JP2007090157A - Cathode catalyst for fuel cell and fuel cell using the same - Google Patents

Cathode catalyst for fuel cell and fuel cell using the same Download PDF

Info

Publication number
JP2007090157A
JP2007090157A JP2005279919A JP2005279919A JP2007090157A JP 2007090157 A JP2007090157 A JP 2007090157A JP 2005279919 A JP2005279919 A JP 2005279919A JP 2005279919 A JP2005279919 A JP 2005279919A JP 2007090157 A JP2007090157 A JP 2007090157A
Authority
JP
Japan
Prior art keywords
fuel cell
group
cathode electrode
element selected
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005279919A
Other languages
Japanese (ja)
Inventor
Takuya Harada
琢也 原田
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005279919A priority Critical patent/JP2007090157A/en
Publication of JP2007090157A publication Critical patent/JP2007090157A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode catalyst for a fuel cell, which has high catalytic activity and excellent corrosion resistance and to provide the fuel cell using the cathode catalyst. <P>SOLUTION: The cathode catalyst for the fuel cell consists of an alloy which contains at least one element of the platinum group and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As and Se and the crystal structure of which is in an amorphous state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池用カソード電極触媒及びこれを用いた燃料電池に関し、詳しくは、触媒活性が高くかつ耐食性に優れた燃料電池用カソード電極触媒及びこれを用いた燃料電池に関する。   The present invention relates to a fuel cell cathode electrode catalyst and a fuel cell using the same, and more particularly to a fuel cell cathode electrode catalyst having high catalytic activity and excellent corrosion resistance, and a fuel cell using the same.

小型でかつ100℃以下の低温で動作する固体高分子型燃料電池もしくは直接メタノール型燃料電池は、電気自動車用モバイル電源や家庭用定置型コジェネレーション用電源として、その実用化のさらなる推進が大いに期待されている。これら燃料電池では、全フッ素化型スルホン酸膜を始めとする強酸性の膜を電解質として使用するため、これらに使用される触媒材料には、高活性を維持しながら酸性雰囲気および電位条件で耐え得ることが要求される。現在、触媒材料としては、高価で資源量の少ない白金もしくは白金系合金が実用的に用いられている。そのため、上記触媒に代わる低コストで高活性な新しい高機能触媒の開発が大いに望まれている(例えば、非特許文献1及び2参照)。   The polymer electrolyte fuel cell or direct methanol fuel cell that is small and operates at a low temperature of 100 ° C or less is expected to be further promoted for practical use as a mobile power source for electric vehicles and a home-use cogeneration power source. Has been. Since these fuel cells use strongly acidic membranes such as perfluorinated sulfonic acid membranes as electrolytes, the catalyst materials used in these fuel cells are resistant to acidic atmospheres and potential conditions while maintaining high activity. It is required to get. Currently, platinum or platinum-based alloys that are expensive and have a small amount of resources are practically used as catalyst materials. Therefore, development of a new high-performance catalyst that is low-cost and highly active in place of the above catalyst is highly desired (see, for example, Non-Patent Documents 1 and 2).

水素・酸素型燃料電池では、燃料である水素と酸素(もしくは空気)から水が生成する反応が生じる。このときアノード側電極では2H2→4H++4e-の反応が、またカソード側電極では、O2+4H++4e-→2H2Oの化学反応が進む。アノード側電極としては、燃料ガス中に微量に含まれるCOによる被毒防止を目的として、現在、Pt−Ru合金が用いられているが、それに代わるより安価な合金として、Pt−Mo、Pt−Snのような合金の有効性が示唆されている。一方、カソード側電極としては、白金単体ではその触媒活性が不十分であることから、白金に、Fe、Mn、Ni、Cr、Ti等を添加して合金化することによる触媒活性向上効果が報告されている。 In a hydrogen / oxygen fuel cell, a reaction occurs in which water is generated from hydrogen and oxygen (or air) as fuel. At this time, the reaction of 2H 2 → 4H + + 4e proceeds at the anode side electrode, and the chemical reaction of O 2 + 4H + + 4e → 2H 2 O proceeds at the cathode side electrode. As the anode electrode, a Pt—Ru alloy is currently used for the purpose of preventing poisoning due to CO contained in a trace amount in the fuel gas, but Pt—Mo, Pt— are used as cheaper alloys instead. The effectiveness of alloys such as Sn has been suggested. On the other hand, as the cathode side electrode, the catalytic activity of platinum alone is insufficient. Therefore, the catalytic activity improvement effect by adding Fe, Mn, Ni, Cr, Ti, etc. to platinum and alloying is reported. Has been.

このような技術背景の中、Ptを始めとする白金族金属とFeやCu、Mo等の卑金属との合金化による触媒活性の向上(例えば、非特許文献3ならびに特許文献2及び3参照)や、それら合金の結晶構造の非晶質化による触媒活性の向上(例えば、特許文献1及び4参照)などの方法が提案されてきた。
しかしながら、白金族元素と卑金属との合金触媒は、実際の電極触媒としての使用環境下では、強い酸性電解質中でかつ高い電極電位にさらされるため発電時間の経過と共に合金中に含まれる卑金属成分が溶出し触媒活性が劣化するという問題があった。一方、合金の結晶構造の非晶質化については、非晶質化可能な元素組合せもしくはその組成範囲が大きく限定されるという問題があり、また、非晶質構造の構造安定性が低く、燃料電池用触媒として使用した場合に、経時的に結晶構造が非晶質から結晶へと変化し、耐食性および触媒活性が低下するおそれがあった。
In such a technical background, improvement in catalytic activity by alloying platinum group metals such as Pt and base metals such as Fe, Cu, and Mo (for example, see Non-Patent Document 3 and Patent Documents 2 and 3) There have been proposed methods such as improving the catalytic activity by making the crystal structure of these alloys amorphous (see, for example, Patent Documents 1 and 4).
However, an alloy catalyst of a platinum group element and a base metal is exposed to a strong acidic electrolyte and a high electrode potential in an environment where it is used as an actual electrode catalyst. There was a problem that the catalyst activity was degraded due to elution. On the other hand, the amorphous structure of the alloy has a problem that the combination of elements that can be amorphized or the composition range thereof is largely limited, and the structural stability of the amorphous structure is low. When used as a battery catalyst, the crystal structure changes from amorphous to crystalline over time, which may reduce corrosion resistance and catalytic activity.

特開2002−100374号公報JP 2002-100374 A 特開2003−331855号公報JP 2003-331855 A 特開2001−143714号公報JP 2001-143714 A 特開平7−246336号公報JP-A-7-246336 「電子とイオンの機能化学シリーズ 固体高分子型燃料電池のすべて」,エヌ・ティー・エス出版,第4巻,p.398−408“Functional Chemistry Series of Electron and Ion, All about Polymer Electrolyte Fuel Cells”, NTS Publishing, Volume 4, p. 398-408 岡田達弘,“Material Stage”,Vol.2,No.10,(2003),p.45−53Tatsuhiro Okada, “Material Stage”, Vol. 2, no. 10, (2003), p. 45-53 T.Toda eTal.,“J.Electrochm.Soc.”,Vol.145,(1998),p.4185−4188T. T. et al. Toda eTal., “J. Electrochm. Soc.”, Vol. 145, (1998), p. 4185-4188

本発明は、触媒活性が高くかつ耐食性に優れた燃料電池用カソード電極触媒及びこれを用いた燃料電池を提供することを目的とする。   An object of the present invention is to provide a cathode electrode catalyst for fuel cells having high catalytic activity and excellent corrosion resistance, and a fuel cell using the same.

本発明者らは鋭意検討を重ねた結果、少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、その結晶構造が非晶質状態である合金が、燃料電池用触媒として使用でき、しかも強い酸性電解質中でかつ高い電極電位にさらされていても触媒活性及び耐食性が低下しないことを見い出した。本発明はこのような知見に基づきなされるに至ったものである。   As a result of intensive studies, the inventors of the present invention include at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se. It has been found that an alloy whose crystal structure is in an amorphous state can be used as a catalyst for a fuel cell, and that catalytic activity and corrosion resistance do not deteriorate even when exposed to a high electrode potential in a strong acidic electrolyte. The present invention has been made based on such findings.

すなわち、本発明は、
(1)少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、その結晶構造が非晶質状態である合金からなることを特徴とする酸素還元反応用触媒、
(2)少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、その結晶構造が非晶質状態である合金からなることを特徴とする燃料電池用カソード電極触媒、
(3)少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、さらにCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を含み、その結晶構造が非晶質状態である合金からなることを特徴とする燃料電池用カソード電極触媒、
(4)前記のB、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素の含有率が原子数%で5〜40%であることを特徴とする(2)又は(3)項に記載の燃料電池用カソード電極触媒、
(5)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、加熱溶融した白金族金属に、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素、及び必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を所定量添加し、100℃/秒以上の速度で急速冷却することを特徴とする燃料電池用カソード電極触媒の製造方法、
(6)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、加熱溶融した白金族金属に、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素、及び必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を所定量添加した後、その溶湯をアトマイズ法により微粒子化させることを特徴とする燃料電池用カソード電極触媒の製造方法、
(7)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、白金族金属粉末と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素の粉末と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素の粉末とを機械的合金化法(メカニカルアロイング又はメカニカルグライディング法)により混合して非晶質合金化することを特徴とする燃料電池用カソード電極触媒の製造方法、
(8)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、ターゲットとして、白金族金属と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とを用いて、室温以下の温度に冷却された基板上にスパッタ成膜することを特徴とする燃料電池用カソード電極触媒の製造方法、
(9)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とをそれぞれ電解溶液中でイオン化した後、通電して、電極材料上に電解析出させることを特徴とする燃料電池用カソード電極触媒の製造方法、
(10)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とをそれぞれ電解溶液中でイオン化した後、該電解溶液に還元剤を添加して電極材料上に析出させることを特徴とする燃料電池用カソード電極触媒の製造方法、
(11)前記電極材料がカーボン材料で構成されていることを特徴とする(9)又は(10)項に記載の燃料電池用カソード電極触媒の製造方法、
(12)(2)〜(4)のいずれか1項に記載の燃料電池用カソード電極触媒を含むことを特徴とする燃料電池用カソード電極、
(13)(12)項に記載の燃料電池用カソード電極と陽イオン交換樹脂とを含むことを特徴とする膜電極接合体、
(14)(12)項に記載の燃料電池用カソード電極又は(13)項に記載の膜電極接合体を含むことを特徴とする固体高分子型燃料電池、および
(15)(12)項に記載の燃料電池用カソード電極又は(13)項に記載の膜電極接合体を含むことを特徴とする直接メタノール型燃料電池
を提供するものである。
本発明において「非晶質状態」とは、結晶のような原子配列の規則的な周期性がなく、短距離秩序はある(すなわち近接原子の数、結合距離がほぼ定まっている)が、長距離秩序はない固体状態の領域が、体積分率で80%以上あるものをいう。
また、本発明において「原子数%」とは、合金中における所定の原子の原子数についての全原子数に対する割合(原子数比)を100倍したものをいう。
That is, the present invention
(1) It includes at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and its crystal structure is in an amorphous state A catalyst for oxygen reduction reaction, characterized by comprising an alloy of
(2) including at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and its crystal structure is in an amorphous state A cathode electrode catalyst for fuel cells, characterized by comprising an alloy of
(3) including at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As and Se, and further Cu, Ni, Co, Fe , Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and at least one base metal transition element selected from the group consisting of Hf, and its crystal structure is in an amorphous state A cathode electrode catalyst for a fuel cell, characterized by comprising an alloy;
(4) The content of at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se is 5% to 40% in terms of atomic percentage. The cathode electrode catalyst for a fuel cell according to (2) or (3),
(5) A method for producing a cathode electrode catalyst for a fuel cell according to any one of (2) to (4), wherein the platinum group metal heated and melted is added with B, C, Be, Si, P, S , At least one element selected from the group consisting of Ga, As, and Se, and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, A method for producing a cathode electrode catalyst for a fuel cell, comprising adding a predetermined amount of at least one base metal transition element selected from the group consisting of W, Ta and Hf, and rapidly cooling at a rate of 100 ° C./second or more;
(6) A method for producing a cathode electrode catalyst for a fuel cell according to any one of (2) to (4), wherein a platinum group metal heated and melted is mixed with B, C, Be, Si, P, S , At least one element selected from the group consisting of Ga, As, and Se, and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, A method for producing a cathode electrode catalyst for a fuel cell, comprising adding a predetermined amount of at least one base metal transition element selected from the group consisting of W, Ta and Hf, and then atomizing the molten metal by an atomizing method;
(7) A method for producing a cathode electrode catalyst for a fuel cell according to any one of (2) to (4), wherein the platinum group metal powder and B, C, Be, Si, P, S, Ga , Powder of at least one element selected from the group consisting of As and Se, and optionally Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, Amorphous alloying is performed by mixing powder of at least one base metal transition element selected from the group consisting of W, Ta and Hf by a mechanical alloying method (mechanical alloying or mechanical gliding method). Method for producing cathode electrode catalyst for fuel cell,
(8) A method for producing a cathode electrode catalyst for a fuel cell according to any one of (2) to (4), wherein a platinum group metal and B, C, Be, Si, P, S are used as targets. , At least one element selected from the group consisting of Ga, As, and Se, and optionally, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, Production of a cathode electrode catalyst for a fuel cell, comprising sputtering a film on a substrate cooled to a temperature below room temperature using at least one base metal transition element selected from the group consisting of W, Ta and Hf Method,
(9) A method for producing a cathode electrode catalyst for a fuel cell according to any one of (2) to (4), wherein a platinum group element and B, C, Be, Si, P, S, Ga, At least one element selected from the group consisting of As and Se, and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta And at least one base metal transition element selected from the group consisting of Hf, each ionized in an electrolytic solution, and then energized to be electrolytically deposited on the electrode material. Method,
(10) A method for producing a cathode electrode catalyst for a fuel cell according to any one of (2) to (4), wherein a platinum group element and B, C, Be, Si, P, S, Ga, At least one element selected from the group consisting of As and Se, and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta And at least one base metal transition element selected from the group consisting of Hf is ionized in an electrolytic solution, and then a reducing agent is added to the electrolytic solution to deposit it on an electrode material. Production method of electrode catalyst,
(11) The method for producing a cathode electrode catalyst for a fuel cell according to (9) or (10), wherein the electrode material is composed of a carbon material,
(12) A cathode electrode for a fuel cell comprising the cathode electrode catalyst for a fuel cell according to any one of (2) to (4),
(13) A membrane electrode assembly comprising the fuel cell cathode electrode according to item (12) and a cation exchange resin,
(14) The polymer electrolyte fuel cell comprising the cathode electrode for a fuel cell according to (12) or the membrane electrode assembly according to (13), and (15) and (12) The fuel cell cathode electrode or the membrane electrode assembly described in the item (13) is included, and a direct methanol fuel cell is provided.
In the present invention, the “amorphous state” means that there is no regular periodicity of atomic arrangement like a crystal, there is short-range order (that is, the number of adjacent atoms and bond distance are almost fixed), but long A solid state region without distance order is 80% or more in volume fraction.
In the present invention, the “number of atoms%” means a value obtained by multiplying a ratio (atom number ratio) with respect to the total number of atoms with respect to the number of atoms of a predetermined atom in the alloy by 100.

本発明の燃料電池用カソード電極触媒は高い触媒活性及び優れた耐食性を有しており、電極に使用しても触媒活性及び耐食性が低下することがない。このカソード電極触媒を用いた本発明の燃料電池は、長寿命で安定した性能を低コストで実現できる。   The cathode electrode catalyst for fuel cells of the present invention has high catalytic activity and excellent corrosion resistance, and even when used for an electrode, the catalytic activity and corrosion resistance are not lowered. The fuel cell of the present invention using this cathode electrode catalyst can realize long-life and stable performance at low cost.

以下、本発明について詳細に説明する。
本発明の酸素還元反応用触媒および燃料電池用カソード電極触媒は、少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、その結晶構造が非晶質状態である白金族系合金からなることを特徴とする。本発明の酸素還元反応用触媒は、例えば燃料電池用カソード電極触媒や酸素センサーとして用いることができる。以下、本発明の酸素還元反応用触媒については代表的な例である燃料電池用カソード電極触媒を例に挙げて説明する。
Hereinafter, the present invention will be described in detail.
The oxygen reduction reaction catalyst and the fuel cell cathode electrode catalyst of the present invention are at least one selected from the group consisting of at least one platinum group element and B, C, Be, Si, P, S, Ga, As and Se. And a platinum group alloy having a crystalline structure in an amorphous state. The oxygen reduction reaction catalyst of the present invention can be used, for example, as a cathode electrode catalyst for a fuel cell or an oxygen sensor. Hereinafter, the oxygen reduction reaction catalyst of the present invention will be described using a fuel cell cathode electrode catalyst as a typical example.

本発明に用いることができる白金族元素は、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、オスミウム(Os)及びルテニウム(Ru)であり、なかでも白金、パラジウム及びロジウムが好ましく、白金が特に好ましい。   Platinum group elements that can be used in the present invention are platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), and ruthenium (Ru), among which platinum, palladium and Rhodium is preferred and platinum is particularly preferred.

本発明の燃料電池用カソード電極触媒における合金の非晶質状態は、第2族又は第13〜16族元素のうち、原子半径が白金族元素の95%以下の常温常圧(20℃、101.325kPa)で固体である元素であって、白金族元素との化合物が金属的性質(導電性)を示す元素の原子と白金族元素の原子とが不規則的に配列することで得られる。ここで、金属的性質としての導電性の特徴としては、抵抗値の温度依存性が正、すなわち温度上昇とともに抵抗が増大することが挙げられる。   The amorphous state of the alloy in the cathode electrode catalyst for a fuel cell of the present invention is a normal temperature normal pressure (20 ° C., 101 ° C.) with an atomic radius of 95% or less of the platinum group element among the group 2 or group 13-16 elements. .325 kPa), which is an element that is solid, and is obtained by irregularly arranging atoms of an element in which a compound with a platinum group element exhibits metallic properties (conductivity) and atoms of the platinum group element. Here, the characteristic of conductivity as a metallic property is that the temperature dependence of the resistance value is positive, that is, the resistance increases as the temperature rises.

前記の第2族又は第13〜16族元素のうち、原子半径が白金族元素の95%以下の常温常圧で固体である元素であって、白金族元素との化合物が金属的性質(導電性)を示す元素としては、B、C、Be、Si、P、S、Ga、As及びSeが好ましく、なかでもB、Si、Pがより好ましく、ホウ素(B)が特に好ましい。なお、酸素(O)や窒素(N)は、その原子半径が白金族元素よりも小さいが、常温常圧で気体であり、しかも白金族元素との化合物(酸化物又は窒化物)は金属的性質を示さないため好ましくない。   Among the elements of Group 2 or Groups 13-16, the atomic radius is an element that is solid at room temperature and atmospheric pressure with 95% or less of the platinum group element, and the compound with the platinum group element has metallic properties (conductivity) B), C, Be, Si, P, S, Ga, As, and Se are preferable, B, Si, and P are more preferable, and boron (B) is particularly preferable. Note that oxygen (O) and nitrogen (N) have a smaller atomic radius than platinum group elements, but are gases at normal temperature and pressure, and compounds (oxides or nitrides) with platinum group elements are metallic. It is not preferable because it does not show properties.

結晶における原子半径(Å)は、「金属データブック」,日本金属学会編,改訂3版,丸善,p.8によれば、それぞれ、Pt(1.39)、Pd(1.37)、Ir(1.35)、Rh(1.34)、Os(1.35)、Ru(1.33)、B(0.90)、C(0.77)、Be(1.13)、Si(1.17)、P(1.09)、S(1.02)、Ga(1.24)、As(1.25)、Se(1.16)である。   The atomic radius (Å) in the crystal is described in “Metal Data Book”, edited by the Japan Institute of Metals, 3rd edition, Maruzen, p. 8, Pt (1.39), Pd (1.37), Ir (1.35), Rh (1.34), Os (1.35), Ru (1.33), B, respectively. (0.90), C (0.77), Be (1.13), Si (1.17), P (1.09), S (1.02), Ga (1.24), As ( 1.25) and Se (1.16).

本発明の燃料電池用カソード電極触媒においては、非晶質状態を形成する観点から、前記のB、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素の含有率は、原子数%で5〜40%が好ましく、10〜30%がより好ましく、15〜25%が特に好ましい。   In the fuel cell cathode electrode catalyst of the present invention, from the viewpoint of forming an amorphous state, at least one selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se is used. The element content is preferably 5 to 40%, more preferably 10 to 30%, and particularly preferably 15 to 25% in terms of the number of atoms.

本発明の燃料電池用カソード電極触媒における合金の非晶質状態は、合金全体に対して体積分率で80%以上、好ましくは90〜100%、より好ましくは95〜100%存在する。合金における非晶質状態の領域が体積分率で80%以上存在することにより、偏析や格子欠陥などの構造欠陥が生じにくくなり触媒活性及び耐食性の優れた電極触媒を得ることができる。一方、合金における非晶質状態の領域が少なく微結晶集合体等の領域が多くなると、微結晶集合体等の領域のつながりが系全体に行き渡り、この領域の特性が巨視的に顕在化するため好ましくない。   The amorphous state of the alloy in the cathode electrode catalyst for a fuel cell of the present invention is 80% or more, preferably 90 to 100%, more preferably 95 to 100% in terms of volume fraction with respect to the whole alloy. The presence of 80% or more of the amorphous state region in the alloy makes it difficult for structural defects such as segregation and lattice defects to occur, and an electrode catalyst having excellent catalytic activity and corrosion resistance can be obtained. On the other hand, when there are few regions in the amorphous state in the alloy and there are many regions such as microcrystal aggregates, the connection of the regions such as microcrystal aggregates spreads throughout the system, and the characteristics of this region become macroscopically manifested. It is not preferable.

本発明の燃料電池用カソード電極触媒は、Cu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を含むことが好ましく、なかでもTi、V、Cr、Mn、Nb、Moがより好ましい。
前記卑金属遷移元素の含有率は、原子数%で5〜95%が好ましく、10〜70%がより好ましく、20〜60%が特に好ましい。
The cathode electrode catalyst for a fuel cell of the present invention is selected from the group consisting of Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf. It is preferable to include at least one base metal transition element, and among these, Ti, V, Cr, Mn, Nb, and Mo are more preferable.
The content of the base metal transition element is preferably 5 to 95%, more preferably 10 to 70%, and particularly preferably 20 to 60% in terms of the number of atoms.

本発明の燃料電池用カソード電極触媒は、液体急冷法、アトマイズ法、スパッタリング法、メッキ法や、メカニカルアロイング又はメカニカルグライディング法などの機械的合金化法などの任意の合金製造方法により製造することができる。   The cathode electrode catalyst for a fuel cell of the present invention is manufactured by an arbitrary alloy manufacturing method such as a liquid quenching method, an atomizing method, a sputtering method, a plating method, or a mechanical alloying method such as mechanical alloying or mechanical gliding method. Can do.

例えば、液体急冷法の場合、加熱溶融した白金族金属に、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素、及び必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を所定量添加し、100℃/秒以上(好ましくは103〜105℃/秒)の速度で急速冷却することで、本発明の燃料電池用カソード電極触媒を製造することができる(例えば、特開平5−138308号公報など参照)。 For example, in the case of the liquid quenching method, at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se is added to the heated and melted platinum group metal, and, if necessary, Cu. A predetermined amount of at least one base metal transition element selected from the group consisting of Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf, The cathode electrode catalyst for a fuel cell of the present invention can be produced by rapid cooling at a rate of 100 ° C./second or more (preferably 10 3 to 10 5 ° C./second) (for example, JP-A-5-138308). (See publications).

また、アトマイズ法の場合、加熱溶融した白金族金属に、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素、及び必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を所定量添加した後、その溶湯を、ガス、水、遠心力、プラズマ等を利用して(好ましくはガス、プラズマ)アトマイズすることで、本発明の燃料電池用カソード電極触媒を製造することができる(例えば、特開2002−4015号公報など参照)。   In the case of the atomizing method, the heated and melted platinum group metal is added to at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As and Se, and, if necessary, Cu, After adding a predetermined amount of at least one base metal transition element selected from the group consisting of Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf, By atomizing the molten metal using gas, water, centrifugal force, plasma or the like (preferably gas, plasma), the cathode electrode catalyst for a fuel cell of the present invention can be produced (for example, JP 2002-2002 A). -4015 publication etc.).

また、機械的合金化法の場合、白金族金属粉末と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素の粉末と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素の粉末とをメカニカルアロイング又はメカニカルグライディング法により混合して非晶質合金化することで、本発明の燃料電池用カソード電極触媒を製造することができる(例えば、特開平5−117716号公報、特開平7−224301号公報など参照)。   In the case of the mechanical alloying method, a platinum group metal powder and a powder of at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As and Se, and as required And powder of at least one base metal transition element selected from the group consisting of Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf. The cathode electrode catalyst for a fuel cell of the present invention can be produced by mixing with mechanical alloying or mechanical gliding to form an amorphous alloy (for example, JP-A-5-117716, JP-A-7- 224301 publication etc.).

また、スパッタリング法の場合、ターゲットとして、白金族金属と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とを用いて、室温以下の温度に冷却された基板上にスパッタ成膜することで、燃料電池用電極を製造することができる(例えば、特開2003−331855号公報など参照)。またこの時、スパッタ速度を適宜変調させることで、成膜される燃料電池用電極の形状(例えば薄膜状や粒状)を制御することができる。   In the case of sputtering, as a target, a platinum group metal, at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and, if necessary, Cu, Below room temperature using at least one base metal transition element selected from the group consisting of Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf A fuel cell electrode can be manufactured by forming a sputter film on a substrate cooled to a temperature (see, for example, JP-A-2003-331855). At this time, by appropriately modulating the sputtering rate, the shape (for example, thin film or granular) of the fuel cell electrode to be formed can be controlled.

また、例えば、電解メッキ法の場合、白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とをそれぞれ電解溶液中でイオン化した後、通電して(好ましくは0.5〜4.0A/cm2の電流密度で)、電極材料上に電解析出させることで、燃料電池用電極を製造することができる(例えば、非特許文献4(増本健編「アモルファス金属の基礎」オーム社、p12−13)参照)。またこの時、通電する電流密度を、適宜パルス電流や交流電流に変調させることで、電解析出される燃料電池用電極の形状(例えば薄膜状や粒状)を制御することができる。 Further, for example, in the case of electrolytic plating, a platinum group element, at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and, if necessary, Cu, At least one base metal transition element selected from the group consisting of Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf, respectively, in the electrolytic solution After ionization, an electrode for a fuel cell can be produced by conducting electricity (preferably at a current density of 0.5 to 4.0 A / cm 2 ) and electrolytically depositing on the electrode material (for example, Non-Patent Document 4 (see Ken Masumoto, “Basics of Amorphous Metals” Ohm, p. 12-13). At this time, the shape (for example, thin film or granular) of the electrode for fuel cell to be electrolytically deposited can be controlled by appropriately modulating the current density to be energized into a pulse current or an alternating current.

また、無電解メッキ法の場合、白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とをそれぞれ電解溶液中でイオン化した後、該電解溶液に還元剤(次亜P酸塩やホウ水素化物など)を添加して電極材料上に析出させることで、燃料電池用電極を製造することができる(例えば、特開2000−87120号公報など参照)。   In the case of electroless plating, a platinum group element, at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and, if necessary, Cu, Ni , Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf are each ionized in an electrolytic solution with at least one base metal transition element selected from the group consisting of After that, a fuel cell electrode can be manufactured by adding a reducing agent (such as hypophosphite or borohydride) to the electrolytic solution and precipitating it on the electrode material (for example, JP-A 2000). -87120).

本発明の燃料電池用カソード電極触媒は、好ましくは、触媒担体の表面に担持させて用いることが好ましい。担体としては、例えばグラファイト、グラファイトシート、カーボンブラック、カーボンナノチューブ、カーボンファイバー、ケッチェンブラック、活性炭、グラシーカーボンのようなC質材料、ラネーNi、ラネー銀のようなポーラス金属などが挙げられ、C質材料が好ましく使用される。C質材料であれば粒径0.01〜100μm、好ましくは0.02〜10μmのものを用いると担持が良好に行われる。
触媒を担体に担持させる方法としては、溶解乾燥法、プラズマ蒸着法、加熱蒸着法、化学蒸着法(CVD法)などの従来公知の方法がいずれも使用できる。
The cathode electrode catalyst for a fuel cell of the present invention is preferably used while being supported on the surface of a catalyst carrier. Examples of the support include graphite, graphite sheet, carbon black, carbon nanotube, carbon fiber, ketjen black, activated carbon, carbonaceous material such as glassy carbon, Raney Ni, porous metal such as Raney silver, and the like. C material is preferably used. In the case of a C-type material, when a material having a particle diameter of 0.01 to 100 μm, preferably 0.02 to 10 μm is used, the loading is performed well.
As a method for supporting the catalyst on the carrier, any conventionally known method such as a dissolution drying method, a plasma vapor deposition method, a heating vapor deposition method, or a chemical vapor deposition method (CVD method) can be used.

本発明においては、このような電極触媒を、必要によりカーボン担持ペースト、ポリテトラフルオロエチレンエマルジョン、高分子電解質溶液及びバインダー等からなる混合物のような形態とし、例えばスプレー法、スクリーン印刷法、刷毛塗り法などの従来公知の方法で電極材料に設けることにより、燃料電池用電極を得ることができる。また、前記電極触媒をカーボン粉末に担持し、さらにその上から固体高分子電解質等で被覆することにより、燃料電池用電極を得ることができる。   In the present invention, such an electrode catalyst is in the form of a mixture comprising a carbon-supported paste, a polytetrafluoroethylene emulsion, a polymer electrolyte solution and a binder, if necessary, for example, spraying, screen printing, brush coating, etc. A fuel cell electrode can be obtained by providing the electrode material by a conventionally known method such as a method. Further, a fuel cell electrode can be obtained by supporting the electrode catalyst on carbon powder and further coating the electrode catalyst with a solid polymer electrolyte or the like.

また、本発明の電極触媒は、上記のスパッタリング法やメッキ法などの方法により、直接電極に担持した形態で燃料電池用電極として供することもできる。このとき、電極材料は、カーボンブラック、カーボンナノチューブ、カーボンファイバー、グラファイトシート、グラッシーカーボン等のカーボン材料で構成されていることが好ましい。   The electrode catalyst of the present invention can also be used as a fuel cell electrode in a form directly supported on an electrode by a method such as the sputtering method or the plating method described above. At this time, the electrode material is preferably composed of a carbon material such as carbon black, carbon nanotube, carbon fiber, graphite sheet, or glassy carbon.

上記の方法で得られた燃料電池用電極を用いて膜電極接合体を形成することができる。ここで膜電極接合体とはMEA(membrane electrode assembly)ともいい、電解質膜(イオン交換膜)と電極の複合体であり、陽イオン交換膜の両側に高分散の触媒及びイオン交換樹脂等からなる多孔質の電極が接合されたものであり、固体高分子型燃料電池(PEFC)に用いられる。膜電極接合体は、例えば、特開2001−6699号公報などを参照して作製することができる。   A membrane electrode assembly can be formed using the fuel cell electrode obtained by the above method. Here, the membrane electrode assembly is also referred to as MEA (membrane electrode assembly), which is a composite of an electrolyte membrane (ion exchange membrane) and an electrode, and is composed of a highly dispersed catalyst and ion exchange resin on both sides of the cation exchange membrane. A porous electrode is joined and used for a polymer electrolyte fuel cell (PEFC). The membrane electrode assembly can be produced with reference to, for example, Japanese Patent Application Laid-Open No. 2001-6699.

上記の燃料電池用電極は、P酸型燃料電池(PAFC)、固体高分子型燃料電池(PEFC)など任意の燃料電池に用いることができ、特に好ましくは固体高分子型燃料電池に用いることができる。上記の燃料電池用電極および膜電極接合体を用いた固体高分子型燃料電池は、例えば、特開2002−63912号公報などを参照して作製することができる。   The fuel cell electrode can be used for any fuel cell such as a P-acid fuel cell (PAFC) or a polymer electrolyte fuel cell (PEFC), and is particularly preferably used for a polymer electrolyte fuel cell. it can. A polymer electrolyte fuel cell using the above fuel cell electrode and membrane electrode assembly can be produced, for example, with reference to JP-A-2002-63912.

また、上記の燃料電池用電極および膜電極接合体は直接メタノール型燃料電池に用いることができる。上記の燃料電池用電極および膜電極接合体を用いた直接メタノール型燃料電池は、例えば、特開2002−110191号公報などを参照して作製することができる。   The above fuel cell electrode and membrane electrode assembly can be used directly in a methanol fuel cell. A direct methanol fuel cell using the above fuel cell electrode and membrane electrode assembly can be produced, for example, with reference to JP-A-2002-110191.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these.

実施例1
白金族元素の代表例として白金、パラジウム、ロジウムを選定し、そのそれぞれにホウ素(B)を添加した際のB含有率による結晶構造の相異について評価を行った。
試料は、超高真空イオンビームスパッタ成膜装置(IBS−5I1、商品名、日立製作所社製)を用いて作製した。具体的には、ターゲット材料にPt及びBの6インチスパッタターゲットを用い、スパッタ成膜された薄膜がそれぞれ下記表1記載の所定の組成比になるようにイオン源出力を調整して同時スパッタを行った。反応雰囲気は真空(10-2Pa以下)とし、反応温度は常温とし、成膜速度は約1Å/秒とした。また成膜は、水冷した基板台に配置したグラッシーカーボン基板上で行った。作製した薄膜の膜厚は約100nmであった。また、ターゲットとして白金の代わりにパラジウム又はロジウムを用いて同様にして試料を作製した。
作製した各試料の結晶構造について測定した結果を表1〜3に示す。結晶構造の同定はX線回折装置(MultiFlex、商品名、(株)リガク社製)および透過電子顕微鏡(JEM−3010、商品名、日本電子(株))を用いて行った。測定結果につき、非晶質の領域が体積分率で80%以上のものを○、80%未満のものを×と評価した。なお、以下の表中において、原子%は原子数%を表す。
Example 1
Platinum, palladium, and rhodium were selected as representative examples of the platinum group element, and the difference in crystal structure depending on the B content when each boron (B) was added was evaluated.
The sample was prepared using an ultra-high vacuum ion beam sputtering film forming apparatus (IBS-5I1, trade name, manufactured by Hitachi, Ltd.). Specifically, a 6-inch sputter target of Pt and B is used as the target material, and the ion source output is adjusted so that the thin film formed by sputtering has a predetermined composition ratio shown in Table 1 below, and simultaneous sputtering is performed. went. The reaction atmosphere was vacuum (10 −2 Pa or less), the reaction temperature was room temperature, and the film formation rate was about 1 kg / sec. The film formation was performed on a glassy carbon substrate placed on a water-cooled substrate stand. The thickness of the produced thin film was about 100 nm. A sample was prepared in the same manner using palladium or rhodium instead of platinum as a target.
The result of having measured about the crystal structure of each produced sample is shown to Tables 1-3. The crystal structure was identified using an X-ray diffractometer (MultiFlex, trade name, manufactured by Rigaku Corporation) and a transmission electron microscope (JEM-3010, trade name, JEOL Ltd.). With respect to the measurement results, an amorphous region having a volume fraction of 80% or more was evaluated as ◯, and an amorphous region having a volume fraction of less than 80% was evaluated as ×. In the following tables, atomic% represents atomic%.

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

表1〜3の結果から明らかなように、白金(Pt)とホウ素(B)との合金からなる触媒においては、B含有率が5〜45原子数%の場合に体積分率で80%以上が非晶質であった。また、パラジウム(Pd)とホウ素(B)との合金からなる触媒においては、B含有率が5〜40原子数%の場合に体積分率で80%以上が非晶質であった。また、ロジウム(Rh)とホウ素(B)との合金からなる触媒においては、B含有率が10〜40原子数%の場合に体積分率で80%以上が非晶質であった。   As is clear from the results of Tables 1 to 3, in the catalyst made of an alloy of platinum (Pt) and boron (B), the volume fraction is 80% or more when the B content is 5 to 45 atomic%. Was amorphous. Further, in the catalyst made of an alloy of palladium (Pd) and boron (B), the volume fraction was 80% or more amorphous when the B content was 5 to 40 atomic%. Further, in the catalyst made of an alloy of rhodium (Rh) and boron (B), 80% or more of the volume fraction was amorphous when the B content was 10 to 40 atomic%.

実施例2
ホウ素(B)の代わりに下記表4〜6に記載の元素を含有するようにターゲットを変更し、組成比が(白金族:添加元素)=4:1となるようにスパッタイオン源出力を調整したこと以外は、実施例1と同様にして試料を作製した。なお、白金族元素については実施例1と同様に白金族元素の代表例として白金、パラジウム、ロジウムを選定した。作製した各試料の結晶構造について実施例1と同様にして測定し評価した。結果を表4〜6に示す。
Example 2
The target was changed to contain the elements described in Tables 4 to 6 below instead of boron (B), and the sputter ion source output was adjusted so that the composition ratio was (platinum group: added element) = 4: 1 A sample was prepared in the same manner as in Example 1 except that. As for the platinum group element, platinum, palladium, and rhodium were selected as representative examples of the platinum group element as in Example 1. The crystal structure of each prepared sample was measured and evaluated in the same manner as in Example 1. The results are shown in Tables 4-6.

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

表4〜6の結果から明らかなように、白金族元素とAl又はZnとの合金からなる触媒は体積分率で80%以上の非晶質を形成できなかったのに対し、白金族元素とC、Be、Si、P、S、Ga、As又はSeとの合金からなる触媒は体積分率で80%以上が非晶質であった。   As is apparent from the results in Tables 4 to 6, the catalyst made of an alloy of a platinum group element and Al or Zn could not form an amorphous material having a volume fraction of 80% or more, whereas the platinum group element and A catalyst made of an alloy with C, Be, Si, P, S, Ga, As, or Se had an amorphous volume fraction of 80% or more.

実施例3
ターゲットとして白金族元素と下記表7〜12記載の卑金属遷移金属元素を用いて、実施例1と同様にして試料を作製した。ターゲット材料は、具体的には、例えば試料No.3−11(a)(Pt(80原子数%)-Nb(20原子数%))の場合、Pt及びNbの6インチスパッタターゲットを用いた。白金族元素については実施例1と同様に白金族元素の代表例として白金、パラジウム、ロジウムを選定した。白金族元素と卑金属遷移元素との組成比が4:1となるようにスパッタイオン源出力を調整した。
さらに、ターゲットとして白金族元素とホウ素と下記表7〜12記載の卑金属遷移金属元素を用いて、実施例1と同様にして試料を作製した。ターゲット材料は、具体的には、例えば試料No.3−11(b)(Pt(64原子数%)-Nb(16原子数%)-B(20原子数%))の場合、Pt、Nb及びBの6インチスパッタターゲットを用いた。この際、白金族元素と卑金属遷移元素との組成比が4:1で、かつB含有率が20原子数%となるようにスパッタイオン源出力を調整した。
作製した各試料の結晶構造について実施例1と同様にして測定し評価した。結果を表7〜12に示す。
Example 3
Samples were prepared in the same manner as in Example 1 using platinum group elements and base metal transition metal elements described in Tables 7 to 12 below as targets. Specifically, the target material is, for example, Sample No. In the case of 3-11 (a) (Pt (80 atomic%)-Nb (20 atomic%)), a 6-inch sputter target of Pt and Nb was used. As for the platinum group elements, platinum, palladium, and rhodium were selected as representative examples of the platinum group elements as in Example 1. The sputter ion source output was adjusted so that the composition ratio of the platinum group element and the base metal transition element was 4: 1.
Furthermore, a sample was prepared in the same manner as in Example 1 using a platinum group element, boron, and base metal transition metal elements described in Tables 7 to 12 below as targets. Specifically, the target material is, for example, Sample No. In the case of 3-11 (b) (Pt (64 atomic%)-Nb (16 atomic%)-B (20 atomic%)), a 6-inch sputter target of Pt, Nb, and B was used. At this time, the sputter ion source output was adjusted so that the composition ratio of the platinum group element and the base metal transition element was 4: 1 and the B content was 20 atomic%.
The crystal structure of each prepared sample was measured and evaluated in the same manner as in Example 1. The results are shown in Tables 7-12.

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

Figure 2007090157
Figure 2007090157

表7〜12の結果から明らかなように、白金族元素と卑金属遷移金属元素との合金であってホウ素を含有しないものからなる触媒(試料3−1(a)〜3−51(a)、比較例)はいずれも体積分率で80%以上の非晶質を形成できなかった。これに対し、白金族元素と卑金属遷移金属元素とホウ素との合金からなる触媒は体積分率で80%以上が非晶質であった。   As is clear from the results in Tables 7 to 12, a catalyst made of an alloy of a platinum group element and a base metal transition metal element that does not contain boron (samples 3-1 (a) to 3-51 (a), None of the comparative examples) could form an amorphous material having a volume fraction of 80% or more. In contrast, a catalyst composed of an alloy of a platinum group element, a base metal transition metal element, and boron was amorphous with a volume fraction of 80% or more.

実施例4
実施例1〜3で作製した電極触媒と同じ組成の試料について、特開平5−138308号公報を参照して液体急冷法により作製した。具体的には、例えばPt(64原子数%)-Nb(16原子数%)-B(20原子数%)の場合、Pt、Nb、Bをそれぞれ原子数%で64%、16%、20%となるように秤量、混合した後、アーク溶解炉中に投入して、約2500℃で加熱溶融させ、さらにその溶湯を公知の単ロール型液体急冷法に従って急冷凝固し、目的の試料を得た。得られた試料の結晶構造をX線回折装置および透過電子顕微鏡を用いて同定したところ、体積分率で80%以上の領域が非晶質となっていることが確認された。以上より液体急冷法によってもスパッタリング法と同様の試料を作製することができることがわかった。
Example 4
Samples having the same composition as the electrode catalysts prepared in Examples 1 to 3 were prepared by a liquid quenching method with reference to JP-A-5-138308. Specifically, for example, in the case of Pt (64 atomic%)-Nb (16 atomic%)-B (20 atomic%), Pt, Nb, and B are 64%, 16%, and 20 in atomic%, respectively. %, And weighed and mixed so that it becomes%, then put into an arc melting furnace and heated and melted at about 2500 ° C., and the molten metal was rapidly solidified according to a known single-roll liquid quenching method to obtain the desired sample. It was. When the crystal structure of the obtained sample was identified using an X-ray diffractometer and a transmission electron microscope, it was confirmed that a region having a volume fraction of 80% or more was amorphous. From the above, it was found that a sample similar to the sputtering method can be produced by the liquid quenching method.

実施例5
実施例1〜3で作製した電極触媒と同じ組成の試料について、特開2002−4015号公報を参照してガスアトマイズ法により作製した。具体的には、例えばPt(64原子数%)-Nb(16原子数%)-B(20原子数%)の場合、Pt、Nb、Bをそれぞれ原子数%で64%、16%、20%となるように秤量、混合した後、アーク溶解炉中に投入して、約2500℃で加熱溶融し、その溶湯をアトマイズ圧600kPaで粗分散化すると同時に、流速約20m/秒の回転冷却液中に噴射させた。冷却液中で生成された球状の合金粉末を回収し、その結晶構造をX線回折装置および透過電子顕微鏡を用いて同定したところ、体積分率で80%以上の領域が非晶質となっていることが確認された。以上よりガスアトマイズ法によってもスパッタリング法と同様の試料を作製することができることがわかった。
Example 5
About the sample of the same composition as the electrode catalyst produced in Examples 1-3, it produced with the gas atomizing method with reference to Unexamined-Japanese-Patent No. 2002-4015. Specifically, for example, in the case of Pt (64 atomic%)-Nb (16 atomic%)-B (20 atomic%), Pt, Nb, and B are 64%, 16%, and 20 in atomic%, respectively. %, And then charged into an arc melting furnace, heated and melted at about 2500 ° C., and the molten metal was coarsely dispersed at an atomizing pressure of 600 kPa, and at the same time a rotating coolant having a flow rate of about 20 m / sec. It was injected inside. The spherical alloy powder produced in the cooling liquid was collected and its crystal structure was identified using an X-ray diffractometer and a transmission electron microscope. As a result, a region with a volume fraction of 80% or more became amorphous. It was confirmed that From the above, it was found that a sample similar to the sputtering method can be produced by the gas atomization method.

実施例6
実施例1〜3で作製した電極触媒と同じ組成の試料について、特開平5−117716号公報を参照してメカニカルアロイング法により作製した。具体的には、例えばPt(64原子数%)-Nb(16原子数%)-B(20原子数%)の場合、粒径約20μmのPt、Nb、Bの金属粉末をそれぞれ原子数%で64%、16%、20%となるように秤量、混合した後、メディア拡散型ボールミル(スターミルZRS4、商品名、アジサワ・ファインテック社製)に投入し、不活性アルゴン雰囲気中で撹拌子を毎秒100回転の高速で約30時間回転させた。この時、原料粉末の機械化合金化効果の進行を促進するため、ボールミル中には原料粉末と一緒に粒径約500μmのアルミナ製ミルボールを導入した。また、撹拌中は容器片面を水冷した。得られた粉末試料の結晶構造をX線回折装置および透過電子顕微鏡を用いて同定したところ、体積分率で80%以上の領域が非晶質となっていることが確認された。以上よりメカニカルアロイング法によってもスパッタリング法と同様の試料を作製することができた。
Example 6
About the sample of the same composition as the electrode catalyst produced in Examples 1-3, it produced with the mechanical alloying method with reference to Unexamined-Japanese-Patent No. 5-117716. Specifically, for example, in the case of Pt (64 atomic%)-Nb (16 atomic%)-B (20 atomic%), Pt, Nb, and B metal powder having a particle diameter of about 20 μm are each atomic%. And weighed and mixed to 64%, 16%, and 20%, and then put into a media diffusion type ball mill (Star Mill ZRS4, trade name, manufactured by Ajisawa Finetech) and put a stir bar in an inert argon atmosphere. It was rotated for about 30 hours at a high speed of 100 revolutions per second. At this time, in order to promote the progress of the mechanical alloying effect of the raw material powder, an alumina mill ball having a particle size of about 500 μm was introduced into the ball mill together with the raw material powder. During stirring, one side of the container was cooled with water. When the crystal structure of the obtained powder sample was identified using an X-ray diffractometer and a transmission electron microscope, it was confirmed that a region having a volume fraction of 80% or more was amorphous. From the above, a sample similar to the sputtering method could be produced by the mechanical alloying method.

実施例7
実施例1〜3で作製した電極触媒と同じ組成の試料について、増本健編「アモルファス金属の基礎」オーム社、p12−13を参照して電解メッキ法により作製した。具体的には、例えばPt(64原子数%)-Ni(16原子数%)-P(20原子数%)の場合、H2[PtCl6]・6H2O(ヘキサクロロ白金酸・六水和物)、NiCl2・6H2O(塩化ニッケル・六水和物)、H3PO4(リン酸)をそれぞれ、原子数%で64%、16%、20%となるように配合した水溶液を作製し、アノード極にグラッシーカーボンを用いて、約80℃、1A/cm2で電解を行った。グラッシーカーボン上に析出されたメッキ膜の結晶構造をX線回折装置および透過電子顕微鏡を用いて同定したところ、体積分率で80%以上の領域が非晶質となっていることが確認された。以上より、電解メッキ法によってもスパッタリング法と同様の試料を作製することができた。
Example 7
Samples having the same composition as the electrode catalysts prepared in Examples 1 to 3 were prepared by electrolytic plating with reference to Ken Masumoto “Basics of Amorphous Metals”, Ohm Co., p12-13. Specifically, for example, in the case of Pt (64 atomic%)-Ni (16 atomic%)-P (20 atomic%), H 2 [PtCl 6 ] · 6H 2 O (hexachloroplatinic acid · hexahydrate Product), NiCl 2 .6H 2 O (nickel chloride hexahydrate), and H 3 PO 4 (phosphoric acid), respectively, in an aqueous solution containing 64%, 16% and 20% in terms of the number of atoms. It prepared using glassy carbon on the anode, of about 80 ° C., was electrolytically at 1A / cm 2. When the crystal structure of the plating film deposited on the glassy carbon was identified using an X-ray diffractometer and a transmission electron microscope, it was confirmed that an area of 80% or more in volume fraction was amorphous. . From the above, a sample similar to the sputtering method could be produced by the electrolytic plating method.

実施例8
実施例1〜3で作製した電極触媒と同じ組成の試料について、特開2000−87120号公報を参照して無電解メッキ法により作製した。具体的には、例えばPt(64原子数%)-Ni(16原子数%)-P(20原子数%)の場合、H2[PtCl6]・6H2O(ヘキサクロロ白金酸・六水和物)、NiCl2・6H2O(塩化ニッケル・六水和物)、H3PO4(リン酸)をそれぞれ、原子数%で64%、16%、20%となるように配合した水溶液を作製し、さらにその水溶液に、カーボンブラック粉末(Vulcan XC−72、商品名、E−TEK社製)、ヒドラジン(N24)を添加し、約80℃で12時間撹拌を行った。得られた粉末を回収し、カーボン粉末上に析出した合金の結晶構造をX線回折装置および透過電子顕微鏡を用いて同定したところ、体積分率で80%以上の領域が非晶質となっていることが確認された。以上より、無電解メッキ法によってもスパッタリング法と同様の試料を作製することができた。
Example 8
About the sample of the same composition as the electrode catalyst produced in Examples 1-3, it produced with the electroless-plating method with reference to Unexamined-Japanese-Patent No. 2000-87120. Specifically, for example, in the case of Pt (64 atomic%)-Ni (16 atomic%)-P (20 atomic%), H 2 [PtCl 6 ] · 6H 2 O (hexachloroplatinic acid · hexahydrate Product), NiCl 2 .6H 2 O (nickel chloride hexahydrate), and H 3 PO 4 (phosphoric acid), respectively, in an aqueous solution containing 64%, 16% and 20% in terms of the number of atoms. Then, carbon black powder (Vulcan XC-72, trade name, manufactured by E-TEK) and hydrazine (N 2 H 4 ) were added to the aqueous solution, followed by stirring at about 80 ° C. for 12 hours. The obtained powder was recovered, and the crystal structure of the alloy deposited on the carbon powder was identified using an X-ray diffractometer and a transmission electron microscope. As a result, a region with a volume fraction of 80% or more became amorphous. It was confirmed that From the above, a sample similar to the sputtering method could be produced by the electroless plating method.

実施例9
実施例1〜3で作製した電極触媒のうち代表的な幾つかの組成の試料を用いて電極を作製した。具体的には、具体的には、実施例1〜3と同様にスパッタ法により、それぞれの触媒をカーボンシート(TGP−H120、商品名、東レ製)上に蒸着させることにより電極を作製した。
作製した電極をカソードに用いて酸素還元反応(カソード反応)に対する触媒活性の評価を行った。触媒活性の評価は、T.Toda etal.,“J.Electrochem.Soc.”,Vol.146,No.10,p.3750−3756(1999)を参照して行った。具体的には、回転ディスク電極を用いた一般的な半電池法の分極測定により行った。ここで、電解液には酸素を飽和させた0.2Mの希硫酸水溶液を用い、また回転ディスク電極の回転速度は1500rpmとした。
Example 9
The electrode was produced using the sample of several typical compositions among the electrode catalysts produced in Examples 1-3. Specifically, an electrode was produced by vapor-depositing each catalyst on a carbon sheet (TGP-H120, trade name, manufactured by Toray Industries, Inc.) by sputtering as in Examples 1 to 3.
The produced electrode was used as a cathode, and the catalytic activity for the oxygen reduction reaction (cathode reaction) was evaluated. Evaluation of catalytic activity is described in T.W. Toda et al., “J. Electrochem. Soc.”, Vol. 146, no. 10, p. 3750-3756 (1999). Specifically, the polarization was measured by a general half-cell method using a rotating disk electrode. Here, 0.2 M dilute sulfuric acid aqueous solution saturated with oxygen was used as the electrolytic solution, and the rotating speed of the rotating disk electrode was 1500 rpm.

実施例1〜3で作製した電極触媒を担持した電極の電位が0.75V(vs.標準水素電極電位)における反応電流の大きさにより触媒活性の比較を行った。比較対象は、白金族元素及び/又は卑金属遷移元素のみからなる比較用試料(B、P又はSiを含有しない試料)を用いた。比較した結果について、0.75Vにおける反応電流が、10%以上向上の場合を◎、5%以上10%未満向上の場合を○、変化しなかった場合を△、低下した場合を×と評価した。結果を下記表13に示す。   The catalytic activity was compared according to the magnitude of the reaction current when the potential of the electrode carrying the electrode catalyst prepared in Examples 1 to 3 was 0.75 V (vs. standard hydrogen electrode potential). As a comparison object, a comparative sample (a sample not containing B, P, or Si) made of only a platinum group element and / or a base metal transition element was used. As a result of comparison, the case where the reaction current at 0.75 V was improved by 10% or more was evaluated as ◎, the case where the reaction current was improved from 5% to less than 10% was evaluated as ○, the case where it did not change was evaluated as △, and the case where it was decreased was evaluated as ×. . The results are shown in Table 13 below.

さらに、Pt、Pd又はRhとB(20原子数%)とからなる試料については、当該試料を750℃で24時間熱処理した後にゆるやかに徐冷(1℃/分)して再結晶化させることで結晶構造が結晶となった試料を作製し、上記と同様にして触媒活性の評価を行った。   Furthermore, for a sample composed of Pt, Pd or Rh and B (20 atomic%), the sample is heat-treated at 750 ° C. for 24 hours, and then slowly cooled (1 ° C./min) for recrystallization. A sample having a crystalline structure was prepared, and the catalytic activity was evaluated in the same manner as described above.

Figure 2007090157
Figure 2007090157

表13の結果から明らかなように、本発明の触媒を用いた電極は、ホウ素等の白金族元素より小さい元素を含有しない比較サンプルに比べて、0.75Vにおける反応電流量が向上することがわかった。また、ホウ素等の白金族元素より小さい元素を含有する試料であってもその結晶構造が非晶質でなければ反応電流量の向上は見られなかった。   As is apparent from the results in Table 13, the electrode using the catalyst of the present invention has an improved reaction current at 0.75 V compared to a comparative sample containing no element smaller than the platinum group element such as boron. all right. Even in the case of a sample containing an element smaller than the platinum group element such as boron, the reaction current amount was not improved unless the crystal structure was amorphous.

実施例10
実施例1〜3で作製した電極触媒のうち代表的な幾つかの組成の試料を用いて実施例8と同様にして電極を作製した。
作製した電極をカソードに用いて耐食性試験を行い、耐食性試験後の酸素還元反応(カソード反応)に対する触媒活性の評価を行った。触媒活性の測定は実施例8と同様にして行った。耐食性試験は、M.WaTanabe eTal.,“J.Electrochem.Soc.”,Vol.141,No.10,p.2659−2668(1994)を参照して行った。具体的には、0.2M希硫酸水溶液中で0.8V(vs.標準水素電極電位)の電位で50時間保持し、その前後の試料の触媒活性の比較により行った。耐食試験前後の試料の触媒活性を比較して、触媒活性の低下が5%以内の場合を○、触媒活性の低下が5%を超える場合を×と評価した。結果を表14に示す。また、耐食試験前の試料の構成元素については電子線マイクロアナライザー(EPMA−1600、商品名、島津製作所製)によって測定した。
Example 10
Electrodes were produced in the same manner as in Example 8 using samples having several representative compositions among the electrode catalysts produced in Examples 1 to 3.
The produced electrode was used as a cathode for a corrosion resistance test, and the catalytic activity for an oxygen reduction reaction (cathode reaction) after the corrosion resistance test was evaluated. The catalytic activity was measured in the same manner as in Example 8. Corrosion resistance test WaTanabe eTal. "J. Electrochem. Soc.", Vol. 141, no. 10, p. 2659-2668 (1994). Specifically, it was held in a 0.2 M dilute sulfuric acid aqueous solution at a potential of 0.8 V (vs. standard hydrogen electrode potential) for 50 hours, and the catalytic activity of the samples before and after the comparison was compared. The catalytic activity of the samples before and after the corrosion resistance test was compared, and the case where the catalytic activity decreased within 5% was evaluated as ◯, and the case where the catalytic activity decreased over 5% was evaluated as x. The results are shown in Table 14. The constituent elements of the sample before the corrosion resistance test were measured with an electron beam microanalyzer (EPMA-1600, trade name, manufactured by Shimadzu Corporation).

Figure 2007090157
Figure 2007090157

表14の結果から明らかなように、本発明の触媒を用いた電極は、耐食試験後の触媒活性の低下が5%以内であり耐食性に優れたものであることがわかった。   As is apparent from the results in Table 14, the electrode using the catalyst of the present invention was found to have excellent corrosion resistance with a decrease in catalytic activity within 5% after the corrosion resistance test.

実施例11
実施例1〜3で作製した電極触媒のうち代表的な幾つかの組成の試料を用いて燃料電池を作製した。まず、実施例1〜3と同様にスパッタ法により、それぞれの触媒をカーボンシート(TGP−H120、商品名、東レ製)上に形成した後、一般的なパーフルオロスルホン酸電解質膜(ナフィオン117、商品名、デュポン社製)にホットプレスすることにより膜電極接合体(MEA)を作製した。ただしアノード側電極にはカーボンシート上に結晶のPtを蒸着させたものを用いた。また、MEAの面積は25cm2とした。作製したMEAの一方の面に水素ガス流路が形成された樹脂含浸黒鉛板からなるセパレータを、裏面に酸素ガス流路が形成された同様のセパレータを重ね合わせ、さらにその両端外部を、それぞれ2枚の無酸素銅でできた集電板、電気絶縁用の絶縁シート、ステンレス製支持板で順に挟み、最後に締結ロッドで固定することで、固体高分子型燃料電池セルを作製した。
燃料電池セル特性の評価は、セル温度80℃、セル圧力は常圧で、アノードガスには加湿した水素を、カソードガスには加湿した酸素をそれぞれ100ml/分で供給して電流−電圧特性を測定し、セル電圧を0.75Vとした時の電流密度値を比較により行った。比較サンプルの電流密度に比べて、10%以上増大した場合を◎、5%以上増大した場合を○、変化しなかった場合を△、低下した場合を×と評価した。結果を表15に示す。
Example 11
Fuel cells were prepared using samples having several representative compositions among the electrode catalysts prepared in Examples 1 to 3. First, after each catalyst was formed on a carbon sheet (TGP-H120, trade name, manufactured by Toray Industries, Inc.) by sputtering as in Examples 1 to 3, a general perfluorosulfonic acid electrolyte membrane (Nafion 117, A membrane electrode assembly (MEA) was produced by hot pressing to a trade name, manufactured by DuPont. However, the anode side electrode was obtained by depositing crystalline Pt on a carbon sheet. The area of the MEA was 25 cm 2 . A separator made of a resin-impregnated graphite plate with a hydrogen gas flow path formed on one side of the produced MEA and a similar separator with an oxygen gas flow path formed on the back surface are overlapped, and both ends of the separator are connected to 2 sides. A polymer electrolyte fuel cell was produced by sandwiching a current collector plate made of oxygen-free copper, an insulating sheet for electrical insulation, and a stainless steel support plate in order, and finally fixing with a fastening rod.
The fuel cell characteristics were evaluated by measuring the current-voltage characteristics by supplying the cell temperature at 80 ° C., the cell pressure at normal pressure, supplying humidified hydrogen to the anode gas, and humidified oxygen to the cathode gas at 100 ml / min. Measurement was performed, and the current density value when the cell voltage was 0.75 V was compared. As compared with the current density of the comparative sample, the case where it was increased by 10% or more was evaluated as ◎, the case where it was increased by 5% or more was evaluated as ◯, the case where it did not change was evaluated as Δ, and the case where it was decreased was evaluated as ×. The results are shown in Table 15.

Figure 2007090157
Figure 2007090157

表15の結果から明らかなように、本発明の電極触媒を用いた燃料電池は、優れた燃料電池特性を示すことがわかった。また、アノード側にメタノールを供給する直接メタノール型燃料電池についても作製し、同様に試験したところ、同様に優れた燃料電池特性を示すことがわかった。
As is clear from the results in Table 15, it was found that the fuel cell using the electrode catalyst of the present invention exhibited excellent fuel cell characteristics. A direct methanol fuel cell that supplies methanol to the anode side was also fabricated and tested in the same manner. As a result, it was found that the same excellent fuel cell characteristics were exhibited.

Claims (15)

少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、その結晶構造が非晶質状態である合金からなることを特徴とする酸素還元反応用触媒。   An alloy containing at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and having a crystalline structure in an amorphous state A catalyst for oxygen reduction reaction, comprising: 少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、その結晶構造が非晶質状態である合金からなることを特徴とする燃料電池用カソード電極触媒。   An alloy containing at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se, and having a crystalline structure in an amorphous state A cathode electrode catalyst for a fuel cell, comprising: 少なくとも一つの白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素とを含み、さらにCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を含み、その結晶構造が非晶質状態である合金からなることを特徴とする燃料電池用カソード電極触媒。   Including at least one platinum group element and at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As and Se, and further Cu, Ni, Co, Fe, Mn, From an alloy containing at least one base metal transition element selected from the group consisting of Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf, and whose crystal structure is in an amorphous state A cathode electrode catalyst for a fuel cell. 前記のB、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素の含有率が原子数%で5〜40%であることを特徴とする請求項2又は3に記載の燃料電池用カソード電極触媒。   The content of at least one element selected from the group consisting of B, C, Be, Si, P, S, Ga, As, and Se is 5% to 40% in terms of number of atoms. 4. The cathode electrode catalyst for fuel cells according to 2 or 3. 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、加熱溶融した白金族金属に、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素、及び必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を所定量添加し、100℃/秒以上の速度で急速冷却することを特徴とする燃料電池用カソード電極触媒の製造方法。   It is a manufacturing method of the cathode electrode catalyst for fuel cells of any one of Claims 2-4, Comprising: B, C, Be, Si, P, S, Ga, As, At least one element selected from the group consisting of Se, and optionally Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf A method for producing a cathode electrode catalyst for a fuel cell, comprising adding a predetermined amount of at least one base metal transition element selected from the group consisting of and rapidly cooling at a rate of 100 ° C./second or more. 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、加熱溶融した白金族金属に、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素、及び必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素を所定量添加した後、その溶湯をアトマイズ法により微粒子化させることを特徴とする燃料電池用カソード電極触媒の製造方法。   It is a manufacturing method of the cathode electrode catalyst for fuel cells of any one of Claims 2-4, Comprising: B, C, Be, Si, P, S, Ga, As, At least one element selected from the group consisting of Se, and optionally Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf A method for producing a cathode electrode catalyst for a fuel cell, comprising adding a predetermined amount of at least one base metal transition element selected from the group consisting of: and then atomizing the molten metal by an atomizing method. 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、白金族金属粉末と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素の粉末と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素の粉末とを機械的合金化法(メカニカルアロイング又はメカニカルグライディング法)により混合して非晶質合金化することを特徴とする燃料電池用カソード電極触媒の製造方法。   It is a manufacturing method of the cathode electrode catalyst for fuel cells of any one of Claims 2-4, Comprising: From platinum group metal powder, B, C, Be, Si, P, S, Ga, As, and Se A powder of at least one element selected from the group consisting of Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta, and Hf as necessary. A cathode for a fuel cell, characterized in that it is mixed with a powder of at least one base metal transition element selected from the group consisting of a mechanical alloying method (mechanical alloying or mechanical gliding method) to form an amorphous alloy. A method for producing a catalyst. 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、ターゲットとして、白金族金属と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とを用いて、室温以下の温度に冷却された基板上にスパッタ成膜することを特徴とする燃料電池用カソード電極触媒の製造方法。   It is a manufacturing method of the cathode electrode catalyst for fuel cells of any one of Claims 2-4, Comprising: As a target, platinum group metal, B, C, Be, Si, P, S, Ga, As, and At least one element selected from the group consisting of Se and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf A method for producing a cathode electrode catalyst for a fuel cell, comprising sputtering at least one base metal transition element selected from the group consisting of a substrate cooled to a temperature of room temperature or lower. 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とをそれぞれ電解溶液中でイオン化した後、通電して電極材料上に電解析出させることを特徴とする燃料電池用カソード電極触媒の製造方法。   It is a manufacturing method of the cathode electrode catalyst for fuel cells of any one of Claims 2-4, Comprising: A platinum group element and B, C, Be, Si, P, S, Ga, As, and Se A group consisting of at least one element selected from the group and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf A method for producing a cathode electrode catalyst for a fuel cell, comprising ionizing at least one base metal transition element selected from the group consisting of: 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒の製造方法であって、白金族元素と、B、C、Be、Si、P、S、Ga、As及びSeからなる群から選ばれる少なくとも一つの元素と、必要に応じてCu、Ni、Co、Fe、Mn、Cr、V、Ti、Sc、Mo、Nb、Zr、Y、Re、W、Ta及びHfからなる群から選ばれる少なくとも1つの卑金属遷移元素とをそれぞれ電解溶液中でイオン化した後、該電解溶液に還元剤を添加して電極材料上に析出させることを特徴とする燃料電池用カソード電極触媒の製造方法。   It is a manufacturing method of the cathode electrode catalyst for fuel cells of any one of Claims 2-4, Comprising: A platinum group element and B, C, Be, Si, P, S, Ga, As, and Se A group consisting of at least one element selected from the group and, if necessary, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Mo, Nb, Zr, Y, Re, W, Ta and Hf A method for producing a cathode electrode catalyst for a fuel cell, comprising: ionizing at least one base metal transition element selected from the group consisting of an electrolyte solution, and then adding a reducing agent to the electrolyte solution to deposit on the electrode material . 前記電極材料がカーボン材料で構成されていることを特徴とする請求項9又は10に記載の燃料電池用カソード電極触媒の製造方法。   The method for producing a cathode electrode catalyst for a fuel cell according to claim 9 or 10, wherein the electrode material is composed of a carbon material. 請求項2〜4のいずれか1項に記載の燃料電池用カソード電極触媒を含むことを特徴とする燃料電池用カソード電極。   A cathode electrode for a fuel cell comprising the cathode electrode catalyst for a fuel cell according to any one of claims 2 to 4. 請求項12記載の燃料電池用カソード電極と陽イオン交換樹脂とを含むことを特徴とする膜電極接合体。   A membrane electrode assembly comprising the cathode electrode for a fuel cell according to claim 12 and a cation exchange resin. 請求項12記載の燃料電池用カソード電極又は請求項13記載の膜電極接合体を含むことを特徴とする固体高分子型燃料電池。   A solid polymer fuel cell comprising the cathode electrode for a fuel cell according to claim 12 or the membrane electrode assembly according to claim 13. 請求項12記載の燃料電池用カソード電極又は請求項13記載の膜電極接合体を含むことを特徴とする直接メタノール型燃料電池。
A direct methanol fuel cell comprising the cathode electrode for a fuel cell according to claim 12 or the membrane electrode assembly according to claim 13.
JP2005279919A 2005-09-27 2005-09-27 Cathode catalyst for fuel cell and fuel cell using the same Pending JP2007090157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279919A JP2007090157A (en) 2005-09-27 2005-09-27 Cathode catalyst for fuel cell and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279919A JP2007090157A (en) 2005-09-27 2005-09-27 Cathode catalyst for fuel cell and fuel cell using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010289509A Division JP2011092940A (en) 2010-12-27 2010-12-27 Cathode electrode catalyst for fuel cell and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2007090157A true JP2007090157A (en) 2007-04-12

Family

ID=37976458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279919A Pending JP2007090157A (en) 2005-09-27 2005-09-27 Cathode catalyst for fuel cell and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2007090157A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120214083A1 (en) * 2009-07-17 2012-08-23 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
US8349514B2 (en) 2009-03-27 2013-01-08 Samsung Electronics Co., Ltd. Electrode catalyst for fuel cells, method of preparing the electrode catalyst, and fuel cell including electrode containing the electrode catalyst
JP2013047160A (en) * 2011-08-29 2013-03-07 Toyo Univ Marimo carbon and method of producing the same
JP2013538289A (en) * 2010-07-19 2013-10-10 ユニバーシティト レイデン Method for producing metal nanoparticles or metal oxide nanoparticles
JP2014514456A (en) * 2011-05-02 2014-06-19 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル) Platinum alloy
EP2923402A1 (en) * 2012-11-21 2015-09-30 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
WO2016093329A1 (en) * 2014-12-11 2016-06-16 田中貴金属工業株式会社 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
CN108977843A (en) * 2017-05-31 2018-12-11 刘志红 A kind of ni-based amorphous alloy catalysis electrode and preparation method thereof
CN109395753A (en) * 2018-09-26 2019-03-01 昆明理工大学 A kind of preparation method and application of catalyst for hydrogenation
CN109904472A (en) * 2017-12-11 2019-06-18 中国科学院大连化学物理研究所 A kind of amorphous PtSe elctro-catalyst and its preparation and application

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577260A (en) * 1980-05-12 1982-01-14 Energy Conversion Devices Inc Catalyst body and its manufacture
JPS57184442A (en) * 1981-05-09 1982-11-13 Otsuka Chem Co Ltd Catalyst comprising amorphous inorg. substance
JPS58159847A (en) * 1982-03-19 1983-09-22 Hiroyoshi Inoue Amorphous alloy type catalyst for reduction reaction
JPS5958760A (en) * 1982-07-19 1984-04-04 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Fuel battery cathode
JPH07224301A (en) * 1994-02-14 1995-08-22 Toshiba Corp Production of mechanically alloyed powder and mechanically alloying device
JPH10296083A (en) * 1997-04-24 1998-11-10 China Petrochem Corp Amorphous alloy catalyst containing boron, its production and use
JP2002004015A (en) * 2000-06-21 2002-01-09 Akihisa Inoue Iron-based amorphous spherical grain
JP2003331855A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Cathode catalyst for solid polymer fuel cell and solid polymer fuel cell
JP2005203332A (en) * 2003-12-18 2005-07-28 Toyota Motor Corp Membrane electrode junction body, its manufacturing method, and fuel cell
JP2005224800A (en) * 2005-03-14 2005-08-25 Hitachi Maxell Ltd Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME
JP2005246380A (en) * 2005-03-14 2005-09-15 Hitachi Maxell Ltd Platinum based catalyst and methanol fuel cell using it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577260A (en) * 1980-05-12 1982-01-14 Energy Conversion Devices Inc Catalyst body and its manufacture
JPS57184442A (en) * 1981-05-09 1982-11-13 Otsuka Chem Co Ltd Catalyst comprising amorphous inorg. substance
JPS58159847A (en) * 1982-03-19 1983-09-22 Hiroyoshi Inoue Amorphous alloy type catalyst for reduction reaction
JPS5958760A (en) * 1982-07-19 1984-04-04 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Fuel battery cathode
JPH07224301A (en) * 1994-02-14 1995-08-22 Toshiba Corp Production of mechanically alloyed powder and mechanically alloying device
JPH10296083A (en) * 1997-04-24 1998-11-10 China Petrochem Corp Amorphous alloy catalyst containing boron, its production and use
JP2002004015A (en) * 2000-06-21 2002-01-09 Akihisa Inoue Iron-based amorphous spherical grain
JP2003331855A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Cathode catalyst for solid polymer fuel cell and solid polymer fuel cell
JP2005203332A (en) * 2003-12-18 2005-07-28 Toyota Motor Corp Membrane electrode junction body, its manufacturing method, and fuel cell
JP2005224800A (en) * 2005-03-14 2005-08-25 Hitachi Maxell Ltd Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME
JP2005246380A (en) * 2005-03-14 2005-09-15 Hitachi Maxell Ltd Platinum based catalyst and methanol fuel cell using it

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6010060064, K.Seto et al., "Glassy Metals as Electrocatalysts for Hydrogen Evolution and Oxidation", J.Electrochem.Soc., 198907, Vol.136 No.7, Pages1910−1914 *
JPN6010060066, J.J.PODESTA et al., "AMORPHOUS Pd−P,Au−P AND Co−P ALLOYS AS CATHODE MATERIALS IN ALKALINE SOLUTION FOR OXYGEN REDUCTION", Int.J.Hydrogen Energy, 1997, Vol.22 No.8, Pages753−758 *
JPN6010060067, K.BABA et al., "Hydrogen in some Pd−Si−based amorphous alloys and in the crystallized states", Materials Science and Engineering, 198803, Vol.99 No.1−2, Pages539−542 *
JPN6010060069, G.TREMILIOSI−FILHO et al., "The hydrogen evolution reaction on amorphous Pd−Si alloys", Journal of Electroanalytical Chemistry, 1992, Vol.331 No.1−2, Pages751−763 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349514B2 (en) 2009-03-27 2013-01-08 Samsung Electronics Co., Ltd. Electrode catalyst for fuel cells, method of preparing the electrode catalyst, and fuel cell including electrode containing the electrode catalyst
US9312545B2 (en) * 2009-07-17 2016-04-12 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
US20120214083A1 (en) * 2009-07-17 2012-08-23 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
JP2013538289A (en) * 2010-07-19 2013-10-10 ユニバーシティト レイデン Method for producing metal nanoparticles or metal oxide nanoparticles
US10106869B2 (en) 2011-05-02 2018-10-23 Ecole Polytechnique Federale De Lausanne (Epfl) Platinum based alloys
JP2014514456A (en) * 2011-05-02 2014-06-19 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル) Platinum alloy
JP2013047160A (en) * 2011-08-29 2013-03-07 Toyo Univ Marimo carbon and method of producing the same
EP2923402A1 (en) * 2012-11-21 2015-09-30 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
US20150295249A1 (en) * 2012-11-21 2015-10-15 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
WO2016093329A1 (en) * 2014-12-11 2016-06-16 田中貴金属工業株式会社 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
JPWO2016093329A1 (en) * 2014-12-11 2017-09-21 田中貴金属工業株式会社 Hydrogen peroxide decomposition catalyst, method for producing the same, and method for decomposing hydrogen peroxide using the catalyst
KR20170083582A (en) * 2014-12-11 2017-07-18 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
KR101963059B1 (en) 2014-12-11 2019-03-27 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
US10441943B2 (en) 2014-12-11 2019-10-15 Tanaka Kikinzoku Kogyo K.K. Catalyst for hydrogen peroxide decomposition, process for producing the same, and method for decomposing hydrogen peroxide using the catalyst
CN108977843A (en) * 2017-05-31 2018-12-11 刘志红 A kind of ni-based amorphous alloy catalysis electrode and preparation method thereof
CN109904472A (en) * 2017-12-11 2019-06-18 中国科学院大连化学物理研究所 A kind of amorphous PtSe elctro-catalyst and its preparation and application
CN109904472B (en) * 2017-12-11 2021-08-31 中国科学院大连化学物理研究所 Amorphous PtSe electrocatalyst and preparation and application thereof
CN109395753A (en) * 2018-09-26 2019-03-01 昆明理工大学 A kind of preparation method and application of catalyst for hydrogenation
CN109395753B (en) * 2018-09-26 2021-07-16 昆明理工大学 Preparation method and application of hydrogenation reaction catalyst

Similar Documents

Publication Publication Date Title
JP2007090157A (en) Cathode catalyst for fuel cell and fuel cell using the same
Cai et al. Nanostructuring noble metals as unsupported electrocatalysts for polymer electrolyte fuel cells
JP2011092940A (en) Cathode electrode catalyst for fuel cell and fuel cell using the same
EP2843066B1 (en) Catalyst
US7205255B2 (en) Electrode catalyst for fuel cell and method for production thereof
JP6282321B2 (en) catalyst
US9761884B2 (en) Synthesis of alloy nanoparticles as a stable core for core-shell electrocatalysts
Du Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications
US20070087258A1 (en) Catalyst, electrode for fuel electrode in fuel cell, and fuel cell
CA2647507A1 (en) Electrode catalyst for fuel cell and production process of the same
Zignani et al. Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction
Yi et al. A novel membraneless direct hydrazine/air fuel cell
Ávila‐Bolívar et al. Electrochemical reduction of CO2 to formate on nanoparticulated Bi− Sn− Sb electrodes
Chen et al. Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction
Ehsani et al. Electrocatalytic oxidation of ethanol on the surface of graphene based nanocomposites: an introduction and review to it in recent studies
JP6028027B2 (en) Electrocatalyst composite material, method of producing the composite material, and method of using the same
WO2012011170A1 (en) Fine catalyst particles and method for producing fine catalyst particles
Eiler et al. Oxygen reduction reaction and proton exchange membrane fuel cell performance of pulse electrodeposited Pt–Ni and Pt–Ni–Mo (O) nanoparticles
JP2008243577A (en) Catalyst for polymer solid electrolyte fuel cell, membrane-electrode assembly, and fuel cell
JP2005235688A (en) Carrying catalyst for fuel cell, its manufacturing method and fuel cell
JP5146105B2 (en) Catalyst for polymer electrolyte fuel cell
Liu et al. Ultrathin PdCu Nanosheet as Bifunctional Electrocatalysts for Formate Oxidation Reaction and Oxygen Reduction Reaction
Dey et al. Enhanced electrocatalytic activity of Cu@ Ag core-shell nano catalyst for borohydride oxidation using MWCNT as catalyst support
Awad et al. Valuation of bimetallic Pd/Ni nanoparticles catalyst for the applications in direct methanol fuel cells
Liang et al. Metal Bond Strength Regulation Enables Large-scale Synthesis of Intermetallic Nanocrystals for Practical Fuel Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214