JPH07224301A - Production of mechanically alloyed powder and mechanically alloying device - Google Patents

Production of mechanically alloyed powder and mechanically alloying device

Info

Publication number
JPH07224301A
JPH07224301A JP6017133A JP1713394A JPH07224301A JP H07224301 A JPH07224301 A JP H07224301A JP 6017133 A JP6017133 A JP 6017133A JP 1713394 A JP1713394 A JP 1713394A JP H07224301 A JPH07224301 A JP H07224301A
Authority
JP
Japan
Prior art keywords
powder
container
mechanical alloying
mechanically
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6017133A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6017133A priority Critical patent/JPH07224301A/en
Publication of JPH07224301A publication Critical patent/JPH07224301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce a high quality mechanically alloyed powder in industrial scale. CONSTITUTION:In the production method for the mechanically alloyed powder in which oxide particles, metal powder or different kind metal powder are mixed mechanically and alloyed, an atmosphere temp. of a mechanically alloying stage is kept at <=200 deg.C. In controlling this atmosphere temp., an inert gas such as vapor of liq. nitrogen and liq. helium and an argon cooled at lower than room temp. is used. In this mechanically alloying device, a hole 6 for supplying the cooling gas to an upper part or a stirrer of a powder agitating vessel 1 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分散強化合金及びアモル
ファス合金及び金属間化合物等を製造する時に用いる機
械的合金化粉末の製造方法及び機械的合金化装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical alloying powder manufacturing method and a mechanical alloying apparatus used for manufacturing dispersion strengthened alloys, amorphous alloys, intermetallic compounds and the like.

【0002】[0002]

【従来の技術】機械的合金化法は異種粉末材料を固体状
態のまま原子レベルまで均一、微細に分散、混合させる
ことが可能であり、近年、分散強化合金、アモルファス
合金及び金属間化合物といった新材料開発に応用されて
いる。例えば金属マトリクス中にナノ・メートル・サイ
ズのセラミック粒子を微細に分散させた分散強化合金は
耐熱材料や耐摩耗材料として既に実用化されている。ま
た、金属原子がショート・レンジで配列したアモルファ
ス合金は従来液体急冷法により製作していたため箔状の
リボン形状しか得られなかったが、この機械的合金化法
を用いることにより粒子形状のアモルファス合金が製造
可能となり、磁性材料、水素貯蔵材料等としての利用が
期待されている。さらに、異種金属原子が規則正しく配
列した金属間化合物は次世代の耐熱材料としても有効で
ある。
2. Description of the Related Art The mechanical alloying method is capable of uniformly and finely dispersing and mixing different kinds of powder materials up to the atomic level in a solid state. In recent years, new materials such as dispersion strengthened alloys, amorphous alloys and intermetallic compounds have been developed. It is applied to material development. For example, dispersion strengthened alloys in which nanometer-sized ceramic particles are finely dispersed in a metal matrix have already been put to practical use as heat resistant materials and wear resistant materials. In addition, an amorphous alloy in which metal atoms are arranged in a short range could only be obtained in the form of a foil ribbon because it was conventionally manufactured by a liquid quenching method.However, by using this mechanical alloying method, an amorphous alloy in a particle shape can be obtained. It can be manufactured, and is expected to be used as a magnetic material, a hydrogen storage material, and the like. Furthermore, the intermetallic compound in which dissimilar metal atoms are regularly arranged is also effective as a heat-resistant material for the next generation.

【0003】一般に、このような機械的合金化は図4に
示すような撹拌式ボールミルや振動式ボールミルといっ
た高エネルギータイプのボールミルによって行うが、そ
の原理は図3に示すように、容器内に直径10mm程度の金
属製またはセラミック製のボール8と粒径数ミクロンの
異なった種類の粉末状素材10,11を不活性ガス中に密閉
し、アーム5のついたアジテータとよばれる撹拌子2を
高速で回転させることによりボール8どうしを衝突さ
せ、ボール間に挟まれた異種粉末素材10,11が冷間接合
と粉砕を繰返すことにより均一・微細に混合した機械的
合金化粉末を得る。その後、用途によってはこの機械的
合金化粉末をホットプレートやHIP(熱間等方圧加圧
法)により加圧焼結したり、金属製カプセルの中に真空
封入し熱間押出し等の塑性加工を用いて焼結部材を製造
している。
Generally, such mechanical alloying is carried out by a high energy type ball mill such as a stirring type ball mill or a vibration type ball mill as shown in FIG. 4, the principle of which is shown in FIG. A metal or ceramic ball 8 of about 10 mm and different kinds of powdery materials 10 and 11 having a particle size of several microns are sealed in an inert gas, and an agitator 2 with an arm 5 called an agitator 2 is operated at high speed. The balls 8 are caused to collide with each other by rotating the balls with each other, and the different kinds of powder materials 10 and 11 sandwiched between the balls are repeatedly cold-bonded and crushed to obtain a mechanically alloyed powder which is uniformly and finely mixed. After that, depending on the application, this mechanical alloying powder is pressure-sintered by a hot plate or HIP (hot isostatic pressing method), or it is vacuum-sealed in a metal capsule and subjected to plastic working such as hot extrusion. It is used to manufacture a sintered member.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
機械的合金化過程においては容器内に充填された数1000
個のボール8が毎秒数100 回転の高速で回転する撹拌子
2により長時間に渡り掻回されるため、ボール8と撹拌
子2及びボール8どうしの衝突、摩擦により発生する熱
により容器内の雰囲気温度は数 100℃の高温に上昇す
る。したがって、容器内部は通常Ar,N2 等の不活性
ガスでシールし粉末材料の酸化を避けると共に、容器片
面を水冷することにより容器内温度の上昇を抑制してい
る。これは容器内温度の上昇と共に金属粉末の延性が増
大し、ボール表面やアーム表面に凝着し異種粉末が単に
積層されたような組織の粉末しか得られず、本来の目的
である異種粉末が微細混合した機械的合金化粉末が得ら
れないだけでなく、銅、アルミニウム、ステンレス鋼の
ように軟化温度が低く軟らかい金属材料の場合には全て
の金属粉末がボール表面やアーム表面に凝着し機械的合
金化粉末として回収できない。従来、このような延性に
富んだ金属材料の場合には凝着抑制剤としてヘプタンや
アルコール等の有機溶剤を少量添加することが有効であ
ることが知られている。しかし、機械的合金化過程で粒
子内部に取込まれた有機溶剤はその後の乾燥工程で蒸
発、除去することができず、焼結過程で金属元素と反応
し炭化物を形成する。このような炭化物を形成しやすい
合金元素としてはCr、Mo、Ti、V、W等があり、
例えばステンレス鋼の場合ではCr炭化物の生成により
マトリクス中のCr濃度が著しく低下し、耐食性、耐S
CC性を著しく低下させる。同様にMo濃度の低下は粒
界脆化を引起こし、W等の固溶強化元素の欠乏は高温強
度を低下させると共に材料の靭性をも著しく阻害する。
したがって、このような合金元素を含む材料では有機溶
剤を添加するような方法で金属粉末の凝着を防止するこ
とはできない。一方、特公平1−48321 号公報において
は、容器内壁温度を80℃以下に制御する方法も提案され
ているが、実際、容器壁面温度を80℃以下制御してもボ
ールと撹拌子の衝突が起こる容器内部の温度はほとんど
制御できず、特に工業的規模の製造で用いるような径の
大きい容器を備えた機械的合金化装置の場合には、容器
壁面温度を制御しても著しい金属粉末の凝着が起こるこ
とが確認されている。本発明の目的は、高品質の機械的
合金化粉末を工業的規模で効率良く製造する方法及びそ
の装置を提供するものである。
By the way, in such a mechanical alloying process, the number of thousands filled in the container is increased.
Since the individual balls 8 are agitated for a long time by the stirrer 2 rotating at a high speed of several hundreds of revolutions per second, the heat generated by the collision between the balls 8 and the stirrer 2 and the balls 8 and the friction inside the container The ambient temperature rises to several hundred degrees Celsius. Therefore, the inside of the container is usually sealed with an inert gas such as Ar or N 2 to avoid oxidation of the powder material, and one side of the container is water-cooled to suppress an increase in the temperature inside the container. This is because the ductility of the metal powder increases as the temperature inside the container increases, and only the powder having a structure in which the different powders are simply laminated by being adhered to the ball surface or the arm surface is obtained. Not only a finely mixed mechanical alloying powder cannot be obtained, but in the case of soft metal materials with a low softening temperature such as copper, aluminum and stainless steel, all metal powders adhere to the ball surface and arm surface. Cannot be recovered as mechanical alloying powder. It has been conventionally known that it is effective to add a small amount of an organic solvent such as heptane or alcohol as an adhesion inhibitor in the case of such a metallic material having a high ductility. However, the organic solvent taken inside the particles in the mechanical alloying process cannot be evaporated and removed in the subsequent drying process, and reacts with the metal element in the sintering process to form a carbide. Cr, Mo, Ti, V, W and the like are alloy elements that easily form such carbides.
For example, in the case of stainless steel, the Cr concentration in the matrix is remarkably reduced due to the formation of Cr carbide, resulting in corrosion resistance and S resistance.
Remarkably lowers CC property. Similarly, a decrease in Mo concentration causes grain boundary embrittlement, and a deficiency of a solid solution strengthening element such as W lowers the high temperature strength and also significantly impairs the toughness of the material.
Therefore, it is impossible to prevent the metal powder from adhering by the method of adding the organic solvent in the material containing the alloying element. On the other hand, Japanese Patent Publication No. 1-48321 proposes a method of controlling the inner wall temperature of the container to 80 ° C or lower. The temperature inside the vessel that occurs is almost uncontrollable, especially in the case of mechanical alloying equipment with vessels of large diameter, such as those used in industrial scale manufacturing, even if the temperature of the vessel wall is controlled It has been confirmed that adhesion occurs. An object of the present invention is to provide a method and an apparatus for efficiently producing a high quality mechanical alloying powder on an industrial scale.

【0005】[0005]

【課題を解決するための手段】上記問題点は機械的合金
化過程においてボールと撹拌子及びボールどうしの衝
突、摩擦により発生する熱により容器内の雰囲気温度が
著しく上昇し、その結果、金属粉末が軟化しボールと撹
拌子に凝着するために生じるものである。したがって、
容器内の雰囲気温度を適正に制御できれば機械的合金化
過程において金属粉末がボールや撹拌子に凝着せず、良
好な機械的合金化がおこり、異種材料が均一、微細に混
合された機械的合金化粉末が、初期の投入量に近い量で
回収可能になる。
[Means for Solving the Problems] The above-mentioned problems are caused by the heat generated by collision and friction between the ball and the stirring bar and between the balls in the mechanical alloying process, which significantly increases the ambient temperature in the container. Is softened and adheres to the ball and the stirring bar. Therefore,
If the atmospheric temperature in the container can be controlled properly, the metal powder will not adhere to the balls and stirrer during the mechanical alloying process, and good mechanical alloying will occur, resulting in a mechanical alloy in which different materials are homogeneously and finely mixed. The chemical powder can be recovered in an amount close to the initial input amount.

【0006】発明者らは容器内の雰囲気温度を適正に制
御する方法を見出だすべく種々の実験を行った結果、工
業的規模で機械的合金化粉末を製造できるような大形容
器の場合、容器内温度を容器の壁面を冷却する方法では
ほとんで効果がなく、容器内部に直接冷却ガスを導入す
ることが有効であることが分かった。しかし、機械的合
金化過程での発熱量が著しく大きいため、通常の高圧ボ
ンベからAr等の不活性ガスを導入して冷却方法では、
毎分数10l以上のガス量が必要であり、このような多量
のガスを流した場合には容器内の金属粉末が飛散し、ガ
スと共に容器外に流出してしまうため実用的ではない。
したがって、液体窒素蒸気または冷却装置により室温以
下に冷却した不活性ガスを用いることが有効である。ま
た、このような冷却ガスの供給方法としては、容器内は
充填されたボールが高速で移動するため、容器内壁面に
冷却ガス導入口を設けることは導入口がボールとの衝突
により磨滅してしまうため不可能である。また、一般に
は容器内の雰囲気制御のため容器蓋上面にはガス導入孔
が設けられているが、実際、ボールと撹拌子及びボール
どうしが衝突する容器中央部を冷却することは困難であ
る。そこで、容器中央部を効果的に冷却するための冷却
孔を設ける位置としては周速度の最も小さい撹拌子のシ
ャフト及び同じく撹拌子のアーム部の裏側に小さな径の
冷却孔を多数設けることが効果的である。
As a result of various experiments conducted by the inventors to find out a method for properly controlling the atmospheric temperature in the container, in the case of a large container capable of producing mechanically alloyed powder on an industrial scale. It was found that the method of cooling the temperature inside the container to the wall surface of the container had little effect, and it was effective to introduce the cooling gas directly into the container. However, since the calorific value in the mechanical alloying process is remarkably large, in a cooling method by introducing an inert gas such as Ar from a normal high pressure cylinder,
A gas amount of several tens of liters or more is required per minute, and when such a large amount of gas is flowed, the metal powder in the container scatters and flows out of the container together with the gas, which is not practical.
Therefore, it is effective to use liquid nitrogen vapor or an inert gas cooled to room temperature or lower by a cooling device. In addition, as a method of supplying such a cooling gas, since the filled balls move at a high speed in the container, providing a cooling gas introduction port on the inner wall surface of the container causes the introduction port to become worn due to collision with the ball. It is impossible because it ends up. Further, in general, a gas introduction hole is provided on the upper surface of the container lid for controlling the atmosphere in the container, but in reality, it is difficult to cool the central part of the container where the balls collide with the stirring bar and the balls. Therefore, as a position to provide a cooling hole for effectively cooling the central part of the container, it is effective to provide a large number of cooling holes having a small diameter on the shaft of the stirrer having the smallest peripheral speed and also on the back side of the arm part of the stirrer. Target.

【0007】[0007]

【作用】上記方法により、容器内に撹拌子のシャフト及
び同じく撹拌子のアーム部から液体窒素気のような低温
の冷却ガスを導入することにより容器内温度を一定の値
に保つことが可能となり、機械的合金化過程における金
属粉末のボールや撹拌子表面への凝着をほぼ完全に防止
することができる。その結果、粉末材料には常にボール
間で冷間接合と粉砕を繰返される良好な機械的合金化作
用を受けることが可能となり、異種元素が均一・微細に
混合された球状の機械的合金化粉末を初期の粉末投入量
に近い量で回収、製品化することができる。なお、容器
内の温度は金属粉末材料の軟化特性や組成、撹拌子の回
転数等によって異なるが、発明者の実験結果ではステン
レス鋼等の鉄系材料では 200℃以下、銅、アルミニウム
系材料では 100℃以下が好ましい。
By the above method, it becomes possible to keep the temperature inside the container at a constant value by introducing a low-temperature cooling gas such as liquid nitrogen gas into the container from the shaft of the stirrer and the arm of the stirrer. It is possible to almost completely prevent the metal powder from adhering to the surface of the ball or the stirring bar during the mechanical alloying process. As a result, the powder material can always be subjected to a good mechanical alloying action in which cold joining and crushing are repeated between balls, and a spherical mechanical alloying powder in which different elements are uniformly and finely mixed. Can be collected and commercialized in an amount close to the initial powder input amount. The temperature in the container varies depending on the softening characteristics and composition of the metal powder material, the number of revolutions of the stirrer, etc., but the experimental results of the inventor show that iron-based materials such as stainless steel have a temperature of 200 ° C. or lower, and copper and aluminum-based materials It is preferably 100 ° C or lower.

【0008】[0008]

【実施例】以下、本発明の実施例を図1乃至図3を参照
して説明する。図1は本発明に係わる機械的合金化装置
の構造を示すもので、本体に固定された二重構造の金属
製容器1とモータに連結された撹拌子2から構成されて
いる。金属製容器の上部には容器内の雰囲気を一定に保
つための蓋3が取付けられており、容器本体は水冷され
ている。一方、撹拌子2はシャフト4とアーム5から構
成され、その表面には図2に示すように多数の微細な冷
却孔6が設けられている。冷却用のArガスは冷却装置
により低温に冷却した後、蓋上部のガス導入孔7及びシ
ャフト4を経由して冷却孔6から容器内に導入される。
また、容器内には直径10mmの金属製ボール8が充填され
ており、機械的合金化を行うステンレス鋼粉末9とアル
ミナ粉末10を入れ不活性ガス雰囲気中に密閉されてい
る。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows the structure of a mechanical alloying apparatus according to the present invention, which is composed of a double-structured metal container 1 fixed to the main body and an agitator 2 connected to a motor. A lid 3 for keeping a constant atmosphere in the container is attached to the upper part of the metal container, and the container body is water-cooled. On the other hand, the stirring bar 2 is composed of a shaft 4 and an arm 5, and a large number of fine cooling holes 6 are provided on the surface thereof as shown in FIG. The Ar gas for cooling is cooled to a low temperature by a cooling device and then introduced into the container from the cooling hole 6 via the gas introduction hole 7 in the upper part of the lid and the shaft 4.
Further, a metal ball 8 having a diameter of 10 mm is filled in the container, and stainless steel powder 9 and alumina powder 10 for mechanical alloying are put therein and sealed in an inert gas atmosphere.

【0009】機械的合金化処理は撹拌子を毎分数 100回
転で数10時間回転させ、容器内の金属製ボールを撹拌す
ることによりボールどうしを衝突させる。その間、図3
に示すようにボールとボールの間で異種粉末素材を圧延
し、粉砕を繰り返すことにより直径数 100ミクロン程度
の機械的合金化粉末を製造する。得られた機械的合金化
粉末は金属製のカプセルに真空封入し、熱間押し出しに
より固化する。
In the mechanical alloying treatment, the stirrer is rotated at several hundred revolutions per minute for several tens of hours to stir the metal balls in the container so that the balls collide with each other. Meanwhile, Figure 3
As shown in (1), a different kind of powder material is rolled between balls and crushed repeatedly to produce mechanically alloyed powder with a diameter of several hundred microns. The mechanical alloying powder obtained is vacuum-encapsulated in a metal capsule and solidified by hot extrusion.

【0010】以上のように容器1を水冷すると共に容器
上部のガス導入孔7及び撹拌子2のシャフト4、アーム
6から低温の冷却ガス11を導入することにより容器内温
度を一定の値に保つことが可能となり、機械的合金化過
程においてステンレス鋼粉末がボールや撹拌子表面に凝
着することを完全に防止することができる。その結果、
ステンレス鋼粉末は常にボール間で冷間接合と粉砕を繰
返されると同時にステンレス鋼粉末中にアルミナ粉末が
混入される。このような状態を繰り返すことにより、ス
テンレス鋼マトリクス中にサブミクロンのアルミナ粒子
が均一、微細に分散された機械的合金化粉末が得られ
る。
As described above, the temperature inside the container is maintained at a constant value by cooling the container 1 with water and introducing the low-temperature cooling gas 11 from the gas introduction hole 7 in the upper part of the container and the shaft 4 and the arm 6 of the stirrer 2. It is possible to completely prevent the stainless steel powder from adhering to the balls and the surface of the stirrer during the mechanical alloying process. as a result,
The stainless steel powder is constantly cold-bonded and crushed between balls, and at the same time alumina powder is mixed into the stainless steel powder. By repeating such a state, a mechanical alloying powder in which submicron alumina particles are uniformly and finely dispersed in a stainless steel matrix is obtained.

【0011】表1には容器内温度を変えて機械的合金化
処理を行ったアルミナ粒子分散ステンレス鋼について、
機械的合金化処理後の製品回収量と得られた機械的合金
化粉末を熱間押し出しにより固化した焼結体の引張強さ
を示す。
Table 1 shows the alumina particle-dispersed stainless steel which was mechanically alloyed by changing the temperature in the container.
The product recovery amount after mechanical alloying treatment and the tensile strength of the sintered body obtained by solidifying the obtained mechanical alloying powder by hot extrusion are shown.

【0012】容器内壁のみ冷却する従来方法Iでは製品
回収量が約1kgと初期粉末投入量の10%程度の重量しか
回収できず、また、ステンレス鋼中のアルミナ粒子が偏
在しているため、引張強さも80kgf/mm2 と通常のステン
レス鋼の 1.3倍程度の強度しか有していない。また、凝
集防止材として少量のヘプタンを添加した従来方法II
では製品回収量が約9kgと初期粉末投入量の90%程度
が回収されているが、Cr炭化物の形成されたため引張
強さが60kgf/mm2 と通常のステンレス鋼とほぼ同じ強度
であった。一方、蓋上部のガス導入孔から低温の冷却ガ
スを導入することにより容器内の温度を 200℃程度に保
った実施例Iでは製品回収量が約6kgと初期粉末投入量
の60%が回収でき、かつ、引張強さも 110kgf/mm2 と通
常のステンレス鋼の 1.8倍程度の強度を有していた。さ
らに、撹拌子からも低温の冷却ガスを導入し容器内の温
度を 150℃以下にした実施例IIでは約9kgの製品が回収
でき、引張強さも 120kgf/mm2 と最も高い値を示した。
この試験片の組織を調査した結果、ステンレス鋼マトリ
クス中に粒径 0.1ミクロン以下の微細なアルミナ粒子が
均一に分散されており、また、Cr炭化物のような析出
物も観察されず良好な組織を呈していた。
In the conventional method I in which only the inner wall of the container is cooled, the product recovery amount is about 1 kg, which is only about 10% of the initial powder input amount, and the alumina particles in the stainless steel are unevenly distributed. The strength is 80 kgf / mm 2 , which is only 1.3 times stronger than ordinary stainless steel. In addition, the conventional method II in which a small amount of heptane was added as an anticoagulant
Although the product recovery amount was about 9 kg, which was about 90% of the initial powder input amount, the tensile strength was 60 kgf / mm 2 because Cr carbide was formed, which was almost the same strength as ordinary stainless steel. On the other hand, in Example I in which the temperature inside the container was maintained at about 200 ° C by introducing the low-temperature cooling gas from the gas introduction hole in the upper part of the lid, the product recovery amount was about 6 kg and 60% of the initial powder input amount could be recovered. Moreover, the tensile strength was 110 kgf / mm 2 , which was about 1.8 times the strength of ordinary stainless steel. Furthermore, in Example II in which a low temperature cooling gas was introduced from the stirrer and the temperature inside the container was 150 ° C. or lower, about 9 kg of product could be recovered and the tensile strength was 120 kgf / mm 2, which was the highest value.
As a result of examining the structure of this test piece, fine alumina particles having a particle size of 0.1 micron or less were uniformly dispersed in the stainless steel matrix, and precipitates such as Cr carbide were not observed, and a good structure was formed. I was presenting.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】以上の結果から、本発明により低温の冷
却ガスを容器内に均一に導入し、容器内温度を 200℃以
下に保つことで金属粉末がボールや撹拌子に凝着するこ
とを防止することにより、異種粉末材料を均一・微細に
分散させることが可能となり高強度の焼結部材が得られ
るだけでなく、合わせて製品の回収率も著しく向上させ
ることが可能である。
From the above results, according to the present invention, a low temperature cooling gas is uniformly introduced into the container and the temperature inside the container is kept at 200 ° C. or less, whereby the metal powder is adhered to the balls and the stirring bar. By preventing it, it is possible to disperse the different powder materials uniformly and finely, and not only a high-strength sintered member can be obtained, but also the product recovery rate can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関わる機械的合金化装置の構造図FIG. 1 is a structural diagram of a mechanical alloying device according to the present invention.

【図2】本発明に関わる機械的合金化装置の詳細構造図FIG. 2 is a detailed structural diagram of a mechanical alloying device according to the present invention.

【図3】機械的合金化の原理説明図FIG. 3 is an explanatory view of the principle of mechanical alloying.

【図4】従来の撹拌式機械的合金化装置の構造図FIG. 4 is a structural diagram of a conventional stirring type mechanical alloying device.

【符号の説明】[Explanation of symbols]

1…容器 2…撹拌子 5…アーム 6…冷却孔 8…ボール 1 ... Container 2 ... Stirrer 5 ... Arm 6 ... Cooling hole 8 ... Ball

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化物粒子と金属粉末または異種金属粉
末を機械的に混合、合金化して作る機械的合金化粉末の
製造方法において、機械的合金化過程の雰囲気温度を 2
00℃以下に保つことを特徴とする機械的合金化粉末の製
造方法。
1. A method for producing a mechanical alloying powder produced by mechanically mixing and alloying oxide particles with a metal powder or a dissimilar metal powder, wherein the ambient temperature in the mechanical alloying process is 2
A method for producing a mechanical alloying powder, which is characterized in that the temperature is maintained at 00 ° C or lower.
【請求項2】 前記雰囲気温度を制御する方法として、
液体窒素、液体ヘリウム蒸気または室温以下に冷却した
アルゴン等の不活性ガスを用いることを特徴とする請求
項1に記載の機械的合金化粉末の製造方法。
2. As a method of controlling the ambient temperature,
The method for producing a mechanical alloying powder according to claim 1, wherein an inert gas such as liquid nitrogen, liquid helium vapor, or argon cooled to room temperature or lower is used.
【請求項3】 粉末撹拌容器の上部または撹拌子に前記
冷却ガスを供給するための孔を有することを特徴とする
機械的合金化装置。
3. A mechanical alloying device, comprising a hole for supplying the cooling gas to the upper part of a powder stirring container or a stirring bar.
JP6017133A 1994-02-14 1994-02-14 Production of mechanically alloyed powder and mechanically alloying device Pending JPH07224301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017133A JPH07224301A (en) 1994-02-14 1994-02-14 Production of mechanically alloyed powder and mechanically alloying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017133A JPH07224301A (en) 1994-02-14 1994-02-14 Production of mechanically alloyed powder and mechanically alloying device

Publications (1)

Publication Number Publication Date
JPH07224301A true JPH07224301A (en) 1995-08-22

Family

ID=11935538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017133A Pending JPH07224301A (en) 1994-02-14 1994-02-14 Production of mechanically alloyed powder and mechanically alloying device

Country Status (1)

Country Link
JP (1) JPH07224301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090157A (en) * 2005-09-27 2007-04-12 Furukawa Electric Co Ltd:The Cathode catalyst for fuel cell and fuel cell using the same
JP2012072468A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
JP2012072466A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd METHOD OF MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET AND THE Cu-Ga ALLOY SPUTTERING TARGET
JP2012072467A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
KR20220015090A (en) * 2020-07-30 2022-02-08 금오공과대학교 산학협력단 Method for manufacturing oxidation state-tuned metal oxides
CN115401207A (en) * 2022-07-23 2022-11-29 杭州新川新材料有限公司 Apparatus for producing mixed metal powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090157A (en) * 2005-09-27 2007-04-12 Furukawa Electric Co Ltd:The Cathode catalyst for fuel cell and fuel cell using the same
JP2012072468A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
JP2012072466A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd METHOD OF MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET AND THE Cu-Ga ALLOY SPUTTERING TARGET
JP2012072467A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
KR20220015090A (en) * 2020-07-30 2022-02-08 금오공과대학교 산학협력단 Method for manufacturing oxidation state-tuned metal oxides
CN115401207A (en) * 2022-07-23 2022-11-29 杭州新川新材料有限公司 Apparatus for producing mixed metal powder

Similar Documents

Publication Publication Date Title
US4619699A (en) Composite dispersion strengthened composite metal powders
El-Eskandarany Mechanical alloying: For fabrication of advanced engineering materials
JP5524257B2 (en) Method for producing metal articles without melting
Suryanarayana Mechanical alloying and milling
Shen et al. Strengthening effects of ZrO 2 nanoparticles on the microstructure and microhardness of Sn-3.5 Ag lead-free solder
CA2488990C (en) Method for preparing metallic alloy articles without melting
JP5367207B2 (en) Method for making a metal article having other additive components without melting
US4443249A (en) Production of mechanically alloyed powder
US3728088A (en) Superalloys by powder metallurgy
El-Eskandarany Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications
JPH0673513A (en) Production of aluminum-base alloy material having high strength and heat resistance
Pal et al. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method
JP2002256400A (en) Highly corrosion resistant and high strength austenitic stainless steel and production method therefor
Verma et al. Microstructure evolution and mechanical properties of aluminium matrix composites reinforced with CoMoMnNiV high-entropy alloy
JPH07224301A (en) Production of mechanically alloyed powder and mechanically alloying device
WO2013002532A2 (en) Oxygen atom-dispersed metal-based composite material and method for manufacturing same
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH0693393A (en) Aluminum-base alloy with high strength and corrosion resistance
Rogal et al. Microstructure of Mg–Zn Matrix Composite Reinforced with Nano-SiC Prepared by Thixomolding
JPH09209001A (en) Highly efficient alloy powder synthesizing method by mechanical alloying method
JPS5848002B2 (en) Manufacturing method of composite powder for powder metallurgy
Bagliuk et al. Sintered Al–Si–Ni Alloy: Structure and Properties. I. Powder Obtaining
JPH01503310A (en) Metal powder and metal sponge and their manufacturing method
JPH07207302A (en) Production of aln dispersion type aluminum alloy composite material
Zeagler Structure and Processing Relations in Ni-W Amorphous Particle Strengthened Ni Matrix Composites