JP2941828B2 - Refractory metal silicide target and method for producing the same - Google Patents

Refractory metal silicide target and method for producing the same

Info

Publication number
JP2941828B2
JP2941828B2 JP63322422A JP32242288A JP2941828B2 JP 2941828 B2 JP2941828 B2 JP 2941828B2 JP 63322422 A JP63322422 A JP 63322422A JP 32242288 A JP32242288 A JP 32242288A JP 2941828 B2 JP2941828 B2 JP 2941828B2
Authority
JP
Japan
Prior art keywords
powder
less
metal silicide
ppm
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63322422A
Other languages
Japanese (ja)
Other versions
JPH02166276A (en
Inventor
尚 山野辺
道雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18143487&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2941828(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63322422A priority Critical patent/JP2941828B2/en
Publication of JPH02166276A publication Critical patent/JPH02166276A/en
Application granted granted Critical
Publication of JP2941828B2 publication Critical patent/JP2941828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高純度の高融点金属シリサイドターゲット
およびその製造方法に関する。
The present invention relates to a high-purity high-melting-point metal silicide target and a method for producing the same.

高融点金属シリサイドは、ULSI・VLSIの電極配線薄膜
として有用であり、その薄膜はスパッタ法により形成さ
れる。
The refractory metal silicide is useful as an electrode wiring thin film of ULSI / VLSI, and the thin film is formed by a sputtering method.

(従来の技術) 高融点金属シリサイドターゲットは、一般に次のよう
な工程により製造される。すなわち、まず高融点金属M
とシリコンとを真空中または不活性雰囲気中でアーク溶
解もしくはエレクトロンビーム溶解させ、精製と同時に
MSi2の合成を行う。ついで、得られたMSi2インゴットを
粉砕してMSi2粉としこれにSi粉を加えて混合した後、常
圧焼結、HP、HIP等によりシリサイド焼結体を生成す
る。最後に所望の寸法に切断および表面仕上げ等をほど
こして最終製品であるシリサイドターゲットが得られ
る。
(Prior Art) A refractory metal silicide target is generally manufactured by the following steps. That is, first, the refractory metal M
And silicon in vacuum or in an inert atmosphere by arc melting or electron beam melting
Perform MSi 2 synthesis. Next, the obtained MSi 2 ingot is pulverized into MSi 2 powder, and Si powder is added thereto and mixed, and then a normal pressure sintering, HP, HIP or the like is performed to produce a silicide sintered body. Finally, cutting and surface finishing are performed to a desired size to obtain a silicide target as a final product.

(発明が解決しようとする課題) しかしながら、上述した従来方法においては、純度の
高い原料を使用したとしてもターゲット化の工程数が多
いため、不可避的に不純物の混入が多く、それゆえ最終
製品の純度を向上させることに制限があった。そのう
え、従来法においてはMSi2インゴットの粉砕等の不純物
混入も多い。また、原料の処理の点からみても高純度の
Si粉末を得ることは一般に困難である。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional method, even if a high-purity raw material is used, since the number of steps of targeting is large, impurities are inevitably mixed in, so that the final product is There was a limit to improving the purity. In addition, in the conventional method, there are many impurities such as pulverization of MSi 2 ingot. Also, from the viewpoint of raw material processing, high purity
It is generally difficult to obtain Si powder.

さらに従来の製造法においては、MSi2合成のために高
融点金属Mとシリコンを真空溶解することが行なわれる
が、この場合、シリコンの揮発ロスが多くまた組成比の
調整がむずかしい。この理由により、一般的に過剰のシ
リコンと高融点金属Mを反応させることが行われるが、
この場合、溶解後のインゴットの金属組織はMSi2の柱状
晶とMSi2、Siの共晶から成っている。このため、このイ
ンゴットを粉砕した粉末を使用して上記の様に製造され
たターゲットの金属組織、組成分布は均一なものとなり
難い。
Further, in the conventional production method, the refractory metal M and silicon are melted in vacuum for the synthesis of MSi 2 , but in this case, the volatilization loss of silicon is large and the adjustment of the composition ratio is difficult. For this reason, it is common to react excess silicon with the refractory metal M,
In this case, the ingot of the metal structure after dissolution consists eutectic columnar crystals and MSi 2, Si of MSi 2. For this reason, the metal structure and composition distribution of the target manufactured as described above using the powder obtained by crushing the ingot are unlikely to be uniform.

また、上記のインゴット粉砕粉末から共晶部分を化学
的に取り除く方法も提案されているが、このような工程
を加えることは効率を逆に低下させ、更なる汚染の可能
性も増大する結果となる。
Further, a method of chemically removing the eutectic portion from the above-mentioned ingot pulverized powder has also been proposed. Become.

さらに、従来方法で用いられるMSi2粉およびSi粉の粒
径は、通常、350μm以下であり、このような粒径分布
のSi粉では、高密度化(99.0%以上)を達成するのは困
難と考えられる。さらに、MSi2粉とSi粉を調合する際加
えるSi粉は、たとえば最終組成MSi2.5の場合、MoSi2.5:
8.43wt%、WSi2.5:5.51wt%とMSi2粉量にくらべSi粉量
が少くないため、均一な組成になるように混合するのは
技術上困難である。
Furthermore, the particle size of the MSi 2 powder and the Si powder used in the conventional method is usually 350 μm or less, and it is difficult to achieve a high density (99.0% or more) with the Si powder having such a particle size distribution. it is conceivable that. Further, the Si powder added when preparing the MSi 2 powder and the Si powder is, for example, in the case of the final composition MSi 2.5 , MoSi 2.5 :
Since the amount of Si powder is 8.43 wt% and WSi 2.5 : 5.51 wt%, which is smaller than the amount of MSi 2 powder, it is technically difficult to mix them to have a uniform composition.

本発明は上述した従来技術の問題点に鑑みてなされた
ものであり、高密度かつ高純度と高融点シリサイドター
ゲットならびにその製造方法を提供することを目的とし
ている。
The present invention has been made in view of the above-described problems of the related art, and has as its object to provide a high-density, high-purity, high-melting-point silicide target and a method for manufacturing the same.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段および作用) 本発明の高融点金属シリサイド製ターゲットは、アル
カリ金属元素の含有量を0.1ppm以下、Fe,NiおよびCrの
各元素の含有量を1ppm以下、UおよびThの各元素の含有
量を0.005ppm以下に制限したことを特徴とするものであ
る。
(Means and Actions for Solving the Problems) The refractory metal silicide target of the present invention has a content of an alkali metal element of 0.1 ppm or less, a content of each element of Fe, Ni and Cr of 1 ppm or less, U and The content of each element of Th is limited to 0.005 ppm or less.

更に好ましくは、酸素含有量を更に300ppm以下に制限
した高融点金属シリサイド製ターゲットであることが望
ましい。
More preferably, the target is made of a refractory metal silicide target whose oxygen content is further limited to 300 ppm or less.

更に本発明は高融点金属シリサイド製ターゲットの製
造方法は、金属不純物を化学的に除去した後、水素還元
によりガス成分を低減した粒径50μm以下の高融点金属
粉末とシリコン粉末とを混合後、真空ホットプレスで加
熱温度を高融点金属シリサイドとシリコンとの共晶温度
直上まで上げることによって反応合成ならびに溶融焼結
を同時に行なってアルカリ金属元素の含有量を0.1ppm以
下、Fe,NiおよびCrの各元素の含有量を1ppm以下、Uお
よびThの各元素の含有量を0.005ppm以下に制限した高融
点金属シリサイドの焼結体を製造することを特徴とする
ものである。
Further, the present invention is a method for manufacturing a target made of a high melting point metal silicide, after chemically removing metal impurities, mixing a silicon powder with a high melting point metal powder having a particle diameter of 50 μm or less and a gas component reduced by hydrogen reduction, The reaction synthesis and melt sintering are performed simultaneously by raising the heating temperature to just above the eutectic temperature of the high melting point metal silicide and silicon with a vacuum hot press to reduce the alkali metal element content to 0.1 ppm or less, Fe, Ni and Cr. The present invention is characterized in that a sintered body of a refractory metal silicide in which the content of each element is limited to 1 ppm or less and the content of each element of U and Th is limited to 0.005 ppm or less is manufactured.

また、上記方法においては、シリコン粉末を不活性ガ
ス雰囲気または真空中において高融点金属シリサイドと
同じ高融点金属製粉砕機で粉砕し、粉砕粉末を10-3〜10
-4Torr好ましくは10-4Torrの真空炉内において1300〜13
50℃の温度で熱処理することが好ましい。
In the above method, the silicon powder is pulverized in an inert gas atmosphere or in a vacuum with the same high-melting-point metal pulverizer as the high-melting-point metal silicide, and the pulverized powder is 10 -3 to 10
-4 Torr, preferably 1300 to 13 in a vacuum furnace of 10 -4 Torr
The heat treatment is preferably performed at a temperature of 50 ° C.

また、高融点金属粉末とシリコン粉末との調合粉末の
混合を、不活性ガス充填または真空脱気したプラスチッ
ク製ボールミルで行なうことが、不純物の混入を防止す
る上で好ましい。
Further, it is preferable to mix the prepared powder of the high melting point metal powder and the silicon powder with a plastic ball mill filled with an inert gas or vacuum-evacuated in order to prevent impurities from being mixed.

本発明によれば、不純物の含有量が前記の範囲に制限
され、実質的に均一組成でほぼ理論密度に等しい高融点
金属シリサイドおよび不純物の混入を実質的に防止した
高純度高融点金属シリサイドターゲットの製造方法が提
供される。
According to the present invention, the content of impurities is limited to the above range, a high melting point metal silicide target having a substantially uniform composition and a refractory metal silicide substantially equal to a theoretical density and a high purity refractory metal silicide target substantially prevented from being mixed with impurities. Is provided.

次に本発明の高純度高融点金属シリサイドターゲット
の製造方法について具体的に説明する。
Next, a method for producing a high-purity high-melting-point metal silicide target of the present invention will be specifically described.

原料としては、高純度高融点金属粉末(W,Mo,Tiまた
はTa)および高純度シリコン粉末を用いる。これらを所
定の量、秤量調合し、次いで不活性ガス充填または真空
脱気したボールミルで混合後、真空ホットプレスによっ
てシリサイド合成と緻密化とを同時に行うことが肝要で
ある。真空ホットプレスの際、加熱温度をMSi2とSiの共
晶温度直上にまで上げることにより理論密度にほぼ等し
い焼結体を得ることができる。
As a raw material, a high-purity high-melting point metal powder (W, Mo, Ti or Ta) and a high-purity silicon powder are used. It is important that these are mixed in a predetermined amount and weighed amount, then mixed in a ball mill filled with an inert gas or vacuum degassed, and then silicide synthesis and densification are simultaneously performed by vacuum hot pressing. At the time of vacuum hot pressing, by increasing the heating temperature to just above the eutectic temperature of MSi 2 and Si, a sintered body almost equal to the theoretical density can be obtained.

ここで高純度高融点金属粉末は、金属不純物を化学的
(イオン交換法)に除去したのち、水素還元によりガス
成分を低減した粒径50μm以下の粉末である。ことが肝
要である。
Here, the high-purity high-melting-point metal powder is a powder having a particle diameter of 50 μm or less in which a gas component is reduced by hydrogen reduction after removing metal impurities chemically (ion exchange method). It is important.

また、高純度シリコン粉末は、純度99.999%多結晶シ
リコングラニュー(2mm〜10mm)を、不活性ガス雰囲気
又は真空中で高融点金属シリサイドと同じ高融点金属で
内張りした粉砕機で粉砕し、50μm以下に分級したもの
が好ましい。
In addition, high-purity silicon powder is obtained by crushing 99.999% pure polycrystalline silicon granules (2mm to 10mm) with a crusher lined with the same high-melting-point metal as the high-melting-point metal silicide in an inert gas atmosphere or vacuum. Is preferred.

ところで、本発明者らの研究によれば、このSi分級粉
の不純物分析をした結果、金属不純物は問題なかった
が、ガス成分、特に酸素含有量が3000ppm前後(シリコ
ングラニューは70ppm前後)と、非常に高くなることが
わかった。したがって、この酸素を低減するため、分級
粉を10-3〜10-4Torr好ましくは10-4Torrの真空炉内で13
00℃〜1350℃の熱処理し、この処理により酸素含有量を
300ppm以下にすることができる。これは、1300℃〜1350
℃で10-3〜10-4Torrに保持することで粉末表面の吸着ガ
スおよびこの温度で10-3Torrより蒸気圧の高い粉末表面
酸化層のSiO2もしくはSiOが揮発することに起因するも
のと考えられる。
By the way, according to the study of the present inventors, as a result of the impurity analysis of the Si classified powder, there was no problem with the metal impurities, but the gas component, particularly the oxygen content was about 3000 ppm (silicon granule was about 70 ppm). It turned out to be very high. Therefore, in order to reduce this oxygen, the classified powder is placed in a vacuum furnace of 10 -3 to 10 -4 Torr, preferably 10 -4 Torr.
Heat treatment between 00 ° C and 1350 ° C to reduce the oxygen content
It can be 300 ppm or less. This is between 1300 ° C and 1350
Adsorption gas on the powder surface by maintaining the temperature at 10 -3 to 10 -4 Torr at ℃ and volatilization of SiO 2 or SiO of the oxide layer on the powder surface having a vapor pressure higher than 10 -3 Torr at this temperature it is conceivable that.

以上の製法によれば、不純物の混入を極力防止し、上
記組成の高純度の高融点金属シリサイドターゲットを製
造することが可能となる。
According to the above-described manufacturing method, it is possible to manufacture a high-purity high-melting-point metal silicide target having the above composition with a minimum of impurities.

スパッタターゲット中に不純物として上記範囲(30pp
m)を超えて酸素が含有されている場合には、形成され
た薄膜の電気抵抗が大きくなって遅延問題や配線網の断
線等の事故が多発しはじめる。また、Fe、Ni、Crのよう
な重金属はVLSIなど形成された薄膜との界面接合部にお
けるリーク現象の原因を構成し、一方、Na、Kのような
アルカリ金属はVLSI等のSiを容易に遊動して素子特性を
劣化させ、さらにまた、U、Thはそれらの放射するα線
により素子がダメージを受け結局は素子の動作信頼性を
著しく低下させる原因となるので、各々、前述した範囲
に制限することが重要である。
The above range (30pp as impurity in sputter target)
When oxygen is contained in excess of m), the electrical resistance of the formed thin film increases and accidents such as delay problems and disconnection of the wiring network begin to occur frequently. In addition, heavy metals such as Fe, Ni, and Cr constitute a cause of a leak phenomenon at an interface junction with a formed thin film such as VLSI, while alkali metals such as Na and K easily remove Si such as VLSI. U and Th cause the elements to be damaged by the α-rays radiated from them and eventually cause the operation reliability of the elements to be remarkably reduced. It is important to limit.

(実施例) 純度99.999%の多結晶シリコングラニュー(2mm〜10m
m)をWで内張りした粉砕機を用いて粉砕し、50μm以
下に分級した。分級粉1200gを10-4Torr台の真空中1350
℃で3時間保持した。この熱処理前後のガス成分分析結
果を下記表1に示す。
(Example) Polycrystalline silicon granules having a purity of 99.999% (2 mm to 10 m
m) was pulverized using a pulverizer lined with W, and classified to 50 μm or less. 1200 g of classified powder in a vacuum of 10 -4 Torr level 1350
C. for 3 hours. The results of gas component analysis before and after this heat treatment are shown in Table 1 below.

熱処理後のSi粉996gと高純度W粉末(5〜10μm)25
09g(Si/Wモル比=2.60)を秤量し、ナイロン製ポット
にこの秤量した粉末とナイロン製ボールを入れ、容器内
を真空引き後、ポットローラで72時間混合した。この
時、ポットローラ全体をグローブボックスに入れ内部を
Ar雰囲気とした。
996 g of Si powder after heat treatment and high-purity W powder (5 to 10 μm) 25
09 g (Si / W molar ratio = 2.60) was weighed, the weighed powder and nylon ball were put in a nylon pot, and the inside of the container was evacuated and mixed with a pot roller for 72 hours. At this time, put the entire pot roller into the glove box and
The atmosphere was Ar.

混合粉を4段の加熱ステップ、最高圧力250kg/cm2
ホットプレスした結果、Si/Wモル比:2.58、密度比99.7
%のWシリサイドの焼結体を得た。表2にこの焼結体の
不純物分析結果を示す。
As a result of hot pressing the mixed powder with four heating steps at a maximum pressure of 250 kg / cm 2 , the Si / W molar ratio was 2.58 and the density ratio was 99.7.
% Of W silicide was obtained. Table 2 shows the results of impurity analysis of this sintered body.

なお、比較例として従来法で製造されたWシリサイド
ターゲット(組成比2.60)の密度比と不純物分析結果も
あわせて表2に示す。
As a comparative example, Table 2 also shows the density ratio and the impurity analysis result of the W silicide target (composition ratio 2.60) manufactured by the conventional method.

〔発明の効果〕 以上説明したように、本発明によれば高密度かつ高純
度の高融点金属シリサイドターゲットおよびその簡便な
製造工程が提出される。
[Effects of the Invention] As described above, according to the present invention, a high-density and high-purity refractory metal silicide target and a simple manufacturing process thereof are provided.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 H01L 21/203,21/285 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C23C 14/00-14/58 H01L 21 / 203,21 / 285

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルカリ金属元素の含有量を0.1ppm以下、
Fe,NiおよびCrの各元素の含有量を1ppm以下、UおよびT
hの各元素の含有量を0.005ppm以下に制限したことを特
徴とする高融点金属シリサイド製ターゲット。
An alkali metal element content of 0.1 ppm or less,
Fe, Ni and Cr content of each element is 1ppm or less, U and T
A refractory metal silicide target, wherein the content of each element of h is limited to 0.005 ppm or less.
【請求項2】酸素含有量を更に300ppm以下に制限したこ
とを特徴とする請求項1に記載の高融点金属シリサイド
製ターゲット。
2. The refractory metal silicide target according to claim 1, wherein the oxygen content is further limited to 300 ppm or less.
【請求項3】電極配線薄膜形成用として用いられること
を特徴とする請求項1または請求項2のいずれか1項に
記載の高融点金属シリサイド製ターゲット。
3. The refractory metal silicide target according to claim 1, which is used for forming an electrode wiring thin film.
【請求項4】電極配線薄膜は、ULSI,VLSIの電極配線薄
膜であることを特徴とする請求項3に記載の高融点金属
シリサイド製ターゲット。
4. The refractory metal silicide target according to claim 3, wherein the electrode wiring thin film is a ULSI or VLSI electrode wiring thin film.
【請求項5】金属不純物を化学的に除去した後、水素還
元によりガス成分を低減した粒径50μm以下の高融点金
属粉末とシリコン粉末とを混合後、真空ホットプレスで
加熱温度を高融点金属シリサイドとシリコンとの共晶温
度直上まで上げることによって、反応合成ならびに溶融
焼結を行なってアルカリ金属元素の含有量を0.1ppm以
下、Fe,NiおよびCrの各元素の含有量を1ppm以下、Uお
よびThの各元素の含有量を0.005ppm以下に制限した高融
点金属シリサイドの焼結体を製造することを特徴とする
高融点金属シリサイド製ターゲットの製造方法。
5. After chemically removing metal impurities, mixing a silicon powder with a high melting point metal powder having a particle diameter of 50 μm or less, the gas component of which has been reduced by hydrogen reduction, and then heating the metal to a high melting point with a vacuum hot press. By raising the temperature to just above the eutectic temperature of silicide and silicon, reaction synthesis and melt sintering are performed to reduce the content of alkali metal elements to 0.1 ppm or less, the content of each element of Fe, Ni and Cr to 1 ppm or less, U A method for manufacturing a target made of a high melting point metal silicide, comprising manufacturing a sintered body of a high melting point metal silicide in which the content of each element of Th and Th is limited to 0.005 ppm or less.
【請求項6】高融点金属粉末がW,Mo,TiまたはTaからな
り、水素還元で最終仕上げを行なうことを特徴とする請
求項5に記載の高融点金属シリサイド製ターゲットの製
造方法。
6. The method according to claim 5, wherein the refractory metal powder is made of W, Mo, Ti or Ta, and the final finish is performed by hydrogen reduction.
【請求項7】シリコン粉末を不活性ガス雰囲気または真
空中において高融点金属シリサイドと同じ高融点金属で
内張りした粉砕機で粉砕し、粉砕粉末を10−3〜10−4T
orrの真空炉において1300〜1350℃の温度で熱処理する
ことを特徴とする請求項5に記載の高融点金属シリサイ
ド製ターゲットの製造方法。
7. A silicon powder is pulverized in an inert gas atmosphere or in a vacuum with a pulverizer lined with the same high melting point metal as the high melting point metal silicide, and the pulverized powder is 10-3 to 10-4 T
The method according to claim 5, wherein the heat treatment is performed at a temperature of 1300 to 1350C in an orr vacuum furnace.
【請求項8】高融点金属粉末とシリコン粉末との調合粉
末の混合を、不活性ガス充填または真空脱気したプラス
チック製ボールミルで行なうことを特徴とする請求項5
に記載の高融点金属シリサイド製ターゲットの製造方
法。
8. The method according to claim 5, wherein the mixing of the blended powder of the high melting point metal powder and the silicon powder is carried out in a plastic ball mill filled with an inert gas or vacuum degassed.
3. The method for producing a target made of a high-melting-point metal silicide according to item 1.
【請求項9】金属不純物を化学的に除去する方法は、イ
オン交換法であることを特徴とする請求項5に記載の高
融点金属シリサイド製ターゲットの製造方法。
9. The method according to claim 5, wherein the method of chemically removing metal impurities is an ion exchange method.
JP63322422A 1988-12-21 1988-12-21 Refractory metal silicide target and method for producing the same Expired - Lifetime JP2941828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322422A JP2941828B2 (en) 1988-12-21 1988-12-21 Refractory metal silicide target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322422A JP2941828B2 (en) 1988-12-21 1988-12-21 Refractory metal silicide target and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02166276A JPH02166276A (en) 1990-06-26
JP2941828B2 true JP2941828B2 (en) 1999-08-30

Family

ID=18143487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322422A Expired - Lifetime JP2941828B2 (en) 1988-12-21 1988-12-21 Refractory metal silicide target and method for producing the same

Country Status (1)

Country Link
JP (1) JP2941828B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233201T2 (en) * 1991-01-25 2004-07-01 Kabushiki Kaisha Toshiba, Kawasaki High-purity conductive films and their application in semiconductor devices
JPH05295531A (en) * 1992-04-21 1993-11-09 Toshiba Corp Ti-w based sputtering target and its production
US7245018B1 (en) 1999-06-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
JP2002083812A (en) * 1999-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd Wiring material and semiconductor device with the wiring material and its manufacturing device
JP4520331B2 (en) * 2005-03-04 2010-08-04 シャープ株式会社 Method for producing hydrogen gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2542566B2 (en) * 1985-01-30 1996-10-09 日立金属株式会社 Method for manufacturing target for sputtering device
JPS63227771A (en) * 1987-03-16 1988-09-22 Tosoh Corp High purity titanium silicide target for sputtering and production thereof

Also Published As

Publication number Publication date
JPH02166276A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
KR910003884B1 (en) High melting metal silicide sputtering target and process for preparing the same
US5460793A (en) Silicide targets for sputtering and method of manufacturing the same
US4373947A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
US6042777A (en) Manufacturing of high density intermetallic sputter targets
JP2004100000A (en) Iron silicate sputtering target and production method therefor
KR950703668A (en) HIGH MELTING POINT METALLIC SILICIDE TARGET AND METHOD FOR PRODUCING THE SAME, HIGH MELTING POINT METALLIC SILICIDE FILM AND SEMICOMDUCTOR DEVICE
JP3792007B2 (en) Manufacturing method of sputtering target
WO2015146311A1 (en) SPUTTERING TARGET COMPRISING Al-Te-Cu-Zr ALLOY, AND METHOD FOR PRODUCING SAME
JP2941828B2 (en) Refractory metal silicide target and method for producing the same
JP2004099392A (en) Iron silicide powder and method of manufacturing the same
KR20010021722A (en) Intermetallic aluminides and silicides sputtering targets, and methods of making same
JP2001295036A (en) Tungsten sputtering target and its manufacturing method
JP3280054B2 (en) Method for manufacturing tungsten target for semiconductor
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JPH03107453A (en) Ti-w target and production thereof
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
JP2542566B2 (en) Method for manufacturing target for sputtering device
WO2014148424A1 (en) Ti-Al ALLOY SPUTTERING TARGET
JPH0247261A (en) Silicide target and production thereof
JPH03173704A (en) Production of target for sputtering
JP2003167324A (en) Metal silicide sputtering target and method for manufacturing the same
JPS61145828A (en) Sputtering target and manufacture of the same
JP2000064032A (en) Titanium silicide target and its production
JPH0360914B2 (en)
JPH01136969A (en) Manufacture of target for titanium silicide sputtering

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10