KR100302232B1 - Production process of titanium-aluminum intermetallic compound parts by powder injection molding - Google Patents
Production process of titanium-aluminum intermetallic compound parts by powder injection molding Download PDFInfo
- Publication number
- KR100302232B1 KR100302232B1 KR1019970074925A KR19970074925A KR100302232B1 KR 100302232 B1 KR100302232 B1 KR 100302232B1 KR 1019970074925 A KR1019970074925 A KR 1019970074925A KR 19970074925 A KR19970074925 A KR 19970074925A KR 100302232 B1 KR100302232 B1 KR 100302232B1
- Authority
- KR
- South Korea
- Prior art keywords
- binder
- intermetallic compound
- molded body
- powder
- titanium
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/10—Inert gases
- B22F2201/11—Argon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/20—Use of vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
본 발명은 분말사출 성형법에 의한 티타늄-알루미늄계 금속간화합물 부품의 제조방법, 더욱 상세하게는 고비강도를 갖는 내열용TiAl 및 Ti3Al계 금속간화합물부품을 분말사출 성형법(Powder Injection Molding)에 의해 성형할 때 공정을 간편하게 하여 제조단가를 저감시킬 수 있게한 금속간화합물 부품의 제조방법에 관한 것이다.The present invention relates to a method for producing a titanium-aluminum-based intermetallic compound component by powder injection molding, and more particularly, to a heat injection TiAl and Ti 3 Al-based intermetallic compound component having high specific strength in powder injection molding. The present invention relates to a method for producing an intermetallic compound component which makes it possible to reduce the manufacturing cost by simplifying the process when molding.
일반적으로, 형상이 복잡하고 난가공성의 부품을 정밀하게 제조할 수 있는 제조기술로는 절삭가공, 정밀주조, 다이캐스팅 및 분말야금등이 있다.In general, manufacturing techniques that can precisely manufacture parts with complex shapes and difficult processing include cutting, precision casting, die casting, and powder metallurgy.
절삭가공은 기계가공이라는 점에서 제조비용은 물론 양산성에 있어서 문제가 있으며, 정밀 주조법에 의한 제조방법은 복잡한 형상의 성형이 가능하나 소형 정밀 부품의 경우에는 고가이며 대량생산에도 부적합하다.Cutting process is problematic in terms of manufacturing cost as well as mass production in that it is a machining process, the manufacturing method by the precision casting method is capable of forming a complex shape, but in the case of small precision parts are expensive and unsuitable for mass production.
다이캐스팅법은 Al, Zn등과 같은 저융점 합금에 한정되어 적용되며, 분말야금법은 2차원 단순형상의 생산단가는 저렴하나 복잡한 형상은 후가공량의 증가로 인하여 제조단가가 상승한다.The die casting method is limited to low melting point alloys such as Al, Zn, etc., and powder metallurgy has a low production cost in two-dimensional simple shapes, but the manufacturing cost increases due to the increase in the amount of post processing.
그러나 분말사출 성형법은 기존 가공기술과는 달리 고기능 복잡형상의 정밀 부품을 저렴한 생산단가(원가절감효과:약 20-80%)로 양산할 수 있는 가공기술로 알려져 있다.However, unlike conventional processing technology, the powder injection molding method is known as a processing technology capable of mass-producing high-performance complex precision parts at a low production cost (about 20-80%).
TiAl또는 Ti3Al 금속간화합물은 대기용해시에 산화반응이 극심하게 발생하기때문에 제조가 거의 불가능하고, 진공유도 용해법도 도가니와 반응이 상대적으로 용이하여 건전한 주괴를 제조하기에는 상당한 어려움이 있다.TiAl or Ti 3 Al intermetallic compounds are almost impossible to manufacture due to the extreme oxidation reaction during atmospheric dissolution, and the vacuum induction dissolution method is relatively easy to react with the crucible, thus making it difficult to produce a healthy ingot.
예를 들면, Ti와의 반응정도가 상대적 낮다고 알려진 CaO도가니를 이용한 진공유도 용해에서도 상당한 개재물이 혼입되는 것으로 알려져 있다.For example, it is known that significant inclusions are also incorporated in vacuum induction melting using a CaO crucible, which is known to have a relatively low degree of reaction with Ti.
한편, 진공아크 용해법은 매우 건전한 주괴를 제조할 수 있다는 장점이 있지만, 그 제조단가가 매우 고가인 관계로 경제성이 없었으며, Ti-Al계 금속간화합물의 후가공 공정도 그들의 난가공성으로 인하여 세심한 주의가 요구되었고, 부품을 제조하기 위하여 고비용의 압출(또는 단조), 열처리, 정밀 기계가공등과 같은 추가의 고온 가공공정이 요구된다.On the other hand, the vacuum arc melting method has the advantage of producing very healthy ingots, but due to its high manufacturing cost, there is no economic feasibility, and the post-processing process of Ti-Al-based intermetallic compounds is also meticulous due to their hard workability. There is a need for additional high temperature machining processes such as expensive extrusion (or forging), heat treatment, precision machining, etc., to produce the part.
TiAl또는 Ti3Al금속간화합물의 부품 제조단가를 낮추기 위한 제조공정의 일예가 미국특허 4,707,332호에 제시되어 있다. 이들은 합금분말을 이용하여 CIP(Cold Isostatic Pressing)나 분말사출 성형법을 통하여 후가공 공정의 제조단가를 낮추는 방법을 선택하고 있다.An example of a manufacturing process for lowering the component manufacturing cost of TiAl or Ti 3 Al intermetallic compound is shown in US Patent 4,707,332. They choose the method of lowering the manufacturing cost of the post-processing process by using CIP (Cold Isostatic Pressing) or powder injection molding using alloy powder.
그러나 상기 인용특허는 개념적으로 모든 금속간화합물의 분말사출 성형에 의한 부품제조를 포함하기 때문에 특정 합금계의 공정특성을 제대로 반영할 수 없다는 단점이 있다.However, the cited patent has a disadvantage in that it does not properly reflect the process characteristics of a specific alloy because it includes the manufacturing of parts by powder injection molding of all the intermetallic compounds.
그리고 분말사출 후 바인더를 제거하기 위해 수행되는 600℃까지의 열처리는 급격한 바인더 제거를 발생시켜 그 형상이 쉽게 와해되는 단점이 있다.And the heat treatment up to 600 ℃ performed to remove the binder after powder injection has a disadvantage that the shape is easily broken by generating a rapid binder removal.
또한 이 방법은 진공아크 용해된 주괴의 분쇄나 분말화(atomization)에 의해 제조된 합금분말을 이용함으로써 분말 제조비용을 낮추지 못하는 문제점도 있었다.In addition, this method also has a problem that it is not possible to lower the powder manufacturing cost by using the alloy powder prepared by the grinding or atomization of the vacuum arc melted ingot.
본 발명은 위와 같은 종래의 문제를 감안하여 안출한 것으로, 그 목적은 고온자전합성법을 이용하여 합금분말을 제조한 후에 분말사출 성형법으로 부품을 제조할 수 있는 티타늄-알루미늄계 금속간화합물 부품의 제조방법을 제공하는 것이다.The present invention has been made in view of the above-mentioned conventional problems, and its object is to prepare an alloy powder using a high temperature autosynthesis method, and then to prepare a titanium-aluminum-based intermetallic compound component that can be manufactured by powder injection molding. To provide a way.
이러한 목적을 달성하기 위해, 본 발명은 상호 결합시켜 부품형상을 유지시켜 주는 용융상태의 바인더에 자전고온 합성법에 의해 제조된 합금분말을 넣어 10분이상 혼합하고, 상기 혼합물을 원하는 형상으로 분말사출 성형하며, 상기 분말사출시 성형체내에 잔류하는 응력을 완화시켜 형상을 유지되게 하면서 바인더를 제거하였고, 상기 용매추출시 성형체에 잔류된 바인더를 제거하게 열분해공정을 하였으며, 상기 성형체에 물성을 부여하고 형상을 유지되게 진공상태에서 소결공정을 하게 됨을 특징으로 한다.In order to achieve the above object, the present invention is to put the alloy powder prepared by the autothermal synthesis method in a molten binder which is bonded to each other to maintain the shape of the component and mixed for 10 minutes or more, and the powder is molded into a desired shape The binder was removed while maintaining the shape by relieving the stress remaining in the molded body during the powder injection, and the pyrolysis process was performed to remove the binder remaining in the molded body during the solvent extraction. It characterized in that the sintering process in a vacuum state to maintain.
따라서, 본 발명은 난가공성인 TiAl, Ti3Al 그리고 TiAl3화합물을 포함하는 Ti-Al계 금속간화합물의 부품제조에 적합하며, 합금분말은 Ti-Al계 금속간화합물의 연성 및 인성 그리고 강도를 증가시키기 위하여 첨가되는 합금원소(Cr, Mn, V, Mo, W, Nb, B, C, N중 적어도 하나 이상의 원소)를 0.5-15%까지 포함하고(이때, TiAl은 Cr, Mn, V과 같은 합금원소의 첨가에 의해 연성이 개선됨), 내산화성 개선을 위하여 Nb, Mo, W 등과 같은 원소가 첨가되었고, 결정립 미세화 및 강화재 형성을 통한 강도증가를 위하여 B, C, N등과 같은 침입형 원소를 첨가하게 된 것이다.Therefore, the present invention is suitable for manufacturing parts of Ti-Al-based intermetallic compounds including TiAl, Ti 3 Al and TiAl 3 compounds which are difficult to be processed, and the alloy powder is ductile, toughness and strength of Ti-Al-based intermetallic compounds. TiAl is contained in an amount of 0.5-15% (at least one or more elements of Cr, Mn, V, Mo, W, Nb, B, C, and N) added to increase the ratio, wherein TiAl is Cr, Mn, V Ductility is improved by the addition of alloying elements such as), and elements such as Nb, Mo, and W are added to improve oxidation resistance, and intrusion type such as B, C, N, etc. to increase strength through grain refinement and reinforcing material formation. The element was added.
도 1a 및 도 1b는 분말사출 예열온도에 따른 분말사출 성형부품의 외관을 보여주는 사진으로, 예열온도 70℃에서 사출성형한 부품과 예열온도 90℃에서 사출성형한 부품,1a and 1b is a photograph showing the appearance of the powder injection molded parts according to the powder injection preheating temperature, the injection molded parts at preheating temperature 70 ℃ and the injection molding parts at preheating temperature 90 ℃,
도 2a 및 도 2b는 열분해온도에 따른 성형체의 외관을 보여주는 사진으로, 600℃에서 열분해 처리된 부품과 450℃에서 열분해 처리된 부품.Figure 2a and Figure 2b is a picture showing the appearance of the molded body according to the pyrolysis temperature, the parts pyrolyzed at 600 ℃ and the components pyrolyzed at 450 ℃.
도 3a 및 도 3b는 소결분위기에 따른 성형체의 외관을 보여주는 사진으로, 대기 또는 로타리 펌프를 이용한 진공분위기와 확산 펌프를 이용한 진공 또는 아르곤분위기로 성형된 부품이다.Figure 3a and Figure 3b is a picture showing the appearance of the molded body according to the sintering atmosphere, it is a part molded in a vacuum atmosphere using an air or rotary pump and a vacuum or argon atmosphere using a diffusion pump.
이하, 본 발명의 분말사출 성형법에 의한 티타늄-알루미늄계 금속간화합물부품의 제조방법을 상세히 설명한다.Hereinafter, the manufacturing method of the titanium-aluminum-based intermetallic compound component by the powder injection molding method of the present invention will be described in detail.
먼저, 본 발명에서는 합금분말을 서로 결합시키기 위하여 바인더를 용융시킨 후에 합금분말을 넣고 10분이상 혼합한다. 특히 원료분말은 진공아크 용해와 가스 분무에 의한 분말제조공정(atomization)으로 제조할 때 비용이 매우 고가이므로, 자전고온 합성법에 의해 제조된 합금분말을 이용하는 것이 경제적이다.First, in the present invention, after melting the binder in order to bond the alloy powder to each other, the alloy powder is put and mixed for 10 minutes or more. In particular, since the raw material powder is very expensive when the powder is manufactured by vacuum arc melting and atomization by gas spraying, it is economical to use the alloy powder prepared by the autothermal synthesis method.
상기 바인더는 합금분말을 서로 결합시켜 부품형상을 유지하게 만드는 역할을 담당한다.The binder serves to bond the alloy powder to each other to maintain the shape of the part.
분말사출에 의한 성형조건은 75-105℃분위기로 예열하고 사출해야 한다. 이 범위로 한정하는 이유는 예열온도가 75℃미만이 되면 유동성이 저하되어 분말사출 후에 성형체에서 균열이 발생하고, 105℃이상이 되면 유동성이 지나치게 증가하여 성형체의 모양이 뒤틀어지는 문제가 발생한다.Molding conditions by powder injection should be preheated and injected at 75-105 ℃. The reason for this limitation is that when the preheating temperature is less than 75 ° C., the fluidity is lowered, so that a crack occurs in the molded body after powder injection, and when the temperature is 105 ° C. or more, the fluidity is excessively increased and the shape of the molded body is distorted.
특히 본 발명에서는 바인더를 녹여낼 수 있는 용매에 침적하여 20-70℃조건에서 0.5시간 이상 유지하는 것을 특징으로 한다. 이 공정은 600℃까지의 진공 또는 불활성가스 분위기층의 열처리 과정에서 발생하는 급격한 바인더 제거로 인한 성형체의 파손이나 심한 뒤틀림을 방지하기 위한 공정단계이다.In particular, the present invention is characterized in that it is deposited in a solvent capable of dissolving the binder and maintained for at least 0.5 hours at 20-70 ℃ conditions. This process is a process step for preventing the breakage or severe warping of the molded body due to the rapid binder removal generated during the heat treatment of the vacuum or inert gas atmosphere layer up to 600 ℃.
이러한 용매추출은 분말사출 성형체의 제조에서 매우 중요한 공정으로 사출시에 성형체내에 잔류하는 응력을 최대한 완화시키고 형상을 유지하면서 바인더를 효과적으로 제거할 수 있는 전초단계를 제공한다.This solvent extraction is a very important process in the production of powder injection moldings to provide an outpost step that can effectively remove the binder while maintaining the shape and to relieve the stress remaining in the molding at the time of injection.
만일 용매추출 과정을 거치지 않고 바로 열분해 과정으로 작업하게 되면, 심한 뒤틀림과 형상파괴를 피할 수 없다.If you work directly with the pyrolysis process without going through the solvent extraction process, severe warping and shape destruction are inevitable.
이상의 조건으로 용매추출온도를 한정하는 이유는, 만일 20℃미만에서 용매를 추출한 경우 온도가 너무 낮게 되어 바인더 제거가 거의 이루어지지 않으면서 후공정에서 바인더로 인한 오염이 심화됨은 물론 급격한 바인더의 제거로 인하여 형상이 파괴된다. 반면에 70℃를 초과하면 용매추출 과정중에 바인더가 극심하게 제거되어 그 형상이 심하게 뒤틀리거나 균열이 발생된다.The reason for limiting the solvent extraction temperature under the above conditions is that if the solvent is extracted at a temperature below 20 ° C, the temperature becomes too low, and the binder is further removed and the contamination caused by the binder in the post-process is increased. Shape is destroyed. On the other hand, if it exceeds 70 ℃, the binder is severely removed during the solvent extraction process, the shape is severely warped or cracking occurs.
열분해 조건은 350-550℃의 온도범위가 바람직하며, 열분해 공정은 용매추출시에 제거되지 않은 잔류 바인더를 제거하기 위하여 수행한다.Pyrolysis conditions are preferably in the temperature range of 350-550 ℃, the pyrolysis process is carried out to remove the residual binder not removed at the time of solvent extraction.
이상의 범위로 열분해 온도를 한정하는 이유는 350℃미만에서는 반응속도가 너무 느리기 때문에 생산성에 문제가 있으며, 550℃를 초과하면 반응속도가 너무 급격하게 진행되어 성형체에 균열이 형성되거나 형상이 와해된다.The reason for limiting the pyrolysis temperature in the above range is a problem in productivity because the reaction rate is too slow at less than 350 ℃, the reaction rate is too rapid to exceed the 550 ℃ to form a crack or deform the molded body.
소결공정 조건의 설정에 있어서는 소결 분위기가 Ti-Al금속간화합물 성형체의 물성 뿐만 아니라 형상 유지에도 상당한 영향을 미친다.In the setting of the sintering process conditions, the sintering atmosphere has a significant influence not only on the physical properties of the Ti-Al intermetallic molded body but also on the shape retention.
예를 들면, 진공도가 낮은 조건에서는 사출성형체가 심하게 반응하여 그 형상이 파괴되는 단점이 있다. 그러므로 분말사출 성형체의 소결은 확산펌프(diffusion pump)에 의해 얻어질 수 있는 5×10-3torr 이상의 진공도에서 행하여야 한다. 소결온도는 충분한 강도를 얻을 수 있는 1000-1450℃온도에서 행하여 한다.For example, in a low vacuum condition, the injection molded body reacts badly and the shape thereof is destroyed. Therefore, the sintering of the powder injection molded body should be carried out at a vacuum degree of 5 × 10 −3 torr or more that can be obtained by a diffusion pump. The sintering temperature is performed at a temperature of 1000-1450 ° C. where sufficient strength can be obtained.
만일, 소결온도가 1000℃미만이 되면 성형체 내부에 다량의 기공이 형성되거나 결합강도가 낮아지게 되어 쉽게 파괴되는 문제가 발생하는 반면, 1450℃이상의 온도에서는 성형체가 용융되어 그 형상의 유지할 수 없게 된다.If the sintering temperature is less than 1000 ℃, a large amount of pores are formed in the molded body or the bond strength is lowered easily breakage problem occurs, whereas at a temperature above 1450 ℃ the molded body melts and can not maintain its shape .
그리고 소결된 성형체는 부품의 밀도를 증가시키기 위하여 히핑(Hot Isostatic Pressing)처리를 거칠 수 있다.The sintered molded body may be subjected to a hot isostatic pressing process to increase the density of the part.
[실시예 1]Example 1
본 발명에서는 자전고온 합성법에 의해 제조된 평균입도 19㎛의 Ti-46.6-Al-2.OMo-1.4Mn 합금분말과 바인더를 혼합한 후에 60-100℃에서 가압하여 사출 성형하였다.In the present invention, after mixing the Ti-46.6-Al-2.OMo-1.4Mn alloy powder and the binder having an average particle size of 19㎛ prepared by the autothermal synthesis method was pressed by injection molding at 60-100 ℃.
표 1은 분말사출 예열온도에 따른 외관 관찰결과를 도표로 나타낸 것이고, 도 1은 사출온도에 따른 성형체의 외관을 보여주는 사진이다.Table 1 is a graph showing the appearance observation results according to the powder injection preheating temperature, Figure 1 is a photograph showing the appearance of the molded body according to the injection temperature.
즉, 도 1a는 70℃에서 사출성형한 것으로서, 상당히 큰 균열이 측면에 발생된 것을 보여준다. 반면에 도 1b에서와 같이 90℃에서 사출한 성형체는 매우 건전한 외관을 보여주고 있다.That is, FIG. 1A is injection molded at 70 ° C., showing that a large crack is generated on the side. On the other hand, the molded product injected at 90 ° C as shown in Figure 1b shows a very sound appearance.
[표 1]TABLE 1
사출예열온도에 따른 균열발생 및 표면변형 존재의 변화Changes in Crack Initiation and Surface Deformation by Injection Preheating Temperature
[실시예 2]Example 2
75-105℃에서 사출된 성형체는 지온에서 형상 변화를 최대한 억제한 상태에서 바인더를 높일 수 있는 용매에 침적하여 용매추출을 행하였다. 용매추출은 20-70℃조건에서 1시간동안 행하였다. 다음 단계는 보다 효과적인 바인더 제거를 위하여 다소 고온에서 열분해 과정을 거치게 된다. 열분해 조건에 따른 성형체의 형상변화를 조사한 결과, 표 2와 같이 관찰되었다.The molded article injected at 75-105 ° C. was solvent-extracted by dipping in a solvent capable of raising the binder in the state of suppressing the shape change at the maximum temperature. Solvent extraction was performed for 1 hour at 20-70 ℃. The next step is to pyrolyze at a rather high temperature for more efficient binder removal. As a result of examining the shape change of the molded body according to the thermal decomposition conditions, it was observed as Table 2.
예를 들면, 600℃에서 열분해한 경우에는 도 2a에서와 같이 심한 균열이 부품전체에 걸쳐 발생하지만, 최적조건으로 열분해된 부품(도 2b참조)은 매우 건전한 표면 상태를 보여준다.For example, when pyrolyzed at 600 ° C., severe cracks occur throughout the parts as shown in FIG. 2A, but parts that are pyrolyzed under optimum conditions (see FIG. 2B) show very healthy surface conditions.
[표 2]TABLE 2
열분해 오도에 따른 성형체의 외관 변화Appearance Change of Molded Body due to Pyrolysis Error
[실시예 3]Example 3
열분해처리된 성형체는 부품에 강도와 강성을 부여하기 위하여 소결처리 하였다. 소결처리는 열처리로의 분위기에 민감하게 의존하였으며 그 결과는 표 3에 나타내었다. 도 3a에서와 같이 소결로의 진공도가 낮은 경우에는 극심한 반응으로 인하여 형상이 완전히 와해된 상태를 보이는 반면, Ar분위기 또는 진공도가 높은 경우의 부품은 도 3b에서와 같이 매우 건전한 상태를 보여주고 있다.The pyrolyzed molded body was sintered to give strength and rigidity to the part. Sintering was sensitively dependent on the atmosphere of the heat treatment furnace and the results are shown in Table 3. When the degree of vacuum of the sintering furnace is low as shown in FIG. 3a, the shape is completely disintegrated due to the extreme reaction, whereas the component in the case of Ar atmosphere or high degree of vacuum shows a very sound state as in FIG. 3b.
[표 3]TABLE 3
소결조건에 따른 성형체의 형상 및 표면상태 변화Change of Shape and Surface State of Molded Body by Sintering Conditions
(단, ++:매우우수, ××:매우나쁨, RP:Rotary Pump, DP: Diffusion Pump)(However, ++: very good, × ×: very bad, RP: Rotary Pump, DP: Diffusion Pump)
이와 같은 본 발명의 분말사출 성형법에 의한 티타늄-알루미늄계 금속간화합물 부품의 제조방법은 고기능이 복잡한 형상으로된 정밀부품을 저렴한 값으로 양산할 수 있음은 물론 다양한 종류의 소재와 난가공성 소재를 사용할 수 있는 효과가 있다.Such a method of manufacturing a titanium-aluminum-based intermetallic compound part by the powder injection molding method of the present invention can mass-produce precision parts having high functions and complex shapes at a low price, and various kinds of materials and difficult materials can be used. It can be effective.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970074925A KR100302232B1 (en) | 1997-12-27 | 1997-12-27 | Production process of titanium-aluminum intermetallic compound parts by powder injection molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970074925A KR100302232B1 (en) | 1997-12-27 | 1997-12-27 | Production process of titanium-aluminum intermetallic compound parts by powder injection molding |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990055022A KR19990055022A (en) | 1999-07-15 |
KR100302232B1 true KR100302232B1 (en) | 2001-11-22 |
Family
ID=37529482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970074925A KR100302232B1 (en) | 1997-12-27 | 1997-12-27 | Production process of titanium-aluminum intermetallic compound parts by powder injection molding |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100302232B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100508471B1 (en) * | 2002-12-10 | 2005-08-17 | 주식회사 에스엠코퍼레이션 | Method for manufacturing titanium material |
KR100749395B1 (en) | 2006-01-04 | 2007-08-14 | 박영석 | Powder injection molding product, titanium coating product, sprayer for titanium coating and paste for titanium coating |
KR100929135B1 (en) | 2005-11-10 | 2009-12-01 | 이재철 | Method for manufacturing precision parts of titanium material by powder injection molding |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100778786B1 (en) * | 2006-04-28 | 2007-11-28 | 윤종호 | Manufacturing method of spectacles frame using a titanium powder injection molding |
KR101230286B1 (en) * | 2010-07-19 | 2013-02-05 | 베스너 주식회사 | Method of controlling carbon content in sintered body made by metal injection molding |
-
1997
- 1997-12-27 KR KR1019970074925A patent/KR100302232B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100508471B1 (en) * | 2002-12-10 | 2005-08-17 | 주식회사 에스엠코퍼레이션 | Method for manufacturing titanium material |
KR100929135B1 (en) | 2005-11-10 | 2009-12-01 | 이재철 | Method for manufacturing precision parts of titanium material by powder injection molding |
KR100749395B1 (en) | 2006-01-04 | 2007-08-14 | 박영석 | Powder injection molding product, titanium coating product, sprayer for titanium coating and paste for titanium coating |
Also Published As
Publication number | Publication date |
---|---|
KR19990055022A (en) | 1999-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI431140B (en) | Method for manufacturing sputtering standard materials for aluminum - based alloys | |
JP2003500544A (en) | Austenitic steel with low nickel content | |
CN101128609A (en) | Method for casting titanium alloy | |
KR100302232B1 (en) | Production process of titanium-aluminum intermetallic compound parts by powder injection molding | |
KR101635792B1 (en) | The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby | |
JP2737498B2 (en) | Titanium alloy for high density powder sintering | |
KR100509938B1 (en) | Method for fabricating TiAl intermetallic articles by metal injection molding | |
KR20150028037A (en) | Method for preparing of platinum-rodium-oxide based alloys materials | |
US20050163646A1 (en) | Method of forming articles from alloys of tin and/or titanium | |
JPH0149765B2 (en) | ||
JP2738766B2 (en) | Method for producing compound sintered body | |
JPH05148568A (en) | High density powder titanium alloy for sintering | |
JPH0635602B2 (en) | Manufacturing method of aluminum alloy sintered forgings | |
JPS62287041A (en) | Production of high-alloy steel sintered material | |
JPH0643628B2 (en) | Method for manufacturing aluminum alloy member | |
KR101828981B1 (en) | Co-Cr based alloy for dental porcelain fused metal using vacuum precision casting and manufacturing method thereof | |
JPH0254760A (en) | Manufacture of target | |
US20240261854A1 (en) | Methods of making gold-titanium alloys from sintered powders | |
JPH06271901A (en) | Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof | |
JP2803455B2 (en) | Manufacturing method of high density powder sintered titanium alloy | |
JPH01184204A (en) | Method for pretreating injecting molded body for producing sintered member | |
JPH05263165A (en) | Manufacture of ti-al alloy sintered body | |
JPH05132772A (en) | Production of high density target material by powder method | |
JPS6217144A (en) | Manufacture of al-li alloy | |
JPH04323307A (en) | Production of tungsten heavy metal product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20050704 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |