JP2008189995A - Method for producing oxide particle dispersion strengthened alloy by casting - Google Patents

Method for producing oxide particle dispersion strengthened alloy by casting Download PDF

Info

Publication number
JP2008189995A
JP2008189995A JP2007025714A JP2007025714A JP2008189995A JP 2008189995 A JP2008189995 A JP 2008189995A JP 2007025714 A JP2007025714 A JP 2007025714A JP 2007025714 A JP2007025714 A JP 2007025714A JP 2008189995 A JP2008189995 A JP 2008189995A
Authority
JP
Japan
Prior art keywords
dispersion strengthened
oxide
producing
strengthened alloy
oxide dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007025714A
Other languages
Japanese (ja)
Inventor
Ick-Soo Kim
翼水 金
Seiichiro Umaoka
清一朗 馬岡
Sumin Lee
李スミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2007025714A priority Critical patent/JP2008189995A/en
Publication of JP2008189995A publication Critical patent/JP2008189995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for mass-producing a high strength oxide dispersion strengthened type alloy in which oxide particles with nanosizes are uniformly dispersed into a base material metal by casting. <P>SOLUTION: The method for producing oxide dispersion strengthened type alloy comprises: a dewatering stage where water molecules stuck to the surfaces of metal oxide particles with the particle diameters of 10 to 80 nm are removed; a melting stage where the metal base material is heated and melted, so as to be stirred; a dispersing stage where the metal oxide particles subjected to the dewatering stage are added to the melted metal base material, and they are stirred and dispersed while being heated; and a casting stage where the melted metal base material into which the metal oxide particles are dispersed is cast using rapid cooling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナノサイズの金属酸化物粒子を分散させた酸化物粒子分散強化合金を工業的に製造する方法に関するものである。   The present invention relates to a method for industrially producing an oxide particle dispersion strengthened alloy in which nano-sized metal oxide particles are dispersed.

近年、輸送機器産業において省エネルギーに対する取り組みが活発化しており、その一例として、輸送機器の軽量化による燃費の向上が挙げられる。自動車、鉄道、航空機等の移動体の軽量化を実現するための材料として、軽量でありながら高強度で耐磨耗性、耐熱性に優れる酸化物分散強化型合金が有用である。酸化物分散強化型合金とは、合金素地中に母材金属と固溶度を持たない不活性な酸化物微細粒子とを均一に分散させることで、強度を高めた合金である。   In recent years, energy conservation efforts in the transportation equipment industry have become active, and one example is the improvement in fuel efficiency by reducing the weight of transportation equipment. As a material for realizing weight reduction of moving bodies such as automobiles, railways, and airplanes, an oxide dispersion strengthened alloy that is lightweight but has high strength, wear resistance, and heat resistance is useful. The oxide dispersion strengthened alloy is an alloy having an increased strength by uniformly dispersing base metal and inactive fine oxide particles having no solid solubility in an alloy substrate.

酸化物分散強化型合金を製造する方法として、メカニカルアロイング法が知られている。この方法は、母材金属粉末と酸化物粉末とを粉砕混合して、母材金属に酸化物粒子を均一に分散させるというものである。特許文献1には、メカニカルアロイング法を利用した酸化物分散強化型クロム基合金の製造方法が開示されている。しかしメカニカルアロイング法により酸化物分散強化型合金を製造するには極めて長時間を要するため、大きな生産性は期待できない。またこの方法は、溶解ではなく粉体処理であるので、製造できる部品の大きさや精密さに限界がある。   A mechanical alloying method is known as a method for producing an oxide dispersion strengthened alloy. In this method, the base metal powder and the oxide powder are pulverized and mixed to uniformly disperse the oxide particles in the base metal. Patent Document 1 discloses a method for producing an oxide dispersion strengthened chromium-based alloy using a mechanical alloying method. However, since it takes a very long time to produce an oxide dispersion strengthened alloy by the mechanical alloying method, a large productivity cannot be expected. In addition, since this method uses powder processing instead of melting, there is a limit to the size and precision of parts that can be manufactured.

一方、酸化物分散強化型合金を工業生産するのに適した方法として溶湯撹拌混合法がある。この方法は溶融状態の母材金属に酸化物粒子を直接添加し、機械的に撹拌混合する方法であり、一般的な鋳造法をそのまま流用できるため、製造可能な部品の大きさや形が幅広い。しかし、溶湯撹拌混合法は、酸化物粒子がナノサイズのような微細になると、粒子表面の濡れ性の悪化や粒子の凝集に起因して、粒子の均一分散性が低下してしまうという問題がある。   On the other hand, there is a melt mixing method as a method suitable for industrial production of an oxide dispersion strengthened alloy. This method is a method in which oxide particles are directly added to a molten base metal and mechanically stirred and mixed. Since a general casting method can be used as it is, the size and shape of parts that can be manufactured are wide. However, the molten metal stirring and mixing method has a problem that when the oxide particles become nano-sized, the uniform dispersibility of the particles decreases due to the deterioration of the wettability of the particle surface and the aggregation of the particles. is there.

特開平10−17958号公報Japanese Patent Laid-Open No. 10-17958

本発明は、ナノサイズの酸化物粒子を母材金属中に均一に分散させた、高強度の酸化物分散強化型合金を鋳造により大量に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a large amount of a high-strength oxide dispersion strengthened alloy in which nano-sized oxide particles are uniformly dispersed in a base metal by casting.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載された酸化物分散強化型合金の製造方法は、粒子径10〜80nmの金属酸化物粒子の表面に付着した水分子を除去する脱水工程と、金属母材を加熱溶融し撹拌する溶融工程と、前記により溶融した金属母材に前記脱水工程を施した金属酸化物粒子を添加して、加熱しつつ撹拌し分散させる分散工程と、該金属酸化物粒子を分散させた溶融金属母材を急速冷却を用いて鋳造する鋳造工程とからなることを特徴とする。   In order to achieve the above object, the method for producing an oxide dispersion strengthened alloy according to claim 1 is characterized in that water adhered to the surface of metal oxide particles having a particle diameter of 10 to 80 nm. A dehydration step for removing molecules, a melting step for heating and melting and stirring the metal matrix, and adding the metal oxide particles subjected to the dehydration process to the molten metal matrix and stirring and dispersing while heating And a casting step of casting the molten metal base material in which the metal oxide particles are dispersed using rapid cooling.

請求項2に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記金属酸化物が酸化イットリウム、酸化アルミニウム、二酸化チタニウム、二酸化ジルコニウム、酸化マグネシウムから選ばれる少なくとも一種であることを特徴とする。これらの金属酸化物は、複数組み合わせた複合酸化物として使用してもよい。   The method for producing an oxide dispersion strengthened alloy according to claim 2 is the method according to claim 1, wherein the metal oxide is at least selected from yttrium oxide, aluminum oxide, titanium dioxide, zirconium dioxide, and magnesium oxide. It is a type. You may use these metal oxides as complex oxide which combined two or more.

請求項3に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記金属母材がアルミニウム及び/またはアルミニウム合金であることを特徴とする。   A method for producing an oxide dispersion strengthened alloy according to a third aspect is the method according to the first aspect, wherein the metal base material is aluminum and / or an aluminum alloy.

請求項4に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記金属酸化物の添加量が前記金属母材の2〜5重量%であることを特徴とする。   The method for producing an oxide dispersion strengthened alloy according to claim 4 is the method according to claim 1, wherein the amount of the metal oxide added is 2 to 5% by weight of the metal base material. And

請求項5に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記溶融工程と前記分散工程とにおける撹拌の回転数が400rpm〜1200rpmであることを特徴とする。これより遅いと十分な撹拌効果が得られない。またこれより速いと撹拌中に前記金属酸化物粒子が凝集してしまうため、分散が不均一になる。   The method for producing an oxide dispersion strengthened alloy according to claim 5 is the method according to claim 1, wherein the number of rotations of stirring in the melting step and the dispersing step is 400 rpm to 1200 rpm. To do. If it is slower than this, sufficient stirring effect cannot be obtained. On the other hand, if the speed is higher than this, the metal oxide particles agglomerate during agitation, resulting in non-uniform dispersion.

請求項6に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記溶融工程と前記分散工程とにおける加熱の温度が800℃〜1200℃であることを特徴とする。前記加熱の温度が低すぎると金属母材の粘度が増加し、製造された合金中にスラグが取り残されてしまう。   The method for producing an oxide dispersion strengthened alloy according to claim 6 is the method according to claim 1, wherein the heating temperature in the melting step and the dispersing step is 800 ° C. to 1200 ° C. And When the heating temperature is too low, the viscosity of the metal base material increases and slag is left behind in the manufactured alloy.

請求項7に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記分散工程における撹拌時間が2分〜60分であることを特徴とする。2分以下であると十分な撹拌効果が得られず、金属酸化物粒子が分散しない。   The method for producing an oxide dispersion strengthened alloy according to claim 7 is the method according to claim 1, wherein the stirring time in the dispersion step is 2 minutes to 60 minutes. If it is 2 minutes or less, a sufficient stirring effect cannot be obtained, and the metal oxide particles are not dispersed.

請求項8に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記溶融工程と前記分散工程とが、アルゴン雰囲気下で行われることを特徴とする。   The method for producing an oxide dispersion strengthened alloy according to an eighth aspect is the method according to the first aspect, wherein the melting step and the dispersing step are performed in an argon atmosphere.

請求項9に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記溶融工程と前記分散工程とが、真空条件下で行われることを特徴とする。   A method for producing an oxide dispersion strengthened alloy according to a ninth aspect is the method according to the first aspect, wherein the melting step and the dispersing step are performed under vacuum conditions.

請求項10に記載の酸化物分散強化型合金の製造方法は、請求項1に記載されたもので、前記溶融工程と前記分散工程とにおける撹拌が、スクリュー形状の撹拌棒によってなされることを特徴とする。   The method for producing an oxide dispersion strengthened alloy according to claim 10 is the method according to claim 1, wherein stirring in the melting step and the dispersing step is performed by a screw-shaped stirring rod. And

請求項11に記載の酸化物分散強化型合金は、請求項1〜10のいずれかに記載の方法で製造されたものであることを特徴とする。   An oxide dispersion strengthened alloy according to an eleventh aspect is manufactured by the method according to any one of the first to tenth aspects.

本発明の酸化物分散強化型合金の製造方法では、表面を脱水処理したナノサイズの酸化物粒子を溶融状態の金属母材に添加し機械的に撹拌するので、酸化物粒子を母材金属中により均一に分散させることができる。従って本発明によれば、より高強度の酸化物分散強化型合金が得られる。   In the method for producing an oxide dispersion strengthened alloy according to the present invention, nanosized oxide particles whose surface has been dehydrated are added to a molten metal base material and mechanically stirred. Can be more uniformly dispersed. Therefore, according to the present invention, a higher strength oxide dispersion strengthened alloy can be obtained.

また、酸化物分散強化型合金の製造方法によれば、一般的な鋳造法をそのまま流用して鋳造することができる。そのため、製造可能な部品の大きさや形が幅広く、しかも低コストで製造でき、生産性が高い。本発明の方法で製造された酸化物分散強化型合金は、航空宇宙用軽量構造材、自動車等の移動機械用材料、一般構造材料及びエンジンブロック、シリンダーヘッド等の内燃機関用構造材料等に利用することができる。   Moreover, according to the manufacturing method of an oxide dispersion strengthened alloy, a general casting method can be diverted and cast as it is. Therefore, the size and shape of the parts that can be manufactured are wide, and can be manufactured at low cost, and the productivity is high. The oxide dispersion strengthened alloy manufactured by the method of the present invention is used for lightweight structural materials for aerospace, materials for mobile machines such as automobiles, general structural materials, and structural materials for internal combustion engines such as engine blocks and cylinder heads. can do.

発明を実施するための好ましい形態Preferred form for carrying out the invention

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.

本発明の好ましい一例として、アルミニウムの強化型合金を製造する方法を詳細に説明する。   As a preferred example of the present invention, a method for producing an aluminum reinforced alloy will be described in detail.

本発明の酸化物分散強化型合金の製造方法は、溶湯撹拌混合法を利用したものである。まず、前処理として、分散させる酸化物粒子表面の脱水処理を行う。純度99.99%、粒子径80nmの酸化イットリウムの粉末をアセトン中に投入し、15分間程度超音波洗浄を施す。次いで沈澱させた酸化イットリウムを回収して真空乾燥炉内で乾燥させた後、ボールミルを用いて再度粉末状態にすると、脱水処理を施した酸化イットリウム粉末が得られる。前記ボールミルによる粉末化は、アルゴン雰囲気下で行う。   The manufacturing method of the oxide dispersion strengthened alloy of the present invention utilizes a molten metal stirring and mixing method. First, as pretreatment, dehydration treatment is performed on the surface of oxide particles to be dispersed. An yttrium oxide powder having a purity of 99.99% and a particle diameter of 80 nm is put into acetone and subjected to ultrasonic cleaning for about 15 minutes. Next, the precipitated yttrium oxide is recovered and dried in a vacuum drying furnace, and then powdered again using a ball mill to obtain a dehydrated yttrium oxide powder. The ball milling is performed in an argon atmosphere.

ナノサイズの粒子は体積に対する表面積の割合が高く、大気中ではその粒子表面に水分子が化学吸着してしまう。水分子が付着した酸化物粒子をそのまま酸化物分散強化型合金の製造に利用すると、前記水分子と溶融した金属母材であるアルミニウムとが化学反応を起こして、酸化物粒子表面に水素ガス泡を発生させ、粒子表面と溶融アルミニウムとの濡れ性を悪化させる。また、発生した水素ガスの浮力で酸化物粒子が浮かび上がるため、溶融アルミニウムへの酸化物粒子の分散が不均一になる。そのため、前記の脱水処理は不可欠である。   Nano-sized particles have a high surface area to volume ratio, and in the air, water molecules are chemically adsorbed on the particle surface. When the oxide particles with water molecules attached are used as they are for the production of an oxide dispersion strengthened alloy, the water molecules and the aluminum, which is a molten metal matrix, cause a chemical reaction, and hydrogen gas bubbles are generated on the surface of the oxide particles. And the wettability between the particle surface and the molten aluminum is deteriorated. Further, since the oxide particles are lifted by the buoyancy of the generated hydrogen gas, the oxide particles are not uniformly dispersed in the molten aluminum. Therefore, the dehydration process is indispensable.

撹拌装置と加熱装置とを備えた溶湯撹拌装置に、金属母材である純度99.99%のアルミニウムを入れたセラミック製の坩堝をセットし、1000℃まで昇温してアルミニウムを溶融する。1000℃に達しそのまま1分間保持した後、前記坩堝内に撹拌棒を入れて徐々に回転させる。この時撹拌棒の回転数は600rpm、撹拌棒先端と坩堝底との距離は5mm以内であると好ましい。前記金属母材の溶融、撹拌は、溶湯撹拌装置内に10Nl/minのアルゴンガスを吹き込みながら行うとよい。   A ceramic crucible containing aluminum having a purity of 99.99%, which is a metal base material, is set in a molten metal stirrer equipped with a stirrer and a heating device, and the temperature is raised to 1000 ° C. to melt the aluminum. After reaching 1000 ° C. and keeping it for 1 minute, a stirring bar is put into the crucible and gradually rotated. At this time, the rotation speed of the stirring rod is preferably 600 rpm, and the distance between the tip of the stirring rod and the crucible bottom is preferably within 5 mm. The melting and stirring of the metal base material may be performed while blowing 10 Nl / min of argon gas into the molten metal stirring device.

次に、1000℃、600rpmで撹拌している前記坩堝内に、前記脱水処理を施した酸化イットリウム粉末を1分間かけて徐々に添加する。酸化イットリウム粉末の添加量は溶融したアルミニウムの4重量%であると好ましい。酸化イットリウムの添加が終了したら、1000℃、600rpmで7分間撹拌を続け、酸化イットリウム粒子を溶融アルミニウムに分散させる。酸化イットリウム添加後の撹拌は、溶湯撹拌装置内に10Nl/minのアルゴンガスを吹き込みながら行うことが好ましい。   Next, the dehydrated yttrium oxide powder is gradually added to the crucible stirred at 1000 ° C. and 600 rpm over 1 minute. The amount of yttrium oxide powder added is preferably 4% by weight of the molten aluminum. When the addition of yttrium oxide is completed, stirring is continued at 1000 ° C. and 600 rpm for 7 minutes to disperse the yttrium oxide particles in the molten aluminum. Stirring after the addition of yttrium oxide is preferably performed while blowing 10 Nl / min of argon gas into the molten metal stirring apparatus.

7分間撹拌後、室温に保持した金型に前記坩堝内の溶融物を流し入れ、金型ごと水中に投じて急冷する。金型が完全に冷えたら水冷を止め、金型内の合金を取り出すと、ナノサイズの酸化イットリウムが分散したアルミニウムの強化型合金が得られる。   After stirring for 7 minutes, the melt in the crucible is poured into a mold kept at room temperature, and the whole mold is poured into water and rapidly cooled. When the mold is completely cooled, water cooling is stopped, and the alloy in the mold is taken out to obtain an aluminum reinforced alloy in which nano-sized yttrium oxide is dispersed.

分散している酸化イットリウムは、Yの状態で分散しているものと、金属母材のアルミニウムと反応したAlYOの状態で分散しているものとがあると考えられる。 The dispersed yttrium oxide is considered to be dispersed in the state of Y 2 O 3 and dispersed in the state of AlYO 3 reacted with aluminum of the metal base material.

前記撹拌装置は、上下にハンドルを回転させることで自由に上下させることのできる自在型スタンドを備えた撹拌機と、直径8mm、ピッチ10〜15mmのスクリュー状撹拌棒とからなるものである。スクリュー状の撹拌棒であると、坩堝から撹拌棒を引き上げる際、坩堝内の溶融物が漏れ出すことがないため、好ましい。前記撹拌棒は、熱による劣化を防ぐため、シリコン樹脂塗料のような高温耐熱機能化塗料(例えばパイロコート;オオタケセラム株式会社製の商品名)が塗布されていてもよい。   The stirrer comprises a stirrer provided with a free-standing stand that can be freely moved up and down by rotating a handle up and down, and a screw-shaped stir bar having a diameter of 8 mm and a pitch of 10 to 15 mm. A screw-like stirring rod is preferable because the melt in the crucible does not leak out when the stirring rod is pulled up from the crucible. In order to prevent deterioration due to heat, the stirring rod may be coated with a high-temperature heat-resistant functional paint such as a silicone resin paint (for example, Pyrocoat; trade name of Otake Serum Co., Ltd.).

前記加熱装置としては、電磁撹拌効果のある高周波誘導炉を使用する。高周波誘導炉の昇温速度は500℃/分であると好ましい。高周波誘導炉は、コイルに流れる高周波電流の電磁誘導作用で生じる渦電流のジュール熱によって加熱を行う装置である。高周波誘導炉を用いて金属を溶融させる場合、坩堝内では複雑な液体金属の流動が起こる。坩堝のまわりにコイルがあり、その中に高周波電流が流れているので、坩堝内の溶融金属内を通る形で磁界が発生する。一方溶融金属内では、この磁界を打消すような方向に渦電流が発生する。この渦電流と金属との電気抵抗でジュール熱が発生する。ここで高周波磁束がかかっていると、フレミング左手の法則により、ピンチ力が中心に向かって生じる。このピンチ力により溶融金属内に流れが引き起こされて、溶融金属が撹拌される。   As the heating device, a high-frequency induction furnace having an electromagnetic stirring effect is used. The heating rate of the high frequency induction furnace is preferably 500 ° C./min. A high frequency induction furnace is a device that performs heating by Joule heat of eddy current generated by electromagnetic induction action of high frequency current flowing in a coil. When a metal is melted using a high frequency induction furnace, a complicated liquid metal flow occurs in the crucible. Since there is a coil around the crucible and a high-frequency current flows through it, a magnetic field is generated through the molten metal in the crucible. On the other hand, in the molten metal, an eddy current is generated in such a direction as to cancel the magnetic field. Joule heat is generated by the electrical resistance between the eddy current and the metal. Here, when a high-frequency magnetic flux is applied, a pinch force is generated toward the center according to Fleming's left-hand rule. This pinch force causes a flow in the molten metal, and the molten metal is agitated.

本発明を適用する製造方法を用いて酸化物分散強化型合金を製造した例を実施例1〜9に示す。   Examples in which oxide dispersion strengthened alloys are manufactured using the manufacturing method to which the present invention is applied are shown in Examples 1 to 9.

(実施例1)
1−1 金属酸化物粒子の脱水
純度99.99%、平均粒子径80nmの酸化イットリウム5gをアセトン100mL中に投入し、超音波洗浄機(AS-ONEULTRA SONIC CLEANER USK 1-R)を用いて45KHzで15分間処理した。酸化イットリウム粒子を沈澱させて上澄み液を除去した後、真空乾燥炉(AS ONE VACUUM OVEN AVO-310)により30℃で8時間乾燥させて、酸化イットリウム粒子の塊を得た。遊星ボールミル(FRITSCH P PLANTARY MONO MILL)を用いて、直径10mmチタン球使用、アルゴン雰囲気、100rpm、破砕時間3分×2、休止時間1分の条件で前記酸化イットリウム粒子の塊を破砕し、酸化イットリウム粒子粉末を得た。得られた酸化イットリウム粒子粉末は、シリカゲルを敷き詰め真空にしたデシケータ内で密閉保管した。
(Example 1)
1-1 Dehydration of metal oxide particles 5 g of yttrium oxide having a purity of 99.99% and an average particle size of 80 nm is put into 100 mL of acetone, and 45 KHz using an ultrasonic cleaner (AS-ONEULTRA SONIC CLEANER USK 1-R). For 15 minutes. After the yttrium oxide particles were precipitated and the supernatant was removed, the yttrium oxide particles were dried in a vacuum drying furnace (AS ONE VACUUM OVEN AVO-310) at 30 ° C. for 8 hours to obtain lumps of yttrium oxide particles. Using a planetary ball mill (FRITSCH P PLANTARY MONO MILL), the lump of yttrium oxide particles was crushed under the conditions of using a titanium sphere of 10 mm in diameter, argon atmosphere, 100 rpm, crushing time 3 minutes × 2, resting time 1 minute, and yttrium oxide. Particle powder was obtained. The obtained yttrium oxide particle powder was hermetically stored in a desiccator in which silica gel was spread and evacuated.

1−2 母材金属の溶融及び金属酸化物粒子の分散
純度99.99%のアルミニウム45gをセラミック坩堝に入れ、高周波誘導炉(MU-1700SP1、美和製作所製)内にセットした。アルゴン雰囲気下、高周波誘導路を1000℃に昇温してアルミニウムを溶融し、1000℃のまま1分間保持した。
1-2. Melting of base metal and dispersion of metal oxide particles 45 g of aluminum having a purity of 99.99% was placed in a ceramic crucible and set in a high frequency induction furnace (MU-1700SP1, manufactured by Miwa Seisakusho). In an argon atmosphere, the high-frequency induction path was heated to 1000 ° C. to melt aluminum, and kept at 1000 ° C. for 1 minute.

次いで直径8.0mm、ピッチ10mmのスクリュー状撹拌棒を、その先端と坩堝の底との距離が5mm以内となるように前記坩堝内の溶融アルミニウムに静かに挿入した。撹拌機(AS-ONE LABORATORY HIGH POWER MIXER)を用いてスクリュー状撹拌棒を回転数400rpmとなるまで徐々に回転させた。1000℃を保ったまま400rpmで2分間溶融アルミニウムを撹拌した後、前記1−1で得られた酸化イットリウム粒子粉末の4重量%を1分間かけて前記溶融アルミニウムに添加し、さらにアルゴン雰囲気下で2分間撹拌した。   Next, a screw-like stirring rod having a diameter of 8.0 mm and a pitch of 10 mm was gently inserted into the molten aluminum in the crucible so that the distance between the tip and the bottom of the crucible was within 5 mm. Using a stirrer (AS-ONE LABORATORY HIGH POWER MIXER), the screw-shaped stir bar was gradually rotated until the rotation speed reached 400 rpm. After stirring the molten aluminum at 400 rpm for 2 minutes while maintaining 1000 ° C., 4% by weight of the yttrium oxide particle powder obtained in 1-1 was added to the molten aluminum over 1 minute, and further under an argon atmosphere. Stir for 2 minutes.

1−3 鋳造
1−2の撹拌が終了した後、坩堝を高周波誘導炉から取り出し、酸化イットリウム粒子を分散させた溶融アルミニウムを直径14mmの筒状の金型に流し入れた。この作業は15秒程度で行った。この金型に水をかけて水冷し、完全に冷えたところで金型内の試料を取り出すと、酸化物分散強化型合金試料が得られた。
1-3 Casting After the stirring of 1-2 was completed, the crucible was taken out of the high frequency induction furnace, and molten aluminum in which yttrium oxide particles were dispersed was poured into a cylindrical mold having a diameter of 14 mm. This operation was performed in about 15 seconds. The mold was cooled with water, and when the sample was completely cooled, an oxide dispersion strengthened alloy sample was obtained.

(実施例2〜9)
実施例1−2のアルミニウムの溶融温度、撹拌棒の回転数、及び酸化イットリウム粒子粉末を溶融アルミニウムに添加した後の撹拌時間を表1のようにしたこと以外は実施例1と同様にして、酸化物分散強化型合金試料を製造した。
(Examples 2-9)
Except that the melting temperature of aluminum in Example 1-2, the number of revolutions of the stirring bar, and the stirring time after adding the yttrium oxide particle powder to the molten aluminum were as shown in Table 1, An oxide dispersion strengthened alloy sample was produced.

Figure 2008189995
Figure 2008189995

製造した酸化物分散強化型合金試料について、以下の評価を行った。   The manufactured oxide dispersion strengthened alloy sample was evaluated as follows.

(組織観察)
金属切断機(ファインカット、平和工業商事社製)を用いて各実施例で得られた酸化物分散強化型合金試料を切断、研磨して、その断面を観察した。観察は、走査電子顕微鏡(SEM;S−3000、Hitachi製)を用いて行った。尚、一部の試料については電界放射型走査電子顕微鏡(FE−SEM;S−5000、Hitachi製)を使用し、より微細な観察を行った。観察結果を図1〜3に示す。
(Tissue observation)
The oxide dispersion strengthened alloy sample obtained in each Example was cut and polished using a metal cutting machine (Fine Cut, manufactured by Heiwa Kogyo Shoji Co., Ltd.), and the cross section was observed. Observation was performed using a scanning electron microscope (SEM; S-3000, manufactured by Hitachi). For some samples, a field emission scanning electron microscope (FE-SEM; S-5000, manufactured by Hitachi) was used for finer observation. The observation results are shown in FIGS.

(面積分率測定)
前記組織観察の際に観察した面について、酸化イットリウム粒子が分散している領域の面積分率を測定した。まず、それぞれの試料について、SEMにより反射電子組成像を1K倍で試料の外周部から中心方向へ連続的に30枚撮影した。この写真をコンピュータソフトウェア「Area Measure」で解析して、各写真の酸化イットリウム分散領域の面積分率を測定し、その平均値を求めることでその試料の分散領域の面積分率を求めた。測定結果を表2に示す。
(Area fraction measurement)
The area fraction of the region in which the yttrium oxide particles were dispersed was measured on the surface observed during the structure observation. First, with respect to each sample, 30 backscattered electron composition images were continuously photographed from the outer periphery of the sample toward the center at 1K magnification. This photograph was analyzed by computer software “Area Measure”, the area fraction of the yttrium oxide dispersed region in each photograph was measured, and the average value was obtained to obtain the area fraction of the dispersed region of the sample. The measurement results are shown in Table 2.

Figure 2008189995
Figure 2008189995

まず、実施例1〜4から、撹拌時の回転数が酸化イットリウム粒子の分散に与える影響について検討した。実施例1で得られた試料の切断面のSEM写真を図1(a)に、実施例2で得られた試料の切断面のSEM写真を図1(b)に、実施例3で得られた試料の切断面のSEM写真を図1(c)に、実施例4で得られた試料の切断面のSEM写真を図1(d)に、それぞれ示す。図1から明らかなように、どの回転数の場合においても酸化イットリウムの分散がみられた。また、表2から明らかなように、酸化イットリウムの平均面積分率は、回転数600rpmの実施例2の試料が最も高い値を示し、400rpmの実施例1の試料が最も低い値を示した。   First, from Examples 1 to 4, the influence of the rotational speed during stirring on the dispersion of yttrium oxide particles was examined. The SEM photograph of the cut surface of the sample obtained in Example 1 is obtained in FIG. 1 (a), the SEM photograph of the cut surface of the sample obtained in Example 2 is obtained in FIG. An SEM photograph of the cut surface of the sample is shown in FIG. 1C, and an SEM photograph of the cut surface of the sample obtained in Example 4 is shown in FIG. As is apparent from FIG. 1, yttrium oxide dispersion was observed at any rotational speed. Further, as is clear from Table 2, the average area fraction of yttrium oxide showed the highest value for the sample of Example 2 at a rotational speed of 600 rpm, and the lowest value for the sample of Example 1 at 400 rpm.

次に、実施例2、5、6から、アルミニウムの溶融温度が酸化イットリウム粒子の分散に与える影響について検討した。実施例5で得られた試料の切断面のSEM写真を図2(e)に、実施例6で得られた試料の切断面のSEM写真を図2(f)に、それぞれ示す。図2から明らかなように、溶融温度700℃の実施例5の試料と、溶融温度800℃の実施例6の試料とには多くのスラグが混入しており、ほとんど酸化イットリウム粒子の分散を確認できなかった。それに対して溶融温度1000℃の実施例2の試料では分散が確認できた。   Next, from Examples 2, 5, and 6, the influence of the melting temperature of aluminum on the dispersion of yttrium oxide particles was examined. An SEM photograph of the cut surface of the sample obtained in Example 5 is shown in FIG. 2 (e), and an SEM photograph of the cut surface of the sample obtained in Example 6 is shown in FIG. 2 (f). As is clear from FIG. 2, the sample of Example 5 having a melting temperature of 700 ° C. and the sample of Example 6 having a melting temperature of 800 ° C. contained a lot of slag, and almost confirmed dispersion of yttrium oxide particles. could not. On the other hand, dispersion was confirmed in the sample of Example 2 having a melting temperature of 1000 ° C.

次に、実施例2、7、8、9から、酸化イットリウム粒子添加後の撹拌時間が酸化イットリウム粒子の分散に与える影響について検討した。実施例7で得られた試料の切断面のSEM写真を図3(g)に、実施例8で得られた試料の切断面のSEM写真を図3(h)に、実施例9で得られた試料の切断面のSEM写真を図3(i)に、それぞれ示す。図3から明らかなように、撹拌時間が増すにつれて酸化イットリウム粒子の分散領域が増加した。撹拌時間8分の試料(図3(i)参照)では、粒界に沿って多くの酸化イットリウム粒子が分散している様子が見られた。酸化イットリウム粒子の平均面積分率は、撹拌時間8分の実施例9の試料が最も高く、撹拌時間2分の実施例2の試料が最も低い値を示した。   Next, from Examples 2, 7, 8, and 9, the influence of the stirring time after the addition of yttrium oxide particles on the dispersion of yttrium oxide particles was examined. The SEM photograph of the cut surface of the sample obtained in Example 7 is obtained in FIG. 3 (g), the SEM photograph of the cut surface of the sample obtained in Example 8 is obtained in FIG. The SEM photograph of the cut surface of each sample is shown in FIG. As apparent from FIG. 3, the dispersion region of the yttrium oxide particles increased as the stirring time increased. In the sample with a stirring time of 8 minutes (see FIG. 3 (i)), it was observed that many yttrium oxide particles were dispersed along the grain boundary. The average area fraction of yttrium oxide particles was highest for the sample of Example 9 with a stirring time of 8 minutes, and the lowest value for the sample of Example 2 with a stirring time of 2 minutes.

(硬度測定)
各実施例で得られた酸化物分散強化型合金試料の中で最も分散量が多かった実施例9の合金試料について、硬度を測定した。
(Hardness measurement)
The hardness of the alloy sample of Example 9 having the largest dispersion amount among the oxide dispersion strengthened alloy samples obtained in each Example was measured.

マイクロビッカース硬度計(AKASHI社製)に実施例9で得られた合金試料をセットし、試験加重500g、保持時間15秒の条件で硬度を測定して、最大最小値を除いた10点の平均を求めた。比較のため、酸化イットリウム粒子を添加しなかったこと以外は実施例9と同様にして作製した比較試料についても、同じ方法で硬度を測定した。   The alloy sample obtained in Example 9 was set in a micro Vickers hardness tester (manufactured by AKASHI), the hardness was measured under the conditions of a test load of 500 g and a holding time of 15 seconds, and an average of 10 points excluding the maximum and minimum values. Asked. For comparison, the hardness of the comparative sample prepared in the same manner as in Example 9 except that the yttrium oxide particles were not added was measured by the same method.

硬度測定の結果、実施例9の合金試料は37.6Hvであったのに対して、比較試料は16.6Hvであった。このことから、実施例の合金は従来のアルミニウムに比べて硬度が格段に増していることが確認できた。   As a result of the hardness measurement, the alloy sample of Example 9 was 37.6 Hv, while the comparative sample was 16.6 Hv. From this, it was confirmed that the hardness of the alloy of the example was remarkably increased as compared with the conventional aluminum.

(透過電子顕微鏡(TEM)観察)
実施例7で得られた合金試料の粒界部分について、透過電子顕微鏡観察を行った。結果を図4に示す。図4に示したように、100nm以下の分散物がTEMにより観察された。
(Transmission electron microscope (TEM) observation)
The grain boundary portion of the alloy sample obtained in Example 7 was observed with a transmission electron microscope. The results are shown in FIG. As shown in FIG. 4, a dispersion of 100 nm or less was observed by TEM.

以上の結果から、実施例で得られた合金試料にはナノサイズの酸化イットリウムが分散していることが明らかとなった。   From the above results, it was revealed that nano-sized yttrium oxide was dispersed in the alloy samples obtained in the examples.

本発明を適用する実施例1(a)、実施例2(b)、実施例3(c)、実施例4(d)で得られた各酸化物分散強化型合金の切断面の走査電子顕微鏡写真である。Scanning electron microscope of the cut surface of each oxide dispersion strengthened alloy obtained in Example 1 (a), Example 2 (b), Example 3 (c), and Example 4 (d) to which the present invention is applied It is a photograph. 本発明を適用する実施例2(b)、実施例5(e)、実施例6(f)で得られた各酸化物分散強化型合金の切断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cut surface of each oxide dispersion strengthen type alloy obtained in Example 2 (b), Example 5 (e), and Example 6 (f) to which the present invention is applied. 本発明を適用する実施例2(b)、実施例7(g)、実施例8(h)、実施例9(i)で得られた各酸化物分散強化型合金の切断面の走査電子顕微鏡写真である。Scanning electron microscope of cut surface of each oxide dispersion strengthened alloy obtained in Example 2 (b), Example 7 (g), Example 8 (h), and Example 9 (i) to which the present invention is applied It is a photograph. 本発明を適用する実施例7で得られた酸化物分散強化型合金の透過電子顕微鏡写真である。It is a transmission electron micrograph of the oxide dispersion strengthened type alloy obtained in Example 7 which applies this invention.

Claims (11)

粒子径10〜80nmの金属酸化物粒子の表面に付着した水分子を除去する脱水工程と、金属母材を加熱溶融し撹拌する溶融工程と、前記により溶融した金属母材に前記脱水工程を施した金属酸化物粒子を添加して、加熱しつつ撹拌し分散させる分散工程と、該金属酸化物粒子を分散させた溶融金属母材を急速冷却を用いて鋳造する鋳造工程とからなることを特徴とする酸化物分散強化型合金の製造方法。   A dehydration step for removing water molecules adhering to the surface of the metal oxide particles having a particle diameter of 10 to 80 nm, a melting step for heating and melting and stirring the metal base material, and the dehydration step for the molten metal base material. A dispersion step in which the metal oxide particles are added and stirred and dispersed while heating, and a casting step in which the molten metal base material in which the metal oxide particles are dispersed is cast using rapid cooling. A method for producing an oxide dispersion strengthened alloy. 前記金属酸化物が、酸化イットリウム、酸化アルミニウム、二酸化チタニウム、二酸化ジルコニウム、酸化マグネシウムから選ばれる少なくとも一種であることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the metal oxide is at least one selected from yttrium oxide, aluminum oxide, titanium dioxide, zirconium dioxide, and magnesium oxide. 前記金属母材がアルミニウム及び/またはアルミニウム合金であることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   2. The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the metal base material is aluminum and / or an aluminum alloy. 前記金属酸化物の添加量が前記金属母材の2〜5重量%であることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the amount of the metal oxide added is 2 to 5% by weight of the metal base material. 前記溶融工程と前記分散工程とにおける撹拌の回転数が400rpm〜1200rpmであることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   2. The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein a rotation speed of stirring in the melting step and the dispersing step is 400 rpm to 1200 rpm. 前記溶融工程と前記分散工程とにおける加熱の温度が800℃〜1200℃であることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   2. The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the heating temperature in the melting step and the dispersing step is 800 ° C. to 1200 ° C. 3. 前記分散工程における撹拌時間が2分〜60分であることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the stirring time in the dispersion step is 2 minutes to 60 minutes. 前記溶融工程と前記分散工程とが、アルゴン雰囲気下で行われることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the melting step and the dispersing step are performed in an argon atmosphere. 前記溶融工程と前記分散工程とが、真空条件下で行われることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the melting step and the dispersing step are performed under vacuum conditions. 前記溶融工程と前記分散工程とにおける撹拌が、スクリュー形状の撹拌棒によってなされることを特徴とする請求項1に記載の酸化物分散強化型合金の製造方法。   The method for producing an oxide dispersion strengthened alloy according to claim 1, wherein the stirring in the melting step and the dispersing step is performed by a screw-shaped stirring rod. 請求項1〜10のいずれかに記載の方法で製造されたことを特徴とする酸化物分散強化型合金。   An oxide dispersion strengthened alloy manufactured by the method according to claim 1.
JP2007025714A 2007-02-05 2007-02-05 Method for producing oxide particle dispersion strengthened alloy by casting Pending JP2008189995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025714A JP2008189995A (en) 2007-02-05 2007-02-05 Method for producing oxide particle dispersion strengthened alloy by casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025714A JP2008189995A (en) 2007-02-05 2007-02-05 Method for producing oxide particle dispersion strengthened alloy by casting

Publications (1)

Publication Number Publication Date
JP2008189995A true JP2008189995A (en) 2008-08-21

Family

ID=39750362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025714A Pending JP2008189995A (en) 2007-02-05 2007-02-05 Method for producing oxide particle dispersion strengthened alloy by casting

Country Status (1)

Country Link
JP (1) JP2008189995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001804A (en) * 2010-06-14 2012-01-05 Qinghua Univ Magnesium-based composite material and preparation method thereof, and application thereof in sounding device
CN112170854A (en) * 2020-10-14 2021-01-05 中南大学 Method for preparing nano spherical oxide dispersion strengthening phase
CN115927901A (en) * 2023-01-04 2023-04-07 中南大学 Recovery device and recovery process for purifying and grain refining of aluminum alloy ingot blank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501489A (en) * 1986-05-01 1989-05-25 アルキヤン インターナシヨナル リミテツド Cast reinforced composite material
JPH01212730A (en) * 1988-02-18 1989-08-25 Mitsubishi Alum Co Ltd Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH06505198A (en) * 1991-03-11 1994-06-16 アルキャン・インターナショナル・リミテッド Continuous manufacturing equipment for castable metal matrix composites
JPH0654448U (en) * 1992-12-28 1994-07-26 昭和電線電纜株式会社 Composite material casting equipment
JP2005023424A (en) * 2003-07-03 2005-01-27 General Electric Co <Ge> Process for producing material reinforced with nanoparticle and article formed thereby
JP2006108317A (en) * 2004-10-04 2006-04-20 Sumitomo Electric Ind Ltd Composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501489A (en) * 1986-05-01 1989-05-25 アルキヤン インターナシヨナル リミテツド Cast reinforced composite material
JPH01212730A (en) * 1988-02-18 1989-08-25 Mitsubishi Alum Co Ltd Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH06505198A (en) * 1991-03-11 1994-06-16 アルキャン・インターナショナル・リミテッド Continuous manufacturing equipment for castable metal matrix composites
JPH0654448U (en) * 1992-12-28 1994-07-26 昭和電線電纜株式会社 Composite material casting equipment
JP2005023424A (en) * 2003-07-03 2005-01-27 General Electric Co <Ge> Process for producing material reinforced with nanoparticle and article formed thereby
JP2006108317A (en) * 2004-10-04 2006-04-20 Sumitomo Electric Ind Ltd Composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001804A (en) * 2010-06-14 2012-01-05 Qinghua Univ Magnesium-based composite material and preparation method thereof, and application thereof in sounding device
CN112170854A (en) * 2020-10-14 2021-01-05 中南大学 Method for preparing nano spherical oxide dispersion strengthening phase
CN112170854B (en) * 2020-10-14 2021-06-15 中南大学 Method for preparing nano spherical oxide dispersion strengthening phase
CN115927901A (en) * 2023-01-04 2023-04-07 中南大学 Recovery device and recovery process for purifying and grain refining of aluminum alloy ingot blank
CN115927901B (en) * 2023-01-04 2024-03-12 中南大学 Recovery device and recovery process for purifying and refining aluminum alloy ingot blanks

Similar Documents

Publication Publication Date Title
CN111940723B (en) Nano ceramic metal composite powder for 3D printing and application
US8287622B2 (en) Method for making aluminum-based composite material
Liu et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing
Mazahery et al. Characterization of cast A356 alloy reinforced with nano SiC composites
Li et al. Ultrasonic-assisted fabrication of metal matrix nanocomposites
JP5808731B2 (en) Method for strengthening oxide dispersion of metal materials using laser
US8357225B2 (en) Method for making magnesium-based composite material
Amirkhanlou et al. Effects of reinforcement distribution on low and high temperature tensile properties of Al356/SiCp cast composites produced by a novel reinforcement dispersion technique
Dehnavi et al. Effects of continuous and discontinuous ultrasonic treatments on mechanical properties and microstructural characteristics of cast Al413–SiCnp nanocomposite
El-Mahallawi et al. Influence of nanodispersions on strength–ductility properties of semisolid cast A356 Al alloy
Oliver et al. Spark plasma sintering of aluminium composites—a review
Rashad et al. Effect of MWCNTs content on the characteristics of A356 nanocomposite
Baig et al. Influence of surfactant type on the dispersion state and properties of graphene nanoplatelets reinforced aluminium matrix nanocomposites
Li et al. Strengthening of the magnesium matrix composites hybrid reinforced by chemically oxidized carbon nanotubes and in situ Mg2Sip
Verma et al. Microstructure evolution and mechanical properties of aluminium matrix composites reinforced with CoMoMnNiV high-entropy alloy
Vidyasagar et al. Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering
JP2008189995A (en) Method for producing oxide particle dispersion strengthened alloy by casting
CN108441732A (en) A kind of Nano diamond particle reinforced magnesium base compound material and preparation method thereof
WO2013002532A2 (en) Oxygen atom-dispersed metal-based composite material and method for manufacturing same
TWI414610B (en) Method for making aluminium-based metal matrix composites
Vykuntarao et al. Influence of reinforced particles on the Mechanical properties of Aluminium Based Metal Matrix Composite–A Review
CN112899512A (en) Aluminum-titanium-carbon alloy grain refiner and preparation method thereof
KR101227428B1 (en) Oxygen atoms-dispersed metal-based composite material and method for manufacturing the same
Rathee et al. Fabrication of AA 6063/SiC surface composites via friction stir processing
JPH07224301A (en) Production of mechanically alloyed powder and mechanically alloying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016