JPH05132772A - Production of high density target material by powder method - Google Patents
Production of high density target material by powder methodInfo
- Publication number
- JPH05132772A JPH05132772A JP29730991A JP29730991A JPH05132772A JP H05132772 A JPH05132772 A JP H05132772A JP 29730991 A JP29730991 A JP 29730991A JP 29730991 A JP29730991 A JP 29730991A JP H05132772 A JPH05132772 A JP H05132772A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- density
- liquid phase
- isostatic pressing
- hot isostatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、粉末法による高密度タ
ーゲット材の製造方法に関し、詳細には、エレクトロニ
クス、光学、精密機械、切削工具等の分野において、ス
パッタリングによる薄膜形成に用いられるターゲット材
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density target material by a powder method, and more specifically to a target material used for thin film formation by sputtering in the fields of electronics, optics, precision machinery, cutting tools and the like. The present invention relates to a manufacturing method of.
【0002】[0002]
【従来の技術】エレクトロニクス、光学、精密機械、切
削工具等の分野において薄膜形成に用いられるターゲッ
ト材は、通常、溶解法または粉末法によって製造されて
いる。また、これらターゲット材の組成は多岐にわたる
ことより、種々の組成のものが比較的容易に製造できる
粉末法によって製造されることが多い。2. Description of the Related Art A target material used for forming a thin film in the fields of electronics, optics, precision machinery, cutting tools, etc. is usually manufactured by a melting method or a powder method. Further, since the compositions of these target materials are diverse, they are often manufactured by the powder method which allows relatively easy preparation of various compositions.
【0003】[0003]
【発明が解決しようとする課題】そして、粉末法による
ターゲット材では、その品質要求としては、理論密度に
近い緻密な密度のもので、かつ組成・組織が均一で高強
度であることが要求されるのであるが、その要求を満足
させるについて、特に問題となるのは、低温で共晶を生
じる粉末同士や、融点の低い粉末を含んで融点差の大き
な粉末同士を固化成形する場合である。The quality of the target material produced by the powder method is required to be of a dense density close to the theoretical density and to have a uniform composition and structure and high strength. However, in order to satisfy the requirement, a particular problem is in the case of solidifying and molding powders which form eutectic at low temperature or powders having a low melting point and having a large melting point difference.
【0004】すなわち、通常の焼結のように液相が生じ
る温度以下の温度域で固化成形すると、その温度を高く
できないため、これら粉末同士を充分に拡散焼結させて
理論密度に近い密度に固化成形することができず、得ら
れた材料が密度不足によって強度に劣るものとなる。こ
のため、機械加工時に欠けたり、使用中においてターゲ
ット支持部が欠落したりする等のトラブルが多発し、ま
た、空洞を多く含むため、成膜中のスパッタリング処理
速度を低下させ、多層膜を連続成形する際には、当該タ
ーゲット材がラインの流れを低く律速して生産性を大幅
に低下させる。一方、液相焼結を利用すると、理論密度
に近い密度に固化成形することができるものの、溶融し
た方の組成分が圧力下で移動して偏在し、組成および密
度値にバラツキが大きくて強度的にも劣るものとなり易
く、ときとしてスパッタリングによる成膜精度を低下さ
せて使用に耐えないものとなる。That is, when solidification molding is performed in a temperature range below the temperature at which a liquid phase is generated as in ordinary sintering, the temperature cannot be raised, so these powders are sufficiently diffused and sintered to a density close to the theoretical density. It cannot be solidified and molded, and the obtained material becomes inferior in strength due to insufficient density. As a result, problems such as chipping during machining and chipping of the target support during use frequently occur, and since many voids are included, the sputtering processing speed during film formation is reduced and continuous multilayer films are formed. At the time of molding, the target material controls the flow of the line at a low rate to significantly reduce the productivity. On the other hand, if liquid phase sintering is used, it is possible to solidify and mold to a density close to the theoretical density, but the composition component of the molten one moves under pressure and is unevenly distributed, resulting in large variations in composition and density values and strength. Also, it is likely to be inferior in terms of use, and sometimes the film forming accuracy due to sputtering is lowered to make it unusable.
