JP2005224800A - Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME - Google Patents

Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME Download PDF

Info

Publication number
JP2005224800A
JP2005224800A JP2005070212A JP2005070212A JP2005224800A JP 2005224800 A JP2005224800 A JP 2005224800A JP 2005070212 A JP2005070212 A JP 2005070212A JP 2005070212 A JP2005070212 A JP 2005070212A JP 2005224800 A JP2005224800 A JP 2005224800A
Authority
JP
Japan
Prior art keywords
based catalyst
catalyst
fuel cell
particle size
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005070212A
Other languages
Japanese (ja)
Inventor
Hideo Daimon
英夫 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005070212A priority Critical patent/JP2005224800A/en
Publication of JP2005224800A publication Critical patent/JP2005224800A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pt-based catalyst for a fuel cell with the particle size of the Pt-based catalyst kept at 1-2 nm, and having high methanol oxidation activity. <P>SOLUTION: The present invention is attained by containing elemental sulfur in the Pt-based catalyst. Preferably, the particle size of the Pt-based catalyst is 1-2 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、Pt系合金触媒に関するものであり、更に詳細には、直接メタノール型燃料電池用触媒として好適なPt系触媒およびそれを用いた直接メタノール型燃料電池に関する。   The present invention relates to a Pt-based alloy catalyst, and more particularly to a Pt-based catalyst suitable as a direct methanol fuel cell catalyst and a direct methanol fuel cell using the same.

メタノールを燃料として用いた燃料電池は、一般的には白金系の触媒をカーボンに担持させ触媒層をカーボンシートやカーボンクロス上に形成し、これらをメタノール極および酸素極とし、その間にプロトン導電性のある有機膜を挟持したものが知られている。   A fuel cell using methanol as a fuel generally has a platinum-based catalyst supported on carbon and a catalyst layer formed on a carbon sheet or carbon cloth, which is used as a methanol electrode and an oxygen electrode, with proton conductivity therebetween. An organic film with a gap is known.

メタノール極ではPt系触媒上で式(1)で示したようにメタノールがCO2に酸化される。
CH3OH+HO → CO+6H+6e 式(1)
この反応過程で発生するCOはPtと化学結合しやすく、Pt触媒の活性点は次第にCOで覆われ、最終的にはPtの触媒活性が失われる。この現象をCOによる触媒被毒と呼ぶ。現在ではこの被毒を抑えるため、PtRu合金触媒が使用されている(例えば、特許文献1参照)。RuはPt上に化学吸着したCOをCO2に酸化し、COによる被毒を抑える助触媒である。
At the methanol electrode, methanol is oxidized to CO 2 on the Pt catalyst as shown by the formula (1).
CH 3 OH + H 2 O → CO 2 + 6H + + 6e - formula (1)
CO generated in this reaction process is likely to chemically bond with Pt, and the active site of the Pt catalyst is gradually covered with CO, and eventually the catalytic activity of Pt is lost. This phenomenon is called catalyst poisoning by CO. Currently, a PtRu alloy catalyst is used to suppress this poisoning (see, for example, Patent Document 1). Ru is a co-catalyst that oxidizes CO chemisorbed on Pt to CO 2 and suppresses poisoning by CO.

一般にPt系触媒の性能はその粒径に大きく依存している。粒径の減少と共に触媒の表面積が増加して触媒活性が向上する。通常、Pt系触媒の粒径は〜5nmであるが、より好ましくは1〜2nmである。Pt系触媒の粒径はその合成方法により大きく影響されるが、合成方法はノウハウ的な要素が多く広く開示されていないのが現状である。   In general, the performance of a Pt-based catalyst greatly depends on its particle size. As the particle size decreases, the surface area of the catalyst increases and the catalytic activity improves. Usually, the particle size of the Pt-based catalyst is ˜5 nm, more preferably 1-2 nm. The particle size of the Pt-based catalyst is greatly influenced by its synthesis method, but the synthesis method has many know-how elements and is not widely disclosed at present.

特開平2−111440号公報JP-A-2-111440

上述したように、Pt系触媒の粒径を1〜2nmに保つ手段については不明な点が多かった。
本発明は、Pt系触媒の粒径を1〜2nmに保ち、メタノール酸化活性の高い燃料電池用Pt系触媒を提供することを目的とする。
As described above, there are many unclear points regarding the means for maintaining the particle size of the Pt-based catalyst at 1 to 2 nm.
An object of the present invention is to provide a Pt-based catalyst for a fuel cell having a high methanol oxidation activity while keeping the particle size of the Pt-based catalyst at 1 to 2 nm.

本発明は、Pt系触媒において、Pt系触媒に硫黄元素を含ませる事により解決される。   The present invention is solved by adding a sulfur element to a Pt catalyst in the Pt catalyst.

本発明者は、Pt系触媒合成時にその系内に硫黄の供給源を添加する事で硫黄を含有したPt系触媒が合成され、Pt系触媒の粒径を1〜2nmに保つ事が可能となることを見出した。硫黄添加元素が、Pt又はPt系合金の結晶化を妨げる働きをし、粒子の粗大化を抑止したと考えられる。   The present inventor can synthesize a Pt-based catalyst containing sulfur by adding a sulfur supply source into the Pt-based catalyst during synthesis, and can maintain the particle size of the Pt-based catalyst at 1 to 2 nm. I found out that It is considered that the sulfur-added element functions to prevent crystallization of Pt or a Pt-based alloy and suppresses the coarsening of the particles.

前記添加元素の供給源として以下の試薬を用いる事ができる。硫黄に対しては亜硫酸ナトリウム、亜硫酸アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウムである。これらの試薬を触媒合成用の試薬に含まれるPt系金属イオン総量に対して1〜50%添加して硫黄を含むPt系触媒を合成する。1%未満ではPt系触媒の微粒子化の効果が十分でなく、50%を越えるとその効果が飽和する。   The following reagents can be used as a source of the additive element. For sulfur, sodium sulfite, ammonium sulfite, sodium thiosulfate, and ammonium thiosulfate. These reagents are added in an amount of 1 to 50% with respect to the total amount of Pt metal ions contained in the reagent for catalyst synthesis to synthesize a Pt catalyst containing sulfur. If it is less than 1%, the effect of making the Pt catalyst fine is not sufficient, and if it exceeds 50%, the effect is saturated.

触媒担持用の炭素粉末としては導電性カーボンブラック、アセチレンブラック、グラファイト、カーボンナノチューブなどが好適である。   As the carbon powder for supporting the catalyst, conductive carbon black, acetylene black, graphite, carbon nanotube and the like are suitable.

Ptの供給源としてはビス(アセチルアセトナト)白金(II)或いは六塩化白金酸、Ruの供給源としてはトリス(アセチルアセトナト)白金(III)或いは塩化ルテニウム水和物が使用できる。   Bis (acetylacetonato) platinum (II) or hexachloroplatinic acid can be used as the Pt supply source, and tris (acetylacetonato) platinum (III) or ruthenium chloride hydrate can be used as the Ru supply source.

本発明によれば、Pt系触媒に硫黄元素を含ませる事により、その非晶質化効果によってPt系触媒の粒径を1〜2nmに保つ事が可能となり、Pt系触媒のメタノール酸化活性を高める事ができる。   According to the present invention, by including sulfur element in the Pt-based catalyst, it becomes possible to keep the particle size of the Pt-based catalyst at 1 to 2 nm due to the amorphization effect, and the methanol oxidation activity of the Pt-based catalyst is increased. Can be increased.

本実施形態では、炭素粉末存在下、アルコール中に、Ptの供給源、Ruの供給源及び添加元素の供給源を溶解させ、不活性雰囲気中で加熱還流するアルコール還元法により触媒の製造を行った。その詳細は以下の通りである。   In the present embodiment, a catalyst is produced by an alcohol reduction method in which a Pt supply source, a Ru supply source, and an additive element supply source are dissolved in alcohol in the presence of carbon powder and heated to reflux in an inert atmosphere. It was. The details are as follows.

ビス(アセチルアセトナト)白金(II)1.69mmolとトリス(アセチルアセトナト)ルテニウム(III)1.69mmol及び亜硫酸ナトリウム0.676mmolをそれぞれ100mlのエチレングリコールに溶解させ、炭素粉末0.5gを分散させた100mlのエチレングリコール溶液を加えた。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuS微粒子を炭素粉末に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.676 mmol of sodium sulfite in 100 ml of ethylene glycol, and disperse 0.5 g of carbon powder. 100 ml of the ethylene glycol solution was added. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuS fine particles were supported on carbon powder. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

ビス(アセチルアセトナト)白金(II)1.69mmolとトリス(アセチルアセトナト)ルテニウム(III)1.69mmol及びジメチルアミンボラン0.676mmolをそれぞれ100mlのエチレングリコールに溶解させ、炭素粉末0.5gを分散させた100mlのエチレングリコール溶液を加えた。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuB微粒子を炭素粉末に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.676 mmol of dimethylamine borane are dissolved in 100 ml of ethylene glycol, and 0.5 g of carbon powder is dissolved. Dispersed 100 ml ethylene glycol solution was added. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuB fine particles were supported on carbon powder. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

ビス(アセチルアセトナト)白金(II)1.69mmolとトリス(アセチルアセトナト)ルテニウム(III)1.69mmol及び次亜燐酸ナトリウム0.676mmolをそれぞれ100mlのエチレングリコールに溶解させ、炭素粉末0.5gを分散させた100mlのエチレングリコール溶液を加えた。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuP合金微粒子を炭素粉末に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.676 mmol of sodium hypophosphite are dissolved in 100 ml of ethylene glycol, respectively, and 0.5 g of carbon powder is obtained. 100 ml of ethylene glycol solution in which was dispersed was added. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuP alloy fine particles were supported on carbon powder. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

ビス(アセチルアセトナト)白金(II)1.69mmolとトリス(アセチルアセトナト)ルテニウム(III)1.69mmol及びグリシン0.676mmolをそれぞれ100mlのエチレングリコールに溶解させ、炭素粉末0.5gを分散させた100mlのエチレングリコール溶液を加えた。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuC微粒子を炭素粉末に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。
(比較例1)
Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.676 mmol of glycine in 100 ml of ethylene glycol, and disperse 0.5 g of carbon powder. 100 ml of ethylene glycol solution was added. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuC fine particles were supported on carbon powder. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.
(Comparative Example 1)

ビス(アセチルアセトナト)白金(II)1.69mmolとトリス(アセチルアセトナト)ルテニウム(III)1.69mmolをそれぞれ100mlのエチレングリコールに溶解させ、炭素粉末0.5gを分散させた100mlのエチレングリコール溶液を加えた。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRu微粒子を炭素粉末に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   100 ml of ethylene glycol in which 1.69 mmol of bis (acetylacetonato) platinum (II) and 1.69 mmol of tris (acetylacetonato) ruthenium (III) are dissolved in 100 ml of ethylene glycol and 0.5 g of carbon powder is dispersed. The solution was added. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRu fine particles were supported on carbon powder. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

実施例1〜4及び比較例1で得られた触媒の粒径を電子顕微鏡で調べた。その結果を表1に示す。実施例では触媒の粒径が1.5nm以下となっているのに対し、比較例では触媒の粒径は5nmとなっている。   The particle diameters of the catalysts obtained in Examples 1 to 4 and Comparative Example 1 were examined with an electron microscope. The results are shown in Table 1. In the examples, the particle size of the catalyst is 1.5 nm or less, whereas in the comparative example, the particle size of the catalyst is 5 nm.

Figure 2005224800
Figure 2005224800

実施例1〜4及び比較例1で得られたカーボン担持触媒をカーボン担持触媒:Nafion = 7:6 になるようにスラリー作製し、これを厚さ200μm、直径20mmのカーボンペーパ(東レ製)上に1.5mgPtRuX(X:S,B,P,C,-)/cm2となるように塗布した。乾燥後、100kg/cm2でプレスを行い、電極とした。電極特性評価を温度25℃、メタノール濃度20wt%、電解質1.5M H2SO4の条件で行った。電位0.6V(vs.NHE)における電流を表2に示す。 The carbon-supported catalysts obtained in Examples 1 to 4 and Comparative Example 1 were slurried so as to have a carbon-supported catalyst: Nafion = 7: 6, and this was formed on a carbon paper (made by Toray) having a thickness of 200 μm and a diameter of 20 mm. And 1.5 mg PtRuX (X: S, B, P, C,-) / cm 2 . After drying, pressing was performed at 100 kg / cm 2 to obtain an electrode. The electrode characteristics were evaluated under the conditions of a temperature of 25 ° C., a methanol concentration of 20 wt%, and an electrolyte of 1.5 MH 2 SO 4 . Table 2 shows current at a potential of 0.6 V (vs. NHE).

Figure 2005224800
Figure 2005224800

表2から明らかなように、実施例では比較例に比べて大きな電流がえられ、メタノール酸化活性が向上した事が分かる。   As is clear from Table 2, it can be seen that a larger current was obtained in the example than in the comparative example, and the methanol oxidation activity was improved.

本発明の方法により製造されたPt系触媒は、メタノール燃料電池のメタノール極用触媒として特に有用である。また、固体高分子燃料電池等のその他の種類の燃料電池においても使用することも可能である。

The Pt-based catalyst produced by the method of the present invention is particularly useful as a methanol electrode catalyst for methanol fuel cells. It can also be used in other types of fuel cells such as solid polymer fuel cells.

Claims (6)

少なくとも硫黄元素を含む事を特徴とするPt系触媒。   A Pt-based catalyst characterized by containing at least sulfur element. 前記Pt系触媒の粒径が、1〜2nmであることを特徴とする請求項1記載のPt系触媒。   The Pt-based catalyst according to claim 1, wherein the Pt-based catalyst has a particle size of 1 to 2 nm. 前記Pt系触媒が、メタノール型燃料電池用であることを特徴とする請求項1または請求項2記載のPt系触媒。   The Pt-based catalyst according to claim 1 or 2, wherein the Pt-based catalyst is for a methanol fuel cell. 請求項1から3いずれか記載のPt系触媒を電極に用いたことを特徴とするメタノール燃料電池。   A methanol fuel cell using the Pt-based catalyst according to any one of claims 1 to 3 as an electrode. 炭素粉末にPtRuS微粒子を担持させたことを特徴とする燃料電池用触媒。   A fuel cell catalyst characterized in that PtRuS fine particles are supported on carbon powder. 前記炭素粉末が導電性カーボンブラック、アセチレンブラック、グラファイト、カーボンナノチューブであることを特徴とする請求項5記載の燃料電池用触媒。

6. The fuel cell catalyst according to claim 5, wherein the carbon powder is conductive carbon black, acetylene black, graphite, or carbon nanotube.

JP2005070212A 2005-03-14 2005-03-14 Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME Withdrawn JP2005224800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070212A JP2005224800A (en) 2005-03-14 2005-03-14 Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070212A JP2005224800A (en) 2005-03-14 2005-03-14 Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003433758 Division 2003-12-26 2003-12-26

Publications (1)

Publication Number Publication Date
JP2005224800A true JP2005224800A (en) 2005-08-25

Family

ID=34999919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070212A Withdrawn JP2005224800A (en) 2005-03-14 2005-03-14 Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME

Country Status (1)

Country Link
JP (1) JP2005224800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205394A (en) * 2003-12-26 2005-08-04 Hitachi Maxell Ltd Catalyst for fuel cell and manufacturing method thereof
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell
JP2007090157A (en) * 2005-09-27 2007-04-12 Furukawa Electric Co Ltd:The Cathode catalyst for fuel cell and fuel cell using the same
JP2007519514A (en) * 2004-01-28 2007-07-19 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Synthesis of noble metal sulfide catalysts in aqueous environment free of sulfide ions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205394A (en) * 2003-12-26 2005-08-04 Hitachi Maxell Ltd Catalyst for fuel cell and manufacturing method thereof
JP4498843B2 (en) * 2003-12-26 2010-07-07 日立マクセル株式会社 Catalyst for fuel cell and method for producing the same
JP2007519514A (en) * 2004-01-28 2007-07-19 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Synthesis of noble metal sulfide catalysts in aqueous environment free of sulfide ions
JP4805168B2 (en) * 2004-01-28 2011-11-02 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Synthesis of noble metal sulfide catalysts in aqueous environment free of sulfide ions
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell
US8685594B2 (en) 2005-08-31 2014-04-01 Samsung Sdi Co., Ltd. Catalyst for cathode of fuel cell, and membrane-electrode assembly for fuel cell
JP2007090157A (en) * 2005-09-27 2007-04-12 Furukawa Electric Co Ltd:The Cathode catalyst for fuel cell and fuel cell using the same

Similar Documents

Publication Publication Date Title
Abdelhafiz et al. Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
WO2012064768A2 (en) Extended two dimensional metal nanotubes and nanowires useful as fuel cell catalysts and fuel cells containing the same
JP2006253147A (en) Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
Hassan et al. Molybdenum carbide-based electrocatalysts for CO tolerance in proton exchange membrane fuel cell anodes
JP2010102889A (en) Electrode catalyst for fuel cell
JP5158334B2 (en) Method for producing electrode catalyst for fuel cell
Choudhary et al. Enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell (DEFC) using post-treated polyol synthesized Pt-Ru nano electrocatalysts supported on HNO3-functionalized acetylene black carbon
TWI474547B (en) Fuel cell and electrocatalyst
Li et al. Platinum-tellurium alloy metallene toward formic acid oxidation reaction
JP2005246380A (en) Platinum based catalyst and methanol fuel cell using it
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
Rodrigues da Silva et al. Synthesis and characterization of ordered intermetallic nanostructured PtSn/C and PtSb/C and evaluation as electrodes for alcohol oxidation
JP4863735B2 (en) Supported electrode catalyst and catalyst production method
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
Colmati et al. Effect of thermal treatment on phase composition and ethanol oxidation activity of a carbon supported Pt50Sn50 alloy catalyst
JP2005224800A (en) Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME
US4373014A (en) Process using noble metal-chromium alloy catalysts in an electrochemical cell
Fornazier Filho et al. Development of palladium catalysts modified by ruthenium and molybdenum as anode in direct ethanol fuel cell
Thilaga et al. Multiwalled carbon nanotube supported Pt–Sn–M (M= Ru, Ni, and Ir) catalysts for ethanol electrooxidation
JP3839961B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JP2006210314A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2007115471A (en) Electrode catalyst for fuel cell
KR101673003B1 (en) Catalyst for preparing hydrogen peroxide, MEA including the same and Method for preparing the catalyst
Liu et al. Tuning ion complexing to rapidly prepare hollow Ag–Pt nanowires with high activity toward the methanol oxidization reaction

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306