JPH07138675A - Process and apparatus for production of oxide particle dispersed composite material - Google Patents

Process and apparatus for production of oxide particle dispersed composite material

Info

Publication number
JPH07138675A
JPH07138675A JP30993493A JP30993493A JPH07138675A JP H07138675 A JPH07138675 A JP H07138675A JP 30993493 A JP30993493 A JP 30993493A JP 30993493 A JP30993493 A JP 30993493A JP H07138675 A JPH07138675 A JP H07138675A
Authority
JP
Japan
Prior art keywords
molten metal
stirrer
metal
oxide
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30993493A
Other languages
Japanese (ja)
Inventor
Hideki Tonda
英機 頓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Mitsui Aluminum Industries Inc
Original Assignee
Kyushu Mitsui Aluminum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Mitsui Aluminum Industries Inc filed Critical Kyushu Mitsui Aluminum Industries Inc
Priority to JP30993493A priority Critical patent/JPH07138675A/en
Publication of JPH07138675A publication Critical patent/JPH07138675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the composite material applicable to members for which high strength, high wear resistance and high heat resistance are required by blowing oxygen to molten metal or solid-liquid coexisting material while stirring this molten metal or material, and then forming the oxide particles of a base phase metal. CONSTITUTION:Oxygen is blown from a hole bored in a revolving shaft of a stirrer to oxidize base phase metal elements, while the molten metal or the molten metal contg. a solid phase is kept stirred by using this stirrer. The high rotation, wide area and high shearing strength of the stirrer disperse the oxides uniformly into the molten metal. As a result, the oxide particles of the base phase metal or the multi component oxide particles mainly consisting of the oxides of the base phase metal are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度,高耐摩耗性お
よび高耐熱性が必要とされるあらゆる部材に適用するこ
とができる酸化物粒子複合材料(金属または合金)の製
法及びその製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide particle composite material (metal or alloy) which can be applied to any member requiring high strength, high wear resistance and high heat resistance, and its production. It relates to the device.

【0002】[0002]

【従来の技術】酸化物粒子分散複合材料(金属または合
金)の製法として、(A)粉末冶金法と、(B)溶融金
属法がすでに開発されているが、それぞれ欠点を有する
ために、経済性を無視した特殊な用途以外には実用化さ
れていない。即ち、(A)粉末冶金法では、(1)金属
または合金粉末と酸化物粒子を混合し、押し固めた後に
焼結する方法、(2)酸化物表面被膜を有する金属また
は合金粉末を押し固めた後に、熱間押し出し加工をする
方法があるが、いずれも次の欠点を有するのである。 (a)粉末製造費用が高価である。また部品製造の工程
が複雑であり、全製造費用が大幅に上昇する。 (b)粉末では異物の混入する機会が多く、また粉末表
面の化学的変化が起こり易い。 (c)粉末を混合する機器の摩耗により粉末が汚染され
る。 (d)内在する欠陥が多いため、機械的強度が低い。
2. Description of the Related Art (A) Powder metallurgy method and (B) molten metal method have been already developed as methods for producing oxide particle-dispersed composite materials (metals or alloys). It has not been put to practical use except for special uses that ignore sex. That is, in (A) powder metallurgy, (1) a method of mixing metal or alloy powder and oxide particles, pressing and then sintering, and (2) pressing metal or alloy powder having an oxide surface coating. After that, there is a method of hot extruding, but each has the following drawbacks. (A) The powder manufacturing cost is high. Moreover, the manufacturing process of parts is complicated, and the total manufacturing cost is significantly increased. (B) In the powder, foreign matters are often mixed, and the chemical change of the powder surface is likely to occur. (C) The powder is contaminated due to the wear of the equipment for mixing the powder. (D) The mechanical strength is low because there are many internal defects.

【0003】又(B)溶融金属法には、(1)金属また
は合金の溶融状態または固液共存状態において酸化物粒
子を溶湯表面に置き、攪拌することによって酸化物粒子
を溶湯内部に分散させる方法と、(2)卑な元素を含む
金属の溶湯または固液共存体を攪拌しながら酸素を吹き
込み、卑な金属を酸化させ、酸化物粒子を生成、分散さ
せる方法(特開平4−9437号公報)がある。この溶
融金属法には上記粉末冶金法が有する欠点はない。しか
しながら、分散強化、耐摩耗性および耐熱性は、分散粒
子の体積率が大きいほど、粒子の直径が小さいほど、粒
子の分散度が大きいほど、そして粒子と生地との界面強
度が大きいほど、より効果的になる。従って(1)の方
法には次の欠点が生じる。 (a)酸化物粒子の分散状況があまり良くない。 (b)酸化物粒子の粒径が小さいほど、溶湯との混合が
困難になり、混合したとしても分散度が非常に悪い。 (c)粒径が大きい場合には、耐摩耗性は向上するが、
機械的強度は大きくならない。 (d)単純に酸化物粒子を混合しても界面強度が上がら
ないので添加物を選択しなければならない。 次に(2)の方法は、貴な金属溶湯の中に卑な金属元素
を合金させ、酸素を吹き込むことによって卑な元素だけ
を酸化物とし、分散させる方法であり、本発明とはその
原理が全く別異のものである。
In the (B) molten metal method, (1) oxide particles are placed on the surface of a molten metal in a molten state or a solid-liquid coexisting state of a metal or alloy, and stirred to disperse the oxide particles inside the molten metal. Method and (2) a method of blowing oxygen while stirring a molten metal or a solid-liquid coexistence body containing a base element to oxidize the base metal to generate and disperse oxide particles (JP-A-4-9437). Gazette). The molten metal method does not have the drawbacks of the powder metallurgy method. However, the dispersion strengthening, abrasion resistance and heat resistance are higher as the volume ratio of the dispersed particles is smaller, the diameter of the particles is smaller, the dispersity of the particles is larger, and the interfacial strength between the particles and the dough is larger. Become effective. Therefore, the method (1) has the following drawbacks. (A) The dispersion state of oxide particles is not so good. (B) The smaller the particle size of the oxide particles, the more difficult it becomes to mix with the molten metal, and even if they are mixed, the dispersity is very poor. (C) When the particle size is large, the wear resistance is improved,
Mechanical strength does not increase. (D) Additives must be selected because the interfacial strength does not increase even if oxide particles are simply mixed. Next, the method (2) is a method in which a base metal element is alloyed in a noble metal melt, and only the base element is converted into an oxide by blowing oxygen, and the present invention is the principle. Is completely different.

【0004】[0004]

【発明が解決しようとする課題】酸化物粒子分散複合材
料の製法に関する従来の方法とその欠点を上記したが、
これらの欠点を解消することが本発明の課題である。重
要な点を列挙すると次のようになる。 (1)原材料および製造装置が安価であること。 (2)材料製造工程が簡単で、製造費用が安価であるこ
と。 (3)微細な酸化物を均一に分散させ、機械的強度だけ
でなく、耐摩耗性ならびに耐熱性の優れた材料を提供す
ること。 (4)機械加工をあまり必要とせず、ニアネットシェー
プで部品を製造できること。 (5)熱処理によって、酸化物分散強化を破壊すること
なく、材料中の生地を強化できること。
The conventional method and its drawbacks relating to the method for producing the oxide particle-dispersed composite material have been described above.
It is an object of the present invention to eliminate these drawbacks. The important points are listed below. (1) Raw materials and manufacturing equipment are inexpensive. (2) The material manufacturing process is simple and the manufacturing cost is low. (3) To provide a material having not only mechanical strength but also excellent wear resistance and heat resistance by uniformly dispersing fine oxides. (4) Parts can be manufactured with near net shape without requiring much machining. (5) The heat treatment can strengthen the dough in the material without destroying the oxide dispersion strengthening.

【0005】[0005]

【課題を解決するための手段】本発明の製法としては、
金属の溶湯または固液共存体を攪拌しながら酸素を吹き
込み、母相金属の酸化物粒子または母相金属の酸化物を
主とする複合酸化物粒子を生成させる分散複合材料(金
属または合金)の製法である。また本発明の装置として
は、金属溶湯または固液共存体用容器と、該容器内で回
転可能な攪拌子および上記容器内の液相中に酸素ガスを
吹き込むためのガス入口とガス吹き込み口とを具備し、
上記ガス吹き込みを攪拌子の回転軸に開けた孔より行っ
て、液相中にガスを吹き込み、かつ溶湯を効果的にせん
断するために、攪拌子と容器と相対する面積を広くする
形状を有する酸化物粒子分散複合材料の製造装置であ
る。
[Means for Solving the Problems] As a manufacturing method of the present invention,
Of a dispersed composite material (metal or alloy) in which oxygen is blown into a molten metal or solid-liquid coexistent while stirring to generate oxide particles of a matrix metal or composite oxide particles mainly containing an oxide of a matrix metal It is a manufacturing method. The apparatus of the present invention includes a container for molten metal or solid-liquid coexisting body, a stirrer rotatable in the container, and a gas inlet and a gas inlet for blowing oxygen gas into the liquid phase in the container. Equipped with,
The gas is blown through a hole formed in the rotary shaft of the stirrer to blow gas into the liquid phase and to effectively shear the molten metal, so that the area facing the stirrer and the container is widened. It is an apparatus for producing an oxide particle-dispersed composite material.

【0006】ここで母相となる金属としては、全ての金
属材料が対象となるが、特にアルミニウムまたはマグネ
シウムのいずれかまたはこれらの合金が本発明に対して
は効果的である。これらの合金とは、全ての実用アルミ
ニウム合金ならびに全ての実用マグネシウム合金であ
る。
Here, as the metal serving as the matrix phase, all metal materials are targeted, but in particular, either aluminum or magnesium or an alloy thereof is effective for the present invention. These alloys are all practical aluminum alloys as well as all practical magnesium alloys.

【0007】上記の酸化を行ない、酸化物を生成、分散
させる物理的・化学的な条件ならびに装置が具備すべき
条件は下記のとおりである。 (1)溶湯全体を酸化させるため、酸素ガスを溶湯底部
まで吹き込めること。特に回転する攪拌子を溶湯の底部
に配置し、攪拌子の底部に酸素ガス吹き出し口を有する
こと。 (2)酸化物の凝集を防止するために攪拌子と容器内壁
の間隔を小とし、酸化物を含む溶湯に大きなせん断歪を
与えること。また、せん断面積が大きくなるように、攪
拌子と容器とが相対する面が大きいこと。 (3)溶湯が遠心力により容器から溢れない限り、攪拌
子の回転速度が大きいほどせん断作用が大きくなるの
で、回転速度を制御できること。 (4)容器内の温度は、金属または合金の溶融温度また
は固液共存温度以上であること。 (5)生成する酸化物の量は酸化時間あるいは酸素吹き
込み量に依存するので、酸素ガス吹き込み速度を制御で
きること。
The physical and chemical conditions for performing the above-mentioned oxidation to generate and disperse the oxide and the conditions that the apparatus should have are as follows. (1) To oxidize the entire melt, blow oxygen gas to the bottom of the melt. In particular, a rotating stirrer should be placed at the bottom of the melt, and the bottom of the stirrer should have an oxygen gas outlet. (2) In order to prevent the agglomeration of the oxide, the distance between the stirring bar and the inner wall of the container is made small, and a large shear strain is applied to the molten metal containing the oxide. In addition, the surface where the stirrer and the container face each other should be large so that the shearing area becomes large. (3) As long as the molten metal does not overflow from the container by centrifugal force, the shearing action increases as the rotating speed of the stirrer increases, so that the rotating speed can be controlled. (4) The temperature inside the container must be equal to or higher than the melting temperature of the metal or alloy or the solid-liquid coexisting temperature. (5) Since the amount of oxide produced depends on the oxidation time or the amount of oxygen blown, it is possible to control the oxygen gas blowing rate.

【0008】[0008]

【作用】金属または合金を溶解した状態で、攪拌子を容
器内に挿入し、攪拌を開始する。攪拌しながら酸素を溶
湯に吹き込み、母相金属元素を酸化させる。合金の場合
には、合金元素の酸素との親和力が母相金属元素のそれ
と同等であるならば、母相金属の酸化物と合金元素の酸
化物との複合酸化物が形成される。酸化物分散合金を製
造する場合、溶解の最初から合金を用いずに、酸化途中
または酸化終了時に合金元素を添加することもできる。
[Function] With the metal or alloy melted, a stirrer is inserted into the container to start stirring. While stirring, oxygen is blown into the molten metal to oxidize the matrix metal elements. In the case of an alloy, if the affinity of the alloying element with oxygen is the same as that of the matrix metal element, a composite oxide of the oxide of the matrix metal and the oxide of the alloy element is formed. When producing an oxide-dispersed alloy, the alloying element may be added during or after the oxidation without using the alloy from the beginning of melting.

【0009】この攪拌において、攪拌子の充分速い回転
は攪拌子の底部から吹き出る酸素気泡を切り、微細な気
泡とし、微細な酸化物を生成させる。またこの攪拌子の
充分に速い回転と面積が広く強いせん断は、酸化物を溶
湯中に均一に分散させる。このせん断は攪拌子と容器の
間の溶湯中で生じるものであり、酸化物の凝集を破壊
し、酸化物の均一分散を助けるものである。酸化が終了
した時点で、砂型または金型を用いて普通の鋳造をする
ことができる。しかしながら、生成された酸化物の溶湯
に対する体積率が大きい場合、または固液共存体におい
て生成された酸化物と固相の液相に対する体積率が大き
い場合、溶湯の粘性が高くなるので圧力を負荷した鋳造
法が必要となる。
In this stirring, a sufficiently fast rotation of the stirrer breaks the oxygen bubbles blown from the bottom of the stirrer into fine bubbles to form fine oxides. The sufficiently fast rotation of the stirrer and the large area and strong shearing disperse the oxide uniformly in the molten metal. This shearing occurs in the molten metal between the stirrer and the container, destroys the agglomeration of the oxide, and helps the uniform dispersion of the oxide. When the oxidation is complete, normal casting can be done using a sand mold or mold. However, if the volume ratio of the generated oxide to the molten metal is large, or if the volume ratio of the oxide and the solid phase generated in the solid-liquid coexisting body to the liquid phase is large, the viscosity of the molten metal becomes high, so pressure is applied. A new casting method is required.

【0010】[0010]

【実施例】以下本発明をその実施例に基いて詳述する。
図1は本発明の実施例に用いた装置であり、1は容器で
あり、攪拌子と相対する面が広くなるように内壁が凹凸
に成型されており、凸部には180度の位置に切れ込み
がある。2は容器内壁の凹凸に相対する多段の2枚羽を
有する攪拌子であり、攪拌子の羽を90度回転すること
によって上記切れ込みを通り、攪拌子を容器外に取り外
すことができる。なお容器1ならびに攪拌子2の材質
は、溶湯と反応せずに、溶湯を攪拌するに充分な強度を
有するものであればよい。図中、3は中心に酸素ガスの
通路を有する回転軸、4は酸素ガス入口、5は酸素ガス
吹き込み口、6は上部軸受、7は下部軸受、8は変速機
からの回転を伝達するベルト車、9は溶湯表面である。
The present invention will be described in detail below with reference to its examples.
FIG. 1 shows an apparatus used in an embodiment of the present invention, in which 1 is a container, the inner wall of which is formed in a concavo-convex shape so that the surface facing the stirrer is wide. There is a notch. Reference numeral 2 is a stirrer having two multi-stage blades facing the irregularities of the inner wall of the container. The stirrer can be removed from the container by passing through the cut by rotating the blades of the stirrer 90 degrees. The container 1 and the stirrer 2 may be made of any material that does not react with the molten metal and has sufficient strength to stir the molten metal. In the figure, 3 is a rotary shaft having an oxygen gas passage in the center, 4 is an oxygen gas inlet, 5 is an oxygen gas inlet, 6 is an upper bearing, 7 is a lower bearing, and 8 is a belt for transmitting rotation from the transmission. The car, 9 is the surface of the molten metal.