【0005】本発明は、上記従来の問題点を解決すべく
なされたもので、低温で共晶を生じる粉末同士や、融点
差の大きな粉末同士についても、理論密度に近い高密度
で、かつ組成および密度値が均一で高強度な焼結体とし
て固化成形することのできる粉末法による高密度ターゲ
ット材の製造方法の提供を目的とするものである。The present invention has been made to solve the above-mentioned conventional problems. For powders which produce eutectic crystals at low temperatures and for powders having a large melting point difference, the density is close to the theoretical density and the composition is high. Another object of the present invention is to provide a method for producing a high-density target material by the powder method, which can be solidified and molded as a sintered body having a uniform density value and high strength.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、請
求項1記載の粉末法による高密度ターゲット材の製造方
法は、理論密度に近い密度を得るに最適な固化成形条件
よりも低い温度域で共晶を生じる2種以上の原料粉末の
混合粉末を熱間静水圧加圧処理して固化成形するについ
て、前記混合粉末を、液相が生じる温度以下の温度条件
下でホットプレスないしは熱間静水圧加圧して予備加圧
成形した後、この予備加圧成形体を一部液相が生じる温
度条件下で熱間静水圧加圧処理して固化成形するもので
ある。また、請求項2記載の粉末法による高密度ターゲ
ット材の製造方法は、理論密度に近い密度を得るに最適
な固化成形条件よりも低い温度の融点の粉末を含んで、
融点差の大きな2種以上の原料粉末の混合粉末を熱間静
水圧加圧処理して固化成形するについて、前記原料粉末
同士を高エネルギーミルにより機械的に混合した後、こ
の混合粉末を一部液相が生じる温度条件下で熱間静水圧
加圧処理して固化成形するものである。In order to achieve the above object, the present invention has the following constitution. That is, the method for producing a high-density target material by the powder method according to claim 1, is a method of mixing two or more kinds of raw material powders which form eutectic in a temperature range lower than the optimum solidification molding condition for obtaining a density close to the theoretical density. Regarding the hot isostatic pressing of the powder for solidification and molding, the mixed powder is hot pressed or hot isostatically pressed under a temperature condition of a temperature at which a liquid phase occurs or less, and then prepressed, The preliminary pressure-molded product is subjected to hot isostatic pressing under a temperature condition in which a liquid phase is partially generated, and solidified and molded. Further, the method for producing a high-density target material by the powder method according to claim 2 includes a powder having a melting point lower than the optimum solidification molding condition for obtaining a density close to the theoretical density,
Regarding hot isostatic pressing of a mixed powder of two or more raw material powders having a large difference in melting point and solidification molding, the raw material powders are mechanically mixed with each other by a high energy mill, and then the mixed powder is partially Under a temperature condition in which a liquid phase is generated, hot isostatic pressing is performed and solidification molding is performed.
【0007】また、請求項3記載の粉末法による高密度
ターゲット材の製造方法は、上記熱間静水圧加圧処理に
おける加圧圧力を1000kg/cm2以下とするものである。In the method for producing a high-density target material by the powder method according to the third aspect, the pressure applied in the hot isostatic pressing is 1000 kg / cm 2 or less.
【0008】[0008]
【作用】本発明者は、低温で共晶を生じる粉末同士や融
点差の大きな粉末同士を、熱間静水圧加圧装置を用いて
固化成形して理論密度に近い高密度の高密度ターゲット
材を得る方法として、液相を利用して熱間静水圧加圧処
理することを考えた。しかしながら、この場合、単純に
一部液相が生じる温度条件下で熱間静水圧加圧処理した
だけでは、理論密度に近い密度は得られるものの、組成
的なバラツキや密度値のバラツキが生じて、満足する製
品が得られないことが判明した。The inventors of the present invention solidify and mold powders which form a eutectic at low temperature and powders having a large difference in melting point by using a hot isostatic pressing device and have a high density target material having a high density close to the theoretical density. As a method of obtaining the above, we considered hot isostatic pressing using a liquid phase. However, in this case, a density close to the theoretical density can be obtained by simply performing hot isostatic pressing under a temperature condition in which a liquid phase partially occurs, but compositional variations and variations in density values occur. , It turns out that a satisfactory product cannot be obtained.
【0009】そこで、本発明者は、組成および密度値の
バラツキの成因を把握するため、これら粉末同士を加圧
圧力および温度を種々に変えて熱間静水圧加圧処理する
と共に、それらの内部組織を調査し、その結果から次の
知見を得た。液相を利用する熱間静水圧加圧処理では、
液相にて内部に存在する空洞を充填して消滅させると共
に、圧力によってぬれ性の悪い粉末同士の焼結を促進さ
せるのであるが、その加圧圧力および温度を高めて行く
と、溶融した方の組成分が高圧力下で過度に移動して偏
在し、組成および密度値にバラツキが生じる。一方、そ
の加圧圧力および温度を低めて行くと、これらバラツキ
が減少する傾向を示すものの、理論密度に近い高密度を
得ることが難しくなってくる。すなわち、この方法で
は、熱間静水圧加圧処理中において生じた液相の分布お
よび移動状態が、得られる製品の内部品質に大な影響を
及ぼす。Therefore, in order to understand the cause of the variation in the composition and the density value, the present inventor carries out hot isostatic pressing treatment on these powders by changing the pressurizing pressure and temperature variously and at the same time, We investigated the organization and obtained the following findings from the results. In the hot isostatic pressing process using the liquid phase,
The liquid phase fills and eliminates the voids existing inside, and promotes the sintering of powders with poor wettability due to the pressure. The components of the above composition excessively move and are unevenly distributed under high pressure, resulting in variations in composition and density values. On the other hand, when the pressurizing pressure and temperature are lowered, these variations tend to decrease, but it becomes difficult to obtain a high density close to the theoretical density. That is, in this method, the distribution and movement state of the liquid phase generated during the hot isostatic pressing process have a great influence on the internal quality of the obtained product.
【0010】そして、この観点より更に検討を加えた結
果、これら粉末同士を一部液相が生じる温度条件下で熱
間静水圧加圧処理して、理論密度に近い高密度で、かつ
組成および密度値が均一な焼結体として固化成形するに
は、液相を均等な分布のもとで生じさせる一方で、溶融
した組成分が過度に移動することを抑制する必要があ
り、そのためには、固相下において粉末同士の密度を充
分に高めておくか、液相となる方の粉末を固相を維持す
る方の基地粉末の中に予め取り込んでおくことが有効で
あるとの結論に達した。As a result of further study from this point of view, these powders were subjected to hot isostatic pressing under a temperature condition in which a liquid phase was partially produced, and the powders were of a high density close to the theoretical density and a composition and In order to solidify and form a sintered body with a uniform density value, it is necessary to prevent the liquid composition from moving excessively while causing the liquid phase to have an even distribution. , It is effective to raise the density of the powders sufficiently under the solid phase, or to incorporate the liquid phase powder into the matrix powder that maintains the solid phase in advance. Reached
【0011】本発明は、上記の調査および検討結果から
把握した条件に基づいて完成したものである。すなわ
ち、請求項1記載の発明では、理論密度に近い密度を得
るに最適な固化成形条件よりも低い温度域で共晶を生じ
る2種以上の原料粉末の混合粉末を熱間静水圧加圧処理
して固化成形するについて、その混合粉末を、液相が生
じる温度以下の温度条件下で予備加圧成形するので、固
相下にて粉末同士の密度を充分に高め、これにより熱間
静水圧加圧処理に際して、液相を均等な分布のもとで生
じさせる一方で、溶融した組成分が過度に移動すること
を抑制して、組成分の偏りがなく、高密度で均一な内部
組織の焼結体として固化成形することができる。The present invention has been completed on the basis of the conditions grasped from the above-mentioned investigation and examination results. That is, in the invention according to claim 1, a mixed powder of two or more kinds of raw material powders which causes eutectic in a temperature range lower than the solidification molding condition optimal for obtaining a density close to the theoretical density is subjected to hot isostatic pressing. For solidification and molding, the mixed powder is pre-press-molded under a temperature condition below the temperature at which the liquid phase occurs, so the densities of the powders are sufficiently increased in the solid phase, which results in hot isostatic pressing. During the pressure treatment, while the liquid phase is generated under an even distribution, it suppresses the excessive movement of the melted composition, and there is no bias of the composition and a high density and uniform internal structure is obtained. It can be solidified and molded as a sintered body.
【0012】また、請求項2記載の発明では、理論密度
に近い密度を得るに最適な固化成形条件よりも低い温度
の融点の粉末を含んで、融点差の大きな2種以上の原料
粉末の混合粉末を熱間静水圧加圧処理して固化成形する
について、その原料粉末同士を高エネルギーミルにより
機械的に混合するので、この機械的な混合により低融点
の粉末を基地粉末中に複合化させて取り込み、これによ
り熱間静水圧加圧処理に際して、液相を均等な分布のも
とで生じさせる一方で、溶融した組成分が過度に移動す
ることを抑制して、組成分の偏りがなく、高密度で均一
な組織の焼結体として固化成形することができる。According to the second aspect of the invention, a mixture of two or more kinds of raw material powders having a large melting point difference is included, which includes a powder having a melting point lower than the optimum solidification molding condition for obtaining a density close to the theoretical density. Regarding solidification by hot isostatic pressing of powders, the raw material powders are mechanically mixed with each other by a high-energy mill. As a result, during hot isostatic pressing, the liquid phase is generated with an even distribution, while the molten composition is prevented from excessive movement, and there is no bias in the composition. It can be solidified and molded as a sintered body having a high density and uniform structure.
【0013】また、加圧圧力を高く設定すると液相の移
動が促進されるが、請求項3記載の発明では、上記熱間
静水圧加圧処理における加圧力を1000kg/cm2以下とする
ので、その熱間静水圧加圧処理に際して、溶融した組成
分が過度に移動することをより確実に抑制することがで
きる。Further, when the pressurizing pressure is set high, the movement of the liquid phase is promoted. However, in the invention according to claim 3, the pressurizing force in the hot isostatic pressing process is 1000 kg / cm 2 or less. In the hot isostatic pressing process, it is possible to more reliably prevent the melted component from excessively moving.
【0014】[0014]
【実施例】以下に、本発明に係る高密度ターゲット材の
製造方法の実施例を説明する。EXAMPLES Examples of the method for producing a high density target material according to the present invention will be described below.
【0015】第1実施例:Si−Al合金は 580℃程度の温
度でSiとAlの共晶を生じるが、Si粉末とAl粉末との混合
粉末を、その共晶温度以下の温度条件下で熱間静水圧加
圧(以下、HIPと略記)処理しても、理論密度に近い
高密度のものとすることは難しい。本実施例では、この
ような特性をもつSi粉末とAl粉末との混合粉末から、組
成分の偏りのない均一な組織で、その密度値が理論密度
(2.44 g/cm3)に近い高密度ターゲット材(Si-29wt%Al合
金)を得ることを目標とした。First Example: A Si-Al alloy forms a eutectic of Si and Al at a temperature of about 580 ° C., but a mixed powder of Si powder and Al powder is subjected to a temperature condition below the eutectic temperature. Even with hot isostatic pressing (hereinafter abbreviated as HIP), it is difficult to obtain a high density close to the theoretical density. In this example, a mixed powder of Si powder and Al powder having such characteristics has a uniform structure with no compositional deviation, and its density value is the theoretical density.
The goal was to obtain a high-density target material (Si-29wt% Al alloy) close to (2.44 g / cm 3 ).
【0016】まず、Si量が 71wt%、Al量が 29wt%となる
ように均等混合したSi粉末とAl粉末の混合粉末を、軟鋼
製のカプセルに充填して脱気処理した後、HIP装置に
て加圧圧力を1800kg/cm2、加熱温度を 550℃/2Hrとする
条件下で予備加圧成形した。なお、この予備加圧成形に
おける加熱温度は、SiとAlの共晶を生じる温度よりも約
30℃程度低い温度値とする一方、加圧圧力は、共晶を生
じない温度域にて粉末同士の密度を充分に高めるため、
比較的高い値に設定した。First, a mixed powder of Si powder and Al powder, which were uniformly mixed so that the Si content was 71 wt% and the Al content was 29 wt%, was filled in a mild steel capsule and deaerated, and then placed in a HIP device. Pre-press molding was carried out under the conditions that the pressing pressure was 1800 kg / cm 2 and the heating temperature was 550 ° C./2Hr. It should be noted that the heating temperature in this pre-press molding is about higher than the temperature at which the eutectic of Si and Al occurs.
While the temperature value is about 30 ° C lower, the pressurizing pressure sufficiently increases the density of the powders in the temperature range where eutectic does not occur.
It was set to a relatively high value.
【0017】次に、この予備加圧成形体を、加圧圧力を
500kg/cm2、加熱温度を 600℃/1Hrとする条件下でHI
P処理した。なお、このHIP処理における加熱温度
は、融点の低いAl粉末に一部液相が生じる温度値とする
一方、加圧圧力は、所期の高密度が得られる範囲内おい
てできるだけ低い値に設定し、その圧力で溶融したAlの
移動が促進されることを防いだ。Next, the pre-pressurized body is subjected to a pressurizing pressure.
HI under the conditions of 500kg / cm 2 and heating temperature of 600 ℃ / 1Hr.
P treated. The heating temperature in this HIP treatment is a temperature value at which a part of the Al powder having a low melting point causes a liquid phase, while the pressurizing pressure is set as low as possible within the range in which the desired high density is obtained. However, the pressure prevented the movement of molten Al from being promoted.
【0018】一方、比較のために、上記と同じ混合粉末
を同様に軟鋼製のカプセルに充填・脱気し、これを予備
加圧成形することなく、加圧圧力を1000kg/cm2、加熱温
度を600℃/1Hrとする条件下でHIP処理した。On the other hand, for comparison, the same mixed powder as described above was similarly filled in a mild steel capsule and deaerated, and the pressurizing pressure was 1000 kg / cm 2 and the heating temperature without prepressurizing. Was subjected to HIP treatment under the condition of 600 ° C./1 Hr.
【0019】そして、得られた加圧成形体から採取した
試料の密度および組織を、比較例のものと対比して調査
した。なお、試料は、その説明図である〔図1〕の (a)
図に示すように、脱カプセル前の加圧成形体(S) の上部
と下部とをスライスすることで脱カプセルを兼ねて切り
出した円盤状の上・下部サンプル材(T),(B) それぞれに
ついて (b)図に示すように、外周部2箇所と中央部1箇
所の各3箇所、計6箇所から採取し(No.1〜No.6試
料)、これら試料の断面組織を顕微鏡により観察すると
共に、その密度(g/cm3) およびAl含有率(wt%) を調査し
た。その密度およびAl含有量の調査結果を〔表1〕に示
す。Then, the density and structure of the sample collected from the obtained pressure-molded body were investigated in comparison with those of the comparative example. Note that the sample is an explanatory view thereof (a) in FIG.
As shown in the figure, the disk-shaped upper and lower sample materials (T) and (B) cut out for decapsulation by slicing the upper and lower parts of the pressure-molded body (S) before decapsulation, respectively. About (b), as shown in the figure, samples were taken from 6 places in total, 2 places on the outer circumference and 1 place on the center (No.1 to No.6 samples), and the cross-sectional structure of these samples was observed with a microscope. In addition, its density (g / cm 3 ) and Al content (wt%) were investigated. The results of investigation of the density and Al content are shown in [Table 1].
【0020】[0020]
【表1】 [Table 1]
【0021】〔表1〕に示すように、比較例のもので
は、Al含有率に上部と下部で大きな偏りが認められたに
対し、本実施例のものは、各部位ともAl含有率のバラツ
キが小さくてほぼ均等であり、また、密度値も計算で求
めた理論値(2.44)よりも高く、しかも比較例のものより
も遙かにバラツキが小さくて安定した値であった。As shown in [Table 1], in the comparative example, a large deviation was observed in the Al content in the upper part and in the lower part. Was small and almost uniform, the density value was also higher than the theoretical value (2.44) calculated, and the variation was much smaller than that of the comparative example, which was a stable value.
【0022】一方、顕微鏡による組織観察では、比較例
のものにおける密度値のバラツキは組成分布と空洞との
両者が関係していることを示し、特に理論値よりも低い
値を示した比較例のNo.3試料では空洞の残存が明らかに
認められた。これに対して、本実施例のものは、空洞の
存在は一切認められない均等かつ緻密な組織を呈してお
り、本発明方法の優れた効果を確認することができた。On the other hand, the microscopic observation of the structure shows that the variation of the density value in the comparative example is related to both the composition distribution and the cavity, and particularly the comparative example showing a value lower than the theoretical value. Remaining cavities were clearly observed in the No. 3 sample. On the other hand, in the case of the present example, a uniform and dense structure in which no cavities were present was observed, and the excellent effect of the method of the present invention could be confirmed.
【0023】〔第2実施例〕:Cr−Cu合金は融点差の大
きな金属同士の合金で、Crの融点は1800℃程度であるに
対して、Cuの融点は1080℃程度と格段に低い。また、Cr
粉末とCu粉末との混合粉末を、このCuの融点以下の温度
条件下でHIP処理しても、理論密度に近い高密度のも
のとすることは難しい。本実施例では、このような特性
をもつCr粉末とCu粉末との混合粉末から、組成分の偏り
のない均一な組織で、その密度値が理論密度(7.257 g/c
m3) に近い高密度ターゲット材(Cr-5wt%Cu 合金)を得
ることを目標とした。[Second Embodiment]: A Cr-Cu alloy is an alloy of metals having a large difference in melting point. Cr has a melting point of about 1800 ° C, whereas Cu has a remarkably low melting point of about 1080 ° C. Also, Cr
Even if the mixed powder of the powder and the Cu powder is subjected to the HIP treatment under the temperature condition below the melting point of Cu, it is difficult to obtain a high density close to the theoretical density. In this example, from the mixed powder of the Cr powder and the Cu powder having such characteristics, a uniform structure with no bias of the composition, the density value of which is theoretical density (7.257 g / c
The goal was to obtain a high-density target material (Cr-5wt% Cu alloy) close to m 3 ).
【0024】まず、Cr量が 95wt%、Cu量が5wt%となるよ
うにしたCr粉末とCu粉末の混合粉末を、アトライター
(高エネルギーボールミル)に投入し、240rpmの回転数
で24Hr混合処理してCu粉末を基地Cr粉末中に取り込んで
複合化させた。なお、このアトライターによる混合処理
は、Cr粉末とCu粉末の表面を活性化させ、両者間に金属
間接合が生じて複合化させるに足るエネルギーが得られ
る回転数・時間とした。First, a mixed powder of Cr powder and Cu powder having a Cr content of 95 wt% and a Cu content of 5 wt% was put into an attritor (high energy ball mill) and subjected to a 24 hr mixing treatment at a rotation speed of 240 rpm. Then, the Cu powder was incorporated into the base Cr powder to form a composite. The mixing process using this attritor was performed at a rotational speed and for a time period that activated the surfaces of the Cr powder and the Cu powder, and generated sufficient energy to form a metal-to-metal bond between them to form a composite.
【0025】次に、この複合粉末を、軟鋼製のカプセル
に充填して脱気処理した後、これを加圧圧力を1800kg/c
m2、加熱温度を1100℃/2Hrとする条件下でHIP処理し
た。なお、このHIP処理における加熱温度は、融点の
低いCu粉末に一部液相が生じる温度値とした。Next, this composite powder was filled in a mild steel capsule and deaerated, and then the pressurizing pressure was 1800 kg / c.
HIP treatment was carried out under the conditions of m 2 and heating temperature of 1100 ° C./2Hr. The heating temperature in this HIP treatment was a temperature value at which a liquid phase was partially generated in Cu powder having a low melting point.
【0026】一方、比較のために、上記と同じ混合粉末
を、アトライターにて混合処理することなく軟鋼製のカ
プセルに充填・脱気し、これを加圧圧力を1800kg/cm2、
加熱温度を1300℃/2Hrとする条件下でHIP処理した。On the other hand, for comparison, the same powder mixture as above was filled and deaerated in a mild steel capsule without being mixed with an attritor, and the pressurizing pressure was 1800 kg / cm 2 ,
The HIP treatment was performed under the condition that the heating temperature was 1300 ° C / 2Hr.
【0027】そして、得られた加圧成形体から前述の第
1実施例の場合と同様にして切り出した円盤状の上・下
部サンプル材(T'),(B') それぞれについて〔図1〕の
(c)図に示すように、外周部4箇所と中央部1箇所の各
5箇所、計10箇所から採取し(No.1〜No.10 試料)、
第1実施例と同様に、これら試料の断面組織を顕微鏡に
より観察すると共に、その密度(g/cm3) およびAl含有率
(wt%) を調査した。その密度およびAl含有量の調査結果
を〔表1〕に示す。Then, disk-shaped upper and lower sample materials (T ') and (B') cut out from the obtained pressure-molded body in the same manner as in the above-mentioned first embodiment (FIG. 1). of
(c) As shown in the figure, samples were collected from 5 locations, 4 locations on the outer circumference and 1 location on the center, totaling 10 locations (No.1 to No.10 samples),
As in the first embodiment, the cross-sectional structures of these samples were observed with a microscope, and their density (g / cm 3 ) and Al content were determined.
(wt%) was investigated. The results of investigation of the density and Al content are shown in [Table 1].
【0028】[0028]
【表2】 [Table 2]
【0029】比較例のものは、顕微鏡による組織観察で
は空洞の存在は全く認められなかったが、〔表2〕に示
すように、Cu含有率が各部で大きくバラツキ、それに伴
って密度値も各部で大きく変化していた。In the case of the comparative example, the presence of cavities was not recognized at all by microscopic observation of the structure, but as shown in [Table 2], the Cu content greatly varied in each part, and the density value also varied in each part. Was changing drastically.
【0030】これに対して、本実施例のものは、〔表
2〕に明らかなように各部位の組成が均一であり、かつ
密度値のバラツキも殆ど無視できる程度に小さく、ま
た、顕微鏡による組織観察でも、空洞の存在は一切認め
られない均等かつ緻密な組織を呈しており、本発明方法
の優れた効果を確認することができた。On the other hand, in the present embodiment, as is clear from [Table 2], the composition of each part is uniform, and the variation in the density value is small enough to be neglected. The structure observation also showed a uniform and dense structure in which no cavities were present, confirming the excellent effect of the method of the present invention.
【0031】なお、本実施例では、HIP処理における
加圧圧力を1800kg/cm2と比較的高い圧力値に設定した
が、これはアトライターにて混合処理されてなる複合粉
末は、粉末同士が積層した構造をとることから圧力に対
して鈍感で、やや高めの圧力下でも組成の均一性が安定
して得られるからである。しかしながら、適用対象とす
る粉末の種別や、それに伴うHIP処理温度の如何によ
っては、その圧力下で溶融した組成の移動が促進される
ことがあるので、HIP処理における加圧圧力は、1000
kg/cm2以下に設定するのがより望ましい。また、アトラ
イターで混合処理されてなる複合粉末は、粉末表面が活
性化されているので1000kg/cm2以下の加圧圧力でも、一
部液相が生じる温度条件下でHIP処理する限り、理論
密度に近い高密度の焼結体として固化成形することがで
きる。In this example, the pressurizing pressure in the HIP process was set to a relatively high pressure value of 1800 kg / cm 2 , but the composite powder obtained by the mixing process in the attritor was such that This is because the layered structure is insensitive to pressure, and the uniformity of composition can be stably obtained even under a slightly higher pressure. However, depending on the type of powder to be applied and the temperature of the HIP treatment that accompanies it, the movement of the molten composition under that pressure may be promoted.
It is more desirable to set it to kg / cm 2 or less. In addition, since the powder surface is activated in the composite powder that has been mixed with an attritor, as long as it is HIP-treated under the temperature conditions in which a liquid phase is partially generated even under a pressure of 1000 kg / cm 2 or less, the theoretical It can be solidified and molded as a high-density sintered body close to the density.
【0032】[0032]
【発明の効果】以上に述べたように、本発明に係る粉末
法による高密度ターゲット材の製造方法によれば、低温
で共晶を生じる粉末同士や、融点差の大きな粉末同士に
ついても、理論密度に近い高密度で、かつ、組成および
密度値が均一で高強度な焼結体として固化成形すること
ができ、もってターゲット材の組成範囲を拡大できると
共に、従来技術では得られなかった高密度なターゲット
材の製造を可能として、粉末法によるターゲット材の用
途拡大および性能の向上に大きく寄与することができ
る。As described above, according to the method for producing a high-density target material by the powder method according to the present invention, the theory can be applied to the powders which form eutectic at low temperature and the powders having a large melting point difference. It can be solidified and molded as a high-strength sintered body with a high density close to the density and a uniform composition and density value. Therefore, the composition range of the target material can be expanded and the high density which was not obtained by the conventional technology. It is possible to manufacture various target materials, and it is possible to greatly contribute to expansion of applications and improvement of performance of the target material by the powder method.
【図1】本発明の実施例に関わる試料の採取位置の説明
図である。FIG. 1 is an explanatory diagram of a sampling position of a sample according to an example of the present invention.
(S) --加圧成形体 (T) --上部サンプル材 (B) --下部サンプル材 (T')--上部サンプル材 (B')--下部サンプル材 (S) --Press-formed body (T) --Upper sample material (B) --Lower sample material (T ') --Upper sample material (B') --Lower sample material
Claims (3)
成形条件よりも低い温度域で共晶を生じる2種以上の原
料粉末の混合粉末を熱間静水圧加圧処理して固化成形す
るについて、前記混合粉末を、液相が生じる温度以下の
温度条件下でホットプレスないしは熱間静水圧加圧して
予備加圧成形した後、この予備加圧成形体を一部液相が
生じる温度条件下で熱間静水圧加圧処理して固化成形す
ることを特徴とする粉末法による高密度ターゲット材の
製造方法。1. A mixed powder of two or more kinds of raw material powders which form a eutectic in a temperature range lower than an optimum solidification molding condition for obtaining a density close to a theoretical density, is subjected to hot isostatic pressing to be solidified and molded. With respect to the mixed powder, after hot pressing or hot isostatic pressing by hot pressing under a temperature condition not higher than a temperature at which a liquid phase is generated, the preliminary pressure molding is performed under a temperature condition where a liquid phase is partially generated. A method for producing a high-density target material by a powder method, which comprises hot isostatic pressing and solidifying and molding under the same.
成形条件よりも低い温度の融点の粉末を含んで、融点差
の大きな2種以上の原料粉末の混合粉末を熱間静水圧加
圧処理して固化成形するについて、前記原料粉末同士を
高エネルギーミルにより機械的に混合した後、この混合
粉末を一部液相が生じる温度条件下で熱間静水圧加圧処
理して固化成形することを特徴とする粉末法による高密
度ターゲット材の製造方法。2. Hot isostatic pressing of a mixed powder of two or more raw material powders having a large melting point difference, including a powder having a melting point lower than the optimum solidification molding condition for obtaining a density close to the theoretical density. Regarding the treatment and solidification molding, the raw material powders are mechanically mixed with each other by a high energy mill, and then the mixed powder is hot isostatically pressed and solidified and molded under a temperature condition where a liquid phase is partially generated. A method for producing a high-density target material by the powder method, which is characterized by the above.
力を1000kg/cm2以下とする請求項1または2記載の粉末
法による高密度ターゲット材の製造方法。3. The method for producing a high-density target material by the powder method according to claim 1, wherein the pressurizing pressure in the hot isostatic pressing process is 1000 kg / cm 2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29730991A JPH05132772A (en) | 1991-11-13 | 1991-11-13 | Production of high density target material by powder method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29730991A JPH05132772A (en) | 1991-11-13 | 1991-11-13 | Production of high density target material by powder method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05132772A true JPH05132772A (en) | 1993-05-28 |
Family
ID=17844845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29730991A Withdrawn JPH05132772A (en) | 1991-11-13 | 1991-11-13 | Production of high density target material by powder method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05132772A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7041200B2 (en) | 2002-04-19 | 2006-05-09 | Applied Materials, Inc. | Reducing particle generation during sputter deposition |
US7153468B2 (en) | 2000-08-18 | 2006-12-26 | Honeywell International Inc. | Physical vapor deposition targets and methods of formation |
WO2007008468A1 (en) * | 2005-07-07 | 2007-01-18 | Honeywell International Inc. | Chalcogenide pvd targets with a composition adjusted by solid phase bond of particles with congruently melting compound |
-
1991
- 1991-11-13 JP JP29730991A patent/JPH05132772A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7153468B2 (en) | 2000-08-18 | 2006-12-26 | Honeywell International Inc. | Physical vapor deposition targets and methods of formation |
US7041200B2 (en) | 2002-04-19 | 2006-05-09 | Applied Materials, Inc. | Reducing particle generation during sputter deposition |
WO2007008468A1 (en) * | 2005-07-07 | 2007-01-18 | Honeywell International Inc. | Chalcogenide pvd targets with a composition adjusted by solid phase bond of particles with congruently melting compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0311407B1 (en) | Process for fabricating parts for particulate material | |
CA2488364C (en) | Method for producing highly porous metallic moulded bodies close to the desired final contours | |
KR960016065B1 (en) | Method for making composite articles that include complex internal geometry | |
US5561829A (en) | Method of producing structural metal matrix composite products from a blend of powders | |
EP0397513A1 (en) | Consolidation of powder aluminum and aluminum alloys | |
JP5342810B2 (en) | Method for producing Al-based alloy sputtering target material | |
JPH055106A (en) | Production of alloy sintered body | |
JP2860064B2 (en) | Method for producing Ti-Al alloy target material | |
US20030170137A1 (en) | Forming complex-shaped aluminum components | |
CN110527957A (en) | A kind of aluminium chromium-boron alloy target and preparation method thereof | |
JPH02185904A (en) | Hot pressing of powder and granule | |
JPH05132772A (en) | Production of high density target material by powder method | |
JP2849710B2 (en) | Powder forming method of titanium alloy | |
JPH04323366A (en) | Target for sputtering and its production | |
JPH0254760A (en) | Manufacture of target | |
JPS62274033A (en) | Manufacture of rare earth-transition metal alloy target | |
KR100302232B1 (en) | Production process of titanium-aluminum intermetallic compound parts by powder injection molding | |
JP2017106085A (en) | Manufacturing method of sintered compact | |
JPH0643628B2 (en) | Method for manufacturing aluminum alloy member | |
JP2654982B2 (en) | Fe-Al-Si alloy and method for producing the same | |
CN117102490B (en) | Strontium titanium alloy preparation method, alloy-based target and magnetron sputtering film | |
JPH0635637B2 (en) | Diamond composite high speed tool steel sintered body and its manufacturing method | |
KR101115225B1 (en) | Feedstock composition and method of using same for powder metallurgy forming of reactive metals | |
JPH04365824A (en) | Production of slider for current collector | |
SU827577A1 (en) | Method of making cast magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |