JPH0987778A - Production of magnesium base composite material - Google Patents

Production of magnesium base composite material

Info

Publication number
JPH0987778A
JPH0987778A JP26798895A JP26798895A JPH0987778A JP H0987778 A JPH0987778 A JP H0987778A JP 26798895 A JP26798895 A JP 26798895A JP 26798895 A JP26798895 A JP 26798895A JP H0987778 A JPH0987778 A JP H0987778A
Authority
JP
Japan
Prior art keywords
alloy
composite material
matrix
molten metal
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26798895A
Other languages
Japanese (ja)
Inventor
Masayoshi Suzuoki
正義 鈴置
Hiromitsu Kaneda
裕光 金田
Yoshinobu Sano
嘉信 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP26798895A priority Critical patent/JPH0987778A/en
Priority to US08/614,157 priority patent/US5791397A/en
Priority to EP96460012A priority patent/EP0765946A1/en
Publication of JPH0987778A publication Critical patent/JPH0987778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an infiltrating agent material suitably usable for an Mg alloy contg. Zr and Al and whose amt. to be added can be reduced, in the method for producing a metal matrix composite material using Mg or an Mg alloy as the matrix. SOLUTION: A powdery mixture 7 of reinforcing material powder such as SiC and titanium oxide and matrix metal molten metal 6 composed of Mg or an Mg alloy are brought into contact with each other, and the matrix metal molten metal is infiltrated into the powdery mixture to produce the Mg base composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、MgまたはMg合
金をマトリックス(基材)とするMg基複合材料の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Mg-based composite material using Mg or a Mg alloy as a matrix (base material).

【0002】[0002]

【従来の技術】金属をマトリックスとする複合材料の製
造方法のうち、代表的なものとして溶湯撹拌法、粉末冶
金法、スクイズキャスト法等を挙げることができる。さ
らに最近、MgまたはMg合金をマトリックスとする金
属基複合材料の製造方法が開発されている(特願平6−
144164号)。この方法は、複合化に際して浸透助
材を用いることを特徴とする。その複合化のメカニズム
は、浸透助材とMgまたはMg合金溶湯が発熱を伴って
反応することにより局所的に高温となり、強化材とMg
またはMg合金溶湯との濡れ性が改善され、強化材粉末
中に金属溶湯が浸透し、複合化が行われるというもので
ある。
2. Description of the Related Art Among the methods for producing a composite material having a metal as a matrix, typical examples include a melt stirring method, a powder metallurgy method, a squeeze casting method and the like. More recently, a method of producing a metal-based composite material using Mg or a Mg alloy as a matrix has been developed (Japanese Patent Application No. 6-
144164). This method is characterized in that a permeation aid is used in forming the composite. The mechanism of the compounding is that the permeation aid and the Mg or Mg alloy melt react with heat to locally raise the temperature, and the strengthening material and Mg
Alternatively, the wettability with the molten Mg alloy is improved, and the molten metal penetrates into the reinforcing material powder to form a composite.

【0003】[0003]

【発明が解決しようとする課題】上記のメカニズムによ
れば、MgまたはMg合金からなる金属溶湯と発熱反応
を起こす物質であれば、浸透助材として利用できる可能
性がある。しかし、実際には、a)強化材と金属溶湯と
の濡れ性を改善させるのに必要な発熱量を伴わなければ
ならない、b)強化材よりも細い粒径のものが好まし
い、等の条件があるため、実用に資する浸透助材はそれ
程多くはない。現状で上記a)およびb)の条件を満た
す最も優れた浸透助材は、シリカ(SiO2 )と考えら
れる。しかし、シリカ(SiO2 )は、Zr(ジルコニ
ウム)を含有するMg合金を用いた場合の浸透助材とし
て使用することができない。SiによってZrの効果が
失われるからである。
According to the above mechanism, any substance that causes an exothermic reaction with the molten metal of Mg or Mg alloy may be used as a penetration aid. However, in reality, conditions such as a) the heat generation amount necessary to improve the wettability between the reinforcing material and the molten metal must be accompanied, and b) the particle diameter is smaller than that of the reinforcing material. Therefore, there are not so many penetration aids that are useful for practical use. At present, the most excellent penetration aid satisfying the above conditions a) and b) is considered to be silica (SiO 2 ). However, silica (SiO 2 ) cannot be used as a penetration aid when using a Mg alloy containing Zr (zirconium). This is because the effect of Zr is lost by Si.

【0004】また、浸透を生じさせるのに必要な浸透助
材の量は、図2に示すように浸透助材の粒径が小さい
程、少なくてすむことが実験の結果から判明している。
しかし、シリカ(SiO2 )では5μm以下の細粒の入
手が困難であるか、または入手できても非常に高価であ
る。したがって、浸透助材として、粒径が小さくてしか
も安価な材料が望まれている。
Further, it has been found from the results of experiments that the amount of the penetration aid required for causing the penetration can be smaller as the particle size of the penetration aid is smaller as shown in FIG.
However, it is difficult to obtain fine particles of 5 μm or less with silica (SiO 2 ), or even if they are available, they are very expensive. Therefore, an inexpensive material having a small particle size is desired as a penetration aid.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載のMg基複合材料の製造方法は、強
化材粉末と酸化チタンの混合粉末と、MgまたはMg合
金からなるマトリックス金属溶湯を接触させ、該マトリ
ックス金属溶湯を該強化材粉末に浸透させることを特徴
とする。請求項2に記載のMg基複合材料の製造方法
は、請求項1に記載の製造方法であって、強化材粉末が
SiCであることを特徴とする。
In order to solve the above-mentioned problems, the method for producing a Mg-based composite material according to claim 1 is a matrix composed of a mixed powder of a reinforcing material powder and titanium oxide and a Mg or Mg alloy. It is characterized in that the molten metal is brought into contact with the molten metal of the matrix to penetrate into the reinforcing material powder. A manufacturing method of the Mg-based composite material according to claim 2 is the manufacturing method according to claim 1, wherein the reinforcing material powder is SiC.

【0006】[0006]

【発明の実施の形態】実用Mg合金には、2つの大きな
系列がある。一つはMg−Al系合金(ASTM規格の
AZ91、AM60、AS41等)であり、他の一つは
Mg−Zr(ジルコニウム)系合金(ASTM規格のZ
K61、ZE41、QE22、WE54等)である。M
g−Zr系合金では、Zr(ジルコニウム)が溶湯中に
晶出し、これが結晶の核となることにより、結晶粒を微
細化し、機械的性質を向上させる。したがって、Mg−
Zr系合金には、Zrと化合物をつくるCu、Al、S
i等の元素は添加できない。化合物になるとZrの効果
が失われてしまうからである。
DETAILED DESCRIPTION OF THE INVENTION There are two major series of practical Mg alloys. One is a Mg-Al based alloy (ASTM standard AZ91, AM60, AS41, etc.), and the other is a Mg-Zr (zirconium) based alloy (ASTM standard Z.
K61, ZE41, QE22, WE54, etc.). M
In the g-Zr-based alloy, Zr (zirconium) is crystallized in the molten metal and becomes a nucleus of the crystal, thereby making the crystal grains finer and improving the mechanical properties. Therefore, Mg-
Zr-based alloys include Cu, Al, and S that form compounds with Zr.
Elements such as i cannot be added. This is because the effect of Zr is lost when it becomes a compound.

【0007】このような中、本発明者は、新しい浸透助
材として酸化チタンが有効であることを見いだした。酸
化チタンもMgとテルミット反応を起こして発熱する。
ところが、生成物は、MgOとTiであり、TiはZr
と化合物を生成しないため、Zrの効果を損なわない。
また、Mg−Al系合金をマトリックスとした場合、T
iは溶湯中のAlと反応してTiとAlの金属間化合物
(Ti3 Al、TiAl、TiAl3 )を生成し、これ
がMg基複合材料の強化に寄与する。
Under these circumstances, the present inventors have found that titanium oxide is effective as a new penetration aid. Titanium oxide also causes a thermite reaction with Mg and generates heat.
However, the products are MgO and Ti, and Ti is Zr.
Since it does not form a compound, the effect of Zr is not impaired.
When using a Mg-Al alloy as a matrix, T
i reacts with Al in the molten metal to form intermetallic compounds of Ti and Al (Ti 3 Al, TiAl, TiAl 3 ), which contributes to strengthening the Mg-based composite material.

