JP2583313B2 - Method for producing Nb-Ti alloy - Google Patents

Method for producing Nb-Ti alloy

Info

Publication number
JP2583313B2
JP2583313B2 JP1182235A JP18223589A JP2583313B2 JP 2583313 B2 JP2583313 B2 JP 2583313B2 JP 1182235 A JP1182235 A JP 1182235A JP 18223589 A JP18223589 A JP 18223589A JP 2583313 B2 JP2583313 B2 JP 2583313B2
Authority
JP
Japan
Prior art keywords
semi
alloy
mixture
producing
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1182235A
Other languages
Japanese (ja)
Other versions
JPH0347930A (en
Inventor
靖三 田中
章二 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1182235A priority Critical patent/JP2583313B2/en
Publication of JPH0347930A publication Critical patent/JPH0347930A/en
Application granted granted Critical
Publication of JP2583313B2 publication Critical patent/JP2583313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNb−Ti系合金の製造方法に関する。The present invention relates to a method for producing an Nb—Ti alloy.

〔従来の技術〕[Conventional technology]

従来、超電導材料などとして利用されるNb−Ti系合金
のインゴットは、以下のような方法により製造されてい
る。すなわち、 イ)第2図に示すように、細いニオブ棒と細いチタン棒
を所望組成比、例えば、50wt%:50wt%になるように束
ねて混合体(1)を構成し、この混合体(1)と水冷鋳
型(2)を真空容器(3)中にセットし、電源(4)を
操作して混合体(1)と水冷鋳型(2)との間でアーク
(5)を発生させ、その熱で混合体(1)を溶融して形
成された合金ドロップ(6)を水冷鋳型(2)中のプー
ル部(7)に落下させ、凝固させて合金インゴット
(8)を形成するアーク溶解法。
Conventionally, an ingot of an Nb-Ti alloy used as a superconducting material or the like has been manufactured by the following method. (A) As shown in FIG. 2, a thin niobium rod and a thin titanium rod are bundled so as to have a desired composition ratio, for example, 50 wt%: 50 wt% to form a mixture (1). 1) and the water-cooled mold (2) are set in the vacuum vessel (3), and the power supply (4) is operated to generate an arc (5) between the mixture (1) and the water-cooled mold (2); The alloy drop (6) formed by melting the mixture (1) with the heat is dropped into a pool portion (7) in a water-cooled mold (2) and solidified to form an alloy ingot (8) by arc melting. Law.

ロ)上述の混合体に電子ビームを照射し、その熱で混合
体を溶融して形成された合金ドロップを水冷鋳型中のプ
ール部に落下させ、凝固させて合金インゴットを形成す
る電子ビーム溶解法。
B) An electron beam melting method in which the mixture is irradiated with an electron beam, and the mixture is melted by the heat to drop an alloy drop formed in a pool in a water-cooled mold and solidify to form an alloy ingot. .

ハ)ニオブ粉とチタン粉より圧縮混合体を形成し、真空
容器中で加熱圧縮し、冷却して合金インゴットを形成す
る粉末法。
C) A powder method in which a compressed mixture is formed from niobium powder and titanium powder, heated and compressed in a vacuum vessel, and cooled to form an alloy ingot.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述のNb−Ti系合金の製造方法には次
のような問題点があった。すなわち、 イ)アーク溶解法では、プール部の鋳型近傍と中央部間
に大きな温度勾配が生じるため、Tiが偏析し、インゴッ
ト外周部ではTi温度が高く、結晶粒が大きくなる。
However, the above-described method for producing an Nb-Ti alloy has the following problems. That is, a) In the arc melting method, a large temperature gradient is generated between the vicinity of the mold and the center of the pool, so that Ti segregates, and the Ti temperature is high at the outer periphery of the ingot, and the crystal grains become large.

ロ)電子ビーム溶解法では、高真空を同作要件とするた
め、Tiの歩留りが悪く、またプール部の温度勾配により
インゴット外周部ではTi濃度が高く、結晶粒が大きくな
る。
B) In the electron beam melting method, since the high vacuum is required for the same operation, the yield of Ti is poor, and the Ti concentration is high at the outer periphery of the ingot due to the temperature gradient of the pool, and the crystal grains become large.

ハ)粉末法では、Ti濃度に大きな変動は生じないが、ボ
イドが多く、結晶粒については、混粒や粗大粒が多くな
る。
C) In the powder method, there is no large change in the Ti concentration, but there are many voids, and as for the crystal grains, there are many mixed grains and coarse grains.

〔課題を解決するための手段と作用〕[Means and actions for solving the problem]

本発明は上記問題点を解決したNb−Ti系合金の製造方
法を提供するもので、少なくとも純ニオブと純チタンの
二種類の原料を混合して混合体を形成する工程と、該混
合体を圧縮して圧縮体を形成する工程と、該圧縮体を加
熱してその一部分を半溶融体とし、該半溶融体部と非半
溶融体部とを相対的に回転させる工程と、前記半溶融体
部を圧縮体中で移動させ、冷却し凝固させる工程とを有
することを第1発明とし、半溶融体部と非半溶融体部の
相対的回転速度が100rpm以上であることを第2発明と
し、半溶融体部の凝固温度が1℃/min以上であることを
第3発明とするものである。
The present invention provides a method for producing an Nb-Ti alloy that solves the above problems, and a step of forming a mixture by mixing at least two kinds of raw materials of pure niobium and pure titanium; and Compressing to form a compressed body, heating the compressed body to make a part thereof a semi-molten body, and relatively rotating the semi-molten body portion and the non-semi-melted body portion; A first invention in which a body part is moved in a compressed body, cooled and solidified, and a second invention is that the relative rotational speed of the semi-molten body part and the non-semi-melted body part is 100 rpm or more. A third invention is that the solidification temperature of the semi-solid portion is 1 ° C./min or more.

本発明は最近開発された半凝固加工法を応用したもの
である。半凝固加工法は、溶融状態の金属と固体化した
金属が共存した状態で、機械的に強力にかくはんするこ
とにより、生成する樹枝状晶を破壊して金属の粒子と液
体が混在するスラリーを造り、それを成形加工する方法
である。半凝固加工法により製造された合金は、偏析な
どの欠陥がなく、結晶粒が微細化しているという特徴が
ある。
The present invention is an application of a recently developed semi-solid processing method. In the semi-solidification method, in a state in which a molten metal and a solidified metal coexist, mechanically stirring vigorously destroys dendrites that are formed, and forms a slurry in which metal particles and a liquid are mixed. It is a method of making and forming it. The alloy manufactured by the semi-solidification processing method is characterized by having no defects such as segregation and having fine crystal grains.

上述のように、純ニオブと純チタンを混合して形成さ
れた圧縮体を加熱して部分的に半溶融体とし、半溶融体
部と非半溶融体部を相対的に回転させると、NbTiのスラ
リーが作られる。この際に、回転速度を100rpm以上にす
ると結晶粒を1mm以下に微細化することができる。ま
た、半溶融体部を移動させ、冷却する際に、冷却温度を
1℃/min以上にすることにより、さらに結晶粒を微細化
することができる。この冷却速度を下廻ると粒は粗大化
するが偏析は少ない状態となる。しかし結晶粒の粗大化
は加工性を阻害するため好ましくない。
As described above, the compressed body formed by mixing pure niobium and pure titanium is partially heated to a semi-molten body, and when the semi-molten body part and the non-semi-melted body part are relatively rotated, NbTi Slurry is produced. At this time, if the rotation speed is set to 100 rpm or more, the crystal grains can be refined to 1 mm or less. Further, when the semi-solid portion is moved and cooled, by setting the cooling temperature to 1 ° C./min or more, crystal grains can be further refined. If the cooling rate is lower than this, the grains become coarse but segregation is reduced. However, coarsening of crystal grains is not preferable because it impairs workability.

〔実施例〕〔Example〕

以下、図面に示した実施例に基づいて本発明を説明す
る。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1図は本発明にかかる一実施例の説明図であり、真
空容器(13)中に混合体(11)が、上端を回転軸(1
2′)に固定し下端を回転方向が逆の回転軸(12)に連
結してセットされている。この混合体(11)は、200メ
ッシュのニオブとスポンジチタンをNb−46.5wt%Tiにな
るように配合し、直径100mmφの円柱状に圧縮して冷間
成型し、次いで、7tonの熱間静水圧機中で1650℃、10分
間保持後冷却し、大気中に取出したものである。真空容
器(13)中にセットされた混合体(11)の周囲には固定
した誘導コイル(14)が配置されている。この誘導コイ
ル(14)に通電し、誘導コイル(14)近傍の混合体(1
1)を1989℃になるまで加熱して半溶融体とし、上部回
転軸(12′)を回転し、下部の回転軸(12)を逆方向に
1rpmで回転させる。誘導コイル(14)と、半溶融体部
(15)は一定位置に保たれ凝固した合金が水冷管(16)
により冷却されて下方に引き下げられる。
FIG. 1 is an explanatory view of one embodiment according to the present invention. In a vacuum vessel (13), a mixture (11) has a rotating shaft (1) at an upper end.
2 '), and the lower end is connected to a rotating shaft (12) having the opposite rotation direction. This mixture (11) was prepared by blending 200 mesh niobium and sponge titanium so as to give Nb-46.5 wt% Ti, compressing the mixture into a column having a diameter of 100 mmφ, cold-forming, and then applying a hot tonometer of 7 tons. After being kept at 1650 ° C for 10 minutes in a water pressure machine, it was cooled and taken out to the atmosphere. A fixed induction coil (14) is arranged around the mixture (11) set in the vacuum vessel (13). The induction coil (14) is energized, and the mixture (1) near the induction coil (14) is turned on.
1) Heat to 1989 ℃ to make a semi-molten body, rotate the upper rotating shaft (12 '), and rotate the lower rotating shaft (12) in the opposite direction.
Rotate at 1 rpm. The induction coil (14) and the semi-molten part (15) are kept in a fixed position and the solidified alloy is made of a water-cooled tube (16)
Is cooled down and pulled down.

以上のようにして製造されたNb−Ti合金インゴット試
料と、従来のアーク溶解法および熱間静水圧処理を3時
間施した粉末法により製造されたインゴット試料につい
て、その検査結果を第1表に示す。
Table 1 shows the inspection results of the Nb-Ti alloy ingot sample manufactured as described above and the ingot sample manufactured by the conventional arc melting method and the powder method subjected to hot isostatic pressure treatment for 3 hours. Show.

この結果より、本実施例の試料のTi濃度は外周部と中
央部でほとんど変わらず、偏析が生じておらず、従来の
アーク法および粉末法より改善されていることがわか
る。また、結晶粒の大きさについては、本実施例におい
て回転速度を100rpm以上、冷却速度を1℃/min以上にす
ることにより、結晶粒の大きさは1mm以下となり、回転
速度および冷却速度を上げるほど結晶粒が小さくなるこ
とがわかる。さらに、アーク法および粉末法ではボイド
が発生するが、本実施例ではボイドが見出されなかっ
た。
From this result, it can be seen that the Ti concentration of the sample of this example hardly changed between the outer peripheral portion and the central portion, segregation did not occur, and was improved over the conventional arc method and powder method. Regarding the size of the crystal grains, in this embodiment, by setting the rotation speed to 100 rpm or more and the cooling speed to 1 ° C./min or more, the size of the crystal grains becomes 1 mm or less, and the rotation speed and the cooling speed are increased. It can be seen that the smaller the crystal grain is, the smaller the crystal grain becomes. Further, voids were generated in the arc method and the powder method, but no voids were found in this example.

次に、他の実施例として、Nb−3wt%Tiになるように
配合した混合体を用い、他は前記実施例と同一条件で製
造したNb−Ti合金インゴット試料について、電子ビーム
法および粉末法によるインゴット試料との比較データを
第2表に示す。
Next, as another example, an Nb-Ti alloy ingot sample manufactured under the same conditions as in the previous example using a mixture blended to become Nb-3 wt% Ti was subjected to an electron beam method and a powder method. Table 2 shows the comparison data with the ingot sample according to the above.

第2表の結果からも、本実施例のNb−Ti合金インゴッ
トは、従来の製造方法により製造されたインゴットに比
較して、Tiの偏析がなくなり、結晶粒は微細化し、ボイ
ドはなくなるという優れた性質を示している。
From the results in Table 2, it can be seen that the Nb-Ti alloy ingot of this example is superior to the ingot manufactured by the conventional manufacturing method in that segregation of Ti is eliminated, crystal grains are refined, and voids are eliminated. It shows the properties.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、純ニオブと純チ
タンの原料を混合して圧縮体を形成し、次いで、該圧縮
体を加熱してその一部分を半溶融体とし、半溶融体部と
非半溶融体部とを相対的に回転させ、次いで、半溶融体
部を圧縮体中で移動させ、冷却し凝固させるため、Tiの
偏析がなく、結晶粒が微細化され、ボイドのないNb−Ti
合金インゴットが得られるという優れた効果がある。Nb
−Ti系合金としてTa、Hf、Zrなどの第3,第4元素を添加
したものにも同様に適用できるものである。
As described above, according to the present invention, a raw material of pure niobium and pure titanium is mixed to form a compressed body, and then the compressed body is heated to form a semi-molten body, and a semi-molten body portion is formed. The non-semi-solid portion is relatively rotated, and then the semi-solid portion is moved in the compact, cooled and solidified, so that there is no segregation of Ti, crystal grains are refined, and void-free Nb −Ti
There is an excellent effect that an alloy ingot can be obtained. Nb
The present invention can be similarly applied to a Ti-based alloy to which third and fourth elements such as Ta, Hf, and Zr are added.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかるNb−Ti系合金の製造方法の一実
施例の説明図、第2図は同製造方法の一従来例の説明図
である。 1,11……混合体、2……水冷鋳型、3,13……真空容器、
4……電源、5……アーク、6……合金ドロップ、7…
…プール部、8……インゴット、12,12′……回転軸、1
4……誘導コイル、15……半溶融体部、16……水冷管。
FIG. 1 is an explanatory view of an embodiment of a method for producing an Nb—Ti alloy according to the present invention, and FIG. 2 is an explanatory view of a conventional example of the producing method. 1,11 ... mixture, 2 ... water-cooled mold, 3,13 ... vacuum vessel,
4 ... power supply, 5 ... arc, 6 ... alloy drop, 7 ...
... Pool, 8 ... Ingot, 12,12 '... Rotating axis, 1
4… Induction coil, 15… Semi-melted part, 16… Water-cooled tube.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも純ニオブと純チタンの二種類の
原料を混合して混合体を形成する工程と、該混合体を圧
縮して圧縮体を形成する工程と、該圧縮体を加熱してそ
の一部分を半溶融体とし、該半溶融体部と非半溶融体部
とを相対的に回転させる工程と、前記半溶融体部を圧縮
体中で移動させ、冷却し凝固させる工程とを有すること
を特徴とするNb−Ti系合金の製造方法。
1. A step of mixing at least two kinds of raw materials, pure niobium and pure titanium, to form a mixture, a step of compressing the mixture to form a compressed body, and heating the compressed body. A part of which is a semi-molten body, a step of relatively rotating the semi-molten body part and the non-semi-melted body part, and a step of moving the semi-molten body part in a compact, cooling and solidifying A method for producing an Nb-Ti alloy, comprising the steps of:
【請求項2】半溶融体部と非半溶融体部の相対的回転速
度が100rpm以上であることを特徴とする請求項1記載の
Nb−Ti系合金の製造方法。
2. The method according to claim 1, wherein the relative rotation speed of the semi-solid part and the non-semi-solid part is 100 rpm or more.
A method for producing an Nb-Ti alloy.
【請求項3】半溶融体の凝固速度が1℃/min以上である
ことを特徴とする請求項1記載のNb−Ti系合金の製造方
法。
3. The method for producing an Nb-Ti alloy according to claim 1, wherein the solidification rate of the semi-solid is 1 ° C./min or more.
JP1182235A 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy Expired - Lifetime JP2583313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182235A JP2583313B2 (en) 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182235A JP2583313B2 (en) 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy

Publications (2)

Publication Number Publication Date
JPH0347930A JPH0347930A (en) 1991-02-28
JP2583313B2 true JP2583313B2 (en) 1997-02-19

Family

ID=16114709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182235A Expired - Lifetime JP2583313B2 (en) 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy

Country Status (1)

Country Link
JP (1) JP2583313B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703757B (en) * 2012-05-18 2013-10-16 宁夏东方钽业股份有限公司 Corrosion resistant niobium-titanium alloy, and method for manufacturing plates and pipes with the same
CN109694136B (en) * 2018-12-29 2022-05-10 苏州凯虹高分子科技有限公司 Scale inhibition pipe and production process thereof

Also Published As

Publication number Publication date
JPH0347930A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US4568398A (en) Titanium alloys
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
JP2583313B2 (en) Method for producing Nb-Ti alloy
JP3791395B2 (en) Method for producing Ni-base superalloy ingot comprising small and uniform fine crystal grains
JPS61119632A (en) Manufacture of high ductility material
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
DE4420138A1 (en) Prodn. of reactive metal castings
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
JP2002332508A (en) Method for producing thermoelectric material
JPH0114298B2 (en)
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
Ichikawa et al. Refinement of microstructures and improvement of mechanical properties in intermetallic TiAl alloys by rheocasting
KR100339192B1 (en) Method for Preparing Ingot for TiCuCo Alloy Powder by Self-propagating High-temperature Synthesis
JPS6217144A (en) Manufacture of al-li alloy
JPH04183835A (en) Manufacture of ni-ti alloy member
JPH0219177B2 (en)
JPH06248372A (en) Production of al3ti intermetallic compound, production of alloy powder worked in this production process, alloy powder and al3ti intermetallic compound
JP3279346B2 (en) Method for producing amorphous TiAl-based powder
JPH1068001A (en) Intermetallic-compound consumable electrode for rotational electrode process and its production
JPH05132772A (en) Production of high density target material by powder method
JPS6234818B2 (en)
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis