JPS6234818B2 - - Google Patents

Info

Publication number
JPS6234818B2
JPS6234818B2 JP1829384A JP1829384A JPS6234818B2 JP S6234818 B2 JPS6234818 B2 JP S6234818B2 JP 1829384 A JP1829384 A JP 1829384A JP 1829384 A JP1829384 A JP 1829384A JP S6234818 B2 JPS6234818 B2 JP S6234818B2
Authority
JP
Japan
Prior art keywords
aluminum
powder
dispersed
ceramic particles
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1829384A
Other languages
Japanese (ja)
Other versions
JPS60162740A (en
Inventor
Heijiro Kurabe
Yoshiaki Oosawa
Masao Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP1829384A priority Critical patent/JPS60162740A/en
Publication of JPS60162740A publication Critical patent/JPS60162740A/en
Publication of JPS6234818B2 publication Critical patent/JPS6234818B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はセラミツク粒子分散アルミニウム鋳造
合金の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ceramic particle dispersed aluminum casting alloys.

最近、アルミニウムにセラミツク粒子を分散さ
せて種々の機械的性質を改善させた複合材料が開
発されている。
Recently, composite materials have been developed in which ceramic particles are dispersed in aluminum to improve various mechanical properties.

従来、その製造法としては、セラミツク粒子を
アルミニウム粉末に分散させた後、これを溶解す
る方法が行われている。しかし、この混合粉末を
そのまま溶解すると、通常セラミツク粒子は10μ
m以下の微粒子が使用されるため、セラミツク微
粒子は分散せずに分離し、均一に分散したものは
得難い。従つて、その分離を防ぐために、 (1) これらの混合粉末をスチールボールと共に強
烈に混合して、アルミニウム粉末の中にセラミ
ツク粒子を埋め込んだ状態とした後溶解する方
法。(特開昭55―76033号公報) (2) 混合粉を加圧機で圧縮して圧粉体を作り、こ
れを溶解する方法。(特開昭57―203733号公
報) 等が知られている。しかし、(1)の方法は特殊な混
練機を必要とするばかりでなく、混練時間も長く
必要とし、作業も非能率でコスト高となる欠点が
ある。(2)の方法は加圧機を必要とし、連続操業が
困難であり、十分に分散したものが得られない欠
点がある。
Conventionally, the manufacturing method has been to disperse ceramic particles in aluminum powder and then to dissolve the dispersion. However, when this mixed powder is dissolved as it is, the ceramic particles are usually 10 μm.
Since fine particles with a size of less than m are used, the ceramic fine particles are separated without being dispersed, making it difficult to obtain uniformly dispersed particles. Therefore, in order to prevent this separation, (1) A method of mixing these mixed powders intensively with a steel ball to form a state in which ceramic particles are embedded in aluminum powder and then melting the powder. (Japanese Unexamined Patent Publication No. 76033/1983) (2) A method in which mixed powder is compressed using a pressurizer to create a green compact, which is then melted. (Japanese Unexamined Patent Publication No. 57-203733) etc. are known. However, method (1) not only requires a special kneading machine, but also requires a long kneading time, and has the disadvantage of being inefficient and expensive. Method (2) requires a pressurizer, is difficult to operate continuously, and has the drawback that a sufficiently dispersed product cannot be obtained.

また、これらの方法に代え、アルミニウム溶湯
に撹拌しながら、セラミツク粒子を混合する方法
も知られている。例えば、セラミツク粒子はアル
ミニウム溶湯との濡れ性が悪いため、そのまま添
加したのでは分散し難いので、セラミツク粒子に
ニツケルメツキを施して添加している。この方法
ではメツキ装置を必要とし、且つ操業も複雑とな
ると共に、ニツケルも必要となり、コスト高とな
る欠点がある。しかも、この方法ではニツケルメ
ツキを施しても10μm以下のセラミツク微粒子の
分散は困難である。
In addition, instead of these methods, a method is also known in which ceramic particles are mixed into molten aluminum while stirring. For example, ceramic particles have poor wettability with molten aluminum and are difficult to disperse if added as is, so ceramic particles are added after being nickel-plated. This method requires a plating device, complicates the operation, and requires nickel, which has the disadvantage of increasing costs. Moreover, with this method, it is difficult to disperse ceramic fine particles of 10 μm or less even if nickel plating is applied.

本発明の目的は従来法の欠点を解消し、特殊の
装置を必要とせず、10μm以下のセラミツク微粒
子でも容易に、且つ均一に分散させたアルミニウ
ム鋳造合金の製造法を提供するにある。
An object of the present invention is to eliminate the drawbacks of conventional methods and to provide a method for producing an aluminum casting alloy in which even ceramic fine particles of 10 μm or less can be easily and uniformly dispersed without requiring special equipment.

本発明者らは前記目的を達成すべく鋭意研究の
結果、アルミニウム粉末とセラミツク粒子の混合
粉末を、撹拌しながら、昇温溶解すると、セラミ
ツク粒子がアルミニウム溶湯中に均一に容易に分
散することを知見した。それは、アルミニウム粉
末が溶解する過程で、撹拌羽根の機械的外力によ
り、半凝固状態のアルミニウム粉末にセラミツク
粒子が埋め込まれ、濡れ性の悪いセラミツク粒子
も溶湯に分散されるものと考えられる。
As a result of intensive research to achieve the above object, the present inventors have found that when a mixed powder of aluminum powder and ceramic particles is melted at an elevated temperature while stirring, the ceramic particles are easily and uniformly dispersed in the molten aluminum. I found out. It is thought that during the process of melting the aluminum powder, ceramic particles are embedded in the semi-solidified aluminum powder due to the external mechanical force of the stirring blade, and ceramic particles with poor wettability are also dispersed in the molten metal.

この知見に基いて本発明を完成したものであ
る。
The present invention was completed based on this knowledge.

本発明の要旨は、アルミニウム粉末とセラミツ
ク粒子の混合粉末を、撹拌しながら、昇温して溶
解させることを特徴とするセラミツク粒子分散ア
ルミニウム鋳造合金の製造法にある。
The gist of the present invention resides in a method for producing an aluminum casting alloy in which ceramic particles are dispersed, which is characterized in that a mixed powder of aluminum powder and ceramic particles is heated and melted while stirring.

本発明において使用するアルミニウム粉末の粒
径は10〜200μm程度のものが好ましい。セラミ
ツク粒子としては、例えば、Al2O3、SiO2
Cr2O3等の粒子が挙げられる。しかし、これらに
限定されるものではなく、セラミツク粒子ならば
同様に使用することができる。その粒径は1〜
100μmの広い範囲で使用し得られ、また、その
添加量は通常1〜30重量%である。
The particle size of the aluminum powder used in the present invention is preferably about 10 to 200 μm. Examples of ceramic particles include Al 2 O 3 , SiO 2 ,
Examples include particles such as Cr 2 O 3 . However, the material is not limited to these, and any ceramic particles can be used as well. Its particle size is 1~
It can be used in a wide range of 100 μm, and the amount added is usually 1 to 30% by weight.

昇温、溶湯時における撹拌は、撹拌羽根の回転
数100〜500rpm程度でよい。
Stirring during heating and molten metal may be performed at a stirring blade rotation speed of about 100 to 500 rpm.

溶解温度は700〜900℃、溶融保持時間は3〜
5minである。
Melting temperature is 700~900℃, melting holding time is 3~
It is 5min.

また、溶解までの時間が長い場合は、大気中で
はアルミニウム粉末の表面が酸化し、セラミツク
粒子の埋め込みが悪くなると共にアルミニウム溶
湯が得られなくなるので、酸化を防止するため、
雰囲気を不活性ガス雰囲気とすることが好まし
い。例えば、混合粉を真空で脱ガスし、次に窒素
ガス、アルゴンガスの不活性ガスで置換する。真
空は10-2mmHg程度でよい。また、溶解るつぼ内
も不活性ガスで置換する。また、雰囲気は真空で
あつてもよい。
In addition, if the time until melting is long, the surface of the aluminum powder will oxidize in the atmosphere, making it difficult to embed the ceramic particles and making it impossible to obtain molten aluminum.To prevent oxidation,
Preferably, the atmosphere is an inert gas atmosphere. For example, the mixed powder is degassed in a vacuum and then replaced with an inert gas such as nitrogen gas or argon gas. A vacuum of about 10 -2 mmHg is sufficient. Additionally, the inside of the melting crucible is also replaced with inert gas. Further, the atmosphere may be a vacuum.

本発明の方法を実施する装置の一態様を示すと
第1図の通りである。第1図は該装置の断面図
で、図中、1は黒鉛製溶解るつぼ、2はシール用
上蓋、3は混合粉用容器、4はステンレス製撹拌
羽根、5は不活性ガス(窒素)供給管、6はセラ
ミツク粒子分散アルミニウム溶湯、7はヒーター
を示す。その操業法は実施例において示す。
FIG. 1 shows one embodiment of an apparatus for carrying out the method of the present invention. Figure 1 is a cross-sectional view of the device, in which 1 is a graphite melting crucible, 2 is a sealing top, 3 is a container for mixed powder, 4 is a stainless steel stirring blade, and 5 is an inert gas (nitrogen) supply. A tube, 6 a ceramic particle-dispersed aluminum molten metal, and 7 a heater. Its operating method is shown in the examples.