【0011】上述した装置を用い次の8種類の材料を用
いて実験した。即ち、(1)純アルミニウム、(2)1
〜6重量%マグネシウムを含むアルミニウム合金、
(3)12重量%シリコンを含むアルミニウム合金、
(4)6重量%マグネシウムおよび1重量%シリコンを
含むアルミニウム合金、(5)5重量%銅および1重量
%マグネシウムを含むアルミニウム合金、(6)純マグ
ネシウム(7)10重量%アルミニウムを含むマグネシ
ウム合金(8)8重量%アルミニウムおよび1重量%亜
鉛を含むマグネシウム合金である。
Experiments were conducted using the above-mentioned apparatus and the following eight kinds of materials. That is, (1) pure aluminum, (2) 1
An aluminum alloy containing ~ 6 wt% magnesium,
(3) Aluminum alloy containing 12 wt% silicon,
(4) Aluminum alloy containing 6 wt% magnesium and 1 wt% silicon, (5) Aluminum alloy containing 5 wt% copper and 1 wt% magnesium, (6) Pure magnesium (7) Magnesium alloy containing 10 wt% aluminum (8) A magnesium alloy containing 8 wt% aluminum and 1 wt% zinc.

【0012】上記金属または合金を用いて、溶解、攪
拌、酸化、鋳造を行なったが、条件は全て同一で次のと
おりであった。 (ア)溶解量を270gとした。 (イ)溶解温度を700〜1000℃とし、アルゴン雰
囲気中で溶解した。 (ウ)溶解後、攪拌子を溶湯に浸漬し、300〜100
0rpmの回転速度で溶湯を攪拌した。 (エ)攪拌開始と同時に、アルミニウム合金においては
酸素ガスを10cc〜50cc/minで溶湯中に吹き込
み、マグネシウム合金においては1分間あたり500cc
アルゴンガスと1〜100cc酸素ガスの混合ガスを溶湯
中に吹き込み、溶湯を酸化させた。 (オ)酸化時間は0.5〜3時間とした。 (カ)酸化終了後、200℃の鉄製金型に鋳造した。
Melting, stirring, oxidizing and casting were performed using the above metal or alloy, but the conditions were all the same and were as follows. (A) The dissolved amount was 270 g. (B) The melting temperature was 700 to 1000 ° C., and the melting was carried out in an argon atmosphere. (C) After the melting, the stir bar is immersed in the molten metal, and 300 to 100
The molten metal was stirred at a rotation speed of 0 rpm. (D) Simultaneously with the start of stirring, oxygen gas is blown into the molten metal at a rate of 10 cc to 50 cc / min in the aluminum alloy, and 500 cc per minute in the magnesium alloy.
A mixed gas of argon gas and 1 to 100 cc oxygen gas was blown into the molten metal to oxidize the molten metal. (E) Oxidation time was 0.5 to 3 hours. (F) After the oxidation was completed, it was cast in an iron mold at 200 ° C.

【0013】得られた結果をまとめると次のとおりであ
る。 (A)全ての試料に割れがなく、健全であった。 (B)光学顕微鏡では、空隙(または空孔)は観察され
なかった。 (C)酸化物の量は、酸化時間ならびに酸素ガスの増加
とともに増加することが、光学顕微鏡観察と化学分析か
ら確認された。 (D)酸化物粒子の直径が平均3μmと微細であり、か
つ均一に分散していることが電子顕微鏡観察で確認され
た。 (E)特にアルミニウムとマグネシウムを含む(2),
(4),(5),(7)および(8)の合金では、酸化
物粒子の分散度が極めて高かった。これはX線分析で同
定されたアルミニウム酸化物とマグネシウム酸化物のス
ピネル型複合酸化物が形成されたためである。 (F)酸化物粒子の体積率は、(2)の合金では約30
%以上にも達し、その硬度は酸化する前の硬度の2倍に
も達していた。即ち、酸化物分散が機械的強度の向上に
与える影響が極めて大きいことを示している。 (G)鋳造後、熱処理することによって(4),
(5),(7)および(8)の合金は時効硬化を示し
た。
The results obtained are summarized as follows. (A) All the samples were sound with no cracks. (B) No void (or void) was observed with an optical microscope. It was confirmed by optical microscope observation and chemical analysis that the amount of (C) oxide increased with the increase of oxidation time and oxygen gas. It was confirmed by electron microscope observation that the oxide particles (D) were fine with an average diameter of 3 μm and were dispersed uniformly. (E) Particularly containing aluminum and magnesium (2),
In the alloys (4), (5), (7) and (8), the degree of dispersion of oxide particles was extremely high. This is because the spinel type composite oxide of aluminum oxide and magnesium oxide identified by X-ray analysis was formed. The volume ratio of (F) oxide particles is about 30 in the alloy of (2).
%, And the hardness was twice as high as the hardness before oxidation. That is, it shows that the oxide dispersion has an extremely large effect on the improvement of the mechanical strength. (G) By heat treatment after casting (4),
The alloys of (5), (7) and (8) showed age hardening.

【0014】以上においては、本発明を軽金属材料に関
する特定の実施例について詳述したが、本発明はこれら
に限られるものではなく、本発明の範囲内にて種々の実
施例が可能であることは明らかである。
Although the present invention has been described in detail with reference to specific embodiments relating to a light metal material, the present invention is not limited to these, and various embodiments are possible within the scope of the present invention. Is clear.

【0015】[0015]

【発明の効果】以上説明してきた如く、本発明の製法に
よれば、金属材料の機械的性質、耐摩耗性および耐熱性
の向上が実現され、また本発明装置は構造が簡素で酸化
物粒子分散複合材料(金属または合金)の製造のために
極めて有用である。
As described above, according to the manufacturing method of the present invention, the mechanical properties, wear resistance and heat resistance of a metallic material are improved, and the apparatus of the present invention has a simple structure and oxide particles. Very useful for the production of dispersed composites (metals or alloys).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例に用いた装置の断面図である。FIG. 1 is a sectional view of an apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 攪拌子 3 回転軸 4 酸素ガス入り口 5 酸素ガス吹き込み口 1 Container 2 Stirrer 3 Rotating Shaft 4 Oxygen Gas Inlet 5 Oxygen Gas Inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属溶湯または固相を含む金属溶湯を攪
拌しながら酸素を吹き込み、母相金属の酸化物粒子また
は母相金属の酸化物を主とする複合酸化物粒子を生成さ
せることを特徴とする分散複合材料の製法。
1. A method of blowing oxygen into a molten metal or a molten metal containing a solid phase while stirring to generate oxide particles of a matrix metal or composite oxide particles mainly containing an oxide of a matrix metal. And a method of manufacturing a dispersed composite material.
【請求項2】 金属溶湯または固相を含む金属溶湯用容
器と、該容器内で回転可能な攪拌子および上記容器内の
液相中に酸素ガスを吹き込むためのガス入り口とガス吹
き込み口とを具備し、上記ガス吹き込みを攪拌子の回転
軸に開けた孔より行って、液相中にガスを吹き込み、か
つ溶湯を効果的にせん断するために、攪拌子と容器と相
対する面積を広くする形状を有することを特徴とする酸
化物粒子分散複合材料の製造装置。
2. A container for molten metal containing a molten metal or a solid phase, a stirrer rotatable in the container, and a gas inlet and a gas blowing port for blowing oxygen gas into the liquid phase in the container. In order to blow gas into the liquid phase and effectively shear the molten metal, the area facing the stirrer and the container is widened by performing the gas blowing through the hole formed in the rotary shaft of the stirrer. An apparatus for producing an oxide particle-dispersed composite material, which has a shape.
JP30993493A 1993-11-15 1993-11-15 Process and apparatus for production of oxide particle dispersed composite material Pending JPH07138675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30993493A JPH07138675A (en) 1993-11-15 1993-11-15 Process and apparatus for production of oxide particle dispersed composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30993493A JPH07138675A (en) 1993-11-15 1993-11-15 Process and apparatus for production of oxide particle dispersed composite material

Publications (1)

Publication Number Publication Date
JPH07138675A true JPH07138675A (en) 1995-05-30

Family

ID=17999112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30993493A Pending JPH07138675A (en) 1993-11-15 1993-11-15 Process and apparatus for production of oxide particle dispersed composite material

Country Status (1)

Country Link
JP (1) JPH07138675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291450A (en) * 2006-04-25 2007-11-08 Isuzu Motors Ltd Particle-reinforced aluminum alloy composite, and production method therefor
CN116103532A (en) * 2023-02-28 2023-05-12 南昌大学 Trace rare earth oxide reinforced oxygen-free copper material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291450A (en) * 2006-04-25 2007-11-08 Isuzu Motors Ltd Particle-reinforced aluminum alloy composite, and production method therefor
CN116103532A (en) * 2023-02-28 2023-05-12 南昌大学 Trace rare earth oxide reinforced oxygen-free copper material and preparation method thereof
CN116103532B (en) * 2023-02-28 2024-01-23 南昌大学 Trace rare earth oxide reinforced oxygen-free copper material and preparation method thereof

Similar Documents

Publication Publication Date Title
AU732289B2 (en) Particulate field distributions in centrifugally cast metal matrix composites
US4473103A (en) Continuous production of metal alloy composites
JPH02500201A (en) Composite manufacturing method
JPH01501489A (en) Cast reinforced composite material
US5531425A (en) Apparatus for continuously preparing castable metal matrix composite material
JPH07138675A (en) Process and apparatus for production of oxide particle dispersed composite material
JP3096064B2 (en) Continuous production equipment for castable metal matrix composites
US4557605A (en) Apparatus for the continuous production of metal alloy composites
JPH07503994A (en) Method for producing cast composite material containing aluminum-magnesium matrix alloy
JP3283508B2 (en) Cast composite having a matrix containing stable oxide-forming elements
JP2000345254A (en) Aluminum base composite material and its production
JPS6411093B2 (en)
JP2008189995A (en) Method for producing oxide particle dispersion strengthened alloy by casting
JP2701298B2 (en) Method and apparatus for continuous production of metal matrix composite materials
KR100391563B1 (en) Mixing apparatus for molten metal of Metal matrix composite
Melali et al. FABRICATION OF HIGH STRENGTH AL-BASE ALLOY COMPOSITES REINFORCED WITH SIC NANOPARTICLES COATED WITH Al AND Cu
JPS58147532A (en) Manufacture of composite al material
JPS6234818B2 (en)
JPS62130234A (en) Method for homogeneously mixing al-pb alloy
JP2646212B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JP2609107B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JPH0987778A (en) Production of magnesium base composite material
TW300253B (en) A method for making the aluminum alloy-base metal matrix composites
JPH09296236A (en) Production of particle-dispersed material
JPH049438A (en) Manufacture of nitride dispersion strengthened alloy and apparatus therefor