【0008】酸化チタンの中でもTiO2 (アナターゼ
型およびルチル型)は、白色顔料として広く普及してお
り、また、主流がサブミクロン粒径(1μm以下の粒
径)のものであるため、微細粒のTiO2 を安価に入手
することができる。本発明で用いる強化材粉末として
は、SiC、C(カーボン)、TiAl(チタンアル
ミ)等を用いる。粒径は0.1〜100μm程度のもの
を用いる。0.1μm未満では、金属溶湯の粘性が高く
なり過ぎて実用に適さず、100μmを超えると、Mg
基複合材の強度が低下する。強化材粉末と酸化チタンの
混合比は、容量比で99:1〜10:90である。混合
比が10:90を超えると浸透速度が遅くなり、99:
1未満であると浸透が起こらない。Mg合金としては、
AZ91、ZK61、QE22等を挙げることができ
る。
Among titanium oxides, TiO 2 (anatase type and rutile type) is widely used as a white pigment, and since the main stream has a submicron particle size (particle size of 1 μm or less), it has a fine particle size. TiO 2 can be obtained at low cost. As the reinforcing material powder used in the present invention, SiC, C (carbon), TiAl (titanium aluminum) or the like is used. The particle size is about 0.1 to 100 μm. If it is less than 0.1 μm, the viscosity of the molten metal becomes too high and it is not suitable for practical use.
The strength of the base composite material decreases. The volume ratio of the reinforcing material powder to titanium oxide is 99: 1 to 10:90. When the mixing ratio exceeds 10:90, the permeation rate becomes slow, and 99:
If it is less than 1, penetration does not occur. As a Mg alloy,
Examples thereof include AZ91, ZK61, QE22 and the like.

【0009】[0009]

【実施例】実施例1 強化材としてSiC粒子(粒径8μm)を用い、このS
iC粒子に対して10容量%のアナターゼ型Ti0
2 (粒径0.4μm)を浸透助材として均一に混合し
た。マトリックス金属としては、AZ91合金(Mg−
9%Al−1%Zn合金)を用い、図1に示すようなレ
イアウトでAZ91合金を630℃で溶解したところ、
強化材粉末中に溶湯が浸透した。ここで、図1について
説明すると、Arガスで満たされたチャンバー1内に
は、るつぼ台5上に溶解るつぼ3が置かれており、溶解
るつぼ3の中には、MgまたはMg合金6と、強化材と
酸化チタンからなる混合粉末7が入れられており、混合
粉末7にはガス抜きパイプ2が差し込まれている。誘導
コイル4によってMgまたはMg合金は加熱され、溶湯
となって混合粉末7中に浸透する。
Example 1 SiC particles (particle size 8 μm) were used as a reinforcing material, and
10% by volume of anatase type TiO with respect to iC particles
2 (particle size 0.4 μm) was uniformly mixed as a penetration aid. As the matrix metal, AZ91 alloy (Mg-
9% Al-1% Zn alloy), and AZ91 alloy was melted at 630 ° C. in a layout as shown in FIG.
The molten metal penetrated into the reinforcement powder. Here, referring to FIG. 1, a melting crucible 3 is placed on a crucible base 5 in a chamber 1 filled with Ar gas, and in the melting crucible 3, Mg or Mg alloy 6 and A mixed powder 7 made of a reinforcing material and titanium oxide is put therein, and the degassing pipe 2 is inserted into the mixed powder 7. The induction coil 4 heats the Mg or the Mg alloy to form a molten metal that penetrates into the mixed powder 7.

【0010】複合化部の金属組織(1%硝酸腐食)の顕
微鏡写真(倍率1000倍)を図3に示す。灰色部はS
iC粒子を表し、白色部はマトリックス(AZ91合
金)を表す。白色部で表されたマトリックス中にMgO
とTi−Al系金属間化合物が微細粒子として分散した
組織となっている。
FIG. 3 shows a photomicrograph (magnification: 1000 times) of the metal structure (corrosion of 1% nitric acid) of the composite part. The gray part is S
It represents iC particles, and the white part represents a matrix (AZ91 alloy). MgO in the matrix represented by the white part
And a Ti-Al intermetallic compound are dispersed as fine particles.

【0011】実施例2 強化材としてSiC粒子(粒径13μm)を用い、この
SiC粒子に対して5容量%のルチル型TiO2 (粒径
0.4μm)を均一に混合した。マトリックスとして
は、ZK61合金(Mg−6%Zn−1%Zr)を用
い、図1に示すようなレイアウトでZK61合金を67
0℃で溶解したところ、強化材粉末中に金属溶湯が浸透
した。その後、撹拌翼を用いて機械的撹拌を加え、強化
材をZK61合金溶湯中に均一に分散させ、溶湯温度を
730℃まで上昇させた後、鋳型に注湯した。その金属
組織を調べたところ、結晶粒径は30μm程度であり、
Zrの効果が損なわれていないことが確認された。
Example 2 SiC particles (particle diameter 13 μm) were used as a reinforcing material, and 5% by volume of rutile type TiO 2 (particle diameter 0.4 μm) was uniformly mixed with the SiC particles. As the matrix, ZK61 alloy (Mg-6% Zn-1% Zr) is used, and ZK61 alloy is used in the layout as shown in FIG.
When melted at 0 ° C., the molten metal penetrated into the reinforcement powder. Then, mechanical agitation was applied using a stirring blade to uniformly disperse the reinforcing material in the ZK61 alloy melt, raise the melt temperature to 730 ° C., and then pour it into the mold. When the metal structure was examined, the crystal grain size was about 30 μm,
It was confirmed that the effect of Zr was not impaired.

【0012】[0012]

【発明の効果】本発明によれば、結晶粒微細化効果をも
つZrを含有するMg合金であっても、浸透助材を用い
た複合材料の製造方法を適用することができる。また、
Alを含有するMg合金に本発明を適用することによっ
て、マトリックス中に微細なMgOとAl−Ti系金属
間化合物が分散して強化された複合材料を得ることがで
きる。さらに、1μm以下の粒子径の酸化チタンは、安
価に入手することができ、また、粒子径が小さいことに
よって添加量が少なくてすむため、経済的にも有利であ
る。
EFFECTS OF THE INVENTION According to the present invention, the method of manufacturing a composite material using a penetration aid can be applied even to a Mg alloy containing Zr having a grain refining effect. Also,
By applying the present invention to a Mg alloy containing Al, it is possible to obtain a reinforced composite material in which fine MgO and Al—Ti based intermetallic compound are dispersed in a matrix. Further, titanium oxide having a particle size of 1 μm or less can be obtained at low cost, and since the addition amount is small due to the small particle size, it is economically advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】SiC粒子(粒径8μm)を強化材として用い
た場合の、浸透助材としてのSiO2 粒子の粒径と、浸
透が起こるのに必要なSiO2 の添加量の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the particle size of SiO 2 particles as a penetration aid and the addition amount of SiO 2 necessary for penetration when SiC particles (particle size 8 μm) are used as a reinforcing material. Is.

【図2】浸透によるMg基複合材製造装置の概略を示す
図である。
FIG. 2 is a diagram showing an outline of a Mg-based composite material manufacturing apparatus by infiltration.

【図3】顕微鏡によって撮影されたMg基複合材料(マ
トリックス:AZ91、強化材:粒径8μmのSiC粒
子、浸透助材:粒径0.4μmのアナターゼ型Ti
2)を表す図である。
FIG. 3: Mg-based composite material photographed by a microscope (matrix: AZ91, reinforcement: SiC particles with a particle size of 8 μm, penetration aid: anatase-type Ti with a particle size of 0.4 μm)
O 2) is a diagram illustrating a.

【符号の説明】[Explanation of symbols]

1 チャンバー 2 ガス抜きパイプ 3 溶解るつぼ 4 誘導コイル 5 るつぼ台 6 MgまたはMg合金 7 強化材と酸化チタンの混合粉末 1 chamber 2 degassing pipe 3 melting crucible 4 induction coil 5 crucible stand 6 Mg or Mg alloy 7 mixed powder of reinforcement and titanium oxide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強化材粉末と酸化チタンの混合粉末と、
MgまたはMg合金からなるマトリックス金属溶湯を接
触させ、該マトリックス金属溶湯を該混合粉末に浸透さ
せるMg基複合材料の製造方法。
1. A mixed powder of reinforcing material powder and titanium oxide,
A method for producing an Mg-based composite material, which comprises contacting a matrix metal melt made of Mg or a Mg alloy and allowing the matrix metal melt to penetrate into the mixed powder.
【請求項2】 強化材粉末がSiCであることを特徴と
する請求項1に記載のMg基複合材料の製造方法。
2. The method for producing a Mg-based composite material according to claim 1, wherein the reinforcing material powder is SiC.
JP26798895A 1995-09-22 1995-09-22 Production of magnesium base composite material Pending JPH0987778A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26798895A JPH0987778A (en) 1995-09-22 1995-09-22 Production of magnesium base composite material
US08/614,157 US5791397A (en) 1995-09-22 1996-03-12 Processes for producing Mg-based composite materials
EP96460012A EP0765946A1 (en) 1995-09-22 1996-03-13 Processes for producing Mg-based composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26798895A JPH0987778A (en) 1995-09-22 1995-09-22 Production of magnesium base composite material

Publications (1)

Publication Number Publication Date
JPH0987778A true JPH0987778A (en) 1997-03-31

Family

ID=17452358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26798895A Pending JPH0987778A (en) 1995-09-22 1995-09-22 Production of magnesium base composite material

Country Status (1)

Country Link
JP (1) JPH0987778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177074A3 (en) * 2011-06-23 2013-04-04 연세대학교 산학협력단 Alloy material in which are dispersed oxygen atoms and a metal element of oxide-particles, and production method for same
KR101341352B1 (en) * 2011-06-23 2013-12-13 연세대학교 산학협력단 Magnesium material having improved mechanical properties and corrosion-resistance
KR101449928B1 (en) * 2012-06-18 2014-10-16 연세대학교 산학협력단 Alloy material having improved properties through heat treatment and method of manufacturing the same
CN114369741A (en) * 2022-01-04 2022-04-19 湖南化工职业技术学院(湖南工业高级技工学校) SiC inoculation treatment process of Mg-3.0Zn medical magnesium alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177074A3 (en) * 2011-06-23 2013-04-04 연세대학교 산학협력단 Alloy material in which are dispersed oxygen atoms and a metal element of oxide-particles, and production method for same
KR101341352B1 (en) * 2011-06-23 2013-12-13 연세대학교 산학협력단 Magnesium material having improved mechanical properties and corrosion-resistance
US11066730B2 (en) 2011-06-23 2021-07-20 Industry-Academic Cooperation Foundation, Yonsei University Alloy material in which are dispersed oxygen atoms and a metal element of oxide-particles, and production method for same
KR101449928B1 (en) * 2012-06-18 2014-10-16 연세대학교 산학협력단 Alloy material having improved properties through heat treatment and method of manufacturing the same
CN114369741A (en) * 2022-01-04 2022-04-19 湖南化工职业技术学院(湖南工业高级技工学校) SiC inoculation treatment process of Mg-3.0Zn medical magnesium alloy

Similar Documents

Publication Publication Date Title
JP2691221B2 (en) Method for forming metal-second phase composite
Pramod et al. Aluminum-based cast in situ composites: a review
Pai et al. Role of magnesium in cast aluminium alloy matrix composites
RU2159823C2 (en) METALLIC COMPOSITE MATERIALS ON BASE OF ALUMINUM ALLOYS REINFORCED WITH CERAMIC PARTICLES TiB2
El-Mahallawy et al. On the reaction between aluminium, K2TiF6 and KBF4
EP3577243A1 (en) Methods and process to improve the mechanical properties of cast aluminium alloys at ambient temperature and at elevated temperatures
WO1988003574A1 (en) Process for producing metal-second phase composites and product
US5791397A (en) Processes for producing Mg-based composite materials
JPH0835029A (en) Cast aluminum alloy with high strength and high ductility and production thereof
US5015534A (en) Rapidly solidified intermetallic-second phase composites
CN112593110B (en) Preparation method of nano-carbide reinforced aluminum matrix composite welding wire
CN112593111B (en) Carbide nanoparticle modified aluminum-based nanocomposite and preparation method thereof
Borodianskiy et al. Nanomaterials applications in modern metallurgical processes
Xie et al. Nanoparticulate dispersion, microstructure refinement and strengthening mechanisms in Ni-coated SiCp/Al-Cu nanocomposites
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
Huang et al. Scandium on the formation of in situ TiB2 particulates in an aluminum matrix
Lloyd et al. Properties of shape cast Al-SiC metal matrix composites
Qasim et al. Enhancement the mechanical properties of aluminum casting alloys (A356) by adding nanorods structures from zinc oxide
JPH07503994A (en) Method for producing cast composite material containing aluminum-magnesium matrix alloy
JPH0987778A (en) Production of magnesium base composite material
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
US3961945A (en) Aluminum-silicon composite
WO2003033750A1 (en) Grain refining agent for cast aluminum products
CN112662909B (en) Carbide nanoparticle modified die-casting aluminum alloy and preparation method thereof
JP2000008134A (en) Modification of microstructure of mother alloy and nonferrous metal alloy and production of mother alloy