JPS62130234A - Method for homogeneously mixing al-pb alloy - Google Patents

Method for homogeneously mixing al-pb alloy

Info

Publication number
JPS62130234A
JPS62130234A JP60270211A JP27021185A JPS62130234A JP S62130234 A JPS62130234 A JP S62130234A JP 60270211 A JP60270211 A JP 60270211A JP 27021185 A JP27021185 A JP 27021185A JP S62130234 A JPS62130234 A JP S62130234A
Authority
JP
Japan
Prior art keywords
alloy
speed
rotor
solidification
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60270211A
Other languages
Japanese (ja)
Other versions
JPH0114298B2 (en
Inventor
Kiyoshi Ichikawa
市川 洌
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Suzuki Motor Corp
Original Assignee
Agency of Industrial Science and Technology
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Suzuki Motor Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60270211A priority Critical patent/JPS62130234A/en
Publication of JPS62130234A publication Critical patent/JPS62130234A/en
Publication of JPH0114298B2 publication Critical patent/JPH0114298B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al-Pb alloy having high homogeneity by agitating a vacuum-melted Al-Pb alloy by rotation until solidification is nearly completed. CONSTITUTION:While being cooled, a vacuum-melted Al-Pb alloy is agitated by rotation at a low speed with a rotator. When the alloy begins to solidify, the speed of rotation of the rotator is increased simultaneously with the beginning, and agitation is continued by rotation at a high speed under continuous cooling. The rotator is pulled out of the alloy immediately before solidification is completed. Thus, an Al-Pb alloy having extremely high homogeneity is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、主として軸受合金などの耐摩耗性材料に利用
されるAl−Pb系合金の均質混合法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for homogeneously mixing Al--Pb alloys mainly used for wear-resistant materials such as bearing alloys.

〔従来の技術] 最近、Al−Pb系合金は、優れた軸受特性とSn基合
金に比べて数段低い素材価格のために、実用化への可能
性が指摘され、特に自動車工業界【こおl、%て脚光を
浴びるようになった。
[Prior Art] Recently, the potential for practical application of Al-Pb alloys has been pointed out due to their excellent bearing properties and material costs that are much lower than Sn-based alloys, and they are particularly popular in the automobile industry. I,% started to be in the spotlight.

しかしながら、pbはA1マトリックス中にほとんど固
溶せず、また両者間の大きな密度差によりpbの重力偏
析が生じ易いという問題があり、これを打開するために
、数種類の製造法が試験的に試みられている。
However, there is a problem that PB hardly dissolves in solid solution in the A1 matrix, and gravitational segregation of PB tends to occur due to the large density difference between the two. To overcome this problem, several types of manufacturing methods have been experimentally attempted. It is being

これらの方法の中で、 AI及びpbの粉末を均一に混
合して焼結する粉末冶金法や、微小重力下で凝固させる
宇宙冶金法は、材料製造価格が高く、また従来の急冷凝
固法では鋳塊の表層部と中心部の凝固組織が異なるとい
う難点が生ずる。
Among these methods, the powder metallurgy method, in which AI and PB powders are uniformly mixed and sintered, and the space metallurgy method, in which solidification is performed under microgravity, have high material manufacturing costs, and the conventional rapid solidification method A problem arises in that the solidification structures of the surface layer and the center of the ingot are different.

一方、Pathakらは、Al−Pb系合金の安価な製
造法として、 700〜900°Cにおいて完全溶融状
態の合金を回転翼の回転速度600〜1400 rpm
、で攪拌混合した後、底注法により直ちに#8型に注入
して急冷する手法を提案しティる(J、P、Patha
k、S、N。
On the other hand, Pathak et al. have proposed an inexpensive manufacturing method for Al-Pb alloys, in which the alloy is completely molten at 700 to 900°C and is heated to a rotary blade at a rotational speed of 600 to 1400 rpm.
, we proposed a method in which the mixture was stirred and mixed, and then immediately poured into a #8 mold using the bottom pouring method and rapidly cooled (J, P, Patha).
k, S, N.

Tiwariand  S、L、Malhotra  
:  Metals  Technol、、8(197
3)、442.)  。
Tiwariand S, L, Malhotra
: Metals Technology, 8 (197
3), 442. ).

しかしながら、この方法は、pb含有量が50wt%ま
でのAl−Pb系合金の製造には利用できるとしても、
pb含有量がそれを越える場合には問題があり、しかも
全体的に均質な混合を行うことが困難である。
However, although this method can be used to produce Al-Pb alloys with a Pb content of up to 50 wt%,
If the Pb content exceeds this, there is a problem and it is difficult to achieve homogeneous mixing throughout.

[発明が解決しようとする問題点] 本発明の目的は、上述したように重力偏析が生じ易いA
l−Pb系合金におけるミクロ組織の均質化をはかり、
しかもそのAl−Pb系合金を低コストでOJ製できる
ようにした方法を提供することにある。
[Problems to be Solved by the Invention] As described above, the purpose of the present invention is to
Homogenizing the microstructure in the l-Pb alloy,
Moreover, it is an object of the present invention to provide a method that enables OJ production of the Al-Pb alloy at low cost.

[問題点を解決するための手段、作用]上記目的を達成
するため、本発明の方法は、真空溶解したAl−Pb系
合金を冷却しなから、回転子による低速回転攪拌を加え
、凝固開始と同時に回転子の回転速度を上昇させ、連続
的に冷却しながら高速回転攪拌を続行して、均質性の高
いAI−Pb系合金を得ることを特徴とするものである
[Means and effects for solving the problem] In order to achieve the above object, the method of the present invention involves adding low-speed rotational stirring using a rotor to the vacuum-melted Al-Pb alloy before cooling it to initiate solidification. At the same time, the rotational speed of the rotor is increased, and high-speed rotational stirring is continued while being continuously cooled to obtain a highly homogeneous AI-Pb alloy.

さらに具体的に説明すると、本発明の方法に、′F3い
ては、まず、真空溶解したAl−Pb系合金に対して急
冷条件で回転子による低速回転攪拌を加えるが、この場
合の回転速度は、溶融状態にある合金が攪拌に伴って飛
び散ることがないようにする必要があるため、その範囲
内においてA1とpbが相互に分離するのを抑制できる
程度に設定される。また1回転子の形状も、後述する実
験装置において使用しているように、断面8角形状等の
比較的飛沫を生じない形状にするのが適切である。
To explain more specifically, in the method of the present invention, in 'F3, the Al-Pb alloy melted in vacuum is first subjected to low-speed rotational stirring using a rotor under rapid cooling conditions, but the rotational speed in this case is Since it is necessary to prevent the alloy in a molten state from scattering due to stirring, it is set within this range to an extent that can suppress separation of A1 and pb from each other. Furthermore, it is appropriate that the shape of the single rotor is a shape that does not generate splashes relatively easily, such as an octagonal cross section, as used in the experimental apparatus described below.

所定の冷却条件で上記回転攪拌を!!続し、それによっ
て合金の凝固が開始したときには、その開始と同時に回
転子の回転速度を上昇させ、連続的に冷却しながら高速
回転攪拌を続行する。この場合の回転子の回転速度は、
合金が半溶融状態になってその飛散が抑制されるため、
比較的高速化することが可能であり、合金の均質化のた
めには他に支障がない範囲内において高速化することが
望ましい。この高速回転攪拌は、好ましくは凝固完了直
前まで継続し、その時点で回転子と供試合金との溶着を
防止するために供試合金内から引出され、それによって
極めて均質性の高いAl−Pb系合金を得る。
Rotate and stir as described above under the specified cooling conditions! ! Then, when solidification of the alloy starts, the rotational speed of the rotor is increased at the same time as solidification of the alloy starts, and high-speed rotational stirring is continued while continuously cooling. The rotation speed of the rotor in this case is
Since the alloy becomes semi-molten and its scattering is suppressed,
It is possible to increase the speed relatively, and in order to homogenize the alloy, it is desirable to increase the speed within a range that does not cause any other problems. This high-speed rotational stirring is preferably continued until just before the completion of solidification, at which point the rotor is pulled out from the sample sample to prevent welding between the rotor and the sample sample, thereby forming an extremely highly homogeneous Al-Pb. Obtain a series alloy.

この方法は、pb含有量が高いAl−Pb系合金の製造
にも有効に利用できるばかりでなく、全体的に均質な混
合を行って重力偏析が生じ易いAl−Pb系合金におけ
るミクロ組織の均質化をはかることが可能であり、しか
もAl−Pb系合金を低コストで創製することができる
This method can not only be effectively used to produce Al-Pb alloys with high Pb content, but also achieve homogeneous microstructures in Al-Pb alloys that are prone to gravitational segregation by achieving homogeneous mixing throughout. Moreover, it is possible to create an Al-Pb alloy at low cost.

[実施例] 以下に本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実験に用いたAl−Pb系合金の組成を第1表に示す。Table 1 shows the composition of the Al-Pb alloy used in the experiment.

これらの合金素材は、99.99%At、99.99%
Pb、 99.99%Cu、88%Si、88.9%M
H,あるいは99.97%Niを、電子上皿天びんで厳
密に配合したものである。
These alloy materials are 99.99% At, 99.99%
Pb, 99.99%Cu, 88%Si, 88.9%M
H or 99.97% Ni is precisely blended using an electronic precision balance.

第1表 (・t%) 上記組成をもつ供試合金の均質混合を行った実験装はの
構成を第1図に示す。この実験装置は、供試合金を真空
溶解しく真空溶解してもpbの法発は無視できる。)、
同合金に挿入した回転子を、連続冷却下の凝固過程で4
00Orpm以上に高速回転させて、pb元素を均一に
分散させ得るものである。
Table 1 (·t%) Figure 1 shows the configuration of the experimental equipment in which the test metals having the above composition were homogeneously mixed. With this experimental apparatus, even if the sample gold is melted in a vacuum, the emission of PB can be ignored. ),
The rotor inserted into the same alloy was solidified during the solidification process under continuous cooling.
By rotating at a high speed of 000 rpm or higher, the PB element can be uniformly dispersed.

同図に示す装置について説明すると、前面に開閉扉を持
つチャン八本体1は真空容器を構成し、その内部をエア
シリング3で開閉さhるモリブデン製のシャッタ2によ
り上下に区画して、下段の加熱室4内にモリブデン抵抗
加熱炉5企・配置すると共に、上段の冷却室6内に、5
US304ステンレスEWの水冷外筒7及びその冷却外
筒7内に上方から垂下した回転子8を配置し、この回転
子9をトルクモータ10で回転駆動するようにしている
To explain the device shown in the same figure, a Chanpachi main body 1 with an opening/closing door on the front constitutes a vacuum container, and the inside is divided into upper and lower parts by a molybdenum shutter 2 that is opened and closed by an air cylinder 3. A molybdenum resistance heating furnace 5 is installed and placed in the heating chamber 4 of the
A water-cooled outer cylinder 7 made of US304 stainless steel EW and a rotor 8 hanging down from above are arranged inside the cooling outer cylinder 7, and this rotor 9 is driven to rotate by a torque motor 10.

上記回転子は、上端の横断面で長袖が38mm、短軸が
30mm、下端で長袖が32am、短軸が25mm、長
さ120mmの8角錐状をしている。
The rotor has an octagonal pyramid shape with a long sleeve of 38 mm and a short axis of 30 mm in cross section at the upper end, a long sleeve of 32 mm at the lower end, a short axis of 25 mm, and a length of 120 mm.

この装置においては、チャンバ本体1内を図示しない真
空源に接続して、真空排気後、炉内の黒鉛坩堝12中で
供試合金を加熱溶解し、その溶解後、炉上のシャッタ2
を開放して、チャンバ本体1の下面を貫通する支持棒1
1を昇降可能にした坩堝昇降機構で、上記黒鉛坩堝12
を水冷外筒7内まで上昇させることにより、坩堝12内
のン賜中に回転子9を挿入し、冷却室5内における思速
なl令却過程1こおいて、七の回転子8の回転により半
溶融合金を攪拌させる。上記坩堝の外径は78mm、内
径は上表面で550m、下表面で50mm、また深さは
130mmである。
In this apparatus, the inside of the chamber body 1 is connected to a vacuum source (not shown), and after evacuation, the test gold is heated and melted in a graphite crucible 12 in the furnace.
The support rod 1 which penetrates the lower surface of the chamber body 1 by opening the
1 is a crucible lifting mechanism capable of lifting and lowering the graphite crucible 12.
By raising the rotor 9 into the water-cooled outer cylinder 7, the rotor 9 is inserted into the crucible 12, and during the rapid cooling process 1 in the cooling chamber 5, the seventh rotor 8 is The rotation stirs the semi-molten alloy. The crucible has an outer diameter of 78 mm, an inner diameter of 550 mm on the upper surface, 50 mm on the lower surface, and a depth of 130 mm.

上記回転子9を回転させるトルクモータ10は、その回
転軸にトルク検出器及び回転検出器を設けて、それらを
ディジタル表示器及びディジタルプリンターに接続して
いる。
The torque motor 10 that rotates the rotor 9 is provided with a torque detector and a rotation detector on its rotation shaft, and these are connected to a digital display and a digital printer.

上記装置における実験操作としては、チャンバ本体1内
をI X 1O−5Torr以下に真空排気後、加熱室
下部のモリブデン抵抗加熱炉内で黒鉛坩堝中に入れた前
記AI−P’c系供試合金約0.5kgt−710熱し
、その合金の溶解を確認した後、溶湯を 827°Cで
30分間保持し、次いで炉腹上のシャッタを開放して、
坩堝昇降機構により、25mm/sの速度で溶湯を上昇
させ、溶湯中に回転子を挿入して、回転子の最下端を坩
堝内底部の10■直上の位置で停止させた。
As for the experimental operations in the above apparatus, the chamber body 1 was evacuated to below IX 1O-5 Torr, and then the AI-P'c-based sample metal was placed in a graphite crucible in a molybdenum resistance heating furnace at the bottom of the heating chamber. After heating approximately 0.5kgt-710 and confirming that the alloy has melted, the molten metal was held at 827°C for 30 minutes, and then the shutter on the furnace belly was opened.
The molten metal was raised at a speed of 25 mm/s by the crucible lifting mechanism, a rotor was inserted into the molten metal, and the lowest end of the rotor was stopped at a position just 10 cm above the inner bottom of the crucible.

その直後、回転子を回転速度540と 11080rp
の2段階で低速回転させて、溶湯急冷過程におけるpb
元素の重力偏析を凝固開始まで極力阻止するように努め
た。その間、上記装置に付設した温度記録計に連続記鎚
中の冷却曲線により凝固開始を監視し、温度降下が急激
にゆるやかになった時点で、回転子の回転速度の上昇を
開始し、10秒以内に420Orpmの一定速度に保持
した。その際、回転攪拌の急激な高速化に伴う半溶融合
金の坩堝外への飛ひ散りを極力防止するために、回転数
の増加速度を一定に維持した。
Immediately after that, the rotor is rotated at a rotation speed of 540 and 11080 rpm.
PB during the molten metal quenching process by rotating at low speed in two stages.
Efforts were made to prevent gravitational segregation of elements until solidification begins. During this time, the onset of solidification was monitored by the cooling curve during continuous recording on the temperature recorder attached to the above device, and when the temperature drop suddenly became gradual, the rotation speed of the rotor was started to increase, and the rotation speed was increased for 10 seconds. The speed was maintained at a constant speed of 420 rpm. At this time, the rate of increase in the number of rotations was kept constant in order to prevent as much as possible the scattering of the semi-molten alloy to the outside of the crucible due to the rapid increase in the speed of rotational stirring.

その後、供試合金を連続冷却しながら上記一定速度で回
転攪拌を 120〜240秒間続行し、凝固が完了する
までに、坩堝昇降機構で20cmはど坩堝を下降させ、
回転子と供試合金の溶岩を防止した。
Thereafter, rotational stirring was continued at the above constant speed for 120 to 240 seconds while continuously cooling the sample metal, and until solidification was completed, the crucible was lowered by 20 cm using the crucible lifting mechanism.
Prevented lava from rotor and test metal.

このようにして得られた合金塊の組a!察を走査電子顕
微鏡及び光学wJ微鏡で行った。また、これらの合金塊
の頭部、中央部及び底部の横断面から試料を採取して、
化学分析し、pb元素の重力偏析の程度を調べた。
Set a of alloy ingots thus obtained! The observation was carried out using a scanning electron microscope and an optical wJ microscope. In addition, samples were taken from the cross sections of the head, center, and bottom of these alloy ingots.
Chemical analysis was conducted to examine the degree of gravitational segregation of the PB element.

以下に実験の結果について説明する。The results of the experiment will be explained below.

まず、第1図の実験装二を用いて供試合金の均質混合を
行う際、回転攪拌凝固過程におけるトルク変化を調べた
。その結果として、第2図に、G−J合金についての回
転子が420Orpmの速度で高速回転攪拌凝固中のト
ルク変化を示す。ここで、G、H,I及びJ合金の凝固
開始温度(高速回転攪拌開始温度)は、それぞれ、BO
B 、599.593及び588℃であり、高速回転攪
拌終了温度は、555.546,551及び551 ’
Oである。これらの回転攪拌終了時の固相率は、いずれ
も約80%である。
First, when homogeneously mixing a sample metal using the experimental equipment 2 shown in FIG. 1, changes in torque during the rotational agitation solidification process were investigated. As a result, FIG. 2 shows the torque variation during high-speed rotation stir solidification for the G-J alloy, with the rotor rotating at a speed of 420 Orpm. Here, the solidification start temperature (high speed stirring start temperature) of G, H, I and J alloys is BO
B, 599.593 and 588°C, and the high speed stirring end temperature is 555.546, 551 and 551'
It is O. The solid phase ratio at the end of these rotary stirrings is about 80%.

次に、上記装置こで高速回転攪拌凝固したAl−Pb系
合金塊の頭部、中央部及び底部の横断面を走査電子顕微
鏡で組h’am察した。その−例として、D合金の走査
顕微鏡写真を第3図 (a)〜(C)に示す。同図(a
)は頭部、同図(b)は中央部、同図(c)は底部横断
面の組成像である。これによれば、 4200rpmで
回転攪拌凝固したAl−Pb系合金の結晶組織には、同
合金の通常の急冷凝固組織に点在する微細なpb粒子と
は異なり、デンドライト結晶が破砕されて生成した初晶
粒子とその間隙に挟み込まれるように存在する不規則な
形状のpb相(図中の白い領域)が鋳塊全体にわたり均
一に分散しているのが観察される。
Next, cross sections of the head, center, and bottom of the Al--Pb alloy ingot solidified by high-speed rotation stirring in the above apparatus were observed using a scanning electron microscope. As an example, scanning micrographs of alloy D are shown in FIGS. 3(a) to 3(c). The same figure (a
) is a compositional image of the head, (b) is a compositional image of the central part, and (c) is a cross-sectional image of the bottom. According to this, the crystal structure of an Al-Pb alloy solidified by rotational stirring at 4,200 rpm differs from the fine PB particles scattered in the normal rapidly solidified structure of the same alloy, and contains crushed dendrite crystals. It is observed that the irregularly shaped pb phase (white area in the figure), which exists between the primary crystal particles and the gaps between them, is uniformly dispersed throughout the ingot.

また、Pb元素量の増減による結晶組織の相違を明確化
するために、第4図(a)に15%Pb(E合金)、第
4図(b)に35%Pb(F合金)を含むAl−Cu−
Mg−Pb4元粘鋳合金塊の走査電子顕微鏡写真を示す
、この組織には、15%pb合金ではデンドライト結晶
が破砕されて生成した初晶粒子の狭い間隙に、pb相(
図中の白い領域)が挟み込まれるように共晶と共存して
いるが、35%pb合金ではpb相が15%pb合金は
ど狭い初晶粒子間隙に見られず、初晶粒子間のかなり広
い領域に集積しているのが観察される。
In addition, in order to clarify the difference in crystal structure due to increase or decrease in the amount of Pb element, 15% Pb (E alloy) is included in Figure 4 (a) and 35% Pb (F alloy) is included in Figure 4 (b). Al-Cu-
This is a scanning electron micrograph of a Mg-Pb quaternary clay cast alloy ingot. In this structure, in the 15% PB alloy, the PB phase (
In the 35% PB alloy, the PB phase coexists with the eutectic so that the white area in the figure is sandwiched between them, but in the 15% PB alloy, the PB phase is not seen in the narrow spaces between the primary crystal grains, but rather in the narrow spaces between the primary crystal grains. It is observed that it accumulates in a wide area.

また、一般に合金の鋳造で晶出するテントライト組織は
、固相率が約87%で閉鎖形態となるので、残存液相の
流体流動は阻止され、凝固末期に充分な給湯が行われな
いことが鋳造欠陥の主因となる。しかるに本発明者らは
、固液共存状態のAl−Pb系合金に高速回転攪拌を加
えることにより、デンドライト形態を破壊して、鋳造欠
陥のない材料を製造すると同時に、Pb元素を均質に分
散させ、機械的性質が向上するのを確認することができ
た。
Additionally, the tentolite structure that generally crystallizes during alloy casting has a solid phase ratio of approximately 87% and is in a closed form, which prevents the fluid flow of the remaining liquid phase and prevents sufficient hot water from being supplied at the final stage of solidification. is the main cause of casting defects. However, by applying high-speed rotational stirring to an Al-Pb alloy in a solid-liquid coexistence state, the present inventors destroyed the dendrite morphology and produced a material without casting defects, while at the same time dispersing the Pb element homogeneously. It was confirmed that the mechanical properties were improved.

さらに、上記Al−Pb系合金の高速回転攪拌凝固と低
速回転攪拌凝固を比較して、前者の実用性を証明するた
めに1次のような検討を加えた。
Furthermore, we compared the high-speed rotation stirring solidification and the low-speed rotation stirring solidification of the Al--Pb alloy, and conducted the following study in order to prove the practicality of the former.

即ち、供試合金を真空溶解後、その溶湯中に回転子を挿
入し、同溶湯を約1℃/sの冷却速度で冷却中に1回転
子を54Orpmの回転速度で低速巨転させ、供試合金
が凝固開始温度に到達後も同一速度で回転攪拌を続行し
、固相率80%前後に回転子を回転しながら引き抜いた
That is, after melting the sample metal in vacuum, a rotor was inserted into the molten metal, and while the molten metal was being cooled at a cooling rate of about 1°C/s, one rotor was rotated at a low speed of 54 Orpm. Even after the match metal reached the solidification start temperature, rotational stirring was continued at the same speed, and the solid phase content was drawn out while rotating the rotor until the solid phase ratio was around 80%.

その結果の一例として、第1表のE組成合金を54Or
pmの回転速度で回転攪拌凝固させた鋳塊の頭部及び底
部横断面の凝固組織を第5図(a)(b)に示す。ここ
で、同合金塊の頭部横断面のpbの化学分析値は、6,
4±0.2 wt%であり、底部横断面のpb値は42
.5±0.3 wt%である。従って、回転子の回転速
度が54Orpmの低速回転攪拌凝固では、デンドライ
ト結晶が破砕されて生成した初晶粒子の間隙に、pb液
相を捕捉することが不可能で、最終的に重力偏析を阻止
することはできない。
As an example of the results, the E composition alloy in Table 1 is 54Or
Figures 5(a) and 5(b) show the solidified structure of the cross section of the top and bottom of an ingot that was solidified by rotational stirring at a rotational speed of pm. Here, the chemical analysis value of pb of the cross section of the head of the same alloy ingot is 6,
4 ± 0.2 wt%, and the pb value of the bottom cross section was 42
.. 5±0.3 wt%. Therefore, in low-speed rotation stirring solidification with a rotor rotation speed of 54 Orpm, it is impossible to trap the PB liquid phase in the gaps between primary crystal particles generated by crushing dendrite crystals, and ultimately prevents gravitational segregation. I can't.

一方、3600と420Orpmの回転攪拌凝固合金塊
の頭部の化学分析値は、33.2±0.4及び35.0
±0.2%である。また、底部の分析値は、35.5±
0.3及び35.0±0.3%である。これにより、A
l−Pb系合金の高速回転攪拌凝固がPb元素の重力偏
析の防止に有効であることが確認された。
On the other hand, the chemical analysis values of the head of the solidified alloy ingot by rotation stirring at 3600 and 420 Orpm are 33.2±0.4 and 35.0
±0.2%. In addition, the analysis value at the bottom is 35.5±
0.3 and 35.0±0.3%. As a result, A
It was confirmed that high-speed rotation stirring solidification of l-Pb alloys is effective in preventing gravitational segregation of Pb elements.

[発明の効果] 以上に詳述したように、本発明の方法によれば、Al−
Pb系合金のミクロ組織の均質化と機械的性質の向上を
達成し、軸受合金などの耐摩耗性材料の低コスト化を図
ることができる。
[Effects of the Invention] As detailed above, according to the method of the present invention, Al-
It is possible to achieve homogenization of the microstructure and improvement of mechanical properties of the Pb-based alloy, and to reduce the cost of wear-resistant materials such as bearing alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実験的に実施するために用いた
実験装置の断面図、第2図は本発明の方法による高速回
転攪拌凝固中のトルク変化を示すグラフ、第3図(a)
〜(c)及び第4図(a) (b)は本発明によって得
られた合金の図面代用顕微鏡写真、第5図(a) (b
)は比較例として低速回転攪拌凝固させることによって
得られた合金の図面代用顕微鏡写真である。 9拳・回転子、   12・・坩堝。 第3図 第5図
Fig. 1 is a cross-sectional view of the experimental apparatus used to experimentally implement the method of the present invention, Fig. 2 is a graph showing torque changes during high-speed rotation stirring solidification according to the method of the present invention, and Fig. 3 (a )
~(c) and FIGS. 4(a) and (b) are micrographs substituted for drawings of the alloy obtained by the present invention, and FIGS. 5(a) and (b).
) is a photomicrograph substituted for a drawing of an alloy obtained by solidifying with low-speed rotational stirring as a comparative example. 9 fists/rotors, 12...crucibles. Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、真空溶解したAl−Pb系合金を冷却しながら、回
転子による低速回転攪拌を加え、凝固開始と同時に回転
子の回転速度を上昇させ、連続的に冷却しながら高速回
転攪拌を続行して、均質性の高いAl−Pb系合金を得
ることを特徴とするAl−Pb系合金の均質混合法。
1. While cooling the vacuum melted Al-Pb alloy, add low-speed rotational stirring using a rotor, increase the rotational speed of the rotor at the same time as solidification begins, and continue high-speed rotational stirring while continuously cooling. A method for homogeneous mixing of Al-Pb alloys, which is characterized by obtaining highly homogeneous Al-Pb alloys.
JP60270211A 1985-11-30 1985-11-30 Method for homogeneously mixing al-pb alloy Granted JPS62130234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270211A JPS62130234A (en) 1985-11-30 1985-11-30 Method for homogeneously mixing al-pb alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270211A JPS62130234A (en) 1985-11-30 1985-11-30 Method for homogeneously mixing al-pb alloy

Publications (2)

Publication Number Publication Date
JPS62130234A true JPS62130234A (en) 1987-06-12
JPH0114298B2 JPH0114298B2 (en) 1989-03-10

Family

ID=17483081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270211A Granted JPS62130234A (en) 1985-11-30 1985-11-30 Method for homogeneously mixing al-pb alloy

Country Status (1)

Country Link
JP (1) JPS62130234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233046A (en) * 1988-03-11 1989-09-18 Suzuki Motor Co Ltd Method and apparatus for controlling semi-solidification of metal
JPH01234535A (en) * 1988-03-15 1989-09-19 Suzuki Motor Co Ltd Method and devcie for continuous production of metal-base composite material
JPH02200742A (en) * 1989-01-30 1990-08-09 Suzuki Motor Co Ltd Manufacture of al-pb series alloy
WO1999036209A1 (en) * 1998-01-20 1999-07-22 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for manufacturing semi-solidified metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233046A (en) * 1988-03-11 1989-09-18 Suzuki Motor Co Ltd Method and apparatus for controlling semi-solidification of metal
JPH01234535A (en) * 1988-03-15 1989-09-19 Suzuki Motor Co Ltd Method and devcie for continuous production of metal-base composite material
JPH02200742A (en) * 1989-01-30 1990-08-09 Suzuki Motor Co Ltd Manufacture of al-pb series alloy
WO1999036209A1 (en) * 1998-01-20 1999-07-22 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for manufacturing semi-solidified metal
US6681836B1 (en) 1998-01-20 2004-01-27 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for manufacturing semi-solidified metal

Also Published As

Publication number Publication date
JPH0114298B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
KR101342297B1 (en) - a method of and a device for producing a liquid-solid metal composition
US4759995A (en) Process for production of metal matrix composites by casting and composite therefrom
US4865808A (en) Method for making hypereutetic Al-Si alloy composite materials
US5346184A (en) Method and apparatus for rapidly solidified ingot production
JPS62130234A (en) Method for homogeneously mixing al-pb alloy
Ichikawa et al. Production of Al–Pb alloys by rheocasting
US4636355A (en) Method for manufacture of highly ductile material
JP3791395B2 (en) Method for producing Ni-base superalloy ingot comprising small and uniform fine crystal grains
JPH0431009B2 (en)
US5513688A (en) Method for the production of dispersion strengthened metal matrix composites
JPH0681068A (en) Method for casting heat resistant mg alloy
Ichikawa et al. Refinement of microstructures and improvement of mechanical properties in intermetallic TiAl alloys by rheocasting
Li et al. Effect of TiC on coarsening and macrosegregation of Al–Bi alloys
EP1859879A1 (en) Method of casting and casting apparatus
Ichikawa et al. Rheocasting techniques applied to intermetallic TiAl alloys and composites
JP2701298B2 (en) Method and apparatus for continuous production of metal matrix composite materials
Ichikawa et al. Homogenization of Microstructure and Improvement of Elevated Temperature Tensile Properties in a Ni-Base Superalloy by Rheocasting
Ichikawa et al. Microstructural control of Intermetallic CuAl-based and hypereutectic Al–Si alloys by stirring synthesis method
JPH044382B2 (en)
JPH0580523B2 (en)
JPH027749B2 (en)
JPS62227570A (en) Production of hollow casting having improved quality
JPH0627294B2 (en) Method for producing Al-Cu-TiC alloy composite material
Ichikawa et al. Rheocasting of TiAl alloys and composites
JP2583313B2 (en) Method for producing Nb-Ti alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees