JP3625928B2 - Method for producing Ta / Si based sintered alloy - Google Patents
Method for producing Ta / Si based sintered alloy Download PDFInfo
- Publication number
- JP3625928B2 JP3625928B2 JP29345795A JP29345795A JP3625928B2 JP 3625928 B2 JP3625928 B2 JP 3625928B2 JP 29345795 A JP29345795 A JP 29345795A JP 29345795 A JP29345795 A JP 29345795A JP 3625928 B2 JP3625928 B2 JP 3625928B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- temperature
- mixed
- sintered alloy
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、サーマルヘッドの抵抗膜や下地膜、半導体用集積回路の薄膜電極用のスパッタリングターゲットなどに用いられ、TaおよびSiを主要成分としてW、Cr、Ti、Zr、Mo、Nb、Hfなどの高融点金属を添加した組成のTa/Si系の焼結合金を製造する方法に関する。
【0002】
Ta/Si系焼結合金は、Ta粉末とSi粉末との混合粉末、あるいは更に、W、Cr、Ti、Zr、Mo、Nb、Hfなどの高融点金属粉末を添加混合して圧縮成形し焼結することにより製造されている。しかしながら、これらのTa、W、Cr、Ti、Zr、Mo、Nb、Hfなどの高融点金属(M)とSiとでは融点の差が大きいこと、また高融点金属Mはシリサイド化合物(MSi2)を生成し共晶点を有すること、などの理由により高密度の焼結合金を得ることが困難である。更に、シリサイド化反応は発熱反応であるので焼結時に局所的に高温となり、Siの液相が発生し溶出するために組成が不均一となりばらつきを生じる問題がある。そこで、高融点金属MとSiとの混合粉末を加熱反応させてMSi2 を合成し、それに目的組成になるようにSi粉末を加えてホットプレスする方法が開発されている。
【0003】
MSi2 を合成する方法として、高融点金属MとSiとの混合粉末を真空中あるいは不活性ガス雰囲気中でアーク加熱やエレクトロンビームを照射して溶解し反応させる方法もあるが、この方法ではMSi2 の析出時に偏析が生じ易く、Siの揮発ロスも多いという欠点があり、組成制御が難しく組織が不均一になり易い欠点がある。
【0004】
【従来の技術】
そのため、高融点金属シリサイドの製造方法として、例えば特開平2−166276号公報には高融点金属粉末とシリコン粉末とを真空ホットプレスすることによって組織合成ならびに溶融焼結を行って高融点金属シリサイドの焼結体を製造する方法が提案されている。しかしながら、この方法では組織合成時の熱処理温度が高いのでシリサイド化反応の反応熱により局所的に高温となり、Siの溶出やSi粒子の粗大化が生じる欠点がある。
【0005】
また、特開平3−130360号公報には粒状のMSi2 相(但し、MはW、Mo、Ti、Zr、Hf、NbおよびTaから成る群より選択された少なくとも1種の高融点金属)がSiマトリックス相に分散し、MSi2 相とSi相との境界に界面層が介在してなる組織を有する高融点金属シリサイド製のスパッタリング用ターゲットを製造する方法であって、(1) M粉末とSi粉末とをSi/M原子比で2.0〜4.0になるように混合して混合粉体を調製する工程、(2) 前記混合粉体を成形用型に充填し、高真空中、高プレス圧下にて、急速加熱してMSi2 相を合成する工程、および(3) 低真空中または不活性ガス雰囲気中、高プレス圧力下にて、共晶温度真下の温度に加熱して焼結する工程、とから成る製造方法が提案されている。しかしながら、この方法も合成温度が高いので反応熱により局所的に高温部が形成され易くSiの溶出やSiの粒成長による粗大粒子化が生じる難点がある。
【0006】
更に、特開平4−191366号公報には遊離しているSi粒子の平均粒径を小さくすることによりパーティクルの発生を抑制するシリサイドターゲットの製造方法として、粒径が200μm 以下の高融点金属の粉末と、粒径が200μm 以下のSiの粉末とを混合して焼成した後、これを粒径500μm 以下に粉砕して原料粉末を製造し、この原料粉末を高温で圧縮して焼結する方法が提案されている。しかしながら、この方法もMSi2 の合成温度が1300℃以上と高いのでSiの溶出やSi粒子の粗大化が生じ組織が不均一になり易く、また焼結性が低下する難点がある。更に、合成したMSi2 は合成温度が高いので固く、粉砕時に不純物が混入する問題点がある。
【0007】
【発明が解決しようとする課題】
そこで、本発明者等はTaとSiとを主成分とする高融点Ta/Si系焼結合金の製造方法について鋭意研究を進めた結果、Ta粉末とSi粉末とを特定の原子比で混合した粉末にW、Cr、Ti、Zr、Mo、Nb、Hfなどの高融点金属粉末を所定の原子比で添加混合した混合粉体を原料とし、MSi2(MはTa、W、Cr、Ti、Zr、Mo、Nb、Hfなど)化反応の加熱温度を低く設定することにより、合成時のSiの溶出やSi粒子の粗大化を防止することができ、高密度の焼結合金を製造することができることを見出した。
【0008】
本発明は、上記の知見に基づいて完成したものであり、その目的は高密度、高純度のTa/Si系焼結合金の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明によるTa/Si系焼結合金の製造方法は、原子比でTa粉末2.0〜3.0原子、Si粉末6.0〜7.0原子の混合粉末が全原料中に占める原子比の割合が90〜100%、残部がW、Cr、Ti、Zr、Mo、Nb、Hfの少なくとも一種を含む金属粉末または金属珪化物粉末からなる混合粉体を、真空中もしくは不活性ガス雰囲気中で1100〜1200℃の温度で加熱処理した後、反応生成物を粉砕、混合し、次いで真空下あるいは不活性ガス雰囲気下でSiの融点未満の温度でホットプレスすることを構成上の特徴とする。
【0010】
【発明の実施の形態】
原料粉末であるTa粉末とSi粉末は不純物含有量が1000 ppm以下の高純度品が、また粒度は平均粒径2〜8μm の微粉末が好ましく用いられる。原料粉末の組成はTa粉末2.0〜3.0原子、Si粉末6.0〜7.0原子の原子比に配合し、且つTa粉末とSi粉末との合計量が全原料中に占める原子比の割合が90〜100%になるように配合される。なお、0〜10%の残部はW、Cr、Ti、Zr、Mo、Nb、Hfなどの少なくとも1種の高融点金属の粉末あるいはその金属珪化物粉末が添加配合される。
【0011】
原料粉末中のTa粉末とSi粉末の割合は目的とするTa/Si系焼結合金によって決められるものであるが、原子比でTa粉末の割合が3.0原子を越える場合は生成するTaSi2 量が多くなり、発生する反応熱が増大するので局所的に高温部が形成され易くSiの溶出およびSi粒子の粗大化が起こり、またシリサイド化反応の進行が不均一となり生成するTaSi2 の偏析が生じるためである。なお、Ta粉末の割合が2.0原子を下回ると相対的にSiの配合比が大きくなり、Ta/Si系の焼結合金として充分な特性が付与されない。
【0012】
このTa粉末とSi粉末にW、Cr、Ti、Zr、Mo、Nb、Hfなどの金属粉末または金属珪化物粉末を少なくとも1種加えて所定の組成割合に配合した原料粉末は真空中あるいは不活性ガス雰囲気中でボールミル、V型ミキサーなどの混合器などで充分に乾式混合またはエタノールなどの揮発性有機溶液を用いて湿式混合することにより均質な混合粉体原料が調製される。なお、混合時に不純物の混入を防止するためにナイロン製のボールミルを用いることが好ましい。
【0013】
混合粉体は金属モリブデンを内張りした黒鉛製の坩堝に入れ、系内を10−1〜10−2Torrの真空中もしくはアルゴンガスなどの不活性ガス雰囲気に保持された加熱炉内で1100〜1200℃の温度で加熱処理してシリサイド化する。加熱温度は混合粉体を構成する各金属成分とSiとの共晶温度より200〜300℃低い温度に設定することが必要であり、これら金属成分の共晶温度は1300〜1410℃の範囲にあるので加熱処理温度を1100〜1200℃の温度範囲に設定する。
【0014】
シリサイド化反応は固相反応であるので均一に反応を進めることが難しく、また発熱反応であるので焼結時において局所的に高温部が形成され易いが、加熱温度を低く設定することによってSiの溶融温度を越える局所的高温部の形成を防止することができる。したがって、Siの溶出やSiの異常粒成長による粗大化あるいは亀裂の発生が抑制され、また生成するTaSi2 の偏析を防止することが可能となる。加熱処理温度を1100〜1200℃の温度範囲に設定する理由は1100℃未満ではTa粉末およびSi粉末の酸化被膜が除去されないためシリサイド化反応が充分に進行せず、また1200℃を越えると強固な凝集粉体が形成され次工程の粉砕および均一な混合が困難となり焼結時における反応熱による局所的高温部が形成され易いためである。なお、加熱時間は混合粉体の量、加熱炉の発熱容量などにより適宜設定されるが、1〜2時間が適当である。
【0015】
加熱処理して得られた反応生成物は、組成の均質化および粉砕を目的としてナイロン製のボールミルにより粉砕、混合する。この場合反応生成物は熱処理温度が低いので極めて容易に粉砕されて粒子径150μm 以下の粉末となる。なお、原料粉体としてTa粉末とSi粉末の混合粉末を用いて加熱処理し、得られたTaSi2 +Siの反応生成物を粉砕、混合する過程でW、Cr、Ti、Zr、Mo、Nb、Hfなどの高融点金属あるいは金属珪化物粉末を少なくとも1種加えて所定量添加配合することもできる。
【0016】
このようにして得られた反応生成物の混合粉末は、真空下あるいは不活性ガス雰囲気下でSiの融点(1410℃)未満の温度でホットプレスして熱圧焼結することによりTa/Si系焼結合金が製造される。ホットプレスの具体的条件としては温度1300〜1400℃、圧力100〜300kg/cm2が適当である。なお、ホットプレスする際の昇温速度および昇圧速度が大きいと局部的に焼結が進行して液相が生じる場合があるので、昇温速度は5℃/分以下、昇圧速度は15kg/cm2以下に各設定することが好ましい。このようにして設定した温度および圧力に到達したのち、焼結体の寸法変位が認められなくなるまでその温度、圧力を保持することによりTa/Si系焼結合金が製造される。
【0017】
このように本発明は、Ta粉末とSi粉末とを加熱してTaSi2 を合成するシリサイド化反応を1100〜1200℃の低温度領域で行うのであるから、焼結時における反応が均一に進行して合成反応時に局所的高温部が形成されることがなく、したがってSiの溶出や粗大粒子化あるいは亀裂発生が生じることがない。更に、反応生成物は容易に粉砕可能であるので粉砕時における不純物混入も防止でき、高密度、高純度のTa/Si系焼結合金の製造が可能となる。
【0018】
【実施例】
以下、本発明の実施例を比較例と対比して詳細に説明する。
【0019】
実施例1〜6、比較例1〜5
原料粉末として純度99.9%以上のTa粉末(平均粒径2〜3μm )およびSi粉末(平均粒径6〜8μm )を用い、添加する高融点金属粉末あるいは金属珪化物粉末には純度99.9%以上、平均粒径2〜3μm の粉末を用いた。これらの原料粉末を混合割合を変えて配合し、0.1〜1Torrの真空中でナイロン製のボールミルにより5〜10時間粉砕、混合して10種類の原料混合粉体を調製した。このようにして調製した混合粉体の組成を表1に示した。なお、混合粉体の平均粒径は10〜30μm であった。
【0020】
これらの混合粉体を金属モリブデンを内張りした黒鉛坩堝に入れ、10−1〜10−2Torrの真空中で温度を変えて加熱処理してシリサイド化反応させ、得られた反応生成物を黒鉛坩堝から取り出しナイロン製ボールミルで粉砕、混合した。このようにして合成したTaSi2 などの反応生成物を真空下で温度、圧力を変えてホットプレスし、直径5〜10″、厚さ8〜32mmのTa/Si系焼結合金を製造した。なお、昇温速度は4℃/分、昇圧速度は13kg/cm2に各設定した。このようにして得られた焼結合金の密度を測定し、得られた結果を表2に示した。密度は配合した各原料成分の真密度と配合量から下記(1) 式により算出した計算密度に対する相対密度として示した。但し、Mは各原料成分である。
計算密度=100/(ΣMのWt%/M真密度)…(1)
【0021】
【表1】
【0022】
【表2】
【0023】
表1、2の結果から本発明の製造方法により製造された実施例のTa/Si系焼結合金はいずれも相対密度が高く、計算密度を超える高密度であり、これに対して比較例のTa/Si系焼結合金はいずれも相対密度が低いことが判る。また顕微鏡による組織観察の結果から実施例の焼結合金はTaSi2 の素地にSiおよびW、Crなどの高融点金属珪化物が均一に分散した組織構造を示しており、一方比較例ではSiの粒成長による粗大化および溶出が観察され、更に亀裂の発生も認められた。
【0024】
【発明の効果】
以上のとおり、本発明のTa/Si系焼結合金の製造方法によれば、TaとSiとを特定の原子比で配合し、またTaSi2 の合成温度を低い温度領域に設定することによりシリサイド反応時の局所的高温部の発生が防止されるので、Siの溶出およびSiの異常粒成長による粗大化、また生成するTaSi2 の偏析を抑制することが可能である。更に、生成するTaSi2 は粉砕され易く粉砕時の異物混入も低減化することができる。したがって、サーマルヘッドの抵抗膜や下地膜あるいは半導体用集積回路の薄膜電極用のスパッタリングターゲットなどに用いられる高密度、高純度のTa/Si系焼結合金の製造方法として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is used for a resistance film and a base film of a thermal head, a sputtering target for a thin film electrode of a semiconductor integrated circuit, etc., with Ta and Si as main components, W, Cr, Ti, Zr, Mo, Nb, Hf, etc. The present invention relates to a method for producing a Ta / Si-based sintered alloy having a composition to which a high melting point metal is added.
[0002]
The Ta / Si based sintered alloy is a powder mixture of Ta powder and Si powder, or further, a high melting point metal powder such as W, Cr, Ti, Zr, Mo, Nb, Hf, etc. is added and mixed and compression molded and sintered. It is manufactured by tying. However, there is a large difference in melting point between refractory metals (M) such as Ta, W, Cr, Ti, Zr, Mo, Nb, and Hf and Si, and the refractory metal M is a silicide compound (MSi 2 ). It is difficult to obtain a high-density sintered alloy for the reasons such as forming a crystal and having a eutectic point. Further, since the silicidation reaction is an exothermic reaction, there is a problem that the temperature becomes locally high during sintering and a liquid phase of Si is generated and eluted, resulting in non-uniform composition and variations. Therefore, methods by heating the reaction mixture powder of a refractory metal M and Si were synthesized MSi 2, it is hot-pressed by the addition of Si powder so that the target composition has been developed.
[0003]
As a method for synthesizing MSi 2, there is a method in which a mixed powder of a refractory metal M and Si is melted and reacted by arc heating or irradiation with an electron beam in a vacuum or in an inert gas atmosphere. There are disadvantages that segregation is likely to occur during precipitation of 2 and that there are many volatilization losses of Si, and that the composition is difficult to control and the structure tends to be uneven.
[0004]
[Prior art]
Therefore, as a method for producing a refractory metal silicide, for example, Japanese Patent Laid-Open No. 2-166276 discloses a structure of refractory metal silicide by performing structure synthesis and melt sintering by vacuum hot pressing a refractory metal powder and a silicon powder. A method for manufacturing a sintered body has been proposed. However, this method has a drawback that since the heat treatment temperature at the time of tissue synthesis is high, the temperature becomes locally high due to the reaction heat of the silicidation reaction, resulting in elution of Si and coarsening of Si particles.
[0005]
JP-A-3-130360 discloses a granular MSi 2 phase (where M is at least one refractory metal selected from the group consisting of W, Mo, Ti, Zr, Hf, Nb and Ta). A method for producing a sputtering target made of a refractory metal silicide having a structure in which an interface layer is interposed at the boundary between an MSi 2 phase and an Si phase, dispersed in an Si matrix phase, comprising: (1) M powder and A step of preparing a mixed powder by mixing Si powder with an Si / M atomic ratio of 2.0 to 4.0, (2) filling the mixed powder into a mold, and in a high vacuum A step of rapidly heating and synthesizing the MSi 2 phase under high press pressure, and (3) heating to a temperature just below the eutectic temperature under high press pressure in a low vacuum or in an inert gas atmosphere. A manufacturing method comprising a sintering process is proposed. To have. However, since this method also has a high synthesis temperature, a high temperature portion is likely to be formed locally by reaction heat, and there is a difficulty that coarse particles are formed due to elution of Si or growth of Si grains.
[0006]
Furthermore, Japanese Patent Laid-Open No. 4-191366 discloses a high melting point metal powder having a particle size of 200 μm or less as a method for producing a silicide target that suppresses the generation of particles by reducing the average particle size of free Si particles. And a powder of Si having a particle size of 200 μm or less are mixed and fired, and then pulverized to a particle size of 500 μm or less to produce a raw material powder, and this raw material powder is compressed at a high temperature and sintered. Proposed. However, in this method, since the synthesis temperature of MSi 2 is as high as 1300 ° C. or higher, Si elution and Si particle coarsening occur, and the structure tends to be non-uniform, and the sinterability is lowered. Furthermore, the synthesized MSi 2 is hard because the synthesis temperature is high, and there is a problem that impurities are mixed during pulverization.
[0007]
[Problems to be solved by the invention]
Therefore, as a result of earnest research on the manufacturing method of a high melting point Ta / Si sintered alloy mainly composed of Ta and Si, the present inventors mixed Ta powder and Si powder at a specific atomic ratio. A mixed powder obtained by adding and mixing refractory metal powders such as W, Cr, Ti, Zr, Mo, Nb, and Hf to a powder at a predetermined atomic ratio is used as a raw material, and MSi 2 (M is Ta, W, Cr, Ti, Zr, Mo, Nb, Hf, etc.) By setting the heating temperature of the conversion reaction low, elution of Si during synthesis and coarsening of Si particles can be prevented, and a high-density sintered alloy is produced. I found out that I can.
[0008]
This invention is completed based on said knowledge, The objective is to provide the manufacturing method of a high density and high purity Ta / Si type sintered alloy.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a Ta / Si based sintered alloy manufacturing method according to the present invention comprises a mixed powder of Ta powder 2.0 to 3.0 atoms and Si powder 6.0 to 7.0 atoms in atomic ratio. A mixed powder composed of metal powder or metal silicide powder containing 90-100% of the atomic ratio in all raw materials and the balance of at least one of W, Cr, Ti, Zr, Mo, Nb, and Hf is vacuumed. After heat treatment in a medium or inert gas atmosphere at a temperature of 1100 to 1200 ° C., the reaction product is pulverized and mixed, and then hot-pressed at a temperature below the melting point of Si under vacuum or in an inert gas atmosphere. Is a structural feature.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The Ta powder and Si powder, which are raw material powders, are preferably high-purity products having an impurity content of 1000 ppm or less, and fine particles having an average particle size of 2 to 8 μm. The composition of the raw material powder is an atomic ratio of 2.0 to 3.0 atoms of Ta powder and 6.0 to 7.0 atoms of Si powder, and the total amount of Ta powder and Si powder occupies the total raw material. It mix | blends so that the ratio of ratio may be 90 to 100%. The balance of 0 to 10% is added and mixed with at least one refractory metal powder such as W, Cr, Ti, Zr, Mo, Nb, and Hf or a metal silicide powder thereof.
[0011]
The ratio of Ta powder and Si powder in the raw powder is determined by the target Ta / Si sintered alloy. However, when the ratio of Ta powder exceeds 3.0 atoms by atomic ratio, TaSi 2 is produced. The amount of heat generated increases and the heat of reaction generated increases, so that a high temperature portion is likely to be formed locally, Si elution and Si particle coarsening occur, and the progress of the silicidation reaction becomes uneven, resulting in segregation of TaSi 2 This is because. In addition, when the ratio of Ta powder is less than 2.0 atoms, the compounding ratio of Si is relatively increased, and sufficient characteristics as a Ta / Si based sintered alloy are not provided.
[0012]
The raw powder prepared by adding at least one metal powder such as W, Cr, Ti, Zr, Mo, Nb, and Hf or metal silicide powder to this Ta powder and Si powder and blending them in a predetermined composition ratio is in vacuum or inert. A homogeneous mixed powder material is prepared by sufficiently dry-mixing in a gas atmosphere using a ball mill, a mixer such as a V-type mixer, or wet mixing using a volatile organic solution such as ethanol. A nylon ball mill is preferably used in order to prevent impurities from being mixed during mixing.
[0013]
The mixed powder is placed in a graphite crucible lined with metallic molybdenum, and the system is 1100 to 1200 in a heating furnace maintained in a vacuum of 10 −1 to 10 −2 Torr or an inert gas atmosphere such as argon gas. Heat treatment is performed at a temperature of ° C. for silicidation. It is necessary to set the heating temperature to a temperature 200 to 300 ° C. lower than the eutectic temperature of each metal component constituting the mixed powder and Si, and the eutectic temperature of these metal components is in the range of 1300 to 1410 ° C. Therefore, the heat treatment temperature is set to a temperature range of 1100 to 1200 ° C.
[0014]
Since the silicidation reaction is a solid phase reaction, it is difficult to carry out the reaction uniformly, and since it is an exothermic reaction, a high temperature portion is likely to be formed locally during sintering, but by setting the heating temperature low, It is possible to prevent the formation of a local high temperature portion exceeding the melting temperature. Therefore, coarsening or crack generation due to Si elution or Si abnormal grain growth is suppressed, and segregation of TaSi 2 to be generated can be prevented. The reason why the heat treatment temperature is set to a temperature range of 1100 to 1200 ° C. is that the oxide film of Ta powder and Si powder is not removed if the temperature is less than 1100 ° C., and the silicidation reaction does not proceed sufficiently. This is because the agglomerated powder is formed, and it is difficult to pulverize and uniformly mix the next step, and a local high-temperature portion is easily formed due to reaction heat during sintering. The heating time is appropriately set depending on the amount of the mixed powder, the heat generation capacity of the heating furnace, etc., but 1 to 2 hours is appropriate.
[0015]
The reaction product obtained by the heat treatment is pulverized and mixed with a nylon ball mill for the purpose of homogenizing and pulverizing the composition. In this case, since the reaction product has a low heat treatment temperature, it is very easily pulverized into a powder having a particle size of 150 μm or less. In addition, W, Cr, Ti, Zr, Mo, Nb, in the process of heat-treating using a mixed powder of Ta powder and Si powder as raw material powder, and crushing and mixing the obtained TaSi 2 + Si reaction product, At least one refractory metal such as Hf or metal silicide powder may be added and added in a predetermined amount.
[0016]
The mixed powder of the reaction product thus obtained is hot-pressed by hot pressing at a temperature lower than the melting point of Si (1410 ° C.) under vacuum or in an inert gas atmosphere, and then Ta / Si-based. A sintered alloy is produced. As specific conditions for hot pressing, a temperature of 1300 to 1400 ° C. and a pressure of 100 to 300 kg / cm 2 are appropriate. In addition, if the temperature rising rate and the pressure increasing rate during hot pressing are large, sintering may locally progress and a liquid phase may be generated. Therefore, the temperature increasing rate is 5 ° C./min or less, and the pressure increasing rate is 15 kg / cm. Each is preferably set to 2 or less. After reaching the temperature and pressure set in this way, a Ta / Si based sintered alloy is produced by maintaining the temperature and pressure until no dimensional displacement of the sintered body is recognized.
[0017]
Thus, in the present invention, the silicidation reaction for synthesizing TaSi 2 by heating Ta powder and Si powder is performed in a low temperature region of 1100 to 1200 ° C., and thus the reaction during sintering proceeds uniformly. Thus, a local high temperature portion is not formed during the synthesis reaction, and therefore, elution of Si, coarse particles, or generation of cracks does not occur. Furthermore, since the reaction product can be easily pulverized, impurities can be prevented from being mixed during pulverization, and a high-density, high-purity Ta / Si sintered alloy can be produced.
[0018]
【Example】
Hereinafter, examples of the present invention will be described in detail in comparison with comparative examples.
[0019]
Examples 1-6, Comparative Examples 1-5
Ta powder (average particle diameter of 2 to 3 μm) and Si powder (average particle diameter of 6 to 8 μm) having a purity of 99.9% or more are used as raw material powder, and the high melting point metal powder or metal silicide powder to be added has a purity of 99. A powder having an average particle diameter of 2 to 3 μm was used. These raw material powders were mixed at different mixing ratios, and pulverized and mixed for 5 to 10 hours with a nylon ball mill in a vacuum of 0.1 to 1 Torr to prepare 10 kinds of raw material mixed powders. The composition of the mixed powder thus prepared is shown in Table 1. The average particle size of the mixed powder was 10 to 30 μm.
[0020]
These mixed powders are put into a graphite crucible lined with metal molybdenum and subjected to a silicidation reaction by changing the temperature in a vacuum of 10 −1 to 10 −2 Torr, and the resulting reaction product is converted into a graphite crucible. And then pulverized and mixed with a nylon ball mill. In this way, the synthesized TaSi 2 temperature under vacuum and the reaction products such as hot pressing and by changing the pressure, diameter 5-10 "were produced Ta / Si based sintered alloy having a thickness of 8~32Mm. The temperature increase rate was set to 4 ° C./min and the pressure increase rate was set to 13 kg / cm 2. The density of the sintered alloy thus obtained was measured, and the results obtained are shown in Table 2. The density is shown as a relative density with respect to the calculated density calculated by the following equation (1) from the true density and blending amount of each blended raw material component, where M is each raw material component.
Calculated density = 100 / (Wt% of ΣM / M true density) (1)
[0021]
[Table 1]
[0022]
[Table 2]
[0023]
From the results of Tables 1 and 2, the Ta / Si-based sintered alloys of the examples manufactured by the manufacturing method of the present invention all have a high relative density, which is higher than the calculated density. It can be seen that the Ta / Si based sintered alloy has a low relative density. Moreover, from the result of the structure observation with a microscope, the sintered alloy of the example shows a structure structure in which refractory metal silicides such as Si, W, and Cr are uniformly dispersed in the base of TaSi 2 , while in the comparative example, Si Coarse and elution due to grain growth was observed, and cracks were also observed.
[0024]
【The invention's effect】
As described above, according to the method for producing a Ta / Si-based sintered alloy of the present invention, silicide is obtained by blending Ta and Si at a specific atomic ratio and setting the synthesis temperature of TaSi 2 in a low temperature range. Since generation of a local high temperature portion during the reaction is prevented, it is possible to suppress Si elution, coarsening due to abnormal Si grain growth, and segregation of TaSi 2 to be generated. Furthermore, TaSi 2 to be produced is easily pulverized, and foreign matter contamination during pulverization can be reduced. Therefore, it is extremely useful as a method for producing a high-density, high-purity Ta / Si sintered alloy used for a thermal head resistance film, a base film, or a sputtering target for a thin film electrode of a semiconductor integrated circuit.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29345795A JP3625928B2 (en) | 1995-10-17 | 1995-10-17 | Method for producing Ta / Si based sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29345795A JP3625928B2 (en) | 1995-10-17 | 1995-10-17 | Method for producing Ta / Si based sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09111363A JPH09111363A (en) | 1997-04-28 |
JP3625928B2 true JP3625928B2 (en) | 2005-03-02 |
Family
ID=17795005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29345795A Expired - Fee Related JP3625928B2 (en) | 1995-10-17 | 1995-10-17 | Method for producing Ta / Si based sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3625928B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69808664T2 (en) * | 1997-07-15 | 2003-07-24 | Tosoh Smd, Inc. | FIRE-RESISTANT METAL-SILICIDE ALLOY SPUTTER-TARGETS, USE AND MANUFACTURE |
CN1311091C (en) * | 2005-05-24 | 2007-04-18 | 长沙南方钽铌有限责任公司 | Method of making tantalum material from tantalum powder-yttrium nitrate liquid-slid adulterant |
JP5396276B2 (en) * | 2007-09-13 | 2014-01-22 | Jx日鉱日石金属株式会社 | Sintered body manufacturing method, sintered body target, and sputtering target-backing plate assembly |
WO2014157054A1 (en) * | 2013-03-26 | 2014-10-02 | Jx日鉱日石金属株式会社 | Sputtering silicide target and method for producing same |
CN114538450B (en) * | 2020-11-27 | 2023-08-15 | 有研工程技术研究院有限公司 | High-purity tantalum disilicide powder and preparation method thereof |
-
1995
- 1995-10-17 JP JP29345795A patent/JP3625928B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09111363A (en) | 1997-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910003884B1 (en) | High melting metal silicide sputtering target and process for preparing the same | |
US5460793A (en) | Silicide targets for sputtering and method of manufacturing the same | |
US4373947A (en) | Process for the preparation of alloy powders which can be sintered and which are based on titanium | |
WO2011152359A1 (en) | Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same | |
EP0583795A1 (en) | Method for producing thermoelectric elements | |
JP2004100000A (en) | Iron silicate sputtering target and production method therefor | |
CN108374113A (en) | A kind of preparation method of TaTiZrAlSi high-entropy alloys and its powder | |
US5640666A (en) | Composite silicide/silicon carbide mechanical alloy | |
US5454999A (en) | Composite silicide/silicon carbide mechanical alloy | |
JP3223538B2 (en) | Sintered titanium alloy and method for producing the same | |
JP3625928B2 (en) | Method for producing Ta / Si based sintered alloy | |
JP2001295036A (en) | Tungsten sputtering target and its manufacturing method | |
JPH08501828A (en) | Beta 21S titanium-based master alloy for alloys and method for producing the master alloy | |
EP0801138A2 (en) | Producing titanium-molybdenum master alloys | |
JP2941828B2 (en) | Refractory metal silicide target and method for producing the same | |
JP2542566B2 (en) | Method for manufacturing target for sputtering device | |
JPH0247261A (en) | Silicide target and production thereof | |
JPH01136969A (en) | Manufacture of target for titanium silicide sputtering | |
JP3707622B2 (en) | Metal silicide target material | |
JP2749165B2 (en) | TiA-based composite material and method for producing the same | |
JPH0688153A (en) | Production of sintered titanium alloy | |
JP3704556B2 (en) | Method for producing zinc antimony compound | |
JPH0610123A (en) | High melting point metallic silicide target and its manufacture | |
JP2004204278A (en) | Silicide target manufacturing method | |
JPH05140739A (en) | Production of silicide target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041019 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |