JPH1068001A - Intermetallic-compound consumable electrode for rotational electrode process and its production - Google Patents

Intermetallic-compound consumable electrode for rotational electrode process and its production

Info

Publication number
JPH1068001A
JPH1068001A JP8226530A JP22653096A JPH1068001A JP H1068001 A JPH1068001 A JP H1068001A JP 8226530 A JP8226530 A JP 8226530A JP 22653096 A JP22653096 A JP 22653096A JP H1068001 A JPH1068001 A JP H1068001A
Authority
JP
Japan
Prior art keywords
electrode
powder
temperature
intermetallic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8226530A
Other languages
Japanese (ja)
Inventor
Ryohei Kumagai
良平 熊谷
Masami Yoshitake
雅美 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP8226530A priority Critical patent/JPH1068001A/en
Publication of JPH1068001A publication Critical patent/JPH1068001A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode for a rotational electrode process having an optional composition by mixing raw powders having a specified grain diameter into a target composition, press-forming a mixture, heating a compact to a specified temp. in a nonoxidizing atmosphere to bring about an exothermic reaction and then heat-treating a compact. SOLUTION: The raw powders having <=150μm grain diameter and one of which consists of Al are mixed into a target composition, a mixture is press- formed, and a compact is heated to >=873K in a nonoxidizing atmosphere to bring about an exothermic reaction. The compact is heat-treated at >=1273K to obtain the intermetallic-compd. consumable electrode for a rotational electrode process contg. <=1000ppm oxygen and Al.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末製造方法の1
種である回転電極法を利用して、Alを含む金属間化合
物の球形粉を製造する場合に用いるための消耗電極と、
その製造方法に関するものである。
[0001] The present invention relates to a method for producing a powder.
A consumable electrode for use in producing a spherical powder of an intermetallic compound containing Al using a rotating electrode method as a seed,
The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】TiAlやNbAl金属間化合物は高温
構造材料としての開発が進められている。これらは、脆
く延性に乏しい材料であるため溶解鋳造材から高温鍛造
や高温熱処理によって、構造材料として、加工できる材
質への改善が試みられて来て実験規模ではかなりの見通
しが得れている。
2. Description of the Related Art TiAl and NbAl intermetallic compounds are being developed as high-temperature structural materials. Since these materials are brittle and have poor ductility, attempts have been made to improve the structure of the material from a molten cast material to a workable material as a structural material by high-temperature forging or high-temperature heat treatment, and considerable prospects have been obtained on an experimental scale.

【0003】一方、これらの金属間化合物は難加工性材
料であるため実用にあったては粉末冶金法を応用した部
材成形も必要である。さらに、複合材料の開発において
も、粉末の利用が考えられている。このような粉末のニ
ーズに対して、従来、粉末およびその製造技術について
もいくつかのものが紹介されて来た。そのひとつは、原
料の金属粉末を目標組成に配合したものをボールミルや
アトライターなどを使って長時間練り合わせるメカニカ
ルアロイング法の応用である。この方法によっても金属
間化合物が合成されることは多くの研究によって立証さ
れている。しかし、この方法は、数百時間という長時間
を要する点と、製造装置内に原料粉がこびりつくことに
よる混練効果の不均一または装置材料の摩耗粉による不
純物の混入および、とくに酸素量の増加があって1%近
くにまで過大になるのが現状のため、実用部材の製造に
使うにはまだこれらの欠点の克服を必要としている。
On the other hand, since these intermetallic compounds are difficult-to-process materials, they need to be formed into members by applying powder metallurgy in practical use. Further, in the development of composite materials, the use of powder has been considered. In response to such needs for powders, some powders and their production techniques have been introduced. One of them is an application of a mechanical alloying method in which a mixture of raw metal powders having a target composition is kneaded for a long time using a ball mill or an attritor. Many studies have proved that an intermetallic compound can be synthesized by this method. However, this method requires a long time of several hundred hours, a non-uniform kneading effect due to the sticking of the raw material powder in the manufacturing apparatus or the mixing of impurities due to abrasion powder of the equipment material, and an increase in the amount of oxygen in particular. Under these circumstances, the current situation is that the ratio is excessively increased to nearly 1%, so that it is still necessary to overcome these drawbacks for use in the production of practical parts.

【0004】他のひとつの製法としては、配合された粉
末に着火して自己発熱反応させたのち粉砕することによ
り粉末をつくる方法があり、燃焼合成法として検討され
て来た。しかし、この方法で造られた粉末は主として粉
砕の工程で酸素量は4000ppm付近まで増え過大に
なるという問題がある。これらの金属間化合物は、たと
え本発明がねらいとする粉末冶金法においても粉末から
成形されたものは、構造材料としての加工において常温
の延性を数%以上確保することが望ましく、その基本的
条件として酸素量は少なくとも1000ppm以下であ
ることが必要である。したがって粉末化の工程で酸素量
の増加がない方法として、回転電極法が有効な粉末製造
方法であると言える。この方法は、酸素量が増加しない
という事は、使用する電極材において低酸素材を得る必
要がある。
[0004] As another production method, there is a method of igniting a blended powder, causing a self-heating reaction, and then pulverizing the powder to produce a powder, which has been studied as a combustion synthesis method. However, the powder produced by this method has a problem that the amount of oxygen increases mainly to about 4000 ppm in the pulverization step and becomes excessive. Even if these intermetallic compounds are formed from powder even in the powder metallurgy method aimed at by the present invention, it is desirable to secure a ductility at room temperature of several percent or more in processing as a structural material. It is necessary that the oxygen amount is at least 1000 ppm or less. Therefore, it can be said that the rotating electrode method is an effective powder manufacturing method as a method in which the amount of oxygen does not increase in the powdering step. In this method, since the amount of oxygen does not increase, it is necessary to obtain a low acid material in the electrode material used.

【0005】従来、このために溶解鋳造インゴットを電
極材に加工して用いられて来た。しかし、TiAlにお
いては原料のTiとAlの融点差は約1,160K、N
bAlにおいては約1755Kもあり、くり返し溶解を
重ねることにより成分偏析を克服して来た。ここで、電
極材とするにはさらに新たな問題として、溶解インゴッ
ト中における金属間化合物が、回転電極法で造ろうとす
る粉末粒径より大きいものを含み、融点がより低いまわ
りの相の溶解によって流動し、十分に融合しないまま、
非球形粉となって飛散し、粉末中に混在する。したがっ
て、従来は鋳造インゴットを熱処理し均一なラメラー組
織にするか、または小規模溶解から、電極1本、1本の鋳
造で粒成長を抑制したインゴットを作製して用いて来て
おり、実験室的手法の域を出ていないばかりか、鋳造か
らスタートする材料の製法にくらべ、さらに粉末へもど
してインッゴットへ到るというまわり道をしていた。
Heretofore, for this purpose, a melt-cast ingot has been used after being processed into an electrode material. However, in TiAl, the melting point difference between the raw material Ti and Al is about 1,160K,
bAl has a temperature of about 1755K, and has been able to overcome component segregation by repeated dissolution. Here, as a further new problem to be used as an electrode material, the intermetallic compound in the melted ingot includes one having a particle size larger than the powder particle size to be produced by the rotating electrode method, and melting of the surrounding phase having a lower melting point. Fluid, not fully fused,
It scatters as non-spherical powder and is mixed in the powder. Therefore, in the past, cast ingots were heat-treated to have a uniform lamellar structure, or small-scale melting was used to produce and use ingots that suppressed grain growth by casting one electrode and one electrode. Not only was it out of the field of traditional techniques, but it was also a detour to return to powder and reach the ingot, as compared to the method of material production starting from casting.

【0006】[0006]

【発明が解決しようとする問題点】粉末の利用は最終的
には、ホットプレスやHIPによってバルク材をつくる
ものであるが、その酸素含有量は室温の延性に関係し、
燃焼合成による粉末の4000ppmでも、それによる
バルク材の引張伸びは1%程度である。ホットプレスや
HIPの工程で酸素量が増えるものではないので、粉末
自身の酸素量を下げておく必要がある。粉末の製法とし
て回転電極法を利用すれば、その工程で、酸素量は増え
ないという利点がある。したがって、電極材の酸素量を
低くすることが必要で、本発明のひとつのねらいは、こ
の点にある。
Problems to be Solved by the Invention The use of powders ultimately involves making bulk materials by hot pressing or HIP, but the oxygen content is related to the ductility at room temperature,
Even with 4000 ppm of the powder produced by combustion synthesis, the tensile elongation of the bulk material due to it is about 1%. Since the amount of oxygen does not increase in the process of hot pressing or HIP, it is necessary to reduce the amount of oxygen in the powder itself. If the rotating electrode method is used as the powder production method, there is an advantage that the amount of oxygen does not increase in the process. Therefore, it is necessary to reduce the amount of oxygen in the electrode material, and one of the aims of the present invention is in this respect.

【0007】次に、従来低酸素電極として、溶解鋳造に
よるインゴットを電極材に利用する方法をとって来た。
この場合、溶解炉材からの酸素ピックアップを避ける溶
解法をとり、且つ、構成材料の物性値のちがいからくる
溶解偏析を生じないようくり返し溶解操作を行なって来
た。しかし、回転電極法においては、電極面に融液が形
成されると遠心力によって直ちに流動し、電極端部から
液滴となって飛散することから、本発明が対象とするよ
うな金属間化合物材料は、融点の異なる化合物によって
構成されるため、これらが電極材中で大きく偏在する
と、電極面での融液中に融合しない化合物が残り、見か
け上は、粉末の中に非球状粉末として混在する。この点
は、電極材を溶解鋳造してつくる場合に留意すべき点で
あり、この事のみについて言えばメカニカルアロイング
や燃焼合成の方法が電極材の製法に適している。本発明
は回転電極法における粉末生成現象の特性をもとに、電
極材からのこのような偏析を粉末へもたらさないように
なされたものである。
Next, a method of using an ingot obtained by melting and casting as an electrode material has been conventionally used as a low oxygen electrode.
In this case, a melting method for avoiding oxygen pick-up from the melting furnace material has been adopted, and a melting operation has been repeatedly performed so as not to cause melting segregation due to differences in physical property values of constituent materials. However, in the rotating electrode method, when a melt is formed on the electrode surface, it flows immediately by centrifugal force and scatters as a droplet from the electrode end, so that an intermetallic compound as the object of the present invention is Since the materials are composed of compounds with different melting points, if they are unevenly distributed in the electrode material, compounds that do not fuse in the melt on the electrode surface will remain, and apparently mixed as non-spherical powder in the powder I do. This point is a point to be noted when the electrode material is produced by melting and casting, and if only this is mentioned, the method of mechanical alloying or combustion synthesis is suitable for the production method of the electrode material. The present invention has been made to prevent such segregation from the electrode material into the powder based on the characteristics of the powder generation phenomenon in the rotating electrode method.

【0008】[0008]

【課題を解決するための手段】本発明の第1は、150
μm以下の構成元素または化合物が分散して存在し、酸
素量が1000ppm以下のAl含有金属間化合物で直
径が30mmを超え、80mm未満の回転電極法用金属
間化合物消耗電極。本発明の第2は、粒径が150μm
より小さい原料粉末を、作ろうとする金属間化合物の目
標組成に配合し混合したものをプレス成形し、非酸化性
雰囲気の中でいったん873Kから徐々に昇温し、自己
発熱反応をおこさせたのち、次に1273K以上の温度
で拡散熱処理し、これを直径が30mmを超え、80m
m未満の丸棒に加工することによって、回転電極用金属
間化合物消耗電極を製造する方法である。
SUMMARY OF THE INVENTION The first aspect of the present invention is to provide a digital camera having a 150
An intermetallic compound consumable electrode for a rotary electrode method in which a constituent element or compound having a particle size of μm or less is dispersed and an oxygen content is 1000 ppm or less, and the diameter is more than 30 mm and less than 80 mm. The second aspect of the present invention is that the particle size is 150 μm.
The smaller raw material powder is blended with the target composition of the intermetallic compound to be prepared and mixed and press-formed, and then gradually heated from 873K in a non-oxidizing atmosphere to cause a self-heating reaction. Then, a diffusion heat treatment is performed at a temperature of 1273K or more, which is
This is a method for producing an intermetallic compound consumable electrode for a rotating electrode by processing the rod into a round bar of less than m.

【0009】その技術的構成は、原料粉末の粒径をあと
の拡散熱処理との関係ならび回転電極法における溶解均
一化の点から制限したこと、自己発熱反応合成はプレス
成形後におこない、反応を完全に行なわしめると共に酸
素量が増えるおそれのある粉砕工程を入れずにそのまま
電極材にしたこと、反応合成は、そこで炉温の上昇操作
を停めて、反応熱による炉の損傷を防止した事、その
後、さらに高温の熱処理を以て、成分の拡散と組織の均
等化を行わしめたこと、そして回転電極法の溶解現象か
ら電極径を限定することにより、溶解面の融液の均一融
合を行わしめた事にある。
The technical constitution is that the particle size of the raw material powder is limited in relation to the subsequent diffusion heat treatment and in terms of the uniform dissolution in the rotating electrode method, and the self-heating reaction synthesis is performed after press molding to complete the reaction. The electrode material was used as it was without a pulverizing process that could increase the amount of oxygen at the same time, and the reaction synthesis stopped the furnace temperature raising operation there to prevent damage to the furnace due to reaction heat. In addition, the diffusion of the components and the homogenization of the structure were achieved by further high-temperature heat treatment, and the uniform fusion of the melt on the melting surface was achieved by limiting the electrode diameter from the melting phenomenon of the rotating electrode method. It is in.

【0010】[0010]

【発明の実施の形態】本発明における電極の製造は、1
50μm以下の原料粉末の混合粉を用いており、自己発
熱反応合成を含んでいる。昇温過程でAlの融点近傍に
おいて合成反応がはじまるが、Al以外の高融点原料の
粒径が大きいと、末反応で残留することが多くの実験結
果によってわかった。その限界は150μm以上のとこ
ろにあり、本発明では完全に反応がおこる150μm以
下に限定したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production of an electrode according to the present invention is as follows.
A mixed powder of raw material powders having a size of 50 μm or less is used, and includes self-heating reaction synthesis. Many experimental results have shown that the synthesis reaction starts near the melting point of Al during the temperature raising process, but if the particle size of the high melting point material other than Al is large, it remains in the end reaction. The limit is 150 μm or more, and in the present invention, it is limited to 150 μm or less at which a complete reaction occurs.

【0011】また、この150μmは本発明の方法によ
る回転電極溶解の際の均一化融合の限界値でもある。原
料粉末の混合は不活性ガス中でおこない、密度に大きな
差のある材料の混合法であれば十分である。プレス成形
は、原料粉末の形状によっては単軸プレスでも良いが、
成形密度にバラツキの少ない冷間静水圧加圧(CIP)に
よるのが望ましく、最終の電極形状を得る寸法に行な
う。本発明条件の原料においては340MPaで十分で
ある。これによってあとの反応合成における熱電導が得
られ反応は十分に進行する。
The value of 150 μm is also a limit value of the homogenizing fusion at the time of melting the rotating electrode by the method of the present invention. The mixing of the raw material powders is performed in an inert gas, and a method of mixing materials having a large difference in density is sufficient. Press molding may be a uniaxial press depending on the shape of the raw material powder,
It is desirable to use cold isostatic pressurization (CIP), which has a small variation in the molding density, and to obtain a final electrode shape. For the raw material under the conditions of the present invention, 340 MPa is sufficient. As a result, thermoconductivity in the subsequent reaction synthesis is obtained, and the reaction proceeds sufficiently.

【0012】合成反応は873K以上に加熱することに
よって開始する。反応熱によって炉温が上昇するので炉
の損傷をおこさないために、反応の終結を炉温の管理に
よって見極めたのち、次に高温熱処理の温度へ昇温する
ものである。CIP成形されたものを不活性ガス雰囲気
のもとで、擬HIPを利用して合成反応をおこさせる方
法は、反応合成によって、体積の膨張があるのを抑制す
る効果があり、この方法は本発明に含まれる1態様であ
る。反応合成した電極は異種の金属間化合物を混在し、
組織は不均一をともなうものである。これをさらに12
73K以上で高温熱処理し、組織の均一化と成分拡散を
行うものである。成分元素の拡散は温度と時間との関係
で進み、1273K以下ではいたづらに長時間を要する
もので実用的には材料に応じ1273K以上で融点未満
の温度で行なうものである。このようにして得られた電
極材中の金属間化合物は、150μmを超えるものはな
く、鋳造電極とは特徴的に異なるものである。
The synthesis reaction is started by heating to 873K or higher. In order to prevent damage to the furnace because the furnace temperature rises due to the reaction heat, the end of the reaction is determined by controlling the furnace temperature, and then the temperature is raised to the high-temperature heat treatment temperature. A method of causing a synthetic reaction of a CIP molded product in an inert gas atmosphere by using pseudo-HIP has an effect of suppressing volume expansion due to reaction synthesis. This is one embodiment included in the invention. Reaction-synthesized electrodes contain different types of intermetallic compounds,
The tissue is heterogeneous. Add this to another 12
A high-temperature heat treatment at 73 K or more is performed to homogenize the structure and diffuse components. The diffusion of the component elements progresses in a relationship between temperature and time, and it takes much longer at 1273K or less. In practice, the diffusion is performed at a temperature of 1273K or more and less than the melting point depending on the material. The intermetallic compound in the electrode material thus obtained does not exceed 150 μm and is characteristically different from the cast electrode.

【0013】本発明のように溶解せず粉末原料から出発
してつくられた電極は、若干の気孔を有するため回転電
極溶解において鋳造電極とは異なる溶解現象を示すため
電極サイズを本発明は30mmを超え、80mm未満に
限定するものである。30mm以下では、電極の溶解面
に融液の保持が難しく、電極面において、液体となっ
て、直ちに飛行し去る。一方、80mm以上では電極の
固体部分への熱拡散によって溶解面の融液が、一部凝固
し、適正な融液保持ができなくなり、液滴の飛散が円滑
におこなわれなくなる。この点を解決する手段は更に熱
源のパワーアップですむものではなく、回転電極法にお
ける電極面での融液の流動と電極端部における液滴の生
成現象を考慮した熱源の配置を必要とし、通常の回転電
極法とは別の技術を要するものである。
[0013] An electrode made from a powder material without melting as in the present invention has some pores and exhibits a dissolution phenomenon different from that of a cast electrode in rotating electrode melting. And is limited to less than 80 mm. If the thickness is less than 30 mm, it is difficult to hold the melt on the dissolving surface of the electrode, and it becomes a liquid on the electrode surface and immediately flies away. On the other hand, if it is 80 mm or more, the melt on the melting surface partially solidifies due to thermal diffusion to the solid portion of the electrode, making it impossible to hold the melt properly and the droplets are not scattered smoothly. The means to solve this point does not simply increase the power of the heat source, but requires the arrangement of the heat source in consideration of the flow of the melt on the electrode surface and the generation of droplets at the end of the electrode in the rotating electrode method. This requires another technique different from the rotating electrode method.

【0014】金属間化合物の構成組織には融点差の大き
いものが含まれ、もしも電極材で組織の偏析が大きく残
っていると低融点組織部分の先行溶解がおこり、電極面
で融液の流動がはじまり、特定の組成化合物が分離した
まま粉末中に非球形粉として混在する。これを皆滅する
ため、電極材の熱処理による組織改善に加えて、電極の
溶解面においても若干とけ込んた凹面状態をとり、融液
層を電極面に保持するのが有効であり、そのような手段
がとれる電極径は30mmを超え、80mm未満であ
る。
The constituent structure of the intermetallic compound includes a structure having a large melting point difference. If a large amount of segregation of the structure remains in the electrode material, the pre-dissolution of the low melting point structure portion occurs, and the flow of the melt on the electrode surface is caused. Begins, and the specific composition compound is mixed as a non-spherical powder in the powder while being separated. In order to eliminate this, in addition to improving the structure by heat treatment of the electrode material, it is effective to maintain the melt layer on the electrode surface by taking a slightly concave shape on the dissolution surface of the electrode. The diameter of the electrode from which it can be removed is more than 30 mm and less than 80 mm.

【0015】[0015]

【実施例】原料粉はTiについては水素化チタンの不活
性ガス中における粉砕を経て脱水素処理した酸素量が8
00ppmのものを用い、Nbは化学的な精製を経てつ
くられた酸素量が590ppmのものを用い、Alにつ
いてはアルゴンガスアトマイズによってつくられた酸素
量が900ppmのものを用いた。
[Embodiment] As for the raw material powder, the amount of oxygen obtained by dehydrogenating titanium hydride through grinding in an inert gas is 8
As for Nb, the one having an oxygen amount of 590 ppm produced through chemical purification was used, and for Al, the one having an oxygen amount produced by argon gas atomization of 900 ppm was used for Al.

【0016】これらはグローブボックスを用いてアルゴ
ンガス雰囲気の中で、篩分し、夫々の粒径のものを同じ
くこのグローブボックスの中でTiとAlについては重
量比で67:33にNbとAlの組合せについては重量
比で94:6に配合した。これらは円筒形の容器に夫々
密閉封入したのちグローブボックスから取り出し、3次
元揺動のミキサーに装着し、30分間運転した。運転後
1時間たって混合粉を取り出し、ネオプレン製の円筒容
器に脱気、封入したのちCIP機を使って、340MP
aの水圧により丸棒に成形した。
These are sieved in an argon gas atmosphere using a glove box, and those having respective particle diameters are similarly weighed in the glove box with respect to Ti and Al in a weight ratio of 67:33 for Nb and Al. Was combined in a weight ratio of 94: 6. These were sealed and sealed in cylindrical containers, respectively, taken out of the glove box, mounted on a three-dimensional swinging mixer, and operated for 30 minutes. One hour after the operation, the mixed powder was taken out, degassed and sealed in a neoprene cylindrical container, and then 340MP using a CIP machine.
A round bar was formed by the water pressure of a.

【0017】成形された丸棒はジルコニア粉末に埋めて
真空炉に入れ、圧力5×10-3Pa以下において、先ず
873Kまで昇温し、炉温計を見ながら除々に昇温し、
自己発熱反応がはじまったら、炉の昇温をやめ、反応完
結を待った。炉温が落ちついたところで再び昇温し、高
温処理を行なった。電極の酸素量はNo.3のTiAlに
おいて840ppm、No.14 のNbAlにおいて、6
10ppmであった。
The molded round bar is buried in zirconia powder and placed in a vacuum furnace. At a pressure of 5 × 10 −3 Pa or less, the temperature is first raised to 873 K, and the temperature is gradually increased while watching the furnace thermometer.
When the self-heating reaction started, the temperature of the furnace was stopped and the reaction was completed. When the furnace temperature settled down, the temperature was raised again to perform a high temperature treatment. The oxygen content of the electrode was 840 ppm for No. 3 TiAl and 6% for No. 14 NbAl.
It was 10 ppm.

【0018】高温熱処理を行なった丸棒は機械加工によ
り、各サイズの電極に仕上げ、回転電極装置を用いて、
粉末を製造した。電極径とプラズマ回転電極の操業条件
および得られた粉末の形状をまとめて表に示す。
The round bar that has been subjected to the high-temperature heat treatment is finished into electrodes of various sizes by machining, and is rotated using a rotating electrode device.
A powder was produced. The table summarizes the electrode diameter, operating conditions of the plasma rotating electrode, and the shape of the obtained powder.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の方法によれば、原料粉末とその
配合比の選択によって任意の組成の回転電極法用電極を
つくることができ、この電極から得られる回転電極粉末
は、従来の他のどの方法による粉末よりも酸素量を低く
することができる。将来の材料とされるAlを含む金属
間化合物の難加工性を粉末冶金法で克服するために十分
な性能の粉末を提供できるものである。
According to the method of the present invention, an electrode for a rotating electrode method having an arbitrary composition can be prepared by selecting a raw material powder and a compounding ratio thereof. The amount of oxygen can be made lower than that of the powder obtained by any of the above methods. The present invention can provide a powder having sufficient performance to overcome the difficult-to-workability of an intermetallic compound containing Al, which will be a future material, by powder metallurgy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 150μm以下の構成元素または化合物
が分散して存在し、酸素量が1000ppm以下のAl
含有金属間化合物で直径が30mmを超え、80mm未
満の回転電極法用金属間化合物消耗電極。
Claims: 1. An Al element containing a constituent element or compound having a particle size of 150 μm or less dispersed therein and having an oxygen content of 1000 ppm or less.
A consumable intermetallic compound electrode for a rotating electrode method having a diameter of more than 30 mm and less than 80 mm in a contained intermetallic compound.
【請求項2】 粒径が150μmより小さい原料粉末の
うち、そのひとつがAlであって、これらを目標組成に
配合し、混合したものをプレス成形し、非酸化性雰囲気
の中でいったん873K以上の温度に加熱し、自己発熱
反応をおこさせたのち、次に1273K以上の温度で熱
処理してつくることを特徴とする回転電極法用金属間化
合物消耗電極の製造方法。
2. Among the raw material powders having a particle size smaller than 150 μm, one of them is Al, and these are blended to a target composition, and the mixture is press-molded, and once subjected to 873K or more in a non-oxidizing atmosphere. A self-exothermic reaction, followed by a heat treatment at a temperature of 1273 K or more, to produce a consumable electrode for a rotating electrode method.
JP8226530A 1996-08-28 1996-08-28 Intermetallic-compound consumable electrode for rotational electrode process and its production Pending JPH1068001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8226530A JPH1068001A (en) 1996-08-28 1996-08-28 Intermetallic-compound consumable electrode for rotational electrode process and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8226530A JPH1068001A (en) 1996-08-28 1996-08-28 Intermetallic-compound consumable electrode for rotational electrode process and its production

Publications (1)

Publication Number Publication Date
JPH1068001A true JPH1068001A (en) 1998-03-10

Family

ID=16846588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8226530A Pending JPH1068001A (en) 1996-08-28 1996-08-28 Intermetallic-compound consumable electrode for rotational electrode process and its production

Country Status (1)

Country Link
JP (1) JPH1068001A (en)

Similar Documents

Publication Publication Date Title
JP2691221B2 (en) Method for forming metal-second phase composite
CN103443311B (en) For the production of the method for titanium alloy welding wire
JP2009074127A (en) Sintered sputtering target material and manufacturing method therefor
CZ245295A3 (en) Magnesium alloys containing beryllium and process for producing thereof
JP4280215B2 (en) Manufacturing method of oxide dispersion type alloy
TW201103999A (en) Method for manufacturing nickel alloy target
CN108149057B (en) A kind of AgCuNiV alloy material and preparation method thereof
JPH1068001A (en) Intermetallic-compound consumable electrode for rotational electrode process and its production
JP3721557B2 (en) Thermoelectric material manufacturing method
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
JPH02259029A (en) Manufacture of aluminide
JP2749165B2 (en) TiA-based composite material and method for producing the same
JPH03219035A (en) Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0254760A (en) Manufacture of target
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JPS61145828A (en) Sputtering target and manufacture of the same
JP2583313B2 (en) Method for producing Nb-Ti alloy
JPH05214477A (en) Composite material and its manufacture
JPH04371536A (en) Production of tial intermetallic compound powder
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
JP2005303326A (en) MnSi1.7 SYSTEM THERMOELECTRIC MATERIAL

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208