実施例 1 装置として第1図に示す装置を使用した。Example 1 The apparatus shown in FIG. 1 was used.

平均粒径100μmの純アルミニウム粉末300gに
平均粒径10μmの球状アルミナ微粉末を5〜20重
量%混合した。この混合粉を混合粉末容器3に入
れ、10-2mmHgに脱ガスし、窒素ガスで置換し
た。また、溶解るつぼ1内に窒素ガス供給管5か
ら窒素ガスを供給し、溶解るつぼ1の温度をヒー
ター7により加熱して800℃に昇温し、混合粉末
を混合粉末容器3から徐々に溶解るつぼ中に装入
した。同時にステンレス製撹拌羽根4を400rpm
の速度で回転させた。溶解が終了した後、これを
取出し、内径20mmの金型に鋳込んだ。
5 to 20% by weight of fine spherical alumina powder with an average particle size of 10 μm was mixed with 300 g of pure aluminum powder with an average particle size of 100 μm. This mixed powder was placed in a mixed powder container 3, degassed to 10 -2 mmHg, and replaced with nitrogen gas. Further, nitrogen gas is supplied into the melting crucible 1 from the nitrogen gas supply pipe 5, the temperature of the melting crucible 1 is heated to 800°C by the heater 7, and the mixed powder is gradually melted from the mixed powder container 3 into the crucible. I put it inside. At the same time, the stainless steel stirring blade 4 is set at 400 rpm.
rotated at a speed of After the melting was completed, it was taken out and cast into a mold with an inner diameter of 20 mm.

アルミナの分散状態は試料の断面を研磨して顕
微鏡写真で調べた。その写真は第2図の(1),(2)に
示す通りであつた。なお、第2図の(1)はアルミナ
を5重量%分散させたとき、(2)はアルミナを20%
分散させたときを示す。(100倍の倍率) 実施例 2 実施例1におけるアルミナ微粉末に代え、100
μmの純アルミニウム粉末300gに平均粒径5μ
mのCr2O3粉末15重量%、及び平均粒径50μmの
SiO2粉末15重量%をそれぞれ単独に添加した。
The state of dispersion of alumina was examined by polishing a cross section of the sample and using micrographs. The photographs were as shown in Figure 2 (1) and (2). Note that (1) in Figure 2 shows when 5% by weight of alumina is dispersed, and (2) shows when 20% alumina is dispersed.
Shows when dispersed. (100x magnification) Example 2 Instead of the alumina fine powder in Example 1, 100x
Average particle size of 5 μm in 300 g of μm pure aluminum powder
m Cr2O3 powder 15% by weight, and average particle size 50μm
15% by weight of SiO 2 powder was added individually.

また、雰囲気の窒素の代りにアルゴンガスを用
いて、他は実施例1と同様にセラミツク粒子分散
アルミニウム鋳造合金を作つた。その結果、
Cr2O3粉末及びSiO2粉末はそれぞれ第2図の(1),
(2)に示すものと同様な分散状態のものが得られ
た。
Further, a ceramic particle-dispersed aluminum cast alloy was produced in the same manner as in Example 1 except that argon gas was used instead of nitrogen in the atmosphere. the result,
Cr 2 O 3 powder and SiO 2 powder are shown in (1) in Figure 2, respectively.
A dispersion state similar to that shown in (2) was obtained.

本発明の方法によると、従来法におけるような
特殊な混練機、加圧機を必要とせず、またニツケ
ルメツキ装置等も必要とせず、連続的に容易にセ
ラミツク粒子分散アルミニウム鋳造合金が得ら
れ、また10μm以下のセラミツク微粒子も容易に
分散されることができる優れた効果を奏し得られ
る。
According to the method of the present invention, an aluminum cast alloy with ceramic particles dispersed in it can be easily and continuously obtained without the need for a special kneader or pressurizer, or a nickel plating device, etc., as in the conventional method. The ceramic fine particles described below can also be easily dispersed and exhibit excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の断面図
である。第2図は本発明の方法で得られたアルミ
ニウム合金の顕微鏡写真(100倍)で、(1)はアル
ミニウムに5重量%のアルミナを分散させたも
の、(2)は20重量%のアルミナを分散させたものを
示す。 1は黒鉛製溶解るつぼ、2はシール用上蓋、3
は混合粉用容器、4はステンレス製撹拌羽根、5
は不活性ガス供給管、6はセラミツク粒子分散ア
ルミニウム溶湯、7はヒーター。
FIG. 1 is a sectional view of an apparatus for carrying out the method of the invention. Figure 2 is a micrograph (100x magnification) of an aluminum alloy obtained by the method of the present invention, (1) is aluminum with 5% by weight alumina dispersed in it, and (2) is aluminum with 20% by weight alumina dispersed in it. Shows what has been dispersed. 1 is a graphite melting crucible, 2 is a sealing top cover, 3
is a container for mixed powder, 4 is a stainless steel stirring blade, and 5 is a container for mixed powder.
6 is an inert gas supply pipe, 6 is a ceramic particle-dispersed aluminum molten metal, and 7 is a heater.

Claims (1)

【特許請求の範囲】 1 アルミニウム粉末とセラミツク粒子の混合粉
末を、撹拌しながら昇温して溶解させることを特
徴とするセラミツク粒子分散アルミニウム鋳造合
金の製造法。 2 不活性ガス雰囲気中で行う特許請求の範囲第
1項記載の製造法。
[Scope of Claims] 1. A method for producing an aluminum casting alloy containing ceramic particles dispersed therein, which comprises heating and melting a mixed powder of aluminum powder and ceramic particles while stirring. 2. The manufacturing method according to claim 1, which is carried out in an inert gas atmosphere.
JP1829384A 1984-02-06 1984-02-06 Production of aluminum casting alloy dispersed with ceramic particles Granted JPS60162740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1829384A JPS60162740A (en) 1984-02-06 1984-02-06 Production of aluminum casting alloy dispersed with ceramic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1829384A JPS60162740A (en) 1984-02-06 1984-02-06 Production of aluminum casting alloy dispersed with ceramic particles

Publications (2)

Publication Number Publication Date
JPS60162740A JPS60162740A (en) 1985-08-24
JPS6234818B2 true JPS6234818B2 (en) 1987-07-29

Family

ID=11967559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1829384A Granted JPS60162740A (en) 1984-02-06 1984-02-06 Production of aluminum casting alloy dispersed with ceramic particles

Country Status (1)

Country Link
JP (1) JPS60162740A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553520B2 (en) * 2001-04-19 2004-08-11 三菱重工業株式会社 Method for producing radioactive substance storage member and billet for extrusion molding
CN106392099B (en) * 2016-06-08 2018-08-31 昆明理工大学 A kind of preparation method of aluminium oxide/aluminium composite superfine powder

Also Published As

Publication number Publication date
JPS60162740A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
JPH02500201A (en) Composite manufacturing method
US4865808A (en) Method for making hypereutetic Al-Si alloy composite materials
JPH10236896A (en) Crucible for growing single crystal, its production and its use
Klier et al. Fabrication of cast particle-reinforced metals via pressure infiltration
JPH01234536A (en) Production of aluminum/magnesium alloy containing refractory particles
JPS6234818B2 (en)
EP0346771B1 (en) Method for making solid composite material particularly metal matrix with ceramic dispersates
CA1338006C (en) Composites and method therefor
US4600182A (en) High density, sintered silicon nitride containing articles and methods for using the same to process molten nickel
JP3283508B2 (en) Cast composite having a matrix containing stable oxide-forming elements
JPS624851A (en) Aluminum alloy suitable for cooling from melt containing oversaturated alloy component
EP0601694A2 (en) Method for the production of dispersion strengthened metal matrix composites
JPH079113A (en) Production of composite material
JPH07310131A (en) Production of mg-base composite material
JPH0114298B2 (en)
JPH03193842A (en) Ti-al matrix composite and its manufacture
JPH01212730A (en) Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH0481286B2 (en)
JP2583313B2 (en) Method for producing Nb-Ti alloy
RU2734316C1 (en) Ligature for preparation of composite materials based on aluminium or aluminium alloys and method of producing ligature (embodiments)
JPS6050853B2 (en) Alloy melting and refining method and its casting method
JP2701298B2 (en) Method and apparatus for continuous production of metal matrix composite materials
JPH05214477A (en) Composite material and its manufacture
JPH07138675A (en) Process and apparatus for production of oxide particle dispersed composite material
JPH06297131A (en) Manufacture of composite metallic material of uniform ceramics particle diffusion type

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term