manufacturing method of primary preform for optical fiber
CN111615499B (en) Method for manufacturing optical fiber preform, method for manufacturing optical fiber, and optical fiber
JP2007269527A (en) Method for manufacturing optical fiber perform and method for determining dehydration condition of porous glass preform
US6827883B2 (en) Optical fiber preform and the method of producing the same
JP4348341B2 (en) Optical fiber preform manufacturing method
JP7024489B2 (en) Manufacturing method of base material for optical fiber
KR20140065292A (en) Apparatus for fabricating optical fiber preform
EP1035082B1 (en) Process and apparatus for sintering a porous glass preform
JP2003261336A (en) Method for manufacturing transparent glass preform
US20040099013A1 (en) Optical fibers and methods of fabrication
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP2836302B2 (en) Method for manufacturing glass articles
US20220081345A1 (en) Manufacturing method of glass base material for optical fiber
JP6597177B2 (en) Manufacturing method of optical fiber preform
JP4403623B2 (en) Optical fiber preform manufacturing method
JP4737189B2 (en) Manufacturing method of glass base material
JP2011230989A (en) Manufacturing method for glass preform
JP4071348B2 (en) Optical fiber preform dehydration method
JPH08333129A (en) Method for drying and sintering porous glass optical waveguide preform
JP4081713B2 (en) Manufacturing method of glass base material and drawing method of glass base material
JP2003321238A (en) Method and apparatus for producing optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7024489